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Abstract

The use of abstraction in problem solving is an e�ective approach to reducing search� but
�nding good abstractions is a di	cult problem� The �rst attempt to automatically gen

erate a hierarchy of abstraction spaces was made by Sacerdoti in ����� In ���
 Knoblock
built the system ALPINE� which completely automates the formation of a hierarchy by
abstracting preconditions of operators� To formalize his method� Knoblock introduced the
notion of ordered abstraction hierarchies� in attempt to capture the intuition behind �good�
hierarchies�

In this thesis we continue the work started by Knoblock� We present further formalization
of several important notions of abstract planning and describe methods to increase the
number of abstraction levels without violating the ordered property of a hierarchy�

We start by de�ning the justi�cation of a non
linear plan� Justi�cation captures the
intuition behind �good� plans� which do not contain useless actions� We introduce several
kinds of justi�cation� and describe algorithms that �nd di�erent justi�cations of a given
plan by removing useless operators� We prove that the task to �nd the �best possible�
justi�cation is NP
complete�

The notion of justi�ed plans leads us to de�ne several kinds of semi�ordered abstraction
hierarchies� which preserve the �good� properties of Knoblock�s ordered hierarchies� but may
have more abstraction levels�

Finally� we present an algorithm for automatically abstracting not only preconditions but
also e�ects of operators� This algorithm generates hierarchies with more levels of abstraction
than ALPINE� and may increase the e	ciency of planning in many problem domains� The
algorithm may generate both problem
independent and problem
speci�c hierarchies�
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Chapter �

Introduction

��� Informal overview

Classical Arti�cial Intelligence Planning is concerned with the problem of �nding ways to
achieve a desirable situation� called a goal state� starting from some initial state of the world�
We are able to perform some atomic actions� called operators� and wish to �nd a sequence
of operators that leads to a goal state� For example� suppose our goal is to boil a cup of
water� The following simple plan solves the goal�

�� Fill a cup with water�
�� Put the cup into a microwave�
�� Turn the microwave on�

The water
boiling plan is quite simple� but real
life planning problems are often much more
complicated� Most of them are unsolvable�

A lot of methods for increasing the e	ciency of planning were found in the last twenty
years� One of the main methods is to use a hierarchy of abstraction spaces� This means that
�rst we �nd some �outline� of a plan� which contains the most important steps of the plan
and omits details� Then we re�ne the plan by inserting details� If it is still incomplete� we
insert more details� The process of re�ning continues until a correct plan is found�

For example� step � of the plan above implies that we must open and close the door of
the microwave� While re�ning the plan� we must state these actions explicitly� Thus� the
re�ned version of step � looks as follows

�a� Open the door of the microwave�
�b� Put the cup into the microwave�
�c� Close the door of the microwave�

An abstraction hierarchy de�nes the �importance� of results of operators� In our case the
result �the cup is in the microwave� is more important than the results �the door is open�
and �the door is closed�� The results of operators are expressed as sets of literals� We say
that �the door is open� and �the door is closed� are concrete�level literals� and we ignore
them while building an outline of a plan at the abstract level of a hierarchy�

�



���� OUTLINE OF THE THESIS �

Intuitively� an abstraction hierarchy increases the e	ciency of planning by dividing an
initial problem into smaller subproblems� Since planning process usually takes exponential
running time� such a division may lead to an exponential increase of e	ciency �Knoblock�
����b�� However� the choice of a �good� hierarchy that increases an e	ciency of planning
is a di	cult problem�

The technique of ignoring some literals while planning at the abstract level was �rst
used by Newell and H� Simon in their GPS planner �Newell and H� Simon� ������ GPS
planner was able to use an abstraction hierarchy� but it was a human expert who determined
the importance of literals� ABSTRIPS planner �Sacerdoti� ����� was the �rst attempt to
automate the formation of abstraction spaces� but this system needed a human expert to
�nd some outline of a hierarchy� and thus only partially automated the process�

Knoblock in ���
 implemented the abstraction learner ALPINE that completely auto

mates the formation of abstraction hierarchies �Knoblock� ����a�� ALPINE produces useful
abstraction hierarchies in a number of problem domains� To formalize his method� Knoblock
introduced the notion of ordered abstraction hierarchies that captures the intuition behind
�good� abstraction hierarchies� However� hierarchies produced by ALPINE often contain
too few levels of abstraction�

In this thesis we continue the work of Knoblock and present a generalization of his
methods that allows us to generate �ner�grained hierarchies� that is hierarchies with more
levels of abstraction�

We approach the task from two di�erent directions� The �rst approach considers the
notion of justi�ed plans � plans without useless operators� We �rst introduce several kinds of
justi�ed plans� Then we present di�erent kind of semi�ordered abstraction hierarchies� which
are a generalization of Knoblock�s ordered hierarchies� and show how to adapt Knoblock�s
planner to the use of semi
ordered hierarchies without increasing the size of the search
space� We present necessary and su�cient conditions for an abstraction hierarchy to be
semi
ordered� and demonstrate that these conditions are less restrictive then the conditions
used in ALPINE� and therefore they enable us to generate �ner
grained hierarchies�

The second approach is based on the notion of primary e�ects of operators� We describe
a method to determine such e�ects� and introduce the notion of primary�e�ect restricted
planners� which apply an operator only for the sake of its primary e�ects� For example�
suppose you are boiling water in a microwave� The primary e�ect of this action is to
obtain a cup of hot water � this is your goal� Side e�ects are heating the room� spending
electricity� and so on� A primary
e�ect restricted planner never uses an operator to achieve
its side e�ect� Such a planner would not suggest to boil water in order to heat the room� We
show that the primary
e�ect restricted planning allows us to generate �ner
grained ordered
abstraction hierarchies than those generated by ALPINE�

Finally� we consider Knoblock�s method of generating problem
speci�c hierarchies� pres

ent a further formalization of this method� and adapt it to semi
ordered and primary
e�ect
restricted hierarchies�

��� Outline of the thesis

The reader�s guide in Figure ��� presents the order in which you may read the thesis�
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� � � �
�
�
��� Z

Z
ZZ�

Z
Z
ZZ� �

�
���

Chapter �

Chapter �

Chapter �

Chapter �

Chapter �Chapter �Chapter �

Figure ���� Reader�s guide

In Chapter � we present a formal description of problems domain and introduce de�ni

tions and notation that we are going to use� �The summary of the notation is presented in
Appendix A�� Then we prove several basic facts about planning domains� The second part of
the chapter describes the data structures for representing plans and abstraction hierarchies
in computer memory� and basic algorithms to work with these data structures�

In chapter � we introduce four kinds of plan justi�cations� We compare di�erent kinds
of justi�cations in terms of the lengths of justi�ed plans and running times necessary to �nd
justi�cations of a given plan� We present algorithms to �nd three of them and prove that
the problem to �nd the fourth� �best possible� justi�cation of a plan is NP
complete�

Chapter � describes several kinds of semi
ordered hierarchies� some of which are �ner

grained than others� We present su	cient and necessary conditions for a hierarchy to be
semi
ordered� and an algorithm based on these conditions for generating an abstraction
hierarchy� Then we describe an algorithm based on a learning technique that helps us
further increase the number of levels�

Chapter � describes a method to determine primary e�ects of operators� This method
leads to the notion of primary
e�ect restricted abstraction hierarchies that enables us to
improve e	ciency of planning in many domains� We present su	cient and necessary condi

tions of the completeness property of primary
e�ect restricted hierarchies� which ensures the
completeness of the planning algorithm�

Chapter � introduces the notion of a goal�speci�c domain� which allows us to further
increase the number of abstraction levels by generalizing Knoblock�s method �Knoblock�
����a� of building a hierarchy tailored to a speci�c goal��

Finally� a summary of the thesis is given in Chapter �� along with a discussion of the
work that has yet to be done�

�The term �goal�speci�c� in this thesis corresponds to Knoblock�s term �problem�speci�c�� We prefer

the term �goal�speci�c� because a modi�cation of an abstraction hierarchy depends only on a goal of the

plan�



Chapter �

De�nitions� notation� and basic

algorithms

In this chapter we introduce de�nitions and notations of planning domains� and present
data structures and basic algorithms used in the subsequent chapters� To help the reader to
understand the material easier� we present the summary of notations in Appendix A�

��� A formal description of a planning domain

We consider a model of the world described by a �nite set of variables X�fx�� x�� � � � � xng�
Each variable x can accept one of several values� The set of all values that x can accept is
called the domain of x and denoted by D�x�� We assume that the domain of each variable
is �nite� To describe a complete state S of the world� we specify the values of all variables
in the domain� Thus� we pick some value from the domain of x�� D�x��� and assign it to
x�� then pick some value from D�x�� and assign it to x�� and so on until every variable has
some value� Formally� this assignment may be viewed as a function S from the set of domain
variables X into the set of their values� that is into the set D�x���D�x��� ����D�xn�� This
function projects each variable xk into its own domain� D�xk�� which may be represented by
the formal expression

��xk � X � S�xk� � D�xk�

We write ��x � v� � S� to mean that the value of x is equal to v in the state S� Also�
we sometimes write �S�x�� to refer to the value of x in the state S� if �x � v� � S then
S�x� � v�

As an example� suppose we have a cup� a glass� and a kettle� each of which may contain
water� The kettle and the cup may contain either hot or cold water� while water in the glass
must not be hot� This domain may be described with three variables�

fKettle� Cup� Glassg

The possible values of variables Kettle and Cup are Empty� Cold�Water� and Hot�Water�
while Glass may be assigned only two values� Empty or Cold�Water� Formally� the domains
of this three variables may be written as

�



���� A FORMAL DESCRIPTION OF A PLANNING DOMAIN �

D�Kettle� � fEmpty� Cold
Water� Hot
Waterg
D�Cup� � fEmpty� Cold
Water� Hot
Waterg
D�Glass� � fEmpty� Cold
Waterg

The state S� in which the cup and glass are empty� and the kettle contains cold water� may
be described formally as follows�

S� � f�Kettle�Cold
Water�� �Cup�Empty�� �Glass�Empty�g

The value of Kettle in the state S is Cold�Water� which may be written as

S��Kettle� � Cold
Water

If we know the values of some variables� and do not know the others� we may specify only
the known values� Such a speci�cation is called a partial state of the world� Formally�
a partial state S is a partial function from the set of variables X into set of the values
D�x���D�x��� ����D�xn�� such that each variable xi is mapped either into its own domain
D�xi�� or not mapped at all� We write x � S to mean that the value of a variable x is
speci�ed in a partial state S� For example� if the kettle contains cold water� the cup is
empty� and the content of the glass is unknown� we may express this information as a partial
state

S� � f�Kettle�Cold
Water�� �Cup�Empty�g

The values of variables Kettle and Cup are speci�ed in this state� while the value of Glass
is not speci�ed� This may be formally written as

Kettle � S�
Cup � S�
Glass �� S�

We use the word state without any adjective if we do not know whether the state is partial
or complete� We denote the number of variables whose values are speci�ed in the state S by
jSj� Observe that we may receive several di�erent complete states from a partial state of the
world by specifying unspeci�ed variables� Thus� every partial state corresponds to several
complete states�

An operator � is de�ned by an ordered pair �Pre����E������ where E���� is a set of
values of the form �x � v�� that is the de�nition of E���� is the same as the de�nition of a
state� and Pre��� may contain speci�cations of variable values of the two forms� �x � v� and
�x �� v�� where the latter means that the value of x is not equal to v� Pre��� is called the
set of preconditions of an operator �� and E���� is called the set of e�ects of �� We require
that the set of e�ects E���� is not empty� and its intersection with the set of preconditions
is empty� that is the same value �x � v� cannot be both a precondition and an e�ect of an
operator�

E���� �� �� and
if �x � v� � E���� then �x � v� �� Pre���
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operator � preconditions Pre��� e�ects E����

Fill
Kettle �Kettle�Empty� �Kettle�Cold
Water�
Boil
Kettle �Kettle��Empty� �Kettle�Hot
Water�
Fill
Cup
Hot �Kettle�Hot
Water�� �Cup�Empty� �Cup�Hot
Water�
Fill
Cup
Cold �Kettle�Cold
Water�� �Cup�Empty� �Cup�Cold
Water�
Empty
Cup �Cup��Empty� �Cup�Empty�
Heat
Cup �Cup��Empty� �Cup�Hot
Water�
Fill
Glass �Kettle�Cold
Water�� �Glass�Empty� �Glass�Cold
Water�

Empty
Glass �Glass��Empty� �Glass�Empty�

Table ���� Operators in the water
boiling domain

Intuitively� the �rst requirement means that each operator produces some e�ect� and the
second requirement states that an operator does not achieve a value that always holds before
the execution of the operator�

As an example� we consider our domain with a kettle� a cup� and a glass� Suppose that
we may �ll the kettle with cold water� and that we may pour water from the kettle into
either the cup or glass� �We assume that the kettle is large and does not become empty
when we pour water from it into the cup or glass� even if we do it repeatedly�� We may empty
the cup or the glass by pouring water into a sink� Also� we may boil water in the kettle
by putting the kettle onto a stove� and we may heat water in the cup by putting the cup
into a microwave� The formal description of all these operations is shown in Table ���� For
example� the precondition of an operator Fill�Kettle states that the kettle must be empty
before we �ll it� and after an execution of this operator the kettle contains cold water� The
operator Fill�Glass has two preconditions� glass must be empty and kettle must contain cold
water� If the preconditions are satis�ed� we may execute the operator and obtain a glass of
cold water�

We denote the number of preconditions of an operator � by jPre���j� and the number
of its e�ects by jE����j� We write Pre��� � S if for every �x� � v�� � Pre���� x� has the
value v� in the state S� and for every �x� �� v�� � Pre���� x� is speci�ed in S and its value
is di�erent from v� in S�

Pre��� � S if and only if ��x � X �

�
if �x � v� � Pre��� then �x � v� � S

if �x �� v� � Pre��� then �x � v�� � S� where v� �� v

If Pre��� � S� we say that the preconditions of the operator �� are satis�ed in S� or that �
is legal in the state S� For example� the preconditions of the operator Heat�Cup are satis�ed
in the state

S � f�Cup�Cold
Water�� �Glass�Empty�g

since the cup is not empty in this state� From now on� in all theorems� algorithms� and
almost all de�nitions we will consider only one kind of preconditions� �x � v�� One may
check that all our proofs are also correct for the preconditions of the form �x �� v�� We do
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not consider this kind of preconditions in ordered to avoid repeating almost the same thing
twice�

If � is legal in S� we can apply this operator� Its application produces a new state ��S��
where all variables whose values are speci�ed by E���� have received these new values� and
all other variables have the same values as in S� Formally�

�x � v� � ��S� if and only if
� �x � v� � E����� or
� �x � v� � S and x �� E����

If �x � v� � E����� we say that the operator � achieves or establishes the value v of x� or�
shortly� achieves �x � v�� If x � E����� we say that � changes x� If � establishes �x � v��
and v� is a value of x di�erent from v� that is if v �� v�� we sometimes say that � establishes
�x �� v��� or that �x �� v�� is an e�ect of ��

The set of outcomes� Out���� of an operator � is de�ned as the set of all its e�ects together
with the set of the preconditions which are not changed by the e�ects of the operator�

Out��� � E���� � f�x � v� � Pre��� j x �� E����g

Observe that if � is legal in some state S� then after an execution of � all its outcomes hold�

if Pre��� � S then Out��� � ��S�

Intuitively� the outcomes of an operator are the literals that always hold after a legal execu

tion of an operator� If �x � v� is an outcome of �� and v� is a value of x di�erent from v� we
say that the operator � negates �x � v��� or that �x �� v�� is an outcome of �� This means
that the value of x after a legal execution of � is always di�erent from v��

For example� consider an operator Fill�Glass� The only e�ect of the operator is cold water
in the glass� However� we may deduce more information about the state of the world after
the execution of this operator� Since we may �ll the glass only if water in the kettle is cold�
and the operator does not change the temperature of water and does not make kettle empty�
we conclude that the kettle must contain cold water after a legal execution of Fill�Glass�
Thus� this operator has two outcomes�

Out�Fill
Glass� � f�Glass�Cold
Water�� �Kettle � Cold
Water�g

The set of all operators in a problem domain is denoted by O� We assume that O is
�nite� For a given value v of x� we denote the set of all operators that achieve �x � v� by
O�x�v�� that is

O�x�v� � f� � O j �x � v� � E����g

For a given variable x� we denote the set of all literals that change x by Ox� that is

Ox � f� � O j x � E����g

We say that a value v of x is achievable if O�x�v� �� �� i�e� there is an operator that achieves
�x � v�� We say that a variable x is changeable if Ox �� �� i�e� there is an operator that
changes x� For each variable x we denote the set of its achievable values by Da�x�� and the
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set of its unachievable values by Du�x�� Similarly� we denote the set of changeable variables
by X c� and the set of unchangeable variables by X u�

A linear plan is a triple �S�� Sg���� where S� is an initial state� Sg is a goal state� and
� � ���� � � � � �n� is a �nite sequence of operators� Sometimes we use our terminology loosely
and call �plan� a sequence � alone� The linear plan may be executed by applying operators
in order� �rst we apply �� to S� and receive a new state S�� then we apply �� and receive
the next state� S�� and so on until we have applied �n� Formally� the m
th state of the plan
is de�ned as follows

��m � ����n�� Sm � �m�Sm��� � �m��m���� � � ����S��� � � ���

The �nal state of the plan� which is the result of the plan execution� is denoted by ��S���

��S�� � Sn � �n��n���� � � ����S��� � � ���

We say that a plan �S�� Sg��� is legal if the preconditions of every operator are satis�ed
before the execution of the operator�

��m � ����n�� Pre��m� � Sm��

We say that a plan is correct if it is legal and achieves the goal� that is Sg � ��S���
Observe that the value of a variable x is speci�ed in some intermediate state Sm of a

linear plan if and only if it is speci�ed in the initial state or achieved by some operator
preceding Sm� We state this result as a lemma�

Lemma ��� Let � � ���� ��� � � � � �n� be a linear plan with an initial state S�� Then for any
m � �
��n�� x � Sm if and only if

�	
 x � S�� or
��
 �	k � ����m�� such that x � E���k�

Proof� Let us use the notation dom�S� to denote the set of the variables whose values
are speci�ed in a state S� and dom�E����� to denote the set of variables changed by the
operator �� Then it immediately follows from the de�nition of ��S� that

dom���S�� � dom�S� � dom�E�����

By applying this equality to the de�nition of Sk� we receive

dom�Sk� � dom�S�� � dom�E������ � � � � � dom�E���k��

This may be rewritten as

�x � Sk� 
� �x � S�� � �x � E������ � ��� � �x � E���k�

which proves the lemma� �

A nonlinear plan is a triple �S�� Sg���� where S� is an initial state� Sg is a goal state� and
� is a set of operators f��� � � � � �ng with a partial order 
� on it� �The subscript to 
 will be
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dropped if the intended plan is unambiguously speci�ed�� This partial order represents the
time�precedence relation between operators� �� � �� means that �� must be executed before
��� A sequence � � 	�k� � � � � � �kn� is a linearization of � if it contains all the operators of
�
 and the order de�ned by � is not violated
 that is for any �i and �j 
 if �i � �j
 then
�i occurs before �j in �� A linear plan 	S�� Sg��� is a linearization of a nonlinear plan
	S�� Sg��� if � is a linearization of �� A nonlinear plan is legal if all its linearizations are
legal
 and it is correct if all its linearizations are correct� The number of operators in � is
denoted by j�j� Also
 for a given plan 	S�� Sg��� we use the letter P to denote the sum of
the number of preconditions of all operators in � plus the number of goal values
 and E to
denote the number of e�ects of all operators�

P �
P

��O jPre	��j� jSgj
 and
E �

P
��O jE�	��j

We say that an operator �� necessarily precedes an operator �� in a nonlinear plan � if
�� precedes �� in all linearizations of �� An operator �� possibly precedes �� if �� precedes
�� in at least one linearization of �� It is easy to check 
Chapman
 ����� that

� �� is necessarily before �� if and only if �� � ��
 and
� �� is possibly before �� if only if �	�� � ���

Throughout the remainder of the thesis all plans are assumed to be nonlinear unless otherwise
speci�ed�

A plan 	S�� Sg��� is a subplan of 	S�� Sg���� if

���� �� � �
	�� ��� �� � ��
 and
	�� �� �� �� � �� ��� ��

Intuitively
 a subplan may be received from a plan by removing several operators
 and
preserving the order of the remaining operators� If a subplan �� of � contains less operators
than �
 that is �� is not the plan � itself
 then �� is called a proper subplan of �� If
	S�� Sg���� is a legal plan that achieves Sg
 we say it is a correct subplan of 	S�� Sg���� The
following lemma states a simple
 but important property of subplans
 which we use in proofs
of some theorems�

Lemma ��� Let � be a subplan of a nonlinear plan ��� and � be some linearization of ��
Then there exists a linearization �

�

of �� such that � is a subplan of �
�

�

Intuitively
 we take the linear plan � and insert into it the operators of �� which are not in
�� If we add all these operators without violating the time�precedence relation of ��
 then
the resulting linear plan �

�

is a linearization of ��
 and � is a subplan of �
�

� The following
proof shows that the operators of �� which are not in � indeed may be inserted into �
without violating their order in ���

Proof� First assume that � has one operator less than ��
 that is

j�j � j��j � �
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Let us denote operators of �
 according to their order in �
 as follows�

� � 	��� ��� � � � � �n�

We denote the operator of �� that is missing in � by ��
Let �k� � �k� � � � � � �ki be the set of operators that necessarily precede � according to the

constraints of the plan ��
 and �m�
� �m�

� � � � � �mj
be the set of operators that must be

executed after ��
�k� � �k� � � � � � �ki ��� � ��� �m�

� �m�
� � � � � �mj

W�l�o�g� we may assume that

k� � k� � � � � � ki
 and
m� � m� � � � � � mj

that is �k� is executed in � before �k� 
 �k� before �k� 
 and so on� Since �ki ��� � ��� �m�



by transitivity of the time�precedence relation we conclude that �ki ��� �m�

 and therefore

by the de�nition of subplans
 �ki �� �m�
� Then
 by the de�nition of a linearization
 �ki

occurs in � before �m�

 that is ki � m��

Let plan �
�

be obtained by inserting � into � immediately after �ki � Then � is located
in �

�

after �k� � �k� � � � � � �ki 
 and before �m�
� �m�

� � � � � �mj
� Thus
 the location of � satis�es

the time�precedence relation of the plan ��
 and therefore �
�

is a linearization of ��� Clearly

� is a subplan of �

�


 and thus a required linearization of �� is found�
Now assume that more than one operator of �� is missing in �
 that is

j�j � j��j � k� where k � �

Then we may �nd a sequence of plans ������ � � � ��k�� such that �� is obtained from �� by
removing one operator
 �� is obtained from �� by removing one more operator
 and so on till
�k��
 and �nally � is obtained from �k�� also by removing one operator� Then
 according to
the �rst part of the proof
 there exists a sequence of linear plans �

�

������� � � � ��k��
 which
are linearizations of respectively ��������� � � � ��k��
 such that � is a subplan of �k��
 �k��

is a subplan of �k��
 � � � 
 �� is a subplan of �
�

� Then � is a subplan of �
�


 and thus �
�

is a
required linearization of �� �

Intuitively we expect that if we have built a correct plan based on some partial knowledge
of an initial state of the world
 then any additional knowledge cannot make the plan incorrect�
In other words
 if a plan is correct in some partial state S�
 it has to be correct in any complete
state received from S� by specifying the unspeci�ed variables� For example
 suppose you
need a cup of hot water
 and you have a kettle with cold water
 an empty cup
 and a stove�
This information is enough to �nd the following correct plan for achieving your goal�

�� Boil water by putting the kettle onto the stove�
�� Pour water into the cup�

Any additional information
 such as knowledge of the initial temperature of the water or
whether the glass is empty or full 	recall that we have a glass in our domain�
 cannot make
your plan incorrect� The following lemma shows that this property indeed holds
 and thus
our formal de�nition of the correctness corresponds to human intuition�
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Lemma ��� Let 	S�� Sg��� be a correct plan� and S� � S�

�� Then the plan 	S�

�� Sg��� is
also correct�

Proof� To show that 	S�

�� Sg��� is correct
 we need to show that any of its linearizations
is correct� So consider an arbitrary linearization � � 	��� ��� � � � � �n� of �� The plan
	S�� Sg��� is correct as a linearization of a correct plan� We denote the intermediate states
of 	S�� Sg��� by S�� S�� � � � � Sn
 and the intermediate states of 	S�

�� Sg��� by S�

�� S
�

�� � � � � S
�

n�
Since 	S�� Sg��� is correct
 by the de�nition of the correctness we have�

Sg � Sn and 	�k � 
���n�� Pre	�k� � Sk�� 	��

To prove that 	S�

�� Sg��� is correct
 we need to show that

Sg � S�

n and 	�k � 
���n�� Pre	�k� � S�

k�� 	��

Observe that if we prove that

	�k � 
���n�� Sk � S�

k 	��

than statement 	�� directly follows from statements 	�� and 	��� Thus
 to show that the plan
	S�

�� Sg��� is correct
 it is enough to prove statement 	��� We prove it by induction on k�

Base� S� � S�

� by the statement of the theorem�

Step� Assume that for some k
 Sk � S�

k� We need to show that Sk�� � S�

k��� By de�nitions
presented in this section and using elementary properties of sets
 we have�

Sk�� � S�

k��

	
 �k��	Sk� � �k��	S�

k�
	
 	E�	�k��� � f	x � v� � Sk j x �� E�	�k���g�

� 	E�	�k��� � f	x � v� � S�

k j x �� E�	�k���g�
	� f	x � v� � Sk j x �� E�	�k���g � f	x � v� � S�

k j x �� E�	�k���g
	
 	�x� �� E�	�k���� if 	x � v� � Sk then 	x � v� � S�

k

	� 	�x� if 	x � v� � Sk then 	x � v� � S�

k

	
 Sk � S�k

Thus
 we have shown that Sk�� � S�

k�� follows from Sk � S�k
 as desired� �

��� Example of a Planning Domain �Tower of Hanoi�

In this example we describe a generalized tower of Hanoi puzzle
 which is then used in
the following chapters to illustrate techniques for hierarchical problem solving� The puzzle
consists of several 	not necessarily three� pegs with various�sized disks on them� We consider
an instance of the puzzle with three disks
 small
 medium
 and large
 and four pegs
 denoted
by �
 �
 �
 and �� We may move a disk from one peg onto another
 one disk at a time� The
constraints are that a disk can only be moved if it is above all other disks on a peg
 and a
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����

Figure ���� The tower of Hanoi with four pegs

operator � preconditions Pre��� e�ects E���� outcomes Out���
Move S�a�b� �Where S�a� �Where S�b� �Where S�b�
Move M�a�b� �Where M�a� �Where M�b� �Where M�b�

�Where S ��a�� �Where S��b� �Where S ��a�� �Where S��b�
Move L�a�b� �Where L�a� �Where L�b� �Where L�b�

�Where S ��a�� �Where S��b� �Where S ��a�� �Where S��b�
�Where M��a�� �Where M��b� �Where M ��a�� �Where M��b�

Table ���� The operator types in our tower of Hanoi domain

larger disk can never be placed on a smaller one� Figure ��� shows the tower of Hanoi puzzle
with three disks and four pegs�

We may describe the state of the world in this tower of Hanoi puzzle with three variables�
Where S
 Where M
 and Where L
 which represent the positions of respectively the small

medium
 and large disks� The domain of all three variables is the set of pegs
 f�� �� �� �g�
For example
 	Where S � �� means that the small disk is on peg �� The state of the world
shown on the Figure ��� may be formally described as

S � f	Where S � ��� 	Where M � ��� 	Where L � ��g

The formal description of the operators is given in Table ���� Letters a and b in the table
denote arbitrary pegs� For example
Move S	a� b� denotes an operator that moves the small
disk from some peg a to some other peg b� We receive a particular operator by substituting
some speci�c pegs 	�
 �
 �
 or �� for a and b� Thus
 the notation Move S	a� b� presents not a
speci�c operator
 but an operator type� Sometimes we use the terminology loosely and call
Move S	a� b� an operator� The additional column in the table shows the outcomes of each
operator


Out	�� � E�	�� � f	x � v� � Pre	�� j x �� E�	��g

which always hold after a legal execution of the operator�
Let us �nd a plan for achieving the state shown in Figure ���
 which is formally described

as
Sg � f	Where S � ��� 	Where M � ��� 	Where L � ��g

A linear plan that achieves it is

� � 	Move S	�� ��� Move M	�� ��� Move L	�� ��� Move M	�� ��� Move S	�� ���
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����

Figure ���� The goal of our plan

It is easy to see that the order of the last two operators does not matter� So
 we may use a
nonlinear plan
 where this order is not speci�ed�

�
 Move S	�� �� �
 Move M	�� �� �
 Move L	�� ��
�
�

Move S	�� ��

Move M	�� ��

�
�

�


��� Literal�Representation vs� Variable�Representation

In the previous section we showed how to describe states of the world as sets of values of
domain variables� This representation of states is called the variable�representation� In this
section we consider a slightly di�erent method to describe states of the world in the problem
domain
 called the literal�representation� The literal�representation has been used in most
research in classical planning� Then we show how these two representations can be mapped
into each other
 and emphasize some advantages of the variable�representation�

To obtain the literal�representation of a problem domain
 we introduce a �nite set of
literals L�fl�� l�� � � � � lng instead of a set of variables X � For each literal l in L
 the negation
of l
 �l
 also belongs to L� At any given moment in time each literal l is either True or False

but not both� If a literal l is True
 then its negation
 �l
 is False
 and vice versa�

A complete state S of the world is such a set of literals that for every literal l from L
 S
contains either l or �l
 but not both�

	�l � L� l � S or �l � S� but not both

The literals contained in the complete state S are assumed to be True
 while all other literals
are False� Thus
 the complete state speci�es the values of all literals in the problem domain�

A partial state of the world S is a set of literals that cannot contain a literal and its
negation at the same time
 and that does not specify the truth value of at least one literal�

	�� 	�l � L� l �� S or �l �� S� and

	�� 	�l � L� l �� S and �l �� S

Thus
 S may contain some literal l
 or its negation
 �l
 or neither
 but S cannot contain
both l and �l� If l � S
 the truth value of l is assumed to be True
 and if �l � S
 the value
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operator � preconditions Pre	�� e�ects E�	��

Move S	a
b� S on	a� S on	b�
 �S on	a�
Move M	a
b� M on	a� M on	b�
 �M on	a�

�S on	a�
 �S on	b�
Move L	a
b� L on	a� L on	b�
 �L on	a�

�S on	a�
 �S on	b�
�M on	a�
 �M on	b�

Table ���� The operator types in the literal�represented tower of Hanoi

of l is False� If neither l nor �l belongs to S
 the truth value of l is unknown� If S is a
partial state
 then there is at least one literal whose value is unknown�

The preconditions Pre	�� and e�ects E�	�� of an operator � are de�ned the same way
as partial states� they are sets of literals that do not contain a literal and its negation at
the same time� Also
 E�	�� must not be empty
 E�	�� �� �
 and the same literal cannot be
both in the preconditions and the e�ects of an operator
 E�	�� � Pre	�� � �� An operator
� is legal in some state S if E�	�� � S� The application of � to S produces a new state
�	S�
 where all literals from E�	�� hold
 and all literals that do not con�ict with E�	�� are
left unchanged�

�	S� � E�	�� � fl � S j �l �� E�	��g

E�g�
 if l�
 l�
 and l� are literals in our domain
 S � fl���l�� l�g
 and E�	�� � f�l�g
 then
applying � to S creates a new state f�l���l�� l�g�

Example �Literal�representation of the tower of Hanoi�
In this example we describe the literal�representation of the tower of Hanoi domain� We
again consider the tower of Hanoi with three disks and four pegs� States of the world in this
domain may be described with twenty�four literals�

S on	�� �S on	�� M on	�� �M on	�� L on	�� �L on	��
S on	�� �S on	�� M on	�� �M on	�� L on	�� �L on	��
S on	�� �S on	�� M on	�� �M on	�� L on	�� �L on	��
S on	�� �S on	�� M on	�� �M on	�� L on	�� �L on	��

where
 for example
 S on	�� means �the small disk in on peg ��
 and �L on	�� stands for
�the large disk is not on peg ��� For convenience
 we combine this twenty�four literals into
six literal types�

S on	a� M on	a� L on	a�
�S on	a� �M on	a� �L on	a�

where a stands for an arbitrary peg� The formal description of operator types is given in
Table ����

Suppose we wish to �nd a plan with the same initial and goal states as in the previous
example 	see Figure ����� The literal�representation of these initial and goal states are
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���

� ��������

Figure ���� The application of an operator Move S	�
��

S� � fS on	���M on	��� L on	��g
Sg � fS on	���M on	��� L on	��g

Of course
 the goal may be achieved by the same plan as in the variable�represented domain�

� � 	Move S	�� ��� Move M 	�� ��� Move L	�� ��� Move M 	�� ��� Move S	�� ���

To get an intuitive idea how we describe the application of an operator to a state
 let us
consider the application of the �rst operator of the plan
 Move S	�
��
 to the initial state
	see Figure ����� The precondition of this operator
 S on	��
 holds in the initial state
 and
therefore the operator is legal� Both e�ects of the operator
 S on	�� and �S on	��
 must
hold in the resulting state S�� The literals M on	�� and L on	�� of the initial state does not
con�ict with the newly achieved literals
 and so they still hold in S�� On the other hand

the literal S on	�� of the initial state con�icts with a newly achieved literal �S on	��
 and
therefore this literal does not belong to the resulting state S�� Thus


S� � fS on	����S on	���M on	��� L on	��g

Similarly
 we may describe the execution of the remaining operators of � and show that this
plan achieves the goal� �

To convert a literal�representation into a variable�representation
 we introduce a variable
L for each pair of literals l and �l from the literal set L� The variable L may have one
of two values
 True or False� Then we may replace the literal l with the expression 	L �
True�
 and the literal �l with the expression 	L � False�� After we replace all literals by
corresponding expressions
 we receive a variable�representation of the problem domain
 and
it is straightforward to check that this representation is equivalent to the original literal�
representation�

On the other hand
 a variable�representation of a problem domain always may be con�
verted into a literal�representation� To make such a conversion
 we replace every domain
variable x � X 
 whose possible values are D	x� � fv�� v�� � � � � vmg
 with 	� � m� literals�
x	v��� x	v��� � � � � x	vm�
 and �x	v����x	v��� � � � ��x	vm�� Thus
 we de�ne the set of all liter�
als L as follows�

L � fx	v���x	v� j x � X and v � D	x�g

We map each variable�represented state Sv into a literal�represented state Sl by the following
rule�

	�� x	v� � Sl if and only if 	x � v� � Sv
	�� �x	v� � Sl if and only if 	x �� v� � Sv
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	Recall that 	x �� v� � Sv means that the value of x is di�erent from v
 that is for some v� �� v

	x � v�� � Sv�� We use the same rules 	�� and 	�� to map the variable�represented precondi�
tions Pre	�v� and e�ects E�	�v� of every operator �v into their literal�represented equivalents
Pre	�l� and E�	�l�� The following lemma shows that the initial variable�representation and
the resulting literal�representation describe the same problem domain�

Lemma ��� For every state S and every operator ��
� Pre	�v� � Sv if and only if Prel	�� � Sl
� mapping the state �v	Sv� according to rules ��� and ��� produces the state �l	Sl�

Proof� Assume Pre	�v� � Sv� To prove that Pre	�l� � Sl
 we need to show that
	i� for all x	v� � Pre	�l�
 x	v� � Sl
 and
	ii� for all �x	v� � Pre	�l�
 �x	v� � Sl

We derive the proof of these two statements as follows�

	i� x	v� � Pre	�l� 	
 	x � v� � Pre	�v� �
 	x � v� � Sv 	
 x	v� � Sl

	ii� �x	v� � Pre	�l� 	
 	x �� v� � Pre	�v� �
 	x �� v� � Sv 	
 �x	v� � Sl

The reverse direction and the second part of the lemma are proved similarly� �

Observe that while converting the literal�representation into the variable�representation

we replace each literal by one value� a literal l is replaced by the value 	L � True�
 and �l
is replaced by 	L � False�� On the other hand
 when converting in the reverse direction
 we
need to introduce two literals
 v	x� and �v	x�
 for each value v of each variable x� Thus

while converting the variable�representation into the literal�representation
 we may end up
with less compact description of the problem domain than we had before the conversion�
Because of this
 the variable�representation often allows a more compact description of the
problem domain� Also
 the variable�representation sometimes allows us to obtain a unary or
postunique representation� of a problem domain
 which may considerably improve the e��
ciency of planning 
Backstrom and Klein
 ������ Finally
 the variable�representation usually
better corresponds to the human intuition� For example
 in the tower of Hanoi problem it is
more natural to think �location of the small disk is on peg �� than �it is true that the small
disk is on peg �
 and it is not true that the small disk is on peg ���� In the next section we
show that the variable�representation has one more advantage� it may help to avoid initial
state axioms�

��� Domain rules

While describing a real�life domain by means of the variable or literal�representation
 it often
happens that some sets of values do not correspond to any state of the world
 or
 in other

�A planning domain is called unary if every operator changes a value of exactly one variable� and it is
called postunique if no two operators achieve the same value of the same variable� that is for any two distinct
operators �� and ��� E����� � E����� � ��

�We have to say that this advantage is not universal� there are domains in which literal�representation is
closer to the intuition than variable�representation� The blocks world is an example of such a domain�
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words
 do not make sense� For example
 the set of literals fS on	���S on	��g in the literal�
represented tower of Hanoi does not describe any real state
 since the small disk cannot be
on pegs � and � at the same time� In a formal fashion
 this constraint may be written as

�S on	�� � �S on	��

which means that either the small disk is not on peg �
 or it is not on peg �� Such constraint
is called a domain rule�

We use disjunctive clauses to represent domain rules� Formally
 a rule is a clause of the
form

r � l� � l� � � � � � ln

where each lk is either 	xk � vk� or 	xk �� vk�
for some xk � X and some vk � D	xk�

We say that a complete state S satis�es rules r�� r�� � � � � rn if
 for the values of variables
speci�ed in S
 r� � r� � � � � � rn � True� A partial state satis�es rules r�� � � � � rn if there
exists at least one assignment of values of the unspeci�ed variables for which r� � � � � �
rn � True� The problem to determine if a partial state satis�es the set of domain rules is
generally NP�complete
 since it is equivalent to the satisfyability problem for a conjunctive
normal form� We say that R � fr�� � � � � rng is a set of domain rules for a problem domain

if every intermediate state of every linear plan in the problem domain satis�es this set of
rules�

For example
 the constraints in the literal�represented tower of Hanoi may be described
with three rule types�

�S on	a� � �S on	b�
�M on	a� � �M on	b�
�L on	a� � �L on	b�

where speci�c rules may be obtained from each of rule types by replacing a and b with
speci�c distinct pegs� In other words
 the rules hold for all distinct instances of a and b�

It is easy to see that the states of every plan satisfy a set of domain rules if and only
if the initial state of every plan satis�es these rules
 and the rules are preserved after the
execution of every operator� So
 to ensure that some set of rules holds in every state of every
plan in a problem domain
 we need to check that

�� the rules hold in every possible initial state
 and

�� if the rules hold in some state S
 and � is an operator legal in S
 then all the rules still
hold in �	S�

This leads us to the notions of initial�state axioms and invariants� The set of initial�state
axioms A is the set of all rules satis�ed by every initial state in the problem domain�

r � A if and only if
 for every plan 	S�� Sg���
 S� satis�es r

The invariant I is the set of rules that
 once hold in any state
 are preserved by any legal
operator�
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for every operator � and every state S

if some state S satis�es I and � is legal in S

then �	S� also satis�es I

Clearly
 if an invariant holds in the initial state of a linear plan
 than it also holds in all of
the following states� Observe that

�� invariants in a problem domain are implicitly de�ned by the formal description of
operators
 and

�� domain rules R that hold in every state of problem domain are implicitly de�ned by a
set of initial�state axioms A and invariants�

The �rst statement means that we may infer from the description of operators which prop�
erties of the world the operators preserve� E�g� we may infer that �S on	a���S on	b� is an
invariant in the tower of Hanoi domain by observing that every operator that put the small
disk onto some peg b
 removes this disk from its previous peg a� This inference is based
on a syntactic description of the domain 	see Table ����
 and can be made even if we know
nothing about physical properties of a real tower of Hanoi puzzle�

The second statement says that if we know the properties of all possible initial states of
the world
 and the properties preserved by operators
 we may infer the domain rules� For
example
 if we know that a disk cannot be simultaneously on two di�erent pegs in any initial
state
 and that every legal operator preserves this property
 we conclude that a disk cannot
be simultaneously on two di�erent pegs in any intermediate state of any legal plan�

On the other hand
 the set of initial�state axioms A must be stated explicitly
 since
otherwise a planner has no way to determine which initial states are allowed in the problem
domain�

For example
 consider the variable�representation of the tower of Hanoi with the initial�
state axioms�

A � f	Where S � ��� 	Where M � ��� 	Where L � ��g

These axioms mean that the only allowed initial state is the state shown in Figure ���
 where
all disks are on peg �� The set of domain rules in this example is empty
 R � �
 since any
state may be achieved by executing some plan�

Now let us consider a less trivial example� Suppose that the tower of Hanoi has only two
pegs
 � and �
 and three disks 	see Figure ����� Let the initial�state axioms be as follows�

A � f	Where M � ��� 	Where L � ��g

These two axioms mean that the medium and large disk must be on peg � in the initial state
of any plan
 while the small disk maybe on any peg� The only possible initial states are the
states shown on Figure ���� It is easy to check that the only legal operation one can perform
with this puzzle is to move the small disk back and forth between the two pegs
 but there is
no way to put either the medium or large disk onto peg �� Thus
 the domain has two rules

the same as the initial�state axioms�

R � f	Where M � ��� 	Where L � ��g
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����

Figure ���� Tower of Hanoi with two pegs

which means that the medium and large disk remain on peg � in any intermediate state of
any legal plan�

Now we present a theorem that describes a connection between invariants and the syn�
tactic description of operators� Let r � l� � l� � � � � � ln
 where each lk is either 	xk � vk�
or 	xk �� vk�
 be a rule
 and � be an operator such that �l���l�� � � � ��lk � E�	�� and
�lk��� � � � ��ln �� E�	��
 where � � k � n� That is � negates k literals of r
 and for nota�
tional convenience we assume
 w�l�o�g�
 that these are the �rst k literals of r� Let the set of
preconditions of � be Pre	�� � fl��� � � � � l

�

mg� We say that � preserves r in the case of an
invariant I if either

� k � �
 that is � negates no literals of r
 or
� there exists l � r such that l � E�	��
 or
� the following k rules are rules of the invariant I�

r� � �l� � lk�� � lk�� � � � � � ln � �l�� � �l
�

� � � � � � �l�m
r� � �l� � lk�� � lk�� � � � � � ln � �l�� � �l

�

� � � � � � �l�m
���
rk � �lk � lk�� � lk�� � � � � � ln � �l�� � �l

�

� � � � � � �l�m
This is a de�nition and a theorem at the same time
 because we need to prove that if one
of the three conditions holds
 then � indeed always preserves the rule r� We start with an
informal consideration of each of the three cases� In the �rst case
 � does not negate any
literal of r
 and thus if the rule r holds before the execution of �
 it still holds after the
execution� In the second case
 since � establishes some literal of r
 this rule always holds
after the execution of �� The third case describes the situation when the execution of �
may lead to a state in which the rule r does not hold� This happens if none of the literals
lk��� lk��� � � � � ln holds before the execution of �
 and � negates the rest of literals of the rule
r during its execution� However
 the rules r�� r�� � � � � rk guarantee that in such a situation
the rule r does not hold before the execution of �
 and therefore the rule is not violated by
the execution� Thus
 in all three cases
 if r holds before the execution of �
 it still holds
after the execution�

Theorem ��	 Consider a problem domain with some invariant I� The rule r is an invariant
rule if and only if it is preserved by every operator in the problem domain�

Proof� Assume that r is preserved by every operator� We need to show that for every state
S satisfying r
 and for every � legal in S
 �	S� satis�es r� If k � �
 then no literal of r
is changed by �
 and therefore r holds in �	S�� If there exists l � r such that l � E�	��
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then l � �	S�
 and therefore �	S� satis�es r� Finally
 if r�� � � � � rk are invariant rules
 then
S satis�es all these rules� Since S satis�es r
 one of the literals l�� � � � � lk
 say li
 holds in S

and
 since Pre	�� � S
 none of the literals �l��� � � � ��l

�

m holds in S� Thus
 from the rule ri
we conclude that one of the literals lk��� � � � � ln
 say lj
 holds in S� Since �lj �� E�	��
 it still
holds in �	S�
 and therefore in this case �	S� also satis�es r�

Now assume that there exists some operator � that does not preserve r
 that is all three
conditions stated before the theorem do not hold� Then k � �
 that is � negates al least
one literal of the rule r
 and one of the rules r�� � � � � rk for the operator �
 say ri
 is not
an invariant rule
 and therefore there exists a state S that does not satisfy ri� Then all of
the literals li
 �lk��� � � � ��lm
 and l��� � � � � l

�

m hold in S� Therefore
 S satis�es r 	due to the
literal li� and E�	�� � S� Since � establishes �l�� � � � ��lk
 and does not establish any of
the literals lk��� � � � � ln
 we conclude that �l�� � � � ��ln � �	S�
 and therefore �	S� does not
satisfy r� Thus
 r may be violated by an application of � and therefore r is not an invariant
rule� �

We did not �nd an e�cient way to use this theorem for generating invariants for a
problem domain� However
 it may be used to check whether some given set of rules I is an
invariant�

��� Criticalities

The criticality of a variable is some number 	usually natural� that characterizes the �impor�
tance� of the variable in the planning domain� While achieving some goal
 we �rst try to
achieve values of �important� variables� Later we may re�ne our plan by adding operators
to achieve values of less important variables�

An abstract problem space contains only variables with criticalities not less than some
�xed number� While planning in an abstract space
 we ignore all variables with smaller
criticalities by removing them from the preconditions of the operators and from the goal�
The set of the criticalities of variables in a problem domain is called an abstraction hierarchy�

Abstract planning is usually done in a top�down manner� First we �nd a plan that solves
the goal at the highest level of abstraction
 that is we �pay attention� only to the variables
with the highest criticality� Then we re�ne this plan at successively lower levels by inserting
new operators to achieve the reintroduced preconditions which were ignored during planning
at the higher levels� When we re�ne a plan at some level of abstraction
 we usually try to
preserve the values of variables at higher levels� This guarantees that we cannot accidentally
violate the correctness of the higher�level plan� However
 the requirement to preserve the
abstract�level values is not strict� In Chapter � we describe a planning algorithm that changes
the values of higher�level variables while planning at a concrete level
 but then modi�es the
resulting plan in such a way that the �nal version of the concrete�level plan still preserves
the structure of the initial abstract�level plan�

Formally
 an abstraction hierarchy H is a pair 	X � crit�
 where X is the set of variables
in a problem domain
 and crit is a function from X into the set of natural numbers� A level
of an abstraction hierarchy is formed by the domain variables with the same criticality� For
two hierarchies
 H� � 	X � crit�� and H� � 	X � crit��
 in the same problem domain
 we say
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that H� is 	ner�grained than H� if
 for any two domain variables x�� x� � X 

� crit�	x�� � crit�	x�� if and only if crit�	x�� � crit�	x��
 and
� if crit�	x�� � crit�	x�� then crit�	x�� � crit�	x��

Intuitively
 H� is either the same as H� or obtained from H� by dividing some of the levels
of H� into smaller sublevels�

Let � be an operator
 and i be some criticality value� We denote the set of preconditions
of � that have criticality values more than or equal to i by iPre	���

iPre	�� � f	x � v� j 	x � v� � Pre	�� and crit	x� � ig

� f	x �� v� j 	x �� v� � Pre	�� and crit	x� � ig

We denote the operator with preconditions iPre	�� and e�ects E�	�� by i� and the set of
all such i� by iO
 that is

iO � fi� j � � Og

The problem space at level i of abstraction is de�ned by the set of variables X and the set
of operators iO�

Similarly
 we can abstract the goal state�

iSg � f	x � v� j 	x � v� � Sg and crit	x� � ig

The Upward Solution Property proved in 
Tenenberg
 ����� states that if a plan is correct
at some level of a hierarchy
 it is also correct at any higher level�

Example
We consider the tower of Hanoi problem described in the previous example� Intuitively
 the
�most important� variable is the position of the large disk
 Where L
 because once the large
disk is put onto the proper peg
 the other two disks may be put into their positions without
moving the large one� A similar reasoning shows that Where M is the second important
variable
 and Where S is the least important� So
 we assign criticalities such that

crit	Where S� � crit	Where M� � crit	Where L�

Thus
 the criticality assignment is as follows�

crit	Where L� � �
crit	Where M� � �
crit	Where S� � �

Recall that our initial state is

Sg � f	Where S � ��� 	Where M � ��� 	Where L � ��g

On the highest level of abstraction we ignore all variables except Where L
 and the goal
becomes

Sg � f	Where L � ��g
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This goal may be achieved by a single operator�


Move L	�� ��


The only precondition of this operator on the highest level of abstraction is 	Where L � ���
On the next level of abstraction we take into account the variable Where M
 but still ignore
Where S� On this level of abstraction the goal is

Sg � f	Where M � ��� 	Where L � ��g

We need to re�ne our one�operator plan by adding some operators before Move L	�� �� so
that the preconditions 	Where M �� �� and 	Where M �� �� of Move L	�
�� become true
before its execution
 and we need to add some operators after it to make 	Where M � ��
hold in the �nal state� After adding such operators
 we receive the following plan�


 Move M	�� �� 
Move L	�� ��
Move M	�� ��


Finally
 we consider the lowest level of abstraction
 where all three variables in the prob�
lem domain matter� At the lowest level the above plan is incorrect� its �rst operator

Move M	�� ��
 cannot be applied in the initial state
 because its precondition 	Where S �� ��
is not satis�ed� So
 we need to add some new operators to make the plan correct� Recall

that we cannot change or reorder operators of the higher�level plan
 and we cannot add
operators that change values of higher level variables� Thus
 we may use only the operator
Move S� One of the possible re�nements of the above plan is


Move S	�� ��
 Move M	�� �� 
Move L	�� ��
Move M	�� ��
Move S	�� ��


It is easy to check that this plan is correct and achieves the goal� �

When we deal with hierarchies that have some �good� property 	for example
 the ordered
property 
Knoblock et al�
 ����� or the downward re	nement property 
Bacchus and Yang

������
 e�ciency of planning usually 	but not always� increases as the number of abstraction
levels increases� Thus
 we wish to have as many levels of abstraction as possible as long
as �good� properties are preserved� However
 the evidence for high e�ciency of planning
in �ner�grained hierarchies is mostly empirical� Some theoretical work has been done to
demonstrate high e�ciency of planning in multilevel ordered hierarchies 
Knoblock
 ����b�


Bacchus and Yang �����
 but the results presented in these papers are based on assumptions
that are too strong for most planning problems�

��	 Data structures and basic algorithms

All sets and relations discussed above must somehow be represented in the computermemory�
	We use the real RAMmodel of computation�� The reader who is not interested in the details
of implementation may skip this section�

We represent sets as arrays or linked lists� Such a representation allows us to retrieve
consecutively all elements of a set in linear time� We keep the set of variables X as two disjoint
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Check Preconditions �	S���
�� for each 	x � v� � Pre	�� do
�� if S	x� �� v
�� then �� preconditions are not satis�ed �� return	False�
�� �� preconditions are satis�ed �� return	True�

Apply �	S� ��
�� for each 	x � v� � E�	�� do
�� S	x� �� v�
�� return	S�

Table ���� Simple algorithms for the full representation

sets
 the set of changeable variables X c and the set of unchangeable variables X u � X �X c�
For every variable x
 we keep two disjoint sets of its values� the set of achievable values
Da	x�
 and the set of unachievable values Du	x�� For each operator we keep pointers to
all its preconditions and e�ects so that we can quickly retrieve them� Observe that these
pointers allow us to retrieve in linear time not only the preconditions and the e�ects
 but
also the outcomes of an operator� For each variable x we keep the set of pointers to every
operator that changes x 	that is to every operator of the set Ox�
 and for each value v of x
we keep the set of pointers to every operator that achieves 	x � v� 	that is to every operator
of the set O�x�v	��

There are two ways to keep the description of the current state S of the world� The �rst
method is to keep S as an array indexed on the variables of X 
 that is S has jX j entries
 each
corresponding to a particular variable� Each planning variable x may accept either some
value from its domain D	x� or the special value Unknown
 indicating that the value of x is
not speci�ed in the state S� We call this representation the full representation of S� The
advantage of this representation is that the value of each variable may be accessed in constant
time� We may check whether the preconditions Pre	�� of some operator � hold in the state S
in O	jPre	��j� running time� Table ��� present the algorithm Check Preconditions �
 which
checks whether the preconditions of � hold in S� 	Recall that the notation �S	x�� stands for
the value of x in the state S�� The comments in the algorithm are bracketed by � � � � � � ��
Also
 we may �nd the result of applying � to S
 that is the new state �	S�
 in O	jE�	��j�
time� We �nd �	S� by assigning a new value to each variable changed by �� The algorithm
Apply � that �nds �	S� is presented in Table ����

The full representation of S is convenient if X is small
 or if the values of most variables
are speci�ed 	not Unknown� in S� If X is large and only few variables have known values

the representation described above becomes ine�cient because it takes to much memory� It
is more e�cient to keep only the variables whose values are speci�ed in S� In this case we
assume that the value of a variable is speci�ed in the state S if and only if it is indicated
in the representation of S� This assumption is known as the Closed World Assumption

Genesereth and Nilsson
 ������ We call this representation the closed�world representation
of S� To be able to access elements of S quickly
 we represent S as a black�red tree indexed
on the names of variables� A black�red tree is a kind of a binary�search tree� Search of an
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Check Preconditions �	S���
�� for each 	x � v� � Pre	�� do
�� �� �nd the node with the value of x �� Find	S� x��
�� if 	node with x not found� or 	S	x� �� v�
�� then �� preconditions are not satis�ed �� return	False�
�� �� preconditions are satis�ed �� return	True�

Apply �	S� ���
�� for each 	x � v� � E�	�� do
�� �� �nd the node with the value of x �� Find	S� x��
�� if node with x not found in S
�� then �� insert a new node �� Insert	S
	x � v��
�� else �� change the value of x �� S	x� �� v�
�� return	S�

Table ���� Simple algorithms for the closed�world representation
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Figure ���� Example of the transitive reduction and transitive closure

element in a black�red tree and insertion of a new element take O	log n� time in the worst
case
 where n is the number of nodes in the tree� The description of a black�red tree and
algorithms on it may be found in 
Cormen et al�
 ������ Thus
 in this case the access to the
value of a variable in the description of the state S takes O	log jSj� time� The algorithm for
checking whether the preconditions of an operator � are satis�ed in a state S in this case
takes O	jPre	��j � log jSj� time
 and the algorithm for computing �	S�
 which is the result
of applying an operator � to a state S
 takes O	jE�	��j � log jSj� time� The both algorithms
are presented in Table ����

We keep partially ordered sets as acyclic directed graphs� A directed graph is a set of
vertices some of which are connected with directed edges
 each directed edge pointing from
one vertex to another� An example of a directed graph is shown in Figure ���a� We denote a
directed edge from a vertex a to a vertex b by 	a� b�� A path in a directed graph is a sequence
of vertices 	a�� a�� � � � � an� such that there is the edge from a� to a�
 from a� to a�
 and so on�
For example
 the graph in Figure ���a contains a path 	a� b� c� d�� A graph is called acyclic if
it does not contain any path of the form 	a�� a�� � � � � an� a��� Intuitively
 if we travel along the
edges in an acyclic graph
 then
 once we have left some vertex
 we can never visit it again�
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	a� Partial order

a � b � c
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	c� Representation by a
transitively closed graphtransitively reduced graph

	b� Representation by a

Figure ���� Graph representation of a partial order

Two important kinds of directed graphs are transitively reduced and transitively closed
graphs�

De
nition ��	 �Transitive edges�
Let G be a directed graph� and a and b be its vertices� The edge 	a� b� from a to b is called
transitive if there is a path from a to b that does not contain the edge 	a� b��

De
nition ��� �Transitively reduced and transitively closed graphs�
An acyclic directed graph is called transitively reduced if it does not contain any transitive
edges� A graph is transitively closed if it contains all possible transitive edges� that is no
transitive edge may be added to the graph�

Figure ��� presents an example of the transitive reduction and transitive closure of an
acyclic graph� Each acyclic graph has exactly one transitive closure and transitive reduction

Cormen et al�
 ������

We use an adjacency list to represent a directed graph in the computer memory 
Cormen
et al�
 ������ This means that for each vertex a of the graph we keep two linked list� One of
the lists contains all such vertices b that there is an edge from a to b� The other list contains
all such vertices c that there is an edge from c to a�

Since the time�precedence relation on the operators of a nonlinear plan is a partial order

we need a data structure to represent partially ordered sets� We represent a partially ordered
set in computermemory as two directed graphs� a transitively reduced and transitively closed
graph� To construct a transitively closed graph for some partially ordered set
 we represent
each element of the set as a vertex of the graph
 and for each two elements a and b such that
a � b
 we draw an edge from b to a� The resulting graph is acyclic because the partial order
is antisymmetric
 and the graph is transitively closed because the partial order is transitive

Enderton
 ������ An example of the graph representation of a partial order is shown in
Figure ����

The representation of a partially ordered set as a transitively closed graph
 stored in the
computer memory as an adjacency matrix
 allows us to compare two elements of the set

that is two �nd which of the two elements is larger under the partial order
 in constant
time� To compare a and b
 we just check if there is an edge in the graph connecting a and
b� If this edge goes from b to a
 then a � b� If there is no edge between a and b
 they are
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incomparable� We use this method to determine
 in constant time
 which of two operators
of a nonlinear plan is executed earlier�

Also
 we may remove an element from a transitively closed graph
 preserving the tran�
sitively closed structure of the remaining graph
 in O	V � time
 where V is the number of
vertices in the graph� To do this
 we just remove the element
 all edges incoming into this
element
 and all edges outcoming from it�

To construct a transitively reduced graph
 we remove all transitive edges from the tran�
sitively closed graph described above� Observe that if there is a path from a vertex a to
a vertex b in a graph
 then a path from a to b is also exists in the transitive reduction of
the graph 
Cormen et al�
 ������ Thus
 for transitively reduced representation of a partially
ordered set we have� a � b if and only if there is a path from b to a�

For a given element a in a partially ordered set A
 we de�ne the set of immediate suc�
cessors of a by

Immediate Successors	a� � fb � A j b � a and 	 � �c � A� b � c � ag

and the set of immediate predecessors of a by

Immediate Predecessors	a� � fb � A j b � a and 	 � �c � A� b � c � ag

The vertices in the transitively reduced graph that have outcoming edges leading to
a correspond to the set of immediate predecessors of a� The edges outcoming from a in
the transitively reduced graph point to the immediate successors of a� For example
 the
immediate successor of b in Figure ���b is a
 and the immediate predecessors are c and e�
So
 the transitively reduced graph allows us to �nd the set of immediate successors and
predecessors of a given element in linear time�

To keep the order of operators of a nonlinear plan � in the computer memory
 we represent
� as two directed graphs� a transitively reduced graph �r and a transitively closed graph
�c� Vertices of these graphs correspond to operators of the plan ��

To work e�ectively with graphs
 we must be able to perform several simple operations
on them�

	� Linearization
Given a set fa�� a�� � � � � ang
 and a partial order � on this set
 we wish to �nd a sequence
	ak�� ak� � � � � � akn� of elements of the set where for each pair of comparable elements
 the
smaller element occurs before the larger one� Formally
 for all i� j � 
���n�
 if i � j then
either aki � akj 
 or aki is incomparable with akj �

If the partial order is represented as a directed graph
 this problem is called the topological
sorting� The running time of the algorithm that performs the topological sorting is O	V �E�

where V is the number of vertices in the graph
 and E is the number of edges� The algorithm
is described in 
Aho et al�
 ������

�� Combining strongly connected components
A strongly connected component of a directed graph is a maximal set of vertices such that
there is a path from each vertex of the set to each other vertex of the set 	see Figure �����
We wish to replace each strongly connected component with a single vertex
 whose incoming
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Figure ���� Example of combining strongly connected components

edges are all the edges that go from outside into the component
 and whose outcoming edges
are all the edges that come out of the component� Formally
 if fa�� a�� � � � � ang is the set
of vertices in a strongly connected component in a graph G
 we remove all these vertices
with all their incoming and outcoming edges
 and insert a single vertex a with the set of
outcoming vertices

f	a� b� j 	�i � 
���n�� 	ai� b� was in Gg

and the set of incoming edges

f	b� a� j 	�i � 
���n�� 	b� ai� was in Gg

A solution of this problem with running timeO	V �� is presented in 
Cormen et al�
 ������

�� Finding the set of minimal elements
A minimal element a of a partially ordered set A is such an element that

	� �b � A� b � a

that is all other elements of A are either larger than a or incomparable with a� Let a partial
order on A be represented by an acyclic directed graph G� We wish to �nd the set Y of
minimal elements of A� 	We do not assume that G is transitively reduced or transitively
closed��

The algorithm that �nds the set of minimal elements is presented in Table ���� To
understand how it works
 observe that if there is an edge from a vertex a to some other
vertex b
 then b � a
 and therefore a is not minimal� On the other hand
 if there are no
edges outcoming from a
 then there are no elements less than a
 and a is a minimal element�
The adjacency�list representation of a graph allows us to check the condition in line � of the
algorithm in constant time� To do this
 we just check whether the list of the edges outcoming
from a is empty� The total running time of the algorithm is O	V �
 where V is the number
of vertices in the graph�

�� Transitive reduction
Given an acyclic directed graph
 we wish to �nd its transitive reduction
 that is to delete all its
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Minimal Elements	G�
�� Y �� ��
�� for every vertex a of G do
�� if there are no outcoming edges from a
�� then Y �� Y � fag�
�� return	Y �

Table ���� Finding minimal elements of partially ordered set represented by the graph G

transitive edges� An e�cient transitive�reduction algorithm is presented in 
K� Simon
 ������
Its worst�case time is O	V �Ered�
 where V is the number of vertices in the graph
 and Ered

is the number of edges after the transitive reduction� The average�case running time of the
algorithm is O	V � � log log V ��

�� Transitive closure
Given an acyclic directed graph
 we wish to �nd its transitive closure
 that is to add all
possible transitive edges to the graph� For every two vertices a and b such that there is a
path from a to b
 we add an edge from a to b�

The algorithm that solves this problem is presented in 
K� Simon
 ������ The running
time of the algorithm is the same as the running time of the transitive reduction algorithm�
the average�case running time is O	V � � log log V �
 and the worst�case running time is O	V �
Ered�
 where V is the number of vertices in the graph
 and Ered is the number of edges in
the transitively reduced version of the graph�



Chapter �

Justi�ed plans

When we search for a plan to achieve certain goal� we wish to �nd a plan that does not contain
�useless� steps� In other words� we wish to optimize the plan by removing all operators that
are not necessary for achieving the goal� For example� suppose one has a kettle with water
and wishes to obtain a cup of a hot water� by following the plan�

�� Boil water in the kettle�
�� Pour water into the cup�

If later one discovers that the kettle already contains hot water� then the �rst step of the
plan� �boil water�� is no longer necessary for achieving the goal� After removing the �rst
step� the resulting plan�

�� Pour water into the cup�

contains fewer steps while still achieving the same goal� The operation of removing useless
operators from a plan is known as justi�cation� The main purpose of this chapter is to
formalize di	erent ways of performing justi�cation�

One application of the justi�cation would be to augment a non
optimal planner such
as STRIPS with a justi�cation routine� The resulting plan will then be more e�cient to
execute� This may be especially useful for planners that use macro operators �such as the
planner described in 
Korf� ������� because the plans after substituting atomic operators for
macro operators are often non
optimal� Hierarchical planners and planners that use primary
e	ects of operators also may produce non
optimal plans� because the optimal plans may be
ruled out by restrictions imposed by the planning process� Finally� even planning algorithms
based on the A� search technique �e�g� TWEAK� may produce non
optimal plans if the
heuristic used by A� does not guarantee optimality�

Another application of this optimization is in reusing old plans� Suppose that we have
found a plan for achieving goals G�� G�� and G�� Later we may use the same plan to
achieve the goal G� alone� In this case we wish to �nd the subplan of the initial plan which
is �relevant� to achieving G�� by removing all unnecessary operators� Thus� justi�cation
would be useful for adapting old plans to new situations�

The notion of justi�ed plans is important not only for the purpose of optimizing plans�
but also for abstract problem solving� Several important concepts describing the algorithms

��
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for generating abstraction hierarchies are de�ned via justi�ed plans� For example� the the

oretical concepts underlying Knoblock�s planner ALPINE 
Knoblock� ����� are based on
the notions of justi�ed plans� Other results that depend on this notion are presented in

Yang and Tenenberg� ������ 
Knoblock et al�� ������ and 
Bacchus and Yang� ������

In spite of the importance of the concept of justi�ed plans� relatively few e	orts have
been made to explore di	erent kinds of justi�cation� In this chapter we begin to �ll this
gap by formalizing� unifying� and extending the previous work� First we consider the notion
of backward justi�ed plans� which guarantees that each operator in the plan establishes a
literal necessary for achieving the goal� Then we present a syntactic de�nition of well�justi�ed
plans� Informally� a plan is well
justi�ed if none of its operators may be omitted� We then
compare well
justi�ed and backward justi�ed plans� Finally� we consider the task to �nd the
�best possible� justi�cation of a given plan� that is a subplan of a given plan that cannot
be further optimized by removing any subset of its operators� We show that the task of
�nding such a subplan is NP
complete� To satisfy the practical need for e�cient planning�
we present a greedy algorithm that �nds a near
perfect justi�cation in polynomial time�

In the next chapter we will show that the notions of di	erent kinds of justi�cation allow us
to introduce di	erent kinds of ordered hierarchies� This will lead to increasing the e�ciency
of Knoblock�s planner ALPINE by generating �ner
grained ordered hierarchies than those
generated by ALPINE�

��� Backward justi�cation

To formalize the notion of justi�ed plans� we �rst generalize the concept of establishment
relation de�ned in 
Knoblock et al�� ����� to nonlinear plans�

De�nition ��� �Establishment� Let �S�� Sg��� be a correct linear plan� Let �� and �� be
two operators of the plan� ��� �� � �� �x � v� � E	����� and �x � v� � Pre����� Then ��
establishes �x � v� for �� if

� �� � ��� and
� �� � �� if �� � � � �� then x �� E	���

We say that �� possibly establishes a value �x � v� for �� in a nonlinear plan �S�� Sg��� if
it establishes �x � v� for �� in at least one linearization of �S�� Sg����

Intuitively this means that the precondition �x � v� of the operator �� holds before the
execution of ��� and �� is the last operator that achieves it�

De�nition ��� �Backward justi�cation� Let �S�� Sg��� be a correct plan� An operator

� � � is called backward justi�ed if ��x � v� � E	��� such that � possibly establishes

�x � v� either for the goal Sg or for another backward justi�ed operator�

We say that a plan � is backward justi�ed� if all its operators are backward justi�ed� This
de�nition of justi�cation was used in the planner ALPINE 
Knoblock et al�� ������ For
linear plans it is equivalent to the de�nition stated in 
Yang and Tenenberg� ������ For
nonlinear plans� backward justi�cation is weaker than the justi�cation described in 
Yang
and Tenenberg� ������
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Intuitively� an operator is backward justi�ed if it establishes some literal necessary for
achieving the goal� However� it may happen that this literal has been established before ��
and then � is useless for our plan� So� backward justi�ed operators are not �truly justi�ed��
We illustrate this point with the following example�

Assume you have a kettle with a hot water and an empty cup� and you wish to have a
cup of hot water� The following plan achieves the goal

�� Pour water into the cup�
�� Heat the water in the cup by putting the cup into a microwave�

The second operator is backward
justi�ed� because it makes the water hot� while no other
operator after it achieves the same goal of making the water hot in the �nal state� However�
this operator still may be skipped� because the water was already hot before its execution�
Thus� the second operator is not �truly justi�ed��

The following theorem was stated in 
Yang and Tenenberg� ����� for the de�nition of
justi�ed operators used in ABTWEAK� We show that it also holds for our de�nition of
backward justi�ed plans�

Theorem ��� Let �S�� Sg��� be a correct plan� Its correct backward justi�ed subplan may

be found by removing all non�backward�justi�ed operators�

Proof� Let �� be the plan obtained from � by removing all non
backward justi�ed operators�
We need to show that this new plan is correct and backward justi�ed�

Claim �� �S�� Sg���� is correct�

We need to show that every linearization of �� is correct� So consider its arbitrary lineariza

tion �

�

� and let � be such a linearization of � that �
�

is a subplan of �� �Such a linearization
of � exists by Lemma ����� � is correct as a linearization of a correct plan� Now consider
an arbitrary operator � of �

�

� In �� all preconditions of � are satis�ed� Since �
�

is obtained
from � by removal of non
backward
justi�ed operators� none of removed operators may es

tablish any precondition of �� Therefore� all preconditions of � are established either by the
initial state or by backward justi�ed operators� and therefore these preconditions still hold
in �

�

before �� Therefore� � is legal in �
�

� Thus� we have shown that all operators of �
�

are
legal� The proof that �

�

achieves the goal is similar�

Claim �� �S�� Sg���� is backward justi�ed�

Let � be an arbitrary operator of ��� We need to show that � is backward justi�ed in at
least one linearization of ��� Since � is backward justi�ed in �� it must be justi�ed in one
of the linearizations of �� Let us denote this linearization by �� We remove from � all
operators that are not backward justi�ed in � and obtain a new linear plan �

�

� Observe
that according to Claim �� �� is correct� and therefore �

�

is also correct� as a linearization
of a correct plan�

The operator � is backward justi�ed in �� and we wish to show that it is backward
justi�ed in �

�

� For this purpose we show that every backward justi�ed operator of � is also

backward justi�ed in the plan �
�

� We denote operators of �
�

by ������� � � ��k� To prove our
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claim� we use induction in backward direction� we show that if our hypothesis holds for
�i��� � � � � �k� then it holds for �i as well�

Base� i � k � �� that is the induction hypothesis holds for the empty set of operators�
This is a trivial case�

Step� Now assume that the hypothesis holds for �i��� � � � � �k� We need to show that if
�i is backward justi�ed in �� it is also backward justi�ed in �

�

� So assume �i is justi�ed in
��

Case �� �i establishes some value �x � v� for the goal� Then� by the de�nition of
establishment� no operator in � after �i changes x� Since �

�

is a subplan of �� no operator
in �

�

after �i changes x either� and therefore �i establishes �x � v� for the goal in the plan
�
�

� Therefore� �i is backward justi�ed in �
�

�

Case �� �i establishes a value �x � v� for some backward justi�ed operator �� of ��
Observe that since �� is backward justi�ed in �� it is also backward justi�ed in �� and
therefore� by construction of �

�

� �� is one of the operators �i��� � � � � �k� By the de�nition of
establishment� no operator of � between �i and �� changes x� Therefore� no operator of �

�

between �i and �� changes x either� and thus �i establishes �x � v� for �� in the plan �
�

� By
inductive hypothesis� �� is backward justi�ed in �

�

� Therefore� �i is also backward justi�ed
in �

�

� �

The algorithm for removing non
backward
justi�ed operators is shown in Table ���� The
algorithm begins by considering the last operator of the plan� If this operator does not
contribute any value into achieving the goal� it is removed� Then the algorithm considers
the second last operator� then the third last� and so on till the �rst operator of the plan�
If the plan is nonlinear� we may use the order de�ned by any of its linearizations� Each
operator that does not establish a value of any variable for the goal nor for any other
operator is removed� Observe that when we consider an operator� all non
backward
justi�ed
operators after this operator are already removed� Thus� the operator is not removed only
if it establishes a precondition for some backward justi�ed operator� which means that the
operator itself is backward justi�ed� �Notice that the algorithm proceeds from the end to
the beginning of the plan� This is the reason for the term �backward justi�ed���

The algorithm Possibly Establish�������x � v�� checks whether � possibly establishes
�x � v� for ��� It checks every operator �� which changes x� and if �� is necessarily between
� and ��� it concludes that � does not establish �x � v� for ��� If the order of operators
is represented as a transitively closed graph� the conditions in line �a may be checked in
constant time� and therefore the algorithm Possibly Establish runs in O�j�j� time�

Lines ��� of the algorithm Backward Justi�ed are executed once for each e	ect of each
operator� and so the total number of executions is E �

P
��O jE	���j� Within lines ��� the

procedure Possibly Establish is called j�j times� and the procedure itself takes O�j�j� time�
So the total running time of the algorithm Backward Justi�ed is O�E � j�j���

The main advantage of a backward justi�cation is that it can be found quickly� The
algorithm described above works faster than the justi�cation algorithm used in ABTWEAK
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Backward Justi�cation�S�� Sg���
�� let � be some linearization of ��
�� for � �� �last operator of �� downto ��rst operator of �� do

begin
�� Justi�ed �� False�
�� for each �x � v� � E	��� do

begin
�� for each �� in � such that �x � v� � Pre���� do
�� if Possibly Establish�������x � v��
�� then �� � is backward justi�ed �� Justi�ed �� True�
�� if Possibly Establish���Sg� �x � v��
�� then �� � is backward justi�ed �� Justi�ed �� True

end�
��� if Justi�ed�False �� � is not backward justi�ed ��
��� then remove � from the plan �

end

Possibly Establish�������x � v��
�a� for every �� � � such that x � E	���� do
�a� if � � �� and �� � ��
�a� then �� � does not establish �x � v� for �� �� return�False��
�a� return�True�

Table ���� Finding the backward justi�ed subplan of a given plan
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Yang and Tenenberg� ������� and much faster than other justi�cation algorithms that we
discuss in this thesis�

��� Well�justi�cation

We have shown in the previous section that the plan

Initial state
 A kettle of hot water�
�� Pour water into the cup�
�� Heat the water in the cup by putting the cup into a microwave�

Goal state
 A cup of hot water�

is backward
justi�ed� while its second operator still may be skipped� In this section we intro

duce a stronger justi�cation� called a well�justi�cation� that does not contain any operator
that may be skipped without violating the correctness of the plan�

De�nition ��� �Well	justi�cation� An operator �i in a linear plan �S�� Sg��� is called

well
justi�ed if ��x � v� � E	��i� such that �i establishes �x � v� for some operator or for

the goal Sg� and �x � v� does not hold before the execution of �� that is �x � v� �� Si���
An operator in a nonlinear plan is called well�justi�ed if it is well�justi�ed in at least one

linearization of the plan�

We say that a plan is well
justi�ed if all its operators are well
justi�ed� Intuitively� an oper

ator is well
justi�ed if it establishes a value of some variable which has not been established
before� and which is necessary for executing some other operator� This means that if we
remove a well
justi�ed operator from a plan� the plan is no longer correct� We state it as a
lemma�

Lemma ��� An operator is well�justi�ed if and only if we cannot remove it from the plan

without violating the correctness of the plan�

Proof� Assume � is a well
justi�ed operator of a plan �S�� Sg���� To prove that � cannot
be removed from �S�� Sg��� without violating its correctness� we need to show that � cannot
be removed from at least one linearization of �S�� Sg���� Let �S�� Sg��� be a linearization
of �S�� Sg��� in which � is well
justi�ed� Then � establishes some value �x � v� for some
operator of � or for Sg� Let us consider the former case� By the de�nition of establishment�
no operator between � and �� changes x� and by the de�nition of well
justi�cation� the value
of x before � is di	erent from v� Thus� if we remove �� the value of x before �� is di	erent
from �x � v�� and the plan is no longer correct� The situation when � establishes �x � v�
for the goal is treated similarly�

Now assume that � is not well
justi�ed� We need to show that it may be removed from
any linearization of �S�� Sg��� without violating the correctness of the linearization� Con

sider an arbitrary linearization �S�� Sg���� If � establishes a value �x � v� for some operator

�ABTWEAK justi�cation takes O�P � E � j�j� time� where P �
P
��O

Pre��� �Yang� private
communications��
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�� �or for the goal�� then �x � v� holds before �� and no operator between � and �� changes
x� Therefore� �x � v� will hold before �� after the removal of �� Thus� all preconditions of
operators established by � still hold after removing �� and therefore the removal of � does
not violate the correctness of the plan� �

The next theorem follows directly from the lemma�

Theorem ��� A plan is well�justi�ed if and only if there is no operator that can be removed

without violating the correctness of the plan�

This theorem shows that well
justi�cation captures the intuition behind �good� plans� a
well
justi�ed plan does not contain any operator that is not necessary for achieving the goal�
The next theorem shows that well
justi�cation is stronger than backward justi�cation�

Theorem ��� If a plan is well�justi�ed� it is also backward justi�ed�

Proof� Consider some plan �S�� Sg���� and assume that this plan is not backward justi�ed�
We need to show that it is not well
justi�ed either� Let � be a non
backward
justi�ed
operator of � such that no non
backward
justi�ed operator is necessarily after �� In other
words� there is no such a non
backward
justi�ed operator �� that � � ��� To prove that
�S�� Sg��� is not well
justi�ed� we show that the operator � is not well
justi�ed� So we need
to show that � is not well
justi�ed in every linearization of ��

Let � be an arbitrary linearization of �� Since � is not backward justi�ed� it does
not establish any value for the goal� nor for any backward justi�ed operator� If �� is a
non
backward
justi�ed operator after �� � may establish some precondition �x � v� of ���
However� we will show that in this case �x � v� holds before �� Let � be the k
th operator
of �� and �� be the m
th operator�

� � ���� ��� � � � � �k��� �� �k��� � � � � �m��� �
�� �m��� � � � � �n�

Since � establishes �x � v� for ��� none of the operators �k��� � � � � �m�� changes x� Observe
that in the plan �

	 the operators ��� ��� � � � � �k�� are possibly before � and ���

��i � 
����k 
 ���� ��� � �i� and ���� � �i�

	 the operators �m��� � � � � �n are possibly after � and ���

��i � 
�m� ����n�� ���i � �� and ���i � ���

	 since �� is not backward justi�ed� by the choice of � we have�

��� � ���
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Therefore there exists another linearization �
�

of �� such that in this linearization

�� � �� � � � � � �k�� � �� � � � �m�� � � � � � �n

We are concerned with the value of x in this linearization� and we do not care about positions
of the operators �k��� � � � � �m��� which do not change x� Since �x � v� is a precondition of
��� and �

�

is correct as a linearization of the correct plan �� �x � v� holds before �� in ��
This means that after executing the sequence of the operators ��� ��� � � � � �k�� starting from
the initial state� the value of x becomes v� Since the same operators are executed before �
in �� the value of x before � is also v�

Thus� we have shown that if � establishes �x � v� for some operator� then �x � v� holds
before �� By the de�nition of well
justi�cation this means that � is not well
justi�ed� �

Observe that while every well
justi�ed plan is backward justi�ed� this is not so for op

erators in a plan� A well
justi�ed operator may not be backward justi�ed� For example�
suppose you have an empty cup and your goal is to �ll it with water� The following plan is
correct and achieves the goal �even though it is not optimal��

�� Pour water into the cup�
�� Pour water into a glass�
�� Empty the glass�

The second and third operators in this plan are not backward justi�ed� since they do not
contribute anything into achieving the goal� However� operator � is well
justi�ed� because
upon its removal operator � becomes illegal�

Note that there might be several distinct well
justi�ed subplans of the same plan� For
example� suppose one has a kettle of cold water� and needs a cup of hot water� The following
plan leads to the desired result�

�� Boil water by putting the kettle onto a stove�
�� Pour the water into the cup�
�� Put the cup into a microwave�

This plan is not well
justi�ed� because either the �rst or third operator may be skipped
without violating the correctness of the plan� Thus� the plan has two well
justi�ed subplans�
one of them consists of the �rst two operators� and the other consists of the last two�

A simple algorithm that �nds a well
justi�ed subplan of a given plan is shown in Ta

ble ���� Here the algorithm Legal Plan checks whether a plan is legal� that is whether the
preconditions of all operators are satis�ed before their execution� For each operator �� the
algorithm calls the procedure Legal Operator to check whether the operator � is legal� The
algorithm Legal Operator considers each precondition �x � v� of �� and checks whether this
precondition holds before �� Lines �b��b of the algorithm check whether some operator
before � establishes �x � v�� or whether �x � v� holds in the initial state� If �x � v� does
not hold in the initial state� and no operator before � establishes it� we conclude in line �b
that the plan is not correct� If �x � v� is established� we need to make sure that no operator
removes this value� This is done in lines ��b���b� for each operator �� that may occur
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before � and establishes a value of x di	erent from v� we check if there exists an operator
between �� and � that reestablishes �x � v�� If such an operator is not found� we conclude
in line ��b that the plan is not correct� It is straightforward to verify that the running time
of the algorithm Legal Operator is O�jPre���j � j�j��� and the running time of the algorithm
Legal Plan is O�P � j�j��� where P �

P
��O jPre���j� jSgj�

The algorithm Goal Achieved checks whether the goal is satis�ed in the �nal state� It is
similar to the algorithm Legal Operator � we just consider the goal as the preconditions of
some �virtual� operator added at the end of the plan and check whether this preconditions
are satis�ed� The running time of this algorithm is O�jSgj � j�j���

To �nd a well
justi�ed subplan of a given plan� the algorithm Well Justi�cation tries
to remove each operator from the plan and then checks whether the remaining plan is still
correct� �The notation �� 
 f�g� in the line � refers to the plan � with the operator
� removed�� If such an operator is found� the algorithm removes it and starts from the
beginning with this new� shorter plan� Since it may remove an operator at most j�j times�
and it calls the procedures Legal Plan and Goal Achieved at most j�j times between removals
of operators� the total running time of the algorithm is O�P � j�j���

��� Perfect justi�cation

While well
justi�ed plans cannot contain unnecessary operators� they still may contain un

necessary groups of operators� This means that while no single operator may be eliminated
from the plan� several operators may be eliminated together� For example� consider the
following plan of boiling water�

�� Fill a cup with water�
�� Empty the cup�
�� Fill the cup with water again�
�� Put the cup into a microwave�

This plan is well
justi�ed� we cannot skip operator � � because then we could not �ll the
cup again� and we cannot skip operator � � because the cup has to be full when we put it
into a microwave� However� we may skip operators � and � together� To formalize this
observation� we introduce the notion of a perfectly justi�ed plan�

Intuitively� a plan is perfectly justi�ed if no subset of its operators may be removed from
the plan� In other words� this is the �best possible� justi�cation�

De�nition ��
 �Perfect justi�cation� A correct plan �S�� Sg��� is called perfectly justi

�ed if it does not have any correct proper subplan�

Just by de�nition perfect justi�cation is stronger than all justi�cations discussed above�
Unfortunately� a perfect justi�cation of a given plan cannot be found in polynomial time�
The next theorem shows that the task to �nd a perfect justi�cation of a given plan is
NP
hard� even for linear plans� Moreover� it is NP
hard to check whether a linear plan is
perfectly justi�ed�
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Well Justi�cation�S�� Sg���
�� repeat
�� for each � � � do
�� if Legal Plan�S���
 f�g� Sg� and Achieves Goal�S���
 f�g� Sg�
�� then remove � from �
�� until no operator is removed during the last execution of the loop

Legal Plan�S����
�a� for each � � � do
�a� if not Legal Operator�S���� ��
�a� then �� � contains illegal operator �� return�False��
�a� return�True�

Legal Operator�S���� ��
�b� for each �x � v� � Pre��� do

begin
�b� Established �� False�
�b� if �x � v� � S�
�b� then Established �� True�
�b� for each �� � � do
�b� if �x � v� � ��
�b� then Established �� True�
�b� if Established�False
�b� then return�False��
��b� for each �� such that ��� � ���
��b� if �� establishes a value of x di	erent from v

then begin
��b� Reestablished �� False�
��b� for every �� such that �� � �� � � do
��b� if �x � v� � E	����
��b� then Reestablished �� True�
��b� if Reestablished � False

��b� then return�False�
end

end�
��b� return�True�

Table ���� Finding a well
justi�ed subplan of a given plan
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Theorem ��
 Suppose we are given a linear plan �S�� Sg���� and we wish to determine

whether this plan is perfectly justi�ed� This problem is NP�complete�

Proof� The problem is trivially NP� since� given a subplan of a given plan� we may check
in polynomial time whether this subplan is correct and achieves the goal �see the algorithms
Legal Plan and Goal Achieved in the previous section�� So� we need only to show that the
problem is NP
hard�

We prove this claim by reducing �
CNF
SAT problem to our problem� CNF is a conjunc

tive normal form with at most � logical variables in every clause� The �
CNF
SAT problem is
the problem to determine whether a given �
CNF has a satisfying assignment� This problem
is known to be NP
complete �see� for example� 
Cormen et al�� �������

In the proof below we use the literal representation of the problem domain� In other
words� we reduce �
CNF
SAT to the plan in the problem domain where all variables of the
set X may accept only two values� True and False� In the proof we deal with two kinds of
variables� both logical� the variables in the �
CNF and the variables in the planning domain
to which we reduce �
CNF
SAT� To avoid confusion� we call the former CNF�variables and
denote them by upper
case letters� On the other hand� variables in the planning domain are
called planning variables and denoted by lower
case letters�

Suppose we are given �
CNF with n distinct logical variables X��X�� � � � �Xn� and k dis

tinct clauses C�� C�� � � � � Ck� For each CNF
variable Xi we introduce two planning variables�
v�i and v�i � For each clause Cj we introduce a corresponding planning variable cj� Finally�
for each pair �Xi� Cj�� where Xi is a CNF
variable in the clause Cj� we introduce a planning
variable xij� We consider a problem domain that contains all introduced planning variables�
That is� the set of planning variables in our problem domain is

X �
n�

i��

fv�i � v
�

i g �
k�

i��

fcjg � fxij j Xi is in Cjg

Now we need several operators that change values of our planning variables� For each
i � 
���n� we introduce an operator �i with e	ects �v�i � True�� �v�i � False� and without
any preconditions �see Table ����� For each pair �Xi� Cj�� where Xi is a CNF
variable in
the clause Cj� without negation ��� in front of this CNF
variable� we introduce the operator
�ij with a precondition �v�i � True�� and with e	ects �cj � True�� �xij � True�� For each
pair �Xi� Cj�� where Xi is a CNF
variable in the clause Cj� with negation ��� in front of
this CNF
variable� we introduce the operator �ij with a precondition �v�i � True�� and with
e	ects �cj � True�� �xij � True�� Finally� we introduce the operator � with preconditions
�v�� � False�� �v�� � False�� � � � � �v�n � False�� whose e	ects are all �v�i � True��s and all
�xij � False��s� All introduced operators are presented in Table ����

We de�ne an initial state as follows

� ��i � 
���n�� v�i � True and v�i � False

� ��j � 
���k�� cj � False

� for all planning variables xij in our domain� xij � True

The goal of our plan is�
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operators preconditions e�ects

�i ��i � 
���n�� � �v�i � True�� �v�i � False�
�ij �for each Xi � Cj� �v�i � True� �cj � True�� �xij � True�
�ij �for each �Xi � Cj� �v�i � True� �cj � True�� �xij � True�
� �v�� � False�� � � � � �v�n � False� �v�� � True�� � � � � �v�n � True�

and all �xij � False��s

Table ���� Operators in the proof of NP
completeness

� ��j � 
���k�� cj � True

� for all planning variables xij in our domain� xij � True

Now we present a linear plan that solves the goal�

� � ���� ��� � � � � �n� �� all �ij�s in any order� all �ij�s in any order�

First we show that this is indeed a correct plan that solves the goal� All �
operators are
certainly legal because they do not have any preconditions� The operator � has preconditions
�v�� � False�� �v�� � False�� � � � � �v�n � False�� and each precondition �vi � False� is achieved
by the corresponding �i� For each operator �ij� its precondition �v�i � True� is established
by the corresponding operator �i� and the value of vi cannot be changed between �i and
�ij neither by other ��s� nor by other ��s� nor by �� For each operator �ij� its precondition
�v�i � True� is established by the operator � and cannot be deleted by any of the following
operators� Finally� the goal values� which are all �cj � True��s and all �xij � True��s� are
established by �ij and �ij 
operators�

Now we claim that the initial conjunctive normal form has a satisfying assignment if and
only if the described plan has a correct proper subplan that solves the goal�

First assume that the conjunctive normal form has a satisfying assignment� W�l�o�g� we may
assume that the satisfying assignment is

X� � X� � � � � � Xm � True

Xm�� � Xm�� � � � � � Xn � False

for some m � 
���n�� Then we claim that the subplan

�
�

� ���� ��� � � � � �m� all �ij�s such that i � 
���m�� all �ij �s such that i � 
�m� ����n��

of � is correct� The operators ��� ��� � � � � �m in �
�

are legal just because they do not have
preconditions� For each operator �ij� i � 
���m�� its precondition �v�i � True� is established
by the operator �i� For each �ij� i � 
�m� ����n�� its precondition �v�i � True� holds in the

initial state� and since the operator �i is not in the plan �
�

� no operator changes v�i � All
xij�s have the value True after execution of �

�

because they have this value in the initial

state� and no operator of �
�

changes any of them� Finally� we need to show that all cj�s have
the value True in the �nal state� Consider some planning variable cj� j � 
���m�� Since we
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consider a satisfying assignment of the conjunctive normal form� the clause Cj must have
the value True under this assignment� and therefore it either contains some CNF
variable Xi

without negation ��� in front of it such that Xi � True� or it contains some CNF
variable
Xi with negation ��� such that Xi � False�

Case �� Xi without negation� Xi � True� Then there is an operator �ij in the plan

�
�

� This operator establishes �cj � True�� and neither other �
operators� nor �
operators
changes cj after it becomes True�

Case �� Xi with negation� Xi � False� Then there is an operator �ij in the plan �
�

�
This operator establishes �cj � True�� and other �
operators do not change the value of cj�

Now assume that the plan �S�� Sg��� has a correct proper subplan� We need to show that
the conjunctive normal form has a satisfying assignment� If we remove some operator �i
from �� then the precondition �v�i � False� of � is no longer satis�ed� and therefore we have
to remove �� On the other hand� if we have removed some operator �ij or �ij � and have not
removed �� then � establishes �xij � False�� and no operator after � establishes �xij � True��
and therefore the resulting plan does not achieve the goal� Thus� whatever operator we
remove from �� we have to remove � too� This means that no correct proper subplan of our
plan may contain �� Thus� any correct proper subplan of � has the form

�� � ��k� � �k� � � � � � �km� some sequence of �ij�s� some sequence of �ij �s�

We claim that if this is a correct plan� then the assignment

Xk� � Xk� � � � � � Xkm � True�
and all other CNF
variables Xkm�� � Xkm�� � � � � � Xkn � False

is a satisfying assignment of the conjunctive normal form� To prove this� we need to show
that each clause Cj has the value True� Pick any j � 
���k�� Since �� achieves the goal�
one of its operators must establish �cj � True�� This may be done either by an operator �ij
�where i is arbitrary� or by an operator �ij�

Case �� �cj � True� is achieved by �ij� By construction of the problem domain� existence
of the operator �ij implies that the CNF
variable Xi� without negation in front of it� is in
the clause Cj� Some operator in �� must establish the precondition �v�i � True� of �ij� The
only operator that achieves this precondition is �i� Therefore� �i � ��� and therefore in our
truth assignment Xi � True� Since Cj has the CNF
variable Xi without negation� and the
value of X is True� the value of the clause Cj is also True�

Case �� �cj � True� is achieved by �ij� By construction of the problem domain� existence
of the operator �ij implies that the CNF
variable Xi� with negation in front of it� is in the
clause Cj � The precondition of �ij is �v

�

i � True�� If the operator �i is in the plan ��� then
it establishes the value �v�i � False�� and no operator after it establishes �v�i � True�� and
so the precondition of �ij is not satis�ed� Thus� �i cannot be in the plan ��� and therefore
in our truth assignment Xi � False� Since ��Xi� � Cj � and Xi � False� the value of the
clause Cj is True� �

Corollary ��� The problem to �nd a perfectly justi�ed subplan of a given plan is NP�

complete�
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��� Greedy justi�cation

While the task of �nding the best possible justi�ed plan is NP
hard� one can design a greedy
algorithm that �nds an �almost� perfect justi�cation� To check �usefulness� of some operator
� in a plan �� the algorithm proceeds as follows� First� it removes an operator � from the
plan� After � has been removed� some operators of � may become illegal� which means that
now their preconditions are not satis�ed before their execution� The algorithm removes the
�rst illegal operator of the plan �� If � is a nonlinear plan� the algorithm removes every
operator which is the �rst illegal operator in some linearization of �� Then the algorithm
examines the resulting plan� �nds the illegal operators� and again removes all earliest illegal
operators� The algorithm repeats this step until either all the remaining operators are legal�
or no operators are left at all� If the remaining plan still solves the goal� then the initially
removed operator � was not useful� and we say that � is not greedily justi�ed�

The description of the algorithm is presented in Table ���� Here the algorithm Ille�

gal Operators �nds the set of all illegal operators of the plan� It applies the procedure
Legal Operator �see Table ���� to every operator of the plan to check whether the operator
is legal� Recall that the running time of the algorithm Legal Operator is O�jPre���j � j�j���
and therefore the running time of the algorithm Illegal Operators is O�P � j�j��� where
P �

P
��O jPre���j� jSgj�

It is easy to see that an operator is the �rst illegal operator in one of the linearizations of �
if and only if it is a minimal element in the set of illegal operators under the time
precedence
relation ��� So� we use the algorithm Minimal Elements �described in Section ���� in line �
to �nd the earliest illegal operators� After the earliest illegal operators are found� we remove
them from the plan �line ��� We repeat this operation until the plan does not contain illegal
operators�

Then the algorithm Goal Achieved �described in the previous section� checks whether a
plan achieves the goal� It takes O�jSgj � j�j�� time�

Observe� that we perform the removal of illegal operators at most j�j times� Since the
running time of �nding the set of the earliest illegal operators between removals is O�P �j�j���
the overall running time of the algorithm is O�P � j�j���

As an example� we consider our water
boiling plan�

�� Fill the cup with water�
�� Empty the cup�
�� Fill the cup with water again�
�� Put the cup into a microwave�

We wish to check whether operator � is greedily justi�ed� We start by removing this operator
from the plan� Now operator � is illegal� because we cannot �ll a cup which is already full�
So� we remove operator � too� We are left with the plan

�� Fill the cup with water�
�� Put the cup into a microwave�

which is correct and solves the goal� Thus� operator � in the initial plan is not greedily
justi�ed�
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Greedy Justify Checking�S�� Sg��� ��
�� remove � from ��
�� repeat
�� Illegals �� Illegal Operators�S�� Sg����
�� Earliest Illegals �� Minimal Elements�Illegals��
�� remove all operators of the set Earliest Illegals from �
�� until �� � does not contain illegal operators �� Illegals�
�
�� if �� plan still achieves the goal �� Goal Achieved�S�� Sg���
�� then return��� �� � is a correct subplan of the initial plan ��
�� else return��not found�� �� � in the initial plan is greedily justi�ed ��

Illegal Operators�S�� Sg���
�a� Illegals �� 
�
�a� for each � � � do
�a� if not Legal Operator�S���� ��
�a� then Illegals �� Illegals � f�g�
�a� return�Illegals�

Table ���� Checking if the operator � in the plan � is greedily justi�ed

Lemma ��� If an operator is greedily justi�ed� it is also well�justi�ed�

Proof� Assume that an operator � is not well
justi�ed� If we use the algorithm Gre�

edy Justify Checking to check the usefulness of �� then � is removed at the �rst step of
execution� and� by Lemma ���� the remaining plan is correct and solves the goal� So � is
not greedily justi�ed� �

A plan is said to be greedily justi�ed if all its operators are greedily justi�ed� It follows
from the above lemma that such a plan is always well
justi�ed� An algorithm that �nds a
greedily justi�ed subplan of the plan �S�� Sg��� is presented in Table ���� To �nd a greedily
justi�ed subplan of a given plan� the algorithm uses the procedure Greedy Justify Checking

to check whether each operator of the plan is greedily justi�ed� If a non
greedily
justi�ed
operator is found� the algorithm replaces the initial plan with its subplan found by Gre�

edy Justify Checking � and starts from the beginning with this new� shorter plan� Since it
may remove operators from the initial plan � at most j�j times� and it calls the procedure
Greedy Justify Checking at most j�j times between removals of operators� the total running
time of the algorithm is O�P � j�j	��

The running time may be considerably improved in the case of a linear plan� The
algorithm that �nds a greedily justi�ed subplan of a linear plan is shown in Table ���� To
determine whether some operator � is greedily justi�ed� the algorithm removes this operator
and executes the remaining operators in order� If an illegal operator is encountered� the
algorithm removes this operator and continues to execute the plan� Thus� it removes all
illegal operators and receives the �nal state that the plan achieves with the illegal operators
removed� If the goal is not achieved� then the initially removed operator � is greedily
justi�ed� On the other hand� if the new plan achieves the goal� then it is an optimized
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Greedy Justi�cation
�� repeat
�� Something Removed �� False�
�� for each � � � do

begin
�� �� �� Greedy Justify Checking�S�� Sg��� ���
�� if �� � is not greedily justi�ed �� �� �� �not found�

then begin
�� � �� ���
�� Something Removed �� True

end
end

�� until Something Removed � False

Table ���� Finding a greedily justi�ed subplan of a nonlinear plan

version of the initial plan� Then we apply our algorithm recursively to check if this new�
shorter plan is greedily justi�ed�

Recall that the running time of the procedure Check Preconditions is O�jPre���j� or
O�jPre���j � log jSj�� depending on representation of S �see Section ����� and the running
time of Apply is either O�jE	���j� or O�jE	���j � log jSj�� Within the loop of lines ���� the
algorithm executes Check Preconditions and Apply at most once for each operator� So the
running time of this loop for the full representation of S is

X

����

�jPre���j� jE	���j� � O�P � E�

The loop in lines ��� is executed at most once for each operator of the plan before the
recursive call� and so the running time of the algorithm before the recursive call is O��P �
E� � j�j�� Finally� during each execution of the recursive call� � is reduced by at least one
operator� and therefore the depth of the recursion is at most j�j� Thus� the total running
time is

O��P � E� � j�j��

Similarly we may show that the running time in the case of the closed
world representation
of S is O��P � E� � j�j� � log jSnj�� where Sn is the �nal state of ��

��� A spectrum of justi�ed plans

Table ��� presents di	erent kinds of justi�cation and running time necessary to �nd a justi�ed
subplan of a plan for each kind of justi�cation� Running time is presented for algorithms
dealing with nonlinear plans� Recall that the algorithm that �nds a greedily justi�ed version
of a linear plan is much faster� it takes only O��P � E� � j�j� � jSnj� time�

The table may be viewed as a spectrum of justi�ed plans� On one end of the spectrum
plans are backward justi�ed� A backward justi�ed subplan of a given plan is not hard to
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Linear Greedy Justi�cation�S�� Sg���
�� for each � � � do

begin
�� �� �� �
 f�g�
�� S �� S��
�� for ���� ��rst operator of ��� to �last operator of ��� do
�� if �� �� is legal �� Check Preconditions�S� ���
�� then �� execute �� �� S �� Apply�S� ���
�� else �� remove �� from �� �� �� �� �� 
 f��g�
�� if Sg � S �� �� achieves the goal Sg ��
�� then return�Linear Well Justi�cation���� S�� Sg��

end�
��� return���

Table ���� Finding a greedily justi�ed subplan of a linear plan

kind of subplan running time to �nd it
perfectly justi�ed NP
complete stronger justi�cation
greedily justi�ed O�P � j�j	� �
well
justi�ed O�P � j�j�� �
backward justi�ed O�E � j�j�� weaker justi�cation

Table ���� Kinds of justi�ed subplans and running time to �nd them

�nd� but it may contain some �useless� operators� The other end of the spectrum contains
perfectly justi�ed plans� They cannot have any useless operators� but it is NP
hard to �nd
a perfectly justi�ed subplan of a given plan�



Chapter �

Ordered and Semi�ordered

Abstraction Hierarchies

Hierarchical problem solving uses abstraction to reduce the complexity of the search by
dividing up a problem into smaller subproblems� Given a problem space and a hierarchy
of abstractions� a hierarchical problem solver �rst solves a problem in an abstract space�
and then re�nes it in successively more detailed spaces� The use of abstraction in problem
solving is an e	ective approach to reducing search� but �nding good abstraction is a di�cult
problem�

ABSTRIPS 
Sacerdoti� ����� was the �rst attempt to create abstraction hierarchies au

tomatically� 
Knoblock� ����� describes an abstraction learner� called ALPINE� that com

pletely automates the formation of abstraction spaces� The theoretical ideas behind Knob

lock�s planner are based on the notion of ordered hierarchies 
Knoblock et al�� ������ which
characterizes some intuitions behind �good� abstraction hierarchies� This notion guarantees
that every re�nement of an abstract plan leaves the abstract plan structurally unchanged�
The notion of ordered hierarchies is de�ned via justi�ed plans� described in the previous
chapter� The results presented in 
Knoblock et al�� ����� are based on backward justi�ed
plans� but they may be de�ned via any other kind of justi�cation as well� The conditions
presented in 
Knoblock et al�� ����� for generating ordered hierarchies are su�cient for a
hierarchy to be ordered� but not necessary�

The main problem with Knoblock�s algorithm is that a hierarchy generated by the al

gorithm often has too few levels of abstraction� or even collapses into a single level� The
purpose of this chapter is to present several methods for increasing the number of levels of an
abstraction hierarchy� while still preserving the ordered property� We approach the problem
of increasing the number of abstract levels in several small steps� Each single step does not
provide a considerable improvement by itself� but small improvements introduced at every
step are accumulated� and together they enable us to generate a hierarchy with more levels
than those generated by Knoblock�s algorithm in many problem domains�

At the �rst step we slightly relax the restriction imposed on hierarchies by Knoblock�s
de�nition of an ordered abstraction hierarchy� Knoblock�s de�nition states that no operator
�� inserted during re�nement process at the concrete level of abstraction� may have an
abstract
level e	ect� We� on the other hand� allow such a low
level operator � to establish a

��
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value of an abstract�level variable� However� we demand that all operators with abstract�level
e�ects inserted during re�nement process may be removed after completing the re�nement
process without violating the correctness of the re�ned plan� A hierarchy that satis�es our
requirement is called semi�ordered�

With this relaxation an abstract hierarchy may have more abstract levels then Knoblock�s
ordered hierarchy� We show that� using a semi�ordered hierarchy instead of an ordered one�
a planner is still able to generate ordered re�nements of abstract�level plans�

At the second step we present necessary and su�cient conditions for an abstraction
hierarchy to be semi�ordered� which are less restrictive than Knoblock�s su	cient conditions�
and allow us to increase the number of abstraction levels� since they impose less constraints
onto values of criticalities�

Finally� we show that the hierarchies de�ned via well�justi�ed or greedily justi�ed plans
can be �ner�grained than the hierarchies de�ned via backward justi�cation� We present a
su	cient condition for such hierarchies and a learning algorithm that generates hierarchies
based on this condition�

��� Previous work

In this section we describe the de�nition of the ordered abstraction hierarchy and su	cient
conditions for a hierarchy to be ordered� presented in 
Knoblock et al�� ����
� Knoblock
presented his de�nitions and theorems for the literal�representation of problem domains� In
this chapter we restate his results for the variable representation� This restatement does not
violate the ideas behind his results� nor the correctness of his proofs�

Let �� be a justi�ed abstract�level plan� Intuitively� � is the re�nement of �� at a
concrete level of an abstraction hierarchy if all operators and their ordering relations of ��

are preserved in �� and the new operators have been inserted for the purpose of satisfying
concrete�level preconditions�

De�nition ��� �Re�nement�
Let �S�� Sg���� be a correct plan at level �i���� �S�� Sg��� is a re�nement of �S�� Sg���� at
level i if

�� �S�� Sg��� is a correct plan at level i� and

�� there is a one�to�one function c mapping each operator of �� into �� such that
�a	 �� � ��� c��� � �� and
�b	 if �� ��� ��� then c���� �� c����

We now consider a property that ensures that operators added at some level of abstraction
in the re�nement process do not change higher�level variables� A re�nement that satis�es
this property is called an ordered re�nement�

De�nition ��� �Backward ordered re�nement�
Let �S�� Sg��

�� be a correct backward justi�ed plan at level �i���� �S�� Sg��� is a backward
ordered re�nement of �S�� Sg���� at level i if
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�� �S�� Sg��� is a re�nement of �S�� Sg�����
�� �S�� Sg��� is backward justi�ed at level i� and

� �� � �� if � �� ��� then for any variable x in the e�ects of �� crit�x� � i�

The third condition states that the newly inserted operators do not achieve a value of any
variable whose criticality is higher than i�

De�nition ��� �Backward ordered hierarchy�
An abstraction hierarchy is backward ordered if any backward justi�ed re�nement of any
correct backward justi�ed plan is a backward ordered re�nement�

The backward ordered hierarchy ensures that the values of abstract�level variables are
never changed by any operator while planning at lower levels of abstraction� Intuitively�
it characterizes �good� hierarchies� which allow us to increase the e	ciency of planning

Knoblock� ����a
� �In Knoblock�s paper such hierarchies are called �ordered
� without the
word �backward���

The following restrictions imposed onto an abstraction hierarchy are su	cient but not
necessary to guarantee the backward ordered property of the hierarchy�

Restrictions � and � Let O be the set of operators in a domain� �� � O� �x � Pre����
and �x�� x� � E����

�� crit�x�� � crit�x��� and
�� crit�x� � crit�x���

Stated simply� all e�ects of an operator have the same criticality� and their criticality is at
least as great as the criticalities of the preconditions of the operator�

Theorem ��� Any abstraction hierarchy satisfying Restrictions � and � is a backward or�
dered hierarchy�

The proof of the theorem� the algorithm based on this theorem that generates an abstraction
hierarchy� and the description of a planner that uses a backward ordered abstraction hierar�
chy may be found in 
Knoblock� ����a
� While planning in a backward ordered abstraction
hierarchy� the planner re�nes only backward ordered plans� Thus� after �nding a correct
plan at some level of abstraction� the planner �rst �nds a backward justi�ed version of this
plan� and then re�nes it at a lower level of abstraction�

��� Backward semi�ordered hierarchies

����� De�nition and properties of semi�ordered hierarchies

In the previous section we de�ned an ordered re�nement � of an abstract plan �� as such
a re�nement that none of the newly inserted operators has an abstract�level e�ect� We
slightly relax this requirement to de�ne a semi�ordered re�nement� According to this relaxed
de�nition� an operator �� inserted into � while re�ning � at a lower level�may have abstract�
level e�ects� but all newly inserted operators with abstract�level e�ects can be removed
together from � without violating the correctness of ��
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Operators inserted during a re�nement process that have abstract�level e�ects are called
abstract�e�ect operators�

De�nition ��� �Abstract	e
ect operators�
Let �� be a backward justi�ed plan at level �i � �� of abstraction� and � be a re�nement of
� at the i�th level� Let � be an operator of � which is not an operator of ��� � is said to be
an abstract�e�ect operator if there exists x � E���� such that crit�x� � i�

A re�nement � of an abstract�level plan �� is called semi�ordered if all abstract�level
operators may be removed from � without violating the correctness of �� Thus� while
re�ning an �i����level plan �� at level i� we �rst �nd its correct backward justi�ed re�nement
�� and then we may remove all newly inserted operators of � whose e�ects have criticalities
higher than i�

De�nition ��� �Backward semi	ordered re�nement�
Let �S�� Sg���� be a correct backward justi�ed plan at level �i���� �S�� Sg��� is a backward
semi�ordered re�nement of �� at level i if

�� �S�� Sg��� is a re�nement of �S�� Sg�����
�� �S�� Sg��� is backward justi�ed at level i� and

� �S�� Sg��� remains correct at level i upon the removal of all abstract�e�ect operators

Observe that a semi�ordered re�nement is ordered if and only if it does not contain abstract�
e�ect operators� Our next lemma shows that any semi�ordered re�nement of an abstract�level
plan may be easily converted into an ordered re�nement�

Lemma ��� Let �� be a correct backward justi�ed plan at level �i���� and � be a backward
semi�ordered re�nement of �� at the i�th level� Let �� be obtained from � by removing all
abstract�e�ect operators� and �� be obtained from �� by removing all operators that are not
backward justi�ed in �� at the i�th level� Than �� is a backward ordered re�nement of ���

Proof� By the de�nition of abstract�e�ect operators� none of the abstract�e�ect operators
of � belongs to ��� and therefore �� contains all operators of ��� Also� �� is correct by the
de�nition of a semi�ordered re�nement� Thus� �� is a re�nement of ���

Next we wish to show that every operator � of the plan �� is backward justi�ed in the
plan ��� To prove it� we notice that if � is backward justi�ed in ��� it establishes either
a goal literal or a precondition of another backward justi�ed operator with the criticality
at least �i � �� �recall that �� is an �i � ���level plan�� All newly inserted operators of the
plan �� are not abstract�e�ect operators� and therefore the criticalities of their e�ects are at
most i� Thus� none of the newly inserted operators reestablishes an �i����level precondition
established by �� and therefore � is still backward justi�ed�

Thus� the plan ��� obtained from �� by removing all operators that are not backward
justi�ed at level i� still contains all operators of ��� By Theorem ���� �� is correct and
backward justi�ed at level i� Therefore �� is a backward ordered re�nement of ��� �

We may remove all abstract�e�ect operators in O�E� time� where E �
P

���� jE����j�
by checking all e�ects of all operators inserted into ��� An algorithm that removes the
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Remove Abstract E�ects������ i�
�� � is an i�th level re�nement of �� ��
�� for each � � � do
�� if � �� ��

then begin
�� Abstract E�ect �� False�
�� for each x � E���� do
�� if crit�x� � i
�� then Abstract E�ect �� True�
�� if Abstract E�ect � True �� � is an abstract�e�ect operator ��
�� then remove � from �

end�
�� return���

Table ���� Removing abstract�e�ect operators from a re�nement

abstract�e�ect operators is shown in Table ���� Then it takes O�E � j�j�� to �nd a backward
version of the resulting plan� So the total time of converting a semi�ordered re�nement into
an ordered re�nement is O�E � j�j���

De�nition ��� �Backward semi	ordered hierarchy�
An abstraction hierarchy is called backward semi�ordered if any backward justi�ed re�ne�
ment of any correct backward justi�ed plan is a backward semi�ordered re�nement�

The ordered property of an abstraction hierarchy requires a re�nement to be ordered�
while the semi�ordered property requires a re�nement to be only semi�ordered� Since ev�
ery ordered re�nement is semi�ordered� we conclude that the semi�ordered property of an
abstraction hierarchy is less restrictive than the ordered property� and thus allows us to
generate a hierarchy with more levels�

Observe that while planning in a backward ordered hierarchy� a planner may work with
ordered �not semi�ordered� re�nements� After �nding a correct plan at some level of ab�
straction� the planner �nds a backward justi�ed version of this plan� and thus obtains a
semi�ordered re�nement� Then the planner removes abstract�e�ect operators and �nds a
backward justi�ed version of the resulting plan� By Lemma ���� the resulting plan is an
ordered re�nement of the abstract�level plan� Thus� the planning process in a semi�ordered
hierarchy may be brie�y described as follows�

Re�ne���� i� f� is a correct backward�justi�ed plan at level i� �g
�� if i� � � � f� is a concrete�level plang
�� then return����
�� Find an i�level backward justi�ed re�nement � of ���
�� Remove all abstract�e�ect operators from ���

Backtracking point� consider all such re�nements�
�� Re�ne��� i� ��
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The running time of this double�justi�cation is O�E � j�j��� that is the same as the running
time of single backward justi�cation during planning in an ordered hierarchy� Thus� the
asymptotic running time of the planning algorithm remains the same�

����� Necessary and su�cient conditions of the semi�ordered

property

To generate semi�ordered hierarchies that are �ner�grained than Knoblock�s ordered hier�
archies� we need to �nd a set of restrictions that are su	cient for a hierarchy to be semi�
ordered� but less restrictive than Knoblock�s Restrictions � and �� To do this� we �rst need
to introduce the following de�nition�

De�nition ��
 We say that an expression �x � v� forbids an operator �� if for any state
S in which the value of x is equal to v� no legal plan with the initial state S may contain ��
Similarly� an expression �x �� v� forbids an �� if for any state S in which the value of x is
di�erent from v� no legal plan with the initial state S may contain ��

Intuitively� �x � v� forbids an operator � if once the value of x equals v� we can never
achieve the preconditions of �� and we can never apply �� For example� the literal �no water
available� forbids the operator �boil water�� If �x � v� is a precondition of an operator
�� and x �� v forbids �� we call �x � v� a forbidding precondition of �� The algorithm
for determining which preconditions of an operator are forbidding is presented in the next
subsection� but for now we assume that forbidding preconditions are known�

Before we apply the notion of forbidding preconditions to generating semi�ordered hi�
erarchies� observe that this notion may be useful even in non�hierarchical planning� Most
planning algorithms build plans by backward chaining from the goal state �see� for example�

Minton et al�� ����
�� Intermediate plans during backward chaining are incorrect� and a
planning algorithm tries to achieve the correctness by inserting new operators to establish
the preconditions of all operators currently in the plan� or by imposing time�precedence
constraints onto operators that lead to establishing the preconditions of existing operators�
However� if a forbidding precondition of an operator does not hold� the planner should not
try to establish this precondition by inserting a new operator� since we know that once a
forbidding precondition of an operator does not hold� the operator can never be applied�
�The planner still may establish a forbidding precondition by imposing time�precedence con�
straints�� So� if a forbidding precondition does not hold� the algorithm should backtrack
instead of trying to establish this precondition� Thus� we may reduce the search space by
using a planning algorithm that does not try to establish forbidding operators and thus
avoiding dead ends� We call such an algorithm a forbidding�restricted planner�

Now we introduce Restriction ��� which is weaker than Restriction �� but is still enough
to guarantee that a hierarchy is semi�ordered�

Restrictions � and �� Let O be the set of operators in a domain� �� � O� �x such that
�x � v� � Pre���� and �x�� x� � E����

�� crit�x�� � crit�x��� and
��� if the expression �x � v� is not a forbidding precondition of ��
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then crit�x� � crit�x���

To see that Restriction �� is weaker than �� observe that Restriction � requires that� for every
pair of a precondition variable x and an e�ect variable x�� crit�x� � crit�x��� Restriction ��

requires that only non�forbidding preconditions satisfy this restriction�
Below we present the main theorem of this section that shows that Restrictions � and ��

are su�cient conditions of the semi�ordered property� If a problem domain does not have
initial�state axioms� these restrictions are also necessary for the semi�ordered property�

Theorem ���

	 Any abstraction hierarchy satisfying Restrictions � and �� is a backward semi�ordered
hierarchy�

	 If the problem domain does not have initial�state axioms� then any backward semi�
ordered hierarchy satis�es Restrictions � and ���

Informally� the possibility of replacing Restriction � with less restrictive �� may be explained
as follows� Let �x � v� � Pre���� �x� � v�� � E����� and the expression �x �� v� forbids ��
Let � be a backward re�nement of an abstract plan� Suppose �x� � v�� does not hold� and
we wish to achieve it by applying �� If �x � v� does not hold at the same point in �� then
we can never apply � by the de�nition of forbidding� Therefore� no operator that changes x
needs to be applied� and the ordered property holds� On the other hand� if �x � v� holds
at this point in �� we do not need to achieve it� and so again we do not need to change
any variable with criticality crit�x�� Thus� while achieving �x� � v��� we don�t change any
variable at a higher level of abstraction� Now we present a formal proof of the theorem�

Proof� Assume that Restrictions � and �� hold� Consider an arbitrary plan �� at the
�i� ���th level of abstraction� and its backward justi�ed re�nement � at the i�th level� We
wish to show that � is a semi�ordered re�nement of ��� that is � remains correct at level
i upon the removal of all its abstract�e�ect operators� Let �� be the plan obtained from �
by removing all abstract�e�ect operators� To show that �� is correct� it is enough to proof
that all linearizations of �� are correct� So� we consider an arbitrary linearization �� of ���
and prove the correctness of this linearization at the i�th level�

Let �
�

be a plan obtained from �� by removing all operators that do not belong to ���
Then �

�

is a linearization of ��� and therefore �
�

is correct at level �i� �� as a linearization
of a correct plan� Let � be a linearization of � such that �

�

is a subplan of �� �Such a
linearization of � exists by Lemma ����� Notice that � is correct at level i as a linearization
of the correct plan ��

To prove the correctness of ��� we divide its operators into two groups� the operators of
�
�

� and the operators inserted into �
�

during the re�nement process� We need to prove that
the operators of the both groups are legal� and that the goal is satis�ed in the �nal state�

Claim �� Every operator � of ��� such that � �� �
�

� is legal�

Consider an arbitrary precondition �x � v� of �� We need to show that �x � v� holds before
� in ���
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Case �� �x � v� is not a forbidding precondition� Observe that since � is a newly
inserted non�abstract�e�ect operator� the criticality of its e�ects is at most i� Therefore� by
Restriction ��� crit�x� � i� Since � is correct� �x � v� holds before � in �� �� is obtained
from � by the removal of the abstract�e�ect operators� Observe that by Restriction �� all
e�ects of every abstract�e�ect operator have the criticality higher than i� This means that
no abstract�e�ect operator changes x� and therefore the value of x before � is the same in
� and ��� Therefore� �x � v� holds before � in ���

Case �� �x � v� is a forbidding precondition� Let us look at �� This plan is correct� and
therefore �x � v� holds in all states preceding �� �If �x � v� does not hold at some state�
then� by the de�nition of a forbidding precondition� � can never be applied after this state��
This means that �x � v� holds in the initial state S�� and no operator preceding � achieves
any other value of x� Since �� is a subplan of �� we may conclude that no operator of ��

preceding � achieves any value of x di�erent from v� Since �� is executed from the same
initial state S�� in which �x � v� holds� we conclude that �x � v� holds before � in ���

Claim �� Every operator � of ��� such that � � �
�

� is legal�

Again we need to show that every precondition �x � v� of � holds before � in ��� Since ��

is a plan at the i�th level of abstraction� we are concerned only with preconditions whose
criticalities are no less than i�

Case �� crit�x� � i� Since � is correct� �x � v� holds before � in �� Recall that �� is
obtained from � by removing abstract�e�ect operators� and by Restriction � all e�ects of
every abstract�e�ect operator have the criticality higher than i� Thus� none of the abstract�
e�ect operators change x� and therefore �x � v� still holds before � upon the removal of
those operators�

Case �� crit�x� � i� Observe that �� is a re�nement of �
�

obtained by inserting only
non�abstract�e�ect operators� In other words if �� is an operator of �� which is not an
operator of �

�

� then the criticality of all e�ects of � is at most i� This means that if some
operator of �� changes x� this operator is also an operator of �

�

� Thus� the value of x before
� is the same in �

�

and ��� Since �
�

is correct� we conclude that �x � v� holds before �
both in �

�

and ���

Claim 
� �� achieves the goal�

The proof of this claim is the same as the proof of Claim �� we just consider the goal as the
set of preconditions of some special operator added at the end of �

�

�

Now we need to show that if a planning domain does not have initial�state axioms� then
Restrictions � and �� are necessary conditions of the semi�ordered property of an abstraction
hierarchy�

First suppose that Restriction � does not hold� that is there exists an operator � with
e�ects �x� � v�� and �x� � v�� such that crit�x�� � crit�x��� We need to show that there
exists some abstract�level plan whose re�nement is not semi�ordered� We construct the
initial state S� of our plan as follows� First take the empty set and add all preconditions of
� to this set� If x� �� Pre���� we choose a value v�� of x� such that v�� �� v�� and add �x� � v���
to S�� If x� �� Pre���� we choose a value v�� of x�� di�erent from v�� and add �x� � v��� to S��
Formally� S� is de�ned as follows�
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let v�� � �D�x��� fv�g� and v�� � �D�x��� fv�g�

then S� �

�����
����

Pre��� if x� and x� � Pre���
Pre��� 
 �x� � v��� if x� �� Pre��� and x� � Pre���
Pre��� 
 �x� � v��� if x� � Pre��� and x� �� Pre���
Pre��� 
 �x� � v��� 
 �x� � v��� if x� and x� �� Pre���

Recall that the same value of a variable cannot be both in the preconditions and e�ects of
an operator� and therefore �x� � v��� �x� � v�� �� Pre���� Thus� in all four cases both x� and
x� are speci�ed in S�� and their values are di�erent from respectively v� and v��

x�� x� � S�� and
��� S��x�� �� v�
��� S��x�� �� v�

Also� by the construction of S�� the operator � is legal in S��

Pre��� � S�

Since our problem domain does not have initial�state axioms� S� may be the initial state of
a plan� We consider a plan with the initial state S� that solves the goal Sg � f�x� � v��g�
Let i � crit�x�� and j � crit�x�� �where i � j�� On the j�th level of abstraction the goal
is the empty set� and the empty plan �j � �� is a backward justi�ed plan that solves the
goal� It is easy to check that the plan �i � ��� is a backward justi�ed re�nement of �j at
the i�th level� Since x� � E���� and crit�x�� � i� � is an abstract�e�ect operator� and after
the removal of this operator our i�th level plan does not remain correct� Therefore �i is not
a semi�ordered re�nement of �j�

Next suppose that Restriction �� does not hold� that is there exists an operator � and
values �x � v� � Pre��� and �x� � v�� � E���� such that crit�x�� � crit�x� and �x � v� is
not a forbidding precondition of �� Again� we need to show that there exists some abstract�
level plan whose re�nement is not ordered� If Restriction � does not hold� then the hierarchy
is not backward semi�ordered� So we assume that Restriction � holds�

Let i � crit�x�� and j � crit�x� �where i � j�� Since �x � v� is not a forbidding
precondition of �� there exists a correct plan �� with an initial state S� such that the value
of x is di�erent from v in the initial state� S��x� �� v� and �� contains �� Let �

�

be some
linearization of ��� and � be the k�th operator in �

�

�

�
�

� ���� ��� � � � � �k��� �� �k��� � � � � �n�

We de�ne � as the part of �
�

from the beginning to the operator ��

� � ���� ��� � � � � �k��� ��

This plan solves the goal Sg � f�x� � v��g� Let �i be the plan obtained from � by the
removal of the operators that are not backward justi�ed at the i�th level of abstraction� By
Theorem ���� �i is a correct backward justi�ed plan at level i� Since the operator � in �
establishes the value �x� � v�� for the goal� it is backward justi�ed� and therefore � � �i�
At level j the goal is empty� and the empty plan �j � �� is a backward justi�ed plan that
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achieves the goal at the j�th level� Clearly �i is a backward justi�ed re�nement of �j�

Let �
�

i be a plan obtained from �i by removing all abstract�e�ect operators� Observe that
crit�x� � i� and therefore any operator of �i that changes x is an abstract�e�ect operator�
On the other hand� by Restriction �� the criticality of all e�ects of � is i� and therefore �
is not an abstract�e�ect operator� Thus� �

�

i contains �� but does not contain any operator
that changes x� But �x � v� does not hold in the initial state� and therefore it does not hold
before � in �

�

i� Thus� the preconditions of � are not satis�ed before � in �
�

i� Therefore� �
�

i

is not legal� and therefore �i is not a backward semi�ordered re�nement of �j � �

Since Restriction �� imposes less constraints onto an ordered hierarchy than Restriction ��
it allows us to build a �ner�grained hierarchy� However� to use this restriction� we need
some means to determine whether a precondition of an operator is forbidding� In the next
subsection we present algorithms for �nding forbidding preconditions of operators�

����� Forbidding and Non�Forbidding Tests

We consider two kinds of tests for �nding forbidding preconditions�

�� Forbidding test� Such a test checks conditions that are su	cient but not necessary to
guarantee that a precondition is forbidding� In the case of success such a test discovers
that some precondition of an operator is forbidding� while in the case of failure we do
not gain any information�

�� Non�Forbidding test� Such a test checks conditions that are su	cient but not necessary
to guarantee that a precondition is not forbidding� Such a test may show that some
precondition of an operator is not forbidding � Again� in the case of failure we gain no
information�

First non	forbidding test
We may perform a non�forbidding test using a planning algorithm� To show that a pre�
condition �x � v� of � is not forbidding� we need to �nd a plan that achieves Sg � E����
starting from an arbitrary initial state in which �x � v� does not hold� We apply a backward�
chaining technique to �nd states from which Sg may be solved� If we �nd a state S� such that
S��x� �� v and Sg may be achieved starting from S�� then �x � v� is not forbidding� If the
desired state is not found� we do not gain any information� In general� the backward�chaining
is not a polynomial�time algorithm� but we do not need to chain too far� If the algorithm
has not succeeded in short time� we may terminate it and apply the polynomial�time tests
discussed next�

Second non	forbidding test
In this test we consider only domains without initial�state axioms� If �x� � v�� is a precon�
dition of �� and there is an operator �� that establishes �x� � v�� and does not negate any
precondition of �� then �x� � v�� is not a forbidding precondition of �� To see this� we con�
struct a state S� in which all preconditions of � hold� except �x� � v��� which does not hold�
Then we may apply �� to S� and receive a new state� ���S��� in which all preconditions of
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� hold� We need a domain without initial�state axioms to construct such a state S�� since
in a domain with initial state axioms a required state may be illegal�

Now we present formal description of this test� Let � be an operator with preconditions
�x� � v��� �x� � v��� � � � � �xn � vn�� Suppose that there exists some operator �� that achieves
�x� � v�� and does not negate any preconditions of ���

��� �x� � v�� � E������ and
��� ��xk � vk� � Pre��� either

xk �� Out����� or
�xk � vk� � Out����

Observe that �x� � v�� �� Pre����� since the same value of a variable x� cannot be both in the
preconditions and e�ects of the same operator� Consider a state S� where all preconditions
of �� hold� all preconditions of � that do not con�ict with Pre���� also hold� except for
�x� � v��� which does not hold� Formally� S� may be described as follows�

let v�� � D�x��� fv�g

then S� �

�
Pre���� 
 f�x � v� � Pre��� j x �� Pre����g if x� � Pre����
Pre���� 
 f�x � v� � Pre��� j x �� Pre����g 
 f�x� � v���g if x� �� Pre����

Observe that x� is speci�ed in S� in either case� and� since �x� � v�� �� Pre����� we conclude
that S��x�� �� v�� After applying �� to S�� all preconditions of � hold� Since �x� � v�� does
not hold in S�� this means that �x� � v�� is not a forbidding precondition of ��

Thus� we receive a simple non�forbidding test which may be expressed formally as follows�

if ��� such that �x � v� � E����� and ��xk � vk� � Pre���� �xk �� vk� �� Out�����
then �x �� v� does not forbid �

This condition may be checked in
P

��O�jPre���j� jE����j� time�

First forbidding test
Let �x � v� be a precondition of �� and no operator in the problem domain achieves �x � v��
Then if �x � v� does not hold� it can never be achieved� and � cannot be applied� This gives
us a simple forbidding test�

if a precondition �x � v� of � is unachievable�
then it is a forbidding precondition of �

Recall that we store achievable and unachievable values of x separately in the computer
memory� and we keep pointers from an operator to each of its e�ect values� Thus� this test
may be performed in O��� time� just by checking where v is stored�

Second forbidding test
Let � be an operator in a problem domain� We need to �nd forbidding preconditions of ��
We use two colors� black and white� to paint preconditions of �� After the execution of the
algorithm� all black preconditions are forbidding� Below we present the description of the
algorithm�
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Step �� paint all preconditions of � black
Step �� for every black precondition �x � v� of � do

if there is an operator that achieves �x � v�
and does not negate any black precondition of ��

then paint �x � v� white
Step 
� if at least one precondition painted white during the execution of Step �

then go back to Step �
else end the execution

Termination� The algorithm terminates because at least one black precondition is painted
white during each execution of Step �� and preconditions never become black again�

Correctness� Observe that upon the termination of the algorithm� the preconditions of
� are painted in such a way that every operator that achieves some black precondition�
negates some other black precondition� This means that once some black precondition does
not hold� no sequence of operators may achieve a state where all black preconditions hold�
and therefore � can never be applied� Thus� all preconditions which are black upon the
termination of the algorithm are forbidding�

Running time� The algorithm in pseudocode is presented in Table ���� The running
time of loop � is O�jPre���j�� Loop � is executed at most �jPre���j � �� times� because
during each execution� except the last one� at least one precondition of � is painted white�
Loop � is executed jPre���j times during each execution of loop �� Lines � and �� are
executed jOut����j times for each �� achieving �x � v� during each execution of loop �� So
the maximum number of executions of lines � and �� during one execution of the loop � isX

���O�x�v�

jOut����j �
X

���O�x�v�

�jE����j� jPre���j�

�Recall that O�x�v� denotes the set of operators achieving �x � v��� Therefore� the running
time of all execution of loop � is

O�jPre���j� �
X

���O�x�v�

�jE����j� jPre���j��

and the running time of the whole algorithm is the same�
Observe that if a precondition �x � v� of � is not an e�ect of any operator� the algorithm

cannot paint �x � v� white� Thus� the algorithm recognizes all unachievable preconditions
as forbidding� So this algorithm is stronger than the First Forbidding Test� However� the
running time of the Second Forbidding Test is much larger�

While applying the tests described in this section to an operator �� we may learn that some of
its preconditions are forbidding� and some others are not� However� there may still be some
preconditions �x� � v��� �x� � v��� � � � � �xk � vk� about which we do not know whether they
are forbidding or not� A safe way is to assume that they are not forbidding and to impose
additional constraints� However� this may reduce the number of levels of the hierarchy�
Another way is to show these preconditions to a human expert and ask her advice� The third�
better solution of this problem is to assume initially that �x� � v��� �x� � v��� � � � � �xk � vk�
are not forbidding� and then use learning technique during planning process to �nd forbidding
preconditions among them� We will describe this approach in Subsection ������
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Forbidding Test�O���
�� for each �x � v� � E���� do �� loop � ��
�� Color�x � v� �� black�
�� repeat �� loop � ��
�� for each �x � v� � Pre��� do �� loop � ��

begin
�� Make White �� False�
�� for each �� � O that achieves �x � v� do �� loop � ��

begin
�� Negating �� False�
�� for each �x� � v�� � Out���� do �� loop � ��
�� if �x� � v��� � Pre��� and v� �� v�� and Color�x� � v���black
��� then Negating �� True�
��� if not Negating
��� then Make White �� True

end�
��� if Make White
��� then Color�x � v� �� white

end
��� until no precondition is painted white during the last execution of the loop�
��� return�all black preconditions�

Table ���� Finding forbidding preconditions of an operator �

����� Example

Consider a simple robot world� in which a robot can unlock and open a safe using two keys�
The robot is limited in his ability to pick up a key from the �oor� when it picks a key� it
drops the other key that it holds� To unlock the safe� the robot must hold the both keys�
and only an unlocked safe may be opened� If the safe is open� the robot can put the keys
into the safe� The problem domain is described with four variables�


 Key� and Key� � whose values may be In Hands� On Floor� and In Safe

 Unlocked and Open � whose values may be True and False

The operators in the problem domain are shown in Table ����
One may verify that the hierarchy based on Restrictions � and � collapses into a sin�

gle level� In order to increase the number of levels we observe that� once the robot has
dropped one of the keys� it can never hold both of them again� This new information
can be obtained by the algorithm Forbidding Test� The algorithm will discover that the
operator establishing �Key��In Hands� negates �Key��In Hands�� and the operator estab�
lishing �Key��In Hands� negates �Key��In Hands�� and therefore both �Key��In Hands�
and �Key��In Hands� are forbidding preconditions of the operator unlock� Therefore Re�
striction �� does not require a variable Unlocked to have a higher criticality value than either
Key� or Key�� As a result� we now obtain a three�level abstraction hierarchy shown on
Figure ����
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operators preconditions e�ects

Pick� �Key��On Floor�� �Key� ��In Hands� �Key��In Hands�

Pick� �Key��On Floor�� �Key� ��In Hands� �Key��In Hands�

Pick��Drop� �Key��On Floor�� �Key��In Hands� �Key��In Hands�� �Key��On Floor�

Pick��Drop� �Key��On Floor�� �Key��In Hands� �Key��In Hands�� �Key��On Floor�

Unlock �Key��In Hands�� �Key��In Hands� �Unlocked�True�

Open �Unlocked�True� �Open�True�

Put �Key��In Hands�� �Key��In Hands� �Key��In Safe�� �Key��In Safe�
�Open�True�

Table ���� Operators in the robot world

Key�� Key�

Open

Unlock

level �

level �

level �

Figure ���� Semi�ordered hierarchy for the robot world

��� Well�� Greedily� and Perfectly Semi�ordered Hi�

erarchies

In the previous section we discussed backward ordered and semi�ordered hierarchies� whose
de�nitions are based on the backward justi�ed plans� We may use any other kind of justi�
�cation to de�ne ordered and semi�ordered hierarchies� The de�nitions are very similar to
De�nitions ��� and ���� we just replace the word �backward� with �well��� or �greedily�� or
�perfectly��

De�nition ��� �Semi	ordered re�nements�
Let �S�� Sg���� be a correct well� �greedily� perfectly	 justi�ed plan at level �i���� �S�� Sg���
is a well� �greedily� perfectly� semi�ordered re�nement of �S�� Sg���� at level i if

��	 �S�� Sg��� is a re�nement of �S�� Sg�����
��	 �S�� Sg��� is well� �greedily� perfectly	 justi�ed at level i� and
�
	 �S�� Sg��� remains correct at level i upon the removal of all abstract�e�ect operators

Notice that a perfectly semi�ordered re�nement cannot contain any correct proper subplan�
and therefore it cannot contain any abstract�e�ect operators� This means that every perfectly
semi�ordered re�nement is also perfectly ordered� Thus� for perfect justi�cation the de�nition
of ordered re�nements is identical to the de�nition of semi�ordered re�nements�
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more levels ���� ���� less levels

more levels backward ordered hierarchy j backward semi�ordered hierarchy
� well�ordered hierarchy j well�semi�ordered hierarchy
� greedily ordered hierarchy j greedily semi�ordered hierarchy

less levels perfectly ordered hierarchy � perfectly semi�ordered hierarchy

Table ���� Kinds of ordered and semi�ordered hierarchies

Recall that a backward semi�ordered re�nement may be easily converted into a backward
ordered re�nement �see Lemma ����� The same result holds for well� and greedily semi�
ordered re�nements�

Lemma ��� Let �� be a correct well� �greedily	 justi�ed plan at level �i � ��� and � be a
well� �greedily	 semi�ordered re�nement of �� at the i�th level� Let �� be obtained from � by
removing all abstract�e�ect operators� and �� be a well� �greedily	 justi�ed version of �� at
the i�th level� Than �� is a well� �greedily	 ordered re�nement of ���

A proof of this lemma is similar to the proof of Lemma ���� Lemma ��� guarantees that
while planning in a semi�ordered hierarchy� we may work with ordered �not semi�ordered�
re�nements�

De�nition ��� �Well	 and greedily semi	ordered hierarchies�
An abstraction hierarchy is well� �greedily� semi�ordered if any well� �greedily	 justi�ed re�
�nement of any correct well� �greedily	 justi�ed plan is a well� �greedily	 semi�ordered re�ne�
ment�

Observe that the backward semi�ordered property of an abstraction hierarchy requires
certain conditions to be satis�ed for every backward semi�ordered re�nement� while the well�
semi�ordered property requires these conditions to be satis�ed only for well�semi�ordered
re�nements� Thus if a hierarchy satis�es a backward semi�ordered property� it also satis�es
a well�semi�ordered property� In other words� every backward semi�ordered hierarchy is
well�semi�ordered� Similarly� every well�semi�ordered hierarchy is greedily semi�ordered� and
every greedily semi�ordered hierarchy is perfectly semi�ordered� A similar discussion shows
us that every backward ordered hierarchy is well�ordered and so on�

Thus� the backward semi�ordered property of an abstraction hierarchy imposes more
restrictions onto the criticality values of variables than a well�semi�ordered property� A
large number of restrictions reduces our freedom to separate variables into di�erent levels of
a hierarchy� and therefore the more restrictions are imposed� the less levels an abstraction
hierarchy may have� Thus� a well�semi�ordered hierarchy may havemore levels of abstraction
than a backward semi�ordered hierarchy� Similarly� a greedily semi�ordered hierarchy may
have more levels than a well�semi�ordered one and so on� This comparison is summarized in
Table ����

In the previous section we have proved that if a planning domain does not have initial�
state axioms� Restriction � necessarily holds for every backward semi�ordered hierarchy �see
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Theorem ����� One may check that the same proof works for all kinds of semi�ordered
hierarchies�

Theorem ��� If a problem domain does not have initial�state axioms� then any well� �greed�
ily� perfectly	 semi�ordered hierarchy satis�es Restriction ��

However� Restriction �� is not a necessary condition of the well�ordered property� as the
following example demonstrates�

Example
Assume that you wish to establish a good credit history by making regular payments for a
loan� Formally� we have an operator �make regular payments� with a precondition �having
loan� and one of the e�ects �good credit history�� Suppose the literal �good credit history�
is at the concrete level of an abstraction hierarchy� and �having loan� is at the abstract level�
This is a violation of Restriction ��� However� to receive a loan� you must have a good credit
history before you apply for the loan� Thus� in a well�justi�ed plan for achieving good credit
history� the operator �make regular payments� is redundant� and we never use this operator
at a concrete level of a well�justi�ed plan to achieve �good credit history�� Hence� it cannot
violate the ordered property�

To describe the same example in a formal fashion� assume that � is an operator with
the only precondition �x � v� ��having loan�� and the only e�ect �x� � v�� ��good credit
history��� Further assume that for any operator �� in the problem domain


 if �x � v� � E������ then �x� � v�� � Out����� and

 if �x� �� v�� � E������ then �x �� v� � Out����

that is every operator that achieves �x � v�� also achieves �x� � v��� and every operators
that negates �x� � v��� also negates �x � v�� It is easy to see that once some operator ��
changing x has been applied� �x � v� can hold only when �x� � v�� holds� and therefore no
well�justi�ed plan can contain � after ���

Thus� the only case when a well�justi�ed plan may contain � is when �x � v� holds in
the initial state� and no operator before � changes it� �For example� if you are in debt when
you are born� and you are establishing a good credit history by making regular payments
for this inherited loan�� But then we may treat �x � v� as the unchangeable operator� and
therefore a hierarchy may be semi�ordered even if crit�x� � crit�x��� An example of such a
semi�ordered hierarchy is shown in Table ���� �

Below we state the modi�cation of Restriction �� that allows us to describe su	cient
conditions of the well�� greedily� and perfectly ordered properties� The modi�cation is not a
single restriction� but four restrictions corresponding to four kinds of justi�cation�

Restrictions � and ��� for backward �well	� greedy� perfect� hierarchy
Let O be the set of operators in a domain� �� � O��x such that �x � v� � Pre���� and
�x�� x� � E����

�� crit�x�� � crit�x��� and
���� if there exists a correct backward �well�� greedily� perfectly	 justi�ed

linear plan �S�� Sg���� containing the operator �� such that either

 �x �� v� � S�� or
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operator preconditions e�ect

���pay bills regularly� � �x � True� �good credit history�
���receive loan� �x � True� �good credit history� �x� � True� �having loan�
�� �regular loan payments� �x� � True� �having loan� �x � True� �good credit history�

�a� Operators in the problem domain

x� �good credit history�

x �having loan�level �

level �

�b� Semi�ordered hierarchy

Table �	
� Example of a well�semi�ordered hierarchy� where Restriction ��� is violated for ��

� there exists an operator �� possibly preceding � that achieves �x �
 v��
then crit�x� � crit�x��

Intuitively Restriction ��� states that there exists a justi�ed plan that contains an operator
�� whose precondition �x 
 v� does not hold at some point before �	 Observe that if �x 
 v�
is a forbidding precondition of �� then a plan � described in the Restriction ��� does not
exist� and therefore this restriction is weaker than Restriction ��	

Theorem ��� Restrictions � and ��� for backward �well�� greedy� perfect� hierarchy are suf�
�cient to guarantee the backward �well�� greedily� perfectly� semi�ordered property of an ab�
straction hierarchy�

Proof� We present a proof for well�justi�ed plans	 Proofs for backward� greedily and
perfectly justi�ed plans are similar	

Let us assume that Restrictions � and ��� hold and consider a correct well�justi�ed plan
�S�� Sg���� at level �i � ��� and its well�justi�ed re�nement �S�� Sg��� at level i	 Let ��

be obtained from � by removing all abstract�e�ect operators	 We need to show that �� is
correct at the i�th level	 To prove this� we divide the operators of �� into two groups� the
operators of ��� and the operators inserted into �� during re�nement process	 We need to
prove that the operators of the both groups are legal� and that the goal is satis�ed in the
�nal state	

Claim �� Every operator � of ��� such that � �� ��� is legal	

Consider an arbitrary precondition �x 
 v� of �	 We need to show that �x 
 v� holds before
� in ��	 If crit��� 
 i� then� by Restriction �� no abstract�e�ect operator changes �x 
 v��
and therefore �x 
 v� still holds in ��� after the removal of the abstract�e�ect operators	 If
crit�x 
 v� � i� then� by Restriction ���� �x 
 v� holds in the initial state and no operator
possibly preceding � establishes �x �
 v�	 Therefore� �x 
 v� holds before �	

Claim �� Every operator � of ��� such that � � ��� is legal� and �� achieves the
goal	
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The proof of this claim is the same as the proof of the similar claim in Theorem �	�	 �

����� Learning Technique

Restriction ��� may seem to be impractical for generating a semi�ordered hierarchy� because
we need to examine all possible justi�ed plans in the problem domain in order to impose
this restriction	 However� we may use a learning technique during the planning process to
impose Restriction ���� if at some point of planning we discover a justi�ed plan that contains
some operator �� we impose Restriction ��� onto �	

Initially� we generate an abstraction hierarchy based on Restriction � only	 We keep the
hierarchy as a directed graph� called a constraint graph� and use one of its linearizations for
planning	 The algorithm for generating this hierarchy is shown in Table �	�	 The constraints
are imposed in lines ��
 of the algorithm	 Line � �nds strongly connected components� which
correspond to the levels of the abstraction hierarchy	 Observe that Restriction � imposes
only equality constraints onto criticalities of variables	 In terms of edges of the directed
graph this means that whenever we draw an edge from x to x�� we also draw an edge from
x� to x	 Therefore any two vertices of the graph are either in the same component or is not
connected by an edge	 Thus� there are no edges between strongly connected components� and
line � imposes an arbitrary linear order onto components	 Each component becomes a level
of our hierarchy	 We are going to keep the graph in a transitively closed form	 Notice that
after the execution of the algorithm Impose Restriction � � the graph is transitively closed�
since it does not have any edges	 �Recall that each connected component is represented as
a single vertex	� Imposing Restriction � in lines ��
 takes

P
��O jE	���j time	 Combining

strongly connected components takes O�jX j�� time	 Linearization process in this algorithm
does not take any running time� because there are no edges between strongly connected
components� and we may choose an arbitrary order of components	 So the total running
time of the algorithm is

O�
X

��O

jE	���j� jX j��

Since we have not imposed constraints de�ned by Restriction ���� it may happen that the
resulting hierarchy is not ordered� which may lead to problems during planning	 However�
when such problems occur� they reveal the lack of constraints� and the necessary additional
constraints may be imposed	 The maximal number of constraints onto preconditions of �
provided by Restriction ��� is jPre���j� and thus the total number of constraints is at mostP
��O jPre���j	 This means that the initial hierarchy will require at most

P
��O jPre���j

corrections	 Thus� we may encounter an inconsistency in the hierarchy at most
P
��O jPre���j

times during the whole period of use of the hierarchy	

Suppose that during planning at some level of abstraction� we discover a plan with an
operator � that does not satisfy Restriction ���� that is � has a precondition �x 
 v� such
that �x 
 v� possibly does not hold at some state preceding �� and Restriction ��� still has
not been imposed onto this precondition	 Than we impose this constraint and change the
abstraction hierarchy accordingly	

The algorithm that searches for such an operator � is presented in Table �	�	 Line � of
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Impose Restriction �
�	 Graph �
 create a directed graph where

�a� every variable in the problem domain is represented as a node
�b� there are no edges

�	 for each operator � � O do

begin

�	 choose an arbitrary x� � E	���
�	 for each x � E	��� do

	 add two edges to Graph� from x� to x and from x to x�

end�
�	 Graph �
 Combine Strongly Connected Components�Graph��
�	 Hierarchy �
 Linearization�Graph�

Table �	�� Imposing Restriction � onto the e�ects of operators

the algorithm checks whether Restriction ��� has already been imposed onto a precondition
�x 
 v� of an operator �	 If it has not� lines 
��� check whether a precondition �x 
 v� of
an operator � possibly does not hold in some state preceding �	 If �x 
 v� does not hold
in the initial state� or if some operator possibly preceding � establishes another value of x�
then the algorithm calls the procedure Add Constraint� which imposes Restriction ��� onto
�x 
 v� and changes the hierarchy accordingly	 The execution of lines ���� takes O�j�j�
time� and since these lines are executed for each precondition of every operator� the total
running time of the algorithm is O�E � j�j�� not counting the running time of the procedure
Add Constraint	

While planning at some level of abstraction� we �rst �nd a re�nement of the abstract�level
plan� then we �nd a justi�ed version of this re�nement� and then we apply the algorithm
Check Restriction ���	 If the algorithm does not add any new constraint� we continue to
plan on the next lower level of abstraction	 If the algorithm �nds a missing constraint�
the hierarchy is modi�ed� and the planning is started again from the upper level	 Observe
that the problem of re�ning the plan is generally NP�hard� the problem to �nd the justi�ed
version of the re�nement takes O�E � j�j�� for backward justi�cation and more for other
kinds of justi�cation� and the algorithm Check Restriction ��� takes only O�E � j�j�	 Thus�
the necessity to run this algorithm at each step of planning process does not increase the
time complexity of planning	

The algorithm that adds a constraint to the Graph and �nds a corresponding new hier�
archy is shown in Table �	�	 Recall that the running time of linearization and combining
strongly connected components is O�jX j�� �where jX j is the number of vertices in the graph��
and the average�case running time of the transitive closure algorithm is O�jX j� � log log jX j�	
Thus� the average�case running time of Add Constraints is O�jX j� � log log jX j�	 The worst�
case running time is O�jX j��	

So what is the total cost of our learning method of building a semi�ordered hierarchy�
The algorithm Check Restriction ��� is executed at each step of a planning process� but� as
we have seen� it does not considerably increase the running time	

Impose Restriction � is executed once and takes O�
P
��O jE	���j � jX j�� time� and
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Check Restriction ����S�� Sg���
�	 for each � � � do

�	 for each �x 
 v� � Pre��� do
begin

�	 choose an arbitrary x� � E	����
�	 if there is no edge from x� to x in the graph then

begin


	 Restriction Holds �
 True�
�	 if �x 
 v� �� S�
�	 then Restriction Holds �
 False�
�	 for each �� � � do

�	 if ��� � ��� and ��� establishes �x �
 v��
��	 then Restriction Holds �
 False�
��	 if not Restriction Holds
��	 Add Constraint�x�� x�

end

end

Table �	�� Searching a justi�ed plan for operators that does not satisfy Restriction ���

Add Constraint�x�� x�
�	 add an edge from x� to x to Graph�
�	 Graph �
 Combine Strongly Connected Components�Graph��
�	 Graph �
 Transitive Closure�Graph��
�	 Hierarchy �
 Linearization�Graph�

Table �	�� Adding the edge from x� to x to the Graph and modifying the hierarchy
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Add Constraint is executed at most
P
��O jPre���j times and takes O�jX j� � log log jX j� for

each execution	 The average�case running time of all executions of these two algorithms is

O�
X

��O

jE	���j� jX j� � log log jX j �
X

��O

jPre���j�

To receive an intuitive idea about the value of this expression� let us consider such a constant
op size that� for every operator �� jPre���j� jE	���j � op size	 Then the total running time
of all execution of Impose Restriction � and Add Constraint is O�op size � jX j� � log log jX j�	

Finally� each time we impose a new constraint� we need to start planning from the
beginning� and thus we may need to backtrack to the highest level of the hierarchy because
of imposing new constraints at most

P
��O jPre���j times	

The learning technique is e�ective if we often use the same hierarchy	 We may use it a lot
of times� and we may encounter inconsistency at most

P
��O jPre���j times during the whole

period of use	 It may happen that after a long period of use some necessary constraints are
still not inserted� but this means that the lack of these constraints does not create problems
for the tasks that our planner usually performs	

��� Conclusion

As we have shown� a semi�ordered hierarchy is always �ner�grained than the ordered hierar�
chy produced by ALPINE� which means that a semi�ordered hierarchy contains at least as
many levels as an ALPINE�generated one� and that the branching factor during planning in
a semi�ordered hierarchy is not higher than during planning in an ordered hierarchy	

We have shown that di�erent de�nitions of justi�ed plans give rise to di�erent ordered
abstraction hierarchies	 More restrictive kinds of justi�cations give rise to less restrictive
conditions for building an abstraction hierarchy� and allow one to generate �ner�grained
abstraction hierarchies	

While more restrictive justi�cations lead to abstraction hierarchies with more levels and
thus increase the e�ciency of planning� the process of �nding a more restrictive justi�cation
of a given plan takes more time	 Thus there is a tradeo� between the number of levels in a
semi�ordered abstraction hierarchy and the speed of �nding justi�ed versions of plans	 Since
we need to �nd justi�cations of plans at each step of planning process� the necessity to use
greedy or perfect justi�cation may considerably slow down the planning process	

We may view Table �	� as a spectrum of semi�ordered hierarchies	 On one end of the
spectrum hierarchies are backward semi�ordered	 The running time of �nding a backward
justi�ed version of a given plan is O�E � j�j��	 On the other end hierarchies are perfectly
ordered	 Such hierarchies may be �ner�grained than any other kind of semi�ordered hierar�
chies� but the task to �nd a perfect justi�cation of a given plan is NP�complete� and it may
be very time�consuming to �nd a perfectly justi�ed version of a current plan at each step of
planning	

Linear planning is probably most e�cient in a greedily semi�ordered hierarchy� because
the running time of �nding a greedy justi�cation of a linear plan is the same as running time
of �nding well� and backward ordered justi�cations	



Chapter �

Automatically abstracting e�ects of

operators

In this chapter we present another method for increasing the number of levels of an automat�
ically generated abstraction hierarchy by further relaxing Restrictions � and �	 We show how
these restrictions may be relaxed without violating the ordered property for primary�e	ect
restricted planning	

Intuitively� we divide the e�ects of an operator into primary e	ects and side e	ects	 We
use the operator only for the sake of its primary e�ects	

For example� suppose you are boiling water in order to prepare tea	 The primary e�ect
of this action is obtaining a hot water � this is your main goal	 Side e�ects are spending
electricity� heating the air in the room� and maybe burning your �ngers	 You would not boil
water in order to spend electricity or in order to heat the room	

The planner that uses operators only for the sake of their primary e�ects is called primary�
e	ect restricted	 In this chapter we show that primary�e�ect restricted planners allow us
to use abstraction hierarchies with more levels than the hierarchies used by unrestricted
planners	 Sometimes we are able to build a multi�level ordered hierarchy for a primary�
e�ect restricted planner in cases where the hierarchy based on Restriction � and �� collapses
into a single level	 We present an algorithm that automatically �nds primary e�ects of
operators	

��� A Motivating Example

Suppose that in the tower of Hanoi example� we add the operators that can move two disks
at a time� as long as both disks are on the same peg� and there are no disks between them	
The operators of this extended tower of Hanoi are listed in Table 
	�	

Both the ordered and semi�ordered hierarchies for this new domain collapse into a single
level	 Too see this� observe that according to Restriction �� all e�ects of operators must have
the same criticality	 The operator Move SM changes variables Where S and Where M� and
therefore crit�Where S� 
 crit�Where M�	 Similarly� for e�ects of the operator Move ML�
we have crit�Where M� 
 crit�Where L�	 So the only criticality assignment satisfying Re�

��
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operator preconditions e�ects primary e�ects

Move S�a�b� �Where S
a� �Where S
b� �Where S
b�
Move M�a�b� �Where M
a� �Where M
b� �Where M
b�

�Where S�
a�� �Where S�
b�
Move L�a�b� �Where L
a� �Where L
b� �Where L
b�

�Where S�
a�� �Where S�
b�
�Where M�
a�� �Where M�
b�

Move SM�a�b� �Where S
a�� �Where M
a� �Where S
b� �Where M
b�
�Where M
b�

Move SL�a�b� �Where S
a�� �Where L
a� �Where S
b� �Where L
b�
�Where M�
a�� �Where M�
b� �Where L
b�

Move ML�a�b� �Where M
a�� �Where L
a� �Where M
b� �Where L
b�
�Where S�
a�� �Where S�
b� �Where L
b�

Table 
	�� The operator types in the extended tower of Hanoi domain

striction � is
crit�Where S� 
 crit�Where M� 
 crit�Where L�

However� even with the operators for moving two disks� intuitively it is still true that
moving the large disk is more di�cult than moving the small one	 Thus� intuitively one
should still consider the movement of a large disk at an abstract level	 This example shows a
shortcoming of the technique for generating abstraction hierarchies described in the previous
chapter� the addition of a few new operators may collapse an abstraction hierarchy into a
single level� even though intuition tells us that the abstraction hierarchy should remain
intact	

The purpose of the chapter is to remove this de�ciency	 We achieve this by presenting
a new algorithm that constructs ordered abstraction hierarchies based on primary e�ects of
operators	

��� Ordered Hierarchies with Primary E�ects

A key point to observe in the above example is that� if we want to move the small disk
alone� we do not use the operator Move SM or Move SL	 It is more natural to move small
disk with the operator Move S	 Similarly� we use the operator Move ML if we want to move
either the large disk� or the large and medium disks together	 We do not use Move ML to
move the medium disk alone	 In other words� an operator is used for the sake of its primary
e	ects	 In the tower of Hanoi example� we can envision �Where L 
 b� as the primary e�ect
of Move SL�a� b� operator� and �Where S 
 b� as its side e	ect	 The set of primary e�ects
of the tower of Hanoi operators are listed in Table 
	�	

The purpose of recognizing primary e�ects is to restrict the complexity of a problem�
solving process by reducing the branching factor of the search space	 When achieving the
value of some variable� a planner needs to consider only operators whose primary e�ects
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match the variable	 If a planner uses operators only for the sake of their primary e�ects� it
is said to be primary�e	ect restricted	 Unfortunately� we cannot give the universal precise
de�nition of the primary�e�ect restriction� because it depends on a behavior of a particular
planning systems	 So to explain the meaning of the primary�e�ect restriction� we brie�y
describe common planning algorithms	

A formal overview of several main types of planning algorithms may be found in �Minton
et al�� �����	 Here we present only short informal description of both linear and nonlinear
planners	

Linear planners�

Linear planning algorithms such as GPS �Newell and H	 Simon� ����� and STRIPS �Fikes
and Nilsson� ����� build plans by backward chaining from the goal state	 The preconditions
of some operators on intermediate stages of plan generation are not satis�ed� and the planner
tries to achieve them by inserting new operators	 For example� consider the tower of Hanoi
domain with two disks� small and large� and the planning problem with

Initial state� �Where S 
 ��� �Where L 
 ��
Goal state� �Where L 
 ��

�see Figure 
	��	 The plan
�	Move L��� �� �	

achieves the goal� but the precondition �Where S �
 �� of the operator Move L����� is not
satis�ed	 So the planner inserts an operator that satis�es this precondition and receives a
correct plan

�	 Move S��� �� �	 Move L��� �� �	

Nonlinear planners�

Nonlinear planners such as NOAH �Sacerdoti� ���
� and TWEAK �Chapman� ����� achieve
preconditions of operators not only by inserting new operators� but also by imposing the
order constraints onto existing operators	 For example� consider the problem shown in
Figure 
	� with the same initial state and

Goal state� �Where S 
 ��� �Where L 
 ��

The plan

�	


�

Move S��� ��

Move L��� ��

�



�	

achieves the goal� but the precondition �Where S �
 �� of Move L����� may not be satis�ed if
this operator is executed �rst	 So a nonlinear planner achieves this precondition by imposing
the time�precedence constraint �Move S before Move L�� and receives a correct plan

�	 Move S��� �� �	 Move L��� �� �	
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�b� Goal state�a� Initial state

��� ���

Figure 
	�� Two�disk tower of Hanoi problem

A planning algorithm is primary�e�ect restricted if� when inserting a new operator to
achieve some precondition �x 
 v� of an operator �� it always inserts an operator with
the primary e�ect �x 
 v�� and does not use an operator that achieves �x 
 v� as its side
e�ect	 However� while imposing time�precedence constraints onto existing operators� the
algorithm may not obey primary�e�ect restriction� and may impose such a constraint that
the preconditions of � are satis�ed by side e�ects of some operator	

The de�nition of primary�e�ect restricted planning� unlike all other de�nitions in this
thesis� depends on the planning algorithm	 All de�nitions and all theorems presented in
the previous chapters are independent of the behavior of a planning algorithm� as long as
the planner produces correct plans and uses a justi�cation procedure when appropriate	
However� the su�cient condition of the ordered property presented in this section depends
on the behavior of planning algorithm� this condition holds only for primary�e�ect restricted
planners	

In the next section we present an algorithm for automatically �nding the primary e�ects
of operators	 But for now� we assume that the primary e�ects of the operators in a domain
have been found	 The set of primary e�ects of an operator � is denoted by Prim�E	�����
and the set of side e�ects by Side�E	����	

Now we describe construction of a �ner�grained ordered abstraction hierarchy based on
the primary e�ects� for use by a primary�e�ect restricted planner	 Such a hierarchy is called
primary�e	ect restricted	 Consider the following modi�ed ordered restriction�

Restrictions �a and �a Let O be the set of operators in a domain� �� � O� �x such
that �x 
 v� � Pre���� �x� � E����� and �x�� x� � Prim�E����

�a� crit�x�� � crit�x�� 
 crit�x��� and
�a� if �x 
 v� is achievable� then crit�x� � crit�x��

This restriction formalizes the syntactic conditions behind the algorithm used by ALPINE
��Knoblock� ����a�� page ���	 Stated simply� the criticality values of all primary e�ects of
an operator are the same� and they are no less than the criticalities of secondary e�ects and
achievable preconditions of the operator	 For example� one can verify that the abstraction
hierarchy shown in Figure 
	� for the extended tower of Hanoi domain with primary e�ect
as indicated in Table 
	� satis�es Restrictions �a and �a	

For a primary�e�ect restricted planner� Restrictions �a and �a provide a su�cient con�
dition of the backward ordered property	

Theorem ��� If an abstraction hierarchy used by a primary�e	ect restricted planner satis�
�es Restrictions �a and �a� the hierarchy is ordered�
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level �

level �

level �

Where L

Where M

Where S

Figure 
	�� Semi�ordered hierarchy for the extended tower of Hanoi

Proof� Consider some correct plan �S�� Sg���� at the �i����th level of abstraction� and the
process of re�ning �� at the i�th level	 To prove that the �nal re�nement � of �� is ordered�
we need to show that no abstract�e�ect operator is inserted during the re�nement process	
We divide the re�nement process into �nite number of steps such that at each step the
planning algorithm either inserts a new operator or imposes a time�precedence constraint	
We denote the intermediate plan obtained after the k�th step by �k� and the set of achievable
preconditions of operators and goal values that does not hold in �k by Pk	 We use induction
on k to prove that no operator of �k inserted during the re�nement process has any e�ect
with the criticality higher than i	

Inductive hypothesis

��� for any � � �k such that � �� ��� for any x� � E	���� crit�x�� � i� and
��� for any precondition �x 
 v� � Pk� crit�x� � i

Base� For k 
 �� that is before any changes of the abstract plan� �� 
 ��	 Hypothesis �
trivially holds� since no operators have been inserted into ��	 Hypothesis � holds because
�� is correct at the �i� ���th level of abstraction� and therefore all preconditions with criti�
calities higher than i are satis�ed	

Step� Assume that Hypotheses � and � hold after the execution of the k�th step� and con�
sider the �k � ���th step of re�ning	 Clearly� imposing a new time�precedence constraint
cannot violate the inductive hypothesis� and so assume that at the �k � ���th step the plan�
ner inserts a new operator � that achieves one of the unsatis�ed preconditions �x 
 v� � Pk	
By Hypothesis �� crit�x� � i	 Since the planner is primary�e�ect restricted� �x 
 v� is a
primary e�ect of �� and by Restriction �a all e�ects of � have criticalities no larger than
i	 Therefore� Hypothesis � still holds after the insertion of �� in the resulting plan �k��	
Observe that since all e�ects of � have criticalities no larger than i� its insertion cannot
violate any higher�level precondition of any operator	 Also� by Restriction �a� all achievable
preconditions of � have criticalities no larger than i	 Therefore� no unsatis�ed achievable
higher�level preconditions may appear in the plan after the insertion of �� and thus Pk��
cannot contain any preconditions whose criticalities are larger than i	 Therefore� Hypothe�
sis � also holds after the �k � ���th step	 �

Unfortunately� we cannot use the notion of semi�ordered hierarchies and relax Restric�
tion �a the way we have relaxed Restriction � �see Theorem �	�� for an arbitrary primary�
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e�ect restricted planner	 The proof of Theorem �	� does not work for primary�e�ect re�
stricted hierarchies� because it crucially depends on the equality of the criticalities of all
e�ects of an operator �see Claim �� Case � in the proof of the theorem�	 However� Restric�
tion �a may be relaxed if we impose an additional restriction onto a planner� we demand
our planner to be not only primary�e�ect restricted� but also forbidding�restricted	

Restrictions �a and �a� Let O be the set of operators in a domain� �� � O� �x such that
�x 
 v� � Pre���� �x� � E����� and �x�� x� � Prim�E����

�a� crit�x�� � crit�x�� 
 crit�x��� and
�a�� if �x 
 v� is not a forbidding precondition� then crit�x� � crit�x��

Theorem ��� An abstraction hierarchy for a primary�e	ect restricted forbidding�restricted
planner is ordered if and only if it satis�es Restrictions �a and �a��

A formal proof of this theorem is the same as the proof of Theorem 
	�� with Pk being the
set of non�forbidding unsatis�ed preconditions after the k�th step of the re�nement process	

Informally� the possibility of replacing Restriction �a with less restrictive �a� may be
explained as follows	 Let �x� 
 v�� be a primary e�ect of some operator �� where the
criticality of x is i� and �x 
 v� be a forbidding precondition of �	 Suppose that while
re�ning some abstract�level plan at level i� the planner applies � to achieve �x� 
 v��	 Since
the planner is primary�e�ect restricted� it will not then insert an operator that achieves the
precondition �x 
 v� of �� and thus it will not violate any higher�level literal even if the
criticality of �x 
 v� is higher than i	

��� Automatically Finding Primary E�ects

There are di�erent ways of �nding primary e�ects of operators� which can be grouped into
the following three alternatives�

�� All E�ects Are Primary E�ects� This option is implicitly used in Restrictions � and
�� described in the previous chapter	 It is also used as default by Knoblock s ALPINE
�Knoblock� ����a� if no primary e�ects are provided by a user	 As we have demon�
strated� it may lead to generating a hierarchy with too small number of abstraction
levels	

�� User�de	ned Primary E�ects� This is the approach taken by ALPINE and many
other systems	 For example� the ABTWEAK �Yang et al�� ����� system depends on
the user to de�ne the set of primary e�ects of operators	


� Automatically Selecting Primary E�ects� This is the approach we are taking	 The
advantage of our approach is that we could now feel free to select primary e�ects in
such a way as to maximize the total number of abstraction levels	

Now we describe an algorithm for automatically selecting primary e�ects of operators	
The goal of the algorithm is to maximize the number of abstraction levels	

To ensure completeness of abstract planning� we would like every achievable value of each
variable to be a primary e�ect of some operator	 If a value is not a primary e�ect of any
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Choose Primary E�ects
�	 Graph �
 Create a directed graph where

�a� every literal in the problem domain is represented as a node
�b� there are no edges

�	 User�De�ned Primary E�ects�
�	 for m �
 � to n do

begin

�	 for each operator � that achieves values of m distinct variables do

	 if User�de�ned�Prim�E	��� is empty

�
 human user have not de�ned primary e�ects of � 
�
�	 then Choose Primary E�ect Of Operator����
�	 for each value �x 
 v� that is achieved by m distinct operators do
�	 if �x 
 v� still is not chosen as a primary e�ect of some operator
�	 then Make Value Be Primary E�ect�x 
 v�

end�

��	 Choose Primary E�ects According To Graph�
��	 Hierarchy �
 Linearization�Graph�

Table 
	�� Creating an ordered hierarchy

operator� then it cannot be achieved	 Likewise� every operator must have a primary e�ect	
If an operator has no primary e�ects� it can never be used in planning	

Our algorithm Choose Primary E	ects is shown in Table 
	�	 Its input is a set of oper�
ators in a domain� and its output is a selection of primary e�ects for each operator	 The
algorithm chooses primary e�ects by building a constraint graph of variables	 The variab�
les of a problem domain are represented as nodes of a directed graph� and constraints are
represented as directed edges	 An edge from x� to x� indicates that crit�x�� � crit�x��	
Strongly connected components of the graph correspond to the levels of abstraction	 At �rst
the graph does not have any edges	 While choosing primary e�ects� we try to maximize
the number of strongly connected components	 In the code of the algorithm� the notation
jGraphj denotes the number of strongly connected components of the Graph	

The algorithm allows the user to select primary e�ects of some operators� and then
chooses primary e�ects for the other operators	 The procedureUser�de�ned Primary E	ects�
presented in Table 
	�� imposes constraints described by Restrictions �a and �a onto user�
de�ned primary e�ects	

The algorithm starts to select primary e�ects of the remaining operators by considering
operators each of which establishes a value of exactly one variable	 Recall� that we wish
every operator to have at least one primary e�ect	 So for each operator � that has a unique
e�ect �x 
 v�� we make �x 
 v� the primary e�ect of �� and add directed edges from x to
all precondition variables of �	 Then we consider each value achieved by a unique operator	
Since each achievable value must be a primary e�ect of some operator� we make every value
achieved by a unique operator a primary e�ect of the corresponding operator	 At the second
step� we consider the set of operators that establish values of two distinct variables� and the
values that are achieved by two di�erent operators� and so on	
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User�de�ned Primary E�ects
�a	 for each operator � do

�a	 if User�de�ned�Prim�E	��� is not empty
then begin

�a	 Prim�E	��� �
 User�de�ned�Prim�E	����
�a	 choose an arbitrary x� � Prim�E	����

a	 for each x� � Prim�E	��� do
�a	 add an edge from x� to x� to Graph�
�a	 for each x� � E	��� do
�a	 add an edge from x� to x� to Graph�
�a	 for each �x 
 v� � Pre��� do
��a	 if �x 
 v� is achievable
��a	 then add an edge from x� to x to Graph�

end�
��a	 Combine Strongly Connected Components�Graph�

Table 
	�� Imposing constraints onto user�de�ned primary e�ects

At the m�th step� we perform two operations�

�	 choose primary e�ects of each operator that establishes values of m di�erent variables�
and

�	 for every value �x 
 v� that is achieved by m di�erent operators� make �x 
 v� a
primary e�ect of one of the corresponding operators

Each time when we select a primary e�ect� we choose it such a way as to maximize the
number of strongly connected components	 In other words� we use a greedy strategy by
making locally optimal choices at each step	 The total number of steps performed by the
algorithm� n� is such that

� no operator has more than n e�ects� and
� no value �x 
 v� is established by more than n distinct operators

Observe that the fewer e�ects the operator has� the earlier we select its primary e�ects	
The intuition behind this order is as follows	 When we consider single�e�ect operators� the
choice of the primary e�ect is uniquely determined� so a wrong choice cannot be made	
When we consider ��e�ect operators� we choose a primary e�ect out of � e�ects� and the
probability of the wrong choice is not very large	 Generally� the more e�ects an operator
has� the larger the probability to make a wrong choice is	 However� if some constraints have
been imposed before we choose a primary e�ects of an operator� there are some chances that
a primary e�ect is already implicitly selected by previously imposed constraints� and thus
we do not need to make any choice and cannot be wrong	 Even if a primary e�ect still is
not determined by previously imposed constraints� these constraints give us an additional
information and decrease the probability of a wrong choice	 That is why we wish to consider
operators with a lot of primary e�ects� where the probability of a wrong choice is high� after
imposing constraints onto operators with fewer e�ects	
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Choose Primary E�ect Of Operator���
�
 the algorithm uses temporary variables Graph� and Graph� 
�
�b	 Max Number Of Components �
 ��
�b	 for each �x 
 v� � E	���� do

begin

�b	 Graph� �
 Graph�
�b	 for each �x� 
 v�� � E	��� do

b	 add an edge from x to x� in Graph��
�b	 for each �x� 
 v�� � Pre��� do
�b	 if �x� 
 v�� is achievable
�b	 then add an edge from x to x� to Graph��
�b	 Combine Strongly Connected Components�Graph���
��b	 if jGraph�j � Max Number Of Components�

then begin

��b	 Primary E	ect �
 �x 
 v��
��b	 Graph� �
 Graph��
��b	 Max Number Of Components �
 jGraph�j

end

end�
��b	 Graph �
 Transitive Closure�Graph���
�
b	 Prim�E	��� �
 f�x 
 v�g

Table 
	�� Selecting a primary e�ect of an operator �

We do not have any theoretical evidence to support this intuition	 Experiments in simple
problem domains such as the tower of Hanoi� blocks worlds� and simple robot s worlds have
shown that our algorithm usually produces the optimal or near�optimal hierarchy	 However�
we did only a few experiments in very simple domains� and the evidence is not enough to
con�rm general e�ciency of the algorithm	

Selecting a primary e�ect of every operator � is performed by the algorithm Cho�
ose Primary E	ects Of Operator �see Table 
	��	 Let �x� 
 v��� �x� 
 v��� 	 	 	 � �xm 
 vm�
be e�ects of �� and Graph be the constraint graph before a primary e�ect of � is selected	
First the algorithm tries to make �x� 
 v�� a primary e�ect of an operator by adding con�
straints de�ned by Restrictions �a and �a�� the algorithm adds directed edges from x� to
all other e�ect variables of � and to all precondition variables of �	 After adding these
edges� the algorithm receives some new graph Graph�	 Then the algorithm tries to make
�x� 
 v�� a primary e�ect of �� and receives a new graph Graph�	 Similarly� it receives graphs
Graph��	 	 	 �Graphm	 The algorithm counts the number of strongly connected components
in each of the graphs� and chooses graph Graphk with the largest number of components	
Since the purpose is to maximize the number of strongly connected components� �xk 
 vk�
is �nally chosen as a primary e�ect of �	 Observe� that we keep the resulting graph in the
transitively closed form �see Line ���	 This allows us to compare the criticalities of two
variables in constant time	
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Make Value Be Primary E�ect�x 
 v�
�
 the algorithm uses temporary variables Graph� and Graph� 
�
�c	 Max Number Of Components �
 ��
�c	 for each � that achieves �x 
 v� do

begin

�c	 Graph� �
 Graph�
�c	 for each �x� 
 v�� � E	���� do

c	 add an edge from x to x� to Graph��
�c	 for each �x� 
 v�� � Pre���� do
�c	 if �x� 
 v�� is achievable
�c	 then add an edge from x to x� to Graph��
�c	 Combine Strongly Connected Components�Graph���
��c	 if jGraph�j � Max Number Of Components�

then begin

��c	 Chosen Operator �
 ��
��c	 Graph� �
 Graph��
��c	 Max Number Of Components �
 jGraph�j

end

end�
��c	 Graph �
 Transitive Closure�Graph���
�
c	 Prim�E	�Chosen Operator� �
 Prim�E	�Chosen Operator� � f�x 
 v�g

Table 
	
� The algorithm makes �x 
 v� to be a primary e�ect of some operator

The algorithm Make Value Be Primary E	ect accepts some value �x 
 v�� considers all
operators that achieve �x 
 v� and makes �x 
 v� a primary e�ect of one of them	 The
algorithm is presented in Table 
	
	 This algorithm is very similar to the algorithm Cho�
ose Primary E	ect Of Operator	 Let ��� ���	 	 	 ��m be operators that achieve �x 
 v�	 The
algorithm tries to make �x 
 v� a primary e�ect of �� by imposing the corresponding con�
straints� and determines the number of strongly connected components in the resulting
graph	 Then the algorithm tries to make �x 
 v� a primary e�ect of ��� then of ��� and
so on till �m� and chooses the case in which the resulting graph has the largest number of
strongly connected components	

Observe that while selecting primary e�ects� we do not store the selected primary ef�
fects explicitly	 Some primary e�ects have been explicitly stored in the set Prim�E	 in
lines �
b and �
c� but these are only some� not all primary e�ects	 Instead� the primary
e�ects are determined implicitly by constraints imposed onto the graph� if the criticality
of an e�ect of an operator is not less than the criticalities of all other e�ects� and not less
than the criticalities of all achievable preconditions� then the e�ect is primary	 In terms
of graph edges this means that the e�ect is primary if there are direct arrows from the
e�ect to all other e�ects and to all achievable preconditions of the operator	 After the con�
straint graph is completely built� we wish to �nd the primary e�ects of each operator �
and store them explicitly as a set Prim�E	���	 This is performed by the algorithm Cho�
ose Primary E	ects According To Graph� presented in Table 
	�	 The algorithm chooses
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Choose Primary E�ects According To Graph
�d	 for each operator � � O do

begin

�d	 let �x 
 v� be the primary e�ect of � chosen in line �a� �
b� or �
c�
�d	 for each �x� 
 v�� � E	��� do
�d	 if x and x� are in the same connected component of Graph

�
 that is crit�x� 
 crit�x�� 
�

d	 then Prim�E	��� �
 Prim�E	��� � f�x� 
 v��g

end

Table 
	�� The algorithm stores the primary e�ects of each operator � in the set Prim�E	���

the primary e�ects of operators according to the imposed constraints� for each operator �
it compares the criticality of every e�ect of � with the primary e�ect found by the proce�
dure Choose Primary E	ect Of Operator	 All e�ects of � whose criticalities are equal to the
criticality value of the primary e�ect� are added to the set of primary e�ects of �	

Now let us �nd the time complexity of the algorithm	 We start with the time complexity
of Choose Primary E	ects Of Operator	 Recall that the vertices of the Graph are variables
of the problem domain� and therefore the number of vertices before combining strongly
connected components is jX j	 The amount of memory necessary for storing the Graph is
O�jX j��� and therefore the running time of line �b is also O�jX j��	 The running time of
the loop in lines �b�
b is O�jE	���j�� and the running time of the loop in lines �b��b
is O�jPre���j�	 Combining strongly connected components in line �a takes O�jX j�� time	
Counting the number of vertices of Graph� in lines ��b and ��b takes O�jX j� time� and
line ��b takes O�jX j�� time	 Thus� the total running time of lines �b���b is

O�jE	���j� jPre���j� jX j��

Since these lines are executed for each e�ect of �� the running time of all executions of the
loop in lines �b���b is

O�jE	���j � �jE	���j� jPre���j� jX j���

Line ��b takes O�jX j� � log log jX j� in the average case� so the average�case running time of
the algorithm Choose Primary E	ects Of Operator for an operator � is

O�jE	���j � �jE	���j� jPre���j� jX j�� � jX j� � log log jX j�

Observe that for each variable x� at most one value of x is speci�ed in the set of preconditions
of �� and therefore jPre���j � jX j � jXj�� and similarly jE	���j � jX j�	 Therefore� the
above running time expression may be simpli�ed to

O�jE	���j � jX j� � jX j� � log log jX j�

Since we call this algorithm exactly once for each operator in the problem domain� the
average�case running time of all calls of the algorithm is

O�
X

��O

�jE	���j � jX j� � jX j� � log log jX j�
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which may be rewritten as

O�jX j� �
X

��O

jE	���j� jOj � jX j� � log log jX j� ���

A similar derivation shows that the average�case running time of all executions of the algo�
rithm Make Value Be Primary E	ect is

O�
X

x�X

X

v�D�x�

X

��O�x�v�

�jE	���j � jX j� � jX j� � log log jX j�� ���

Observe that the expression X

x�X

X

v�D�x�

X

��O�x�v�

�	 	 	�

means �for each variable x� for each value �x 
 v�� consider once every operator that estab�
lishes �x 
 v��� which may be restated as �for each operator consider once each of its e�ects
�x 
 v��� and thus the original sum expression may be replaced with

X

��O

X

�x�v��E� ���

�	 	 	�

After substituting this sum expression into ���� it is easy to verify that expressions ��� and ���
are equivalent� and thus the running time of all executions of Make Value Be Primary E	ect
equals ���	

One execution of the main loop of the procedure User�de�ned Primary E	ects �lines �a�
��a� takes O�jPre���j � jE	���j� time� and therefore the time of all executions of the loop
is

O�
X

��O

�jPre���j� jE	���j��

The running time of the line ��a is O�jX j��� and thus the overall running time of User�
De�ned Primary E	ects is

O�
X

��O

�jPre���j� jE	���j� � jX j��

which is clearly less than ���	
Finally� the running time of the algorithm Choose Primary E	ects According To Graph

is
O�
X

��O

jE	���j�

and the running time of Linearization in line �� is O�jX j��� so the running time of these
two algorithms is also less than ���	 Therefore� the running time of the whole algorithm
Choose Primary E	ects is described by expression ���	

Example

We consider the extended tower of Hanoi domain	 Each of the operators Move S� Move M�
Move L achieves one value� and at the �rst step the algorithm makes this value a primary



���� ADVANTAGES AND LIMITATIONS OF USING PRIMARY EFFECTS ��

�a� Graph

OnMedium OnSmall

OnLarge
�

���
�
��R

�

�b� Graph�

OnMedium OnSmall

OnLarge
�

����
��� �

��R
�

Figure ���� Graphs in the extended tower of Hanoi example

e	ect� After performing this step
 the Graph is as shown on Figure ���a� Then the algo�
rithm considers operators that achieve two distinct literals� These operators are Move ML

Move SM
 and Move SL�

The e	ect variables of Move ML are Where M and Where L� One of them must be
chosen as a primary e	ect� If Where L is a primary e	ect
 its criticality must be at least
as great as the criticality of Where M and the criticalities of all preconditions of Move ML�
These restrictions already hold in the Graph
 so it is not necessary to add new restrictions�
If Where M is chosen as a primary e	ect of Move ML
 we must have

crit�Where M� � crit�Where L�

After the constraint de�ned by this inequality is added to the Graph
 we receive a new graph
Graph� shown in Figure ���b� Graph� contains fewer strongly connected components than
Graph� Since the purpose is to maximize the number of strongly connected components
 the
algorithm �nally chooses Where L to be a primary e	ect of Move ML�

Then the algorithm uses the same method to choose primary e	ects of Move SM and
Move SL� One may check that the algorithm chooses Where M to be a primary e	ect of
Move SM
 and Where L to be a primary e	ect of Move SL� After linearizing the resulting
graph
 the algorithm receives the hierarchy shown in Figure ��
� �

��� Advantages and Limitations of using Primary Ef�

fects

In this section we discuss the advantages and limitations of an abstraction hierarchy based
on Restrictions �a and 
a
 as compared to hierarchies described in the previous section� We
compare the two types of abstraction levels in terms of the number of hierarchies generated
by each algorithm� Also
 we discuss the completeness of the resulting planning system�

Advantages
�� Restrictions �a and 
a are less restrictive than � and 

 and Restriction 
a� is less

restrictive than 
�� Thus
 primary�e	ect restricted hierarchies based on this restrictions have
more levels of abstractions than usual backward semi�ordered hierarchies�


� If we need to establish some value �x � v� during the planning process
 we may use
only operators with a primary e	ect �x � v�
 not all the operators that achieve �x � v�� This
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reduces the branching factor of the search�

Now we discuss the completeness of a planner that uses an abstraction hierarchy produced
by our algorithm� We wish to ensure that if a planning problem is solvable
 then a search tree
expanded by a primary�e	ect restricted planner contains a solution of this problem� That is

for any initial state S� and goal state Sg
 if there is a plan � that achieves Sg starting from
S�
 then there is some plan �not necessarily �� in the search space expanded by a planner
that also achieves Sg from the initial state S�� If a planner uses a breadth��rst search
 then
this property guarantees that
 given enough time
 the planner will �nd a solution of any
solvable problem�

We assume that while re�ning any abstract level plan � at any lower level i
 a planner
is able to �nd every perfectly justi�ed re�nement of �� In other words
 for any abstraction
level i and any �i� ���level plan �
 the search space expanded by a planner within the i�th
level of abstraction while re�ning � contains all perfectly justi�ed re�nements of �� Most
planners
 such as ABSTRIPS
 TWEAK
 and NONLIN
 satisfy this assumption�

To make sure that completeness is not lost while planning in a hierarchy of abstraction
spaces
 we have to guarantee that if there is a plan that achieves Sg starting from S�
 then
a planner may �nd it while using the abstraction hierarchy� This implies that there exists a
sequence ������ � � � ��n�� of plans such that �n�� is a perfectly justi�ed plan that solves the
problem at level �n� ��
 �n�� is a perfectly justi�ed ordered re�nement of �n�� that solves
the problem at level �n�
�
 and so on until ��
 which solves the problem at the lowest level
of abstraction� If a hierarchy satis�es this requirement
 we say that it has the completeness
property�

De�nition ��� �Completeness property�
An abstraction hierarchy with n levels of abstraction is said to have the completeness prop�
erty if� whenever a goal state Sg may be achieved from an initial state S� at the lowest level
of abstraction� there exists a sequence ������ � � � ��n�� of plans such that

� for every i � �����n����� �S�� Sg��i� is a correct perfectly justi�ed plan at the i�th level
of abstraction� and

� for every i � �����n� 
��� �i is an ordered re�nement of �i��

Yang and Tenenberg de�ned the monotonicity property �Yang et al�
 �����
 which is
similar to our completeness property� The only di	erence between the two de�nitions is
that in the de�nition of the monotonicity property
 a re�nement �i of a higher�level plan
�i�� may not be an ordered re�nement� Since every re�nement of every plan in an ordered
hierarchy is an ordered re�nement
 the monotonicity property and completeness property are
equivalent in the case of an ordered hierarchy� Yang and Tenenberg have shown that every
abstraction hierarchy has the monotonicity property �Yang et al�
 �����
 and thus guarantees
completeness of planning�

However
 the completeness property and monotonicity property are not equivalent for a
primary�e	ect restricted hierarchy� While every hierarchy has the monotonicity property
 a
primary�e	ect restricted hierarchy may not have a completeness property
 and thus primary�
e	ect restricted planning may not be complete�
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Figure ���� Constraint graph and an abstraction hierarchy for the Fireplace domain

A few experiments that we made have shown that the conditions used in the algorithm
Choose Primary E�ects
 which are

��� every operator has a primary e	ect
 and
�
� every achievable value of each variable is a primary e	ect of some operator


usually lead to the generation of a hierarchy with the completeness property
 but again the
experiments were made only with several simple domains such as variations of the tower of
Hanoi and blocks world
 and they are not su�cient to draw a conclusion about general e��
ciency of the algorithm� Below we present an example of a hierarchy that satis�es conditions
��� and �
�
 but does not satisfy the completeness property�

Example �Hierarchy without the completeness property�
Consider the operator �set �re in a �replace� with the e	ects �the room is heated� and �the
room is lighted�
 and the operator �turn electric light on� with the precondition �electric
power is available� and the e	ect �the room is lighted� �see Table ����� One may check
that the algorithm Choose Primary E�ects will produce the constraint graph shown in Fig�
ure ���a� One of possible hierarchies generated as a linearization of the constraint graph
is shown in Figure ���b� Based on the constraint graph
 the algorithm chooses �the room
is heated� as a primary e	ect of �use��replace� and �the room is lighted� as its secondary
e	ect� This seems reasonable and corresponds to the human intuition
 since we would not
use the �replace to light the room�

Suppose however that one day power went o	
 and electric light is no longer available�
Suppose further that the day is warm
 and we do not use �replace for the purpose of heating�
We may light the room using the �replace
 but as we show below
 a primary�e	ect restricted
planner would not �nd such a plan�

Formally
 we have the initial and goal states as follows

S� � f�Light � O	�� �Power � O	�g
Sg � f�Light � On�g

At level � of an abstraction hierarchy the goal is empty
 and the only perfectly justi�ed plan
is the empty plan� While re�ning the plan at a concrete level
 we cannot apply the operator
use�light 
 because its precondition is unachievable� On the other hand
 we cannot use the
operator use��replace
 because it changes a value of the abstract�level variable Heat� Thus
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operator preconditions e�ects

use�lights �Power�On� �Light�On�
use��replace � �Light�On�
 �Heat�On�

Table ���� The operators in the Fireplace domain

the abstract�level plan does not have an ordered re�nement� �

To solve the completeness problem
 we present a theorem that allows us to test whether
a given hierarchy �built with primary e	ects� has the completeness property� First
 we need
to introduce the notion of a lower�level replaceability of an operator�

De�nition ��� �Lower	level replaceability�
Consider an abstraction hierarchy satisfying Restriction �a� and let S� be some state of the
world� � be an operator whose preconditions are satis�ed in S�� and i be the criticality of the
primary e�ects of �� The operator � is said to be lower�level replaceable in the state S� if
there exists a plan �S�� Sg���� called a replacing plan� where

Sg � Side�E	��� � f�x � v� � S� j x �� Side�E	���g

such that for every �� � �� for every x � E	����� crit�x� � i�

Intuitively
 an operator � with i�th level primary e	ects is lower�level replaceable in S� if
there exists a plan � with the initial state S� that

� achieves all side e�ects of �

� leaves all other values speci�ed in S� unchanged
 and
� does not establish a value of any variable whose criticality is no less than i�

For example
 the operator Move SM �whose side e	ect is Where S� in the extended tower of
Hanoi domain is lower�level replaceable
 because we may always move the small disk without
moving the other disks� On the other hand
 the operator use��replace in the last example is
not lower�level replaceable
 because sometimes we cannot achieve its side e	ect �the room
is lighted� without achieving the e	ect �the room is heated��

Theorem ��
 �Completeness Condition�
A hierarchy satisfying Restrictions �a and �a� has the completeness property if and only
if� for every state S and for every operator � whose preconditions are satis�ed in S� � is
lower�level replaceable in the state S�

Proof� We will say that � is an i�th level operator if the criticality of the primary e	ects
of � is i� Let us consider a hierarchy satisfying Restrictions �a and 
a� with n levels of ab�
straction
 such that all operators are lower�level replaceable
 and a correct concrete�level plan
�S�� Sg���� We need to show that there exists a sequence ������ � � � ��n�� of plans satisfying
the two properties stated in the de�nition of the completeness property �De�nition �����
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In this proof we work with linear plans
 and thus we start by choosing an arbitrary
linearization �S�� Sg��� of �S�� Sg���� Let �S�� Sg��n��� be a perfectly justi�ed version of
�S�� Sg��� on the �n � ���th level of abstraction� Clearly
 �n�� contains only �n � ���th
level operators� Now we use the lower�level replaceability� we replace each �n � ���th level
operator of � that does not belong to �n�� by its lower�level equivalent� That is for each
operator �k of �
 such that �k is not an operator of �n��
 we replace �k with a corresponding
replacing plan w�r�t� the state Sk
 where Sk is the intermediate state of the plan � before
the execution of �k� We denote the resulting concrete�level plan by �S�� Sg��

�

n����

To show that the resulting plan is still correct
 we observe that

� All �n����th level preconditions and goal values are satis�ed in the plan �S�� Sg��
�

n���

because they are satis�ed in �S�� Sg��n���
 and no operator of �
�

n�� that does not
belong to �n�� changes any �n � ���th level variable�

� All lower�level goal values and all lower�level preconditions of the operators remain�
ing from the plan � are satis�ed because all newly inserted operators preserve the
intermediate states of the old plan
 by the de�nition of replaceability�

� Finally
 the preconditions of the operators of the newly inserted replacing plans are
satis�ed because
 by the de�nition of replaceability
 all replacing plans are legal�

Now we consider a perfectly justi�ed version of �S�� Sg��
�

n��� at the �n � 
��th level of
abstraction� We denote this version by �S�� Sg��n���� Observe that since �n�� is perfectly
justi�ed on the highest level of abstraction
 �n�� contains all operators of �n��� Now we use
the replaceability again and replace all �n � 
��level operators of �

�

n�� that do not belong
to �n�� by corresponding replacing plans� We denote the resulting concrete�level plan by
�S�� Sg��

�

n���� The proof that this plan is correct is similar to the proof that �S�� Sg��
�

n���
is correct�

At the next step
 we use the same method to build a concrete�level plan �S�� Sg��
�

n���


then �S�� Sg��
�

n���
 and so on� At the i�th step
 where i � ����n�
 we take the concrete�level

plan �S�� Sg��
�

n�i��� and �nd its perfectly justi�ed version �S�� Sg��n�i� at the �n � i��th
level of abstraction� Since the abstract plan �S�� Sg��n�i���
 found on the previous step of
the re�nement process
 is perfectly justi�ed
 �n�i contains all operators of �n�i��� Then we
�nd the plan �

�

n�i by replacing all �n � i��level operators of �
�

n�i�� that do not belong to
�n�i with corresponding lower�level replacing plans� We may show that the concrete�level
plan �S�� Sg��

�

n�i� is correct the same way as we have shown that �S�� Sg��
�

n��� is correct�
Now observe that by construction
 for every i � ����n�
 the plan �n�i is a correct perfectly

justi�ed plan at the �n� i��th level of abstraction
 and all operators of �n�i that have e	ects
with criticalities higher than �n� i� belong to the higher�level abstract plan �n�i��� Thus

�n�i is an ordered re�nement of �n�i��� Therefore
 ������ � � � ��n�� is a sequence of plans
required by the de�nition of the completeness property �De�nition ����� Thus
 a required
sequence of plans is found�

To prove the reverse direction
 we assume that
 for some i
 there is an i�level operator � and
a state S� such that � is not lower�level replaceable in S�� Consider the planning problem
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with the initial state S� and the goal state

Sg � Side�E���� � f�x � v� � S� j x �� Side�E���� and crit�x� � ig

In other words
 we wish to achieve all side e	ects of � while leaving unchanged all other
lower�level variables
 and we do not care about the values of the variables with criticalities
i and higher� This planning problem may be solved by the single�operator plan � � ����

Now let us consider this problem on the i�th level of abstraction� The goal on the i�th
level becomes empty
 and the only perfectly justi�ed plan that solves the goal is the empty
plan �i � ��� We claim that �i does not have an ordered re�nement on the concrete level
of abstraction�

We prove this claim by contradiction� Suppose that �� is a concrete�level ordered re�
�nement of �i� Then �� achieves all side e	ects of �
 and leaves all other lower�level values
�that is the values of the other variables with criticalities less than i� unchanged� Since ��

is an ordered re�nement of the empty i�level plan
 �� does not contain any operators that
change variables with criticalities i or higher
 and therefore �� leaves all high�level values
also unchanged� Therefore
 the �nal state of �� is

Sg � Side�E���� � f�x � v� � S� j x �� Side�E���� and crit�x� � ig

�f�x � v� � S� j crit�x� � ig

� Side�E���� � f�x � v� � S� j x �� Side�E����g

which by de�nition means that �� is a replacing plan for � in the state S�
 contradicting
the assumption that � is not lower�level replaceable�

Thus
 the goal Sg may be achieved from the initial state S�
 but there is no correspond�
ing perfectly justi�ed i�th level plan that has an ordered re�nement on the concrete level�
Therefore
 the hierarchy does not have the completeness property� �

Unfortunately
 we did not �nd any method to ensure the completeness condition while
generating primary�e	ect restricted abstraction hierarchy� Neither have we found an e�cient
algorithm to test whether the completeness condition holds in a given abstraction hierarchy�
However
 there are still two ways to use Theorem ��� to check the completeness of the
hierarchy�

The �rst way is to state the stronger condition
 which is su�cient but not necessary for
the completeness property
 but easier to check then the completeness condition� We present
such a condition in the following corollary of Theorem ����

Corollary ��� A hierarchy satisfying Restrictions �a and �a� has the completeness property
if� for every operator �� there exists a correct linear plan � with the initial state S� � Pre���
and the �nal state

Sn � Side�E	��� � f�x � v� � S� j x �� Side�E	���g

such that for any �� � �� the criticality of primary e�ects of �� is less than the criticality
of primary e�ects of ��
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Observe that Sn in the corollary is the �nal state
 not only the goal of the plan
 which means
that the plan � does not establish a value of any variable unspeci�ed in Sn�

Proof� To show that a hierarchy has the completeness property
 we need to prove that for
any initial state S�� and any operator � such that E���� � S��
 � is lower�level replaceable
in S��� Consider a plan � with the initial and �nal states as speci�ed in the statement of the
corollary� We claim that the plan �S��� S

�
g���
 where

S�g � Side�E���� � f�x � v� � S�� j x �� Side�E����g

is correct
 which by de�nition means that � is lower�level replaceable in S���
Since S� � S��
 we conclude by Lemma 
�� that all operators of the plan �S��� S

�
g��� are

legal
 and so it only remains to show that this plan achieves the goal� In other words
 we
need to show that S�g � S�n
 where S�n is the �nal state of �S��� S

�
g���� First we show that

Sn � S�g by the following derivation�

Sn � S �g
�	 de�nitions of Sn and S�g 	�

� �Side�E���� � f�x � v� � S� j x �� Side�E����g�

� �Side�E���� � f�x � v� � S�� j x �� Side�E����g�

� f�x � v� � S� j x �� Side�E����g � f�x � v� � S�� j x �� Side�E����g

�	 de�nition of set inclusion 	�

� ��x �� Side�E����� if �x � v� � S� then �x � v� � S��

� ��x� if �x � v� � S� then �x � v� � S��

�	 de�nition of set inclusion 	�

� S� � S��

Now consider an arbitrary value �x � v� � S�g�
Case �� x � Sn� Then
 since �Sn � S�g�
 we conclude that �x � v� � Sn� By Lemma 
��


Sn � S�n
 and therefore �x � v� � S�n�
Case �� x �� Sn� By Lemma 
��
 no operator of � changes x
 and therefore x has the same

value in S�� and S�n� Also by Lemma 
��
 x �� S� � E����
 and therefore x �� Side�E�����
Now we prove that �x � v� � S�n as follows

�x � v� � S�g
�	 de�nition of S�g 	�

� �x � v� � �Side�E���� � f�x� � v�� � S�� j x� �� Side�E����g�

�	 x �� Side�E���� and therefore �x � v� �� Side�E���� 	�

� �x � v� � f�x� � v�� � S�� j x� �� Side�E����g

� �x � v� � S��

�	 x has the same value in S�� and S�n 	�

� �x � v� � S�n

Thus
 we have shown that if �x � v� � S�g
 then in either case �x � v� � S�n� Therefore

S�g � S�n
 as desired� �
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operator with abstract�level e�ects replacing plan

�push�box �box �room �box�from�loc �box�to�loc� �goto�room�loc �from �to �room�
�push�thru�dr �box �door�nm �from�room �go�thru�dr �door�nm �from�room �to�room

�to�room �door�loc�from �door�loc�to� �door�loc�from �door�loc�to�

Table ���� Replacing plans in the robot domain

The condition presented in the corollary may be checked by �nding a plan �
 described in
the corollary
 for each operator �
 in other words
 by solving jOj planning problems� One may
check that this condition holds for the extended tower of Hanoi domain� Unfortunately
 the
condition is too strong and often does not hold for hierarchies that satisfy the completeness
property�

Another way of testing the completeness property is to use a probabilistic approach�
For each operator �
 we choose at random several complete initial states
 and for each of
chosen states check whether � is replaceable in this state� If we �nd that all operators are
replaceable in all or almost all of chosen states
 we conclude that planning in the hierarchy
is near�complete�

��� A Robot�Domain Example

In this section we demonstrate the result of applying our algorithm to a simple literal�
represented robot domain taken from �Yang et al�
 �����
 which is a simpli�cation of the
domain from �Sacerdoti
 ������ In this domain there is a robot that can walk within several
rooms� Some rooms are connected by doors
 which may be open or closed� In addition
 there
are a number of boxes
 which the robot can push either within a room or from one room to
another� Figure ���a shows an example of a robot domain� The domain may be described
by the following literals�

open�d� door d is open
box�inroom�b� r� box b is in room r
box�at�b� loc� box b is at location loc
robot�inroom�r� the robot is in room r
robot�at�loc� the robot is at location loc
location�inroom�loc� r� location loc is in room r
is�door�d� d is a door
is�box	b
 b is a box

�Observe that the last three literals are not achievable�� The list of operators in this domain

described on LISP
 is given in Table ����

A straightforward application of Restrictions � and 
 to this domain fails to produce
a multilevel hierarchy
 while the algorithm Choose Primary E�ects divides the achievable
literals of the robot domain into two abstraction levels shown in Figure ���b� The primary
e	ects of operators chosen by the algorithm are marked by �� 		� in Table ���� The algorithm
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���� Operators For Moving Within a Room ����

� Go to Location within room �� � Push box between locations within a room

�setq o� �make�operator �� �setq o� �make�operator

�name ��goto�room�loc 	from 	to 	room
 �� �name ��push�box 	box 	room 	box�from�loc

�preconditions �� �� 	box�to�loc


�location�inroom 	to 	room
 �� �preconditions ��

�location�inroom 	from 	room
 �� �is�box 	box


�robot�inroom 	room
 �� �location�inroom 	box�to�loc 	room


�robot�at 	from

 �� �location�inroom 	box�from�loc 	room


�effects �� �� �box�inroom 	box 	room


�not robot�at 	from
 ��� �� �robot�inroom 	room


�robot�at 	to



 ��� �� �robot�at 	box 	box�from�loc


�� �effects ��

�� �not robot�at 	box�from�loc


�� �not box�at 	box 	box�from�loc
 ���

�� �robot�at 	box�to�loc


�� �box�at 	box 	box�to�loc



 ���

���� Operators For Moving Between Rooms ����

� Push box through door between two rooms �� � Go through door between two rooms

�setq o� �make�operator �� �setq o
 �make�operator

�name ��push�thru�dr 	box 	door�nm �� �name ��go�thru�dr 	door�nm 	from�room

	from�room 	to�room �� 	to�room 	door�loc�from

	door�loc�from �� 	door�loc�to


	door�loc�to
 �� �preconditions ��

�preconditions �� �� �is�door 	door�nm 	from�room 	to�room

�is�door 	door�nm 	from�room 	to�room �� 	door�loc�from 	door�loc�to


	door�loc�from 	door�loc�to
 �� �robot�inroom 	from�room


�is�box 	box
 �� �robot�at 	door�loc�from


�box�inroom 	box 	from�room
 �� �open 	door�nm



�robot�inroom 	from�room
 �� �effects ��

�box�at 	box 	door�loc�from
 �� �robot�at 	door�loc�to
 ���

�robot�at 	door�loc�from
 �� �not robot�at 	door�loc�from
 ���

�open 	door�nm

 �� �not robot�inroom 	from�room
 ���

�effects �� �� �robot�inroom 	to�room



 ���

�not robot�inroom 	from�room
 ��

�robot�inroom 	to�room
 ��

�not box�inroom 	box 	from�room
 ��� ��

�box�inroom 	box 	to�room
 ��� ��

�robot�at 	door�loc�to
 ��

�box�at 	box 	door�loc�to
 ��� ��

�not robot�at 	door�loc�from
 ��

�not box�at 	box 	door�loc�from



 ��� ��

���� Operators For Opening and Closing Doors ����

� Open door �� � Close door

�setq o� �make�operator �� �setq o� �make�operator

�name ��open 	door�nm 	from�room 	to�room �� �name ��close 	door�nm 	from�room 	to�room

	door�loc�from 	door�loc�to
 �� 	door�loc�from 	door�loc�to


�preconditions �� �� �preconditions ��

�is�door 	door�nm 	from�room 	to�room �� �is�door 	door�nm 	from�room 	to�room

	door�loc�from 	door�loc�to
 �� 	door�loc�from 	door�loc�to


�not open 	door�nm
 �� �open 	door�nm


�robot�at 	door�loc�from

 �� �robot�at 	door�loc�from


�effects �� �� �effects ��

�open 	door�nm



 ��� �� �not open 	door�nm



 ���

Table ���� The operators of the robot domain
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�b� Abstraction hierarchy�a� Example of a domain

Room � Room 
 Room �

Room � Room �

Box �

Box 
 RobotRobot

box�inroom
 box�at

robot�inroom
 robot�at
 openlevel �

level �

Figure ���� The robot domain

chooses the positions of boxes as abstract�level literals
 and all other e	ects of operators as
concrete�level literals�

Corollary ��� may be used to show that the resulting hierarchy has the monotonicity
property� The replacing plans required by the conditions of the corollary
 for the operators
with abstract�level e	ects
 are shown in Table ���� �The both replacing plans are one�
operator long�� These replacing plans show that if the robot may go from one place to
another with a box
 it also may go without a box
 and thus the secondary e	ects of the
box�moving operators may be achieved without changing the locations of boxes�



Chapter �

Goal�speci�c hierarchies

��� Goal�speci�c version of a problem domain

In this section we show that an ordered or semi�ordered abstraction hierarchy built for
plans achieving a speci�c goal Sg may be �ner�grained than a goal�independent hierarchy�
The algorithm for building a goal�speci�c ordered abstraction hierarchy was presented in
�Knoblock
 ����a�� However
 Knoblock�s algorithm cannot be used with our �fancy stu	�
such as the learning technique and generating a primary�e	ected restricted hierarchy
 because
the algorithm presented in �Knoblock
 ����a� requires the knowledge of primary e	ects and
forbidding preconditions of operators before it starts to generate a hierarchy
 while our
algorithms learn primary e	ects and forbidding preconditions in the process of the generation
of a hierarchy� So
 we need to adapt Knoblock�s method of building a problem�speci�c
hierarchy to our algorithms�

De�nition ��� �Relevant Variables�
Let Sg be a goal state� and O be the set of operators in a domain� A variable x is a relevant
variable with respect to Sg if

�� x � Sg� or

�� there exists an operator � � O such that
� x � Pre���
� there exists a relevant variable x� � E	���

All operators that change relevant variables are called relevant operators� Observe that
by de�nition
 all precondition variables of a relevant operator are relevant� For each relevant
operator �
 we �nd its goal�speci�c version spec��� by removing all its irrelevant e	ects�
Formally
 spec��� is de�ned by

� Pre�spec���� � Pre���
 and
� E��spec���� � f�x � v� � E���� j x is relevantg

Similarly
 for each state S we de�ne its goal�speci�c version by removing all irrelevant vari�
ables�

spec�S� � f�x � v� � S j x is relevantg

��



���� GOAL�SPECIFIC VERSION OF A PROBLEM DOMAIN ��

The goal�speci�c version of a plan � is obtained from � by replacing all operators of �
with their goal�speci�c versions� Formally
 there exists an onto function c from the set of
relevant operators of � onto spec��� such that for any relevant operators �� and �� in �


��� c���� � spec����
 and
�
� c���� 
spec��	 c���� if and only if �� 
� ��

The goal�speci�c version of the domain with respect to the goal Sg is de�ned by
� the set of variables spec�X � � fx � X j x is relevantg
� the domain of each relevant variable x
 D�x�
 the same as in the initial domain
� the goal�speci�c set of operators spec�O� � fspec��� j � � O and � is relevantg

The main theorem of this chapter shows that
 while achieving Sg
 we may use the goal�speci�c
domain instead of the initial domain without violating the correctness or completeness of
planning�

Theorem ��� A backward justi�ed plan �S�� Sg��� is correct if and only if its goal�speci�c
version �spec�S��� Sg� spec���� is correct in the goal�speci�c version of the domain with re�
spect to Sg�

Intuitively this theorem states that
 while planning
 we do not need to pay attention to
irrelevant variables
 and we may ignore variables which are neither goal variables
 nor pre�
conditions of any relevant operator�

Proof� We divide the proof of the theorem into four claims� Throughout the proof we will
write �relevant �or goal�speci�c�� to mean �relevant �or goal�speci�c� w�r�t� Sg��

Claim �� Every operator of a backward justi�ed plan �S�� Sg��� is relevant�

Consider an arbitrary operator � � �� Let � be a linearization of � in which � is backward
justi�ed
 and �

�
� ���� � � � � �n� be obtained from � by the removal of all non�backward�

justi�ed operators� Then � � �
�
and
 by Theorem ���
 �

�
is backward justi�ed� To show

that � is a relevant operator w�r�t� the goal Sg
 we prove that all operators of �
�
are relevant�

We proceed by induction from the end to the beginning of the plan
 on m� The inductive
hypothesis states that

��k � �m��n�� �k is relevant

Base� m � n � �� Then the inductive hypothesis trivially holds
 since the set of operators
described by the hypothesis is empty�

Step� Assume that all of the operators �m��� � � � � �n are relevant and consider the operator
�m� Since it is backward justi�ed
 it establishes a precondition �x � v� either for the goal
Sg
 or for some operator �k
 where k � m� Since �k is relevant
 x is a relevant variable in
either case by De�nition ���
 and therefore �m is a relevant operator�

Claim �� Let �S�� Sg��� be a �possibly incorrect� linear plan such that all op�
erators of � are relevant
 and �spec�S��� Sg� spec���� be its goal�speci�c version�
Let S�� S�� � � � � Sn be the intermediate states of �S�� Sg���
 and S��� S

�
�� � � � � S

�
n

be the intermediate states of �spec�S��� Sg� spec����� Then for all k � ����n�

S�k � spec�Sk��
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Of course
 we prove this claim by induction on k�

Base� S�� � spec�S�� by the statement of the claim�

Step� Assume S�k � spec�Sk�
 and denote the k�th operator of spec��� by �k
�
 that is

�k
� � spec��k�� We derive the equality S�k�� � spec�Sk��� as follows�

S�k�� � spec�Sk���
�	 Sk�� � �k�Sk� and S�k�� � �k

��S�k� 	�

� �k

��S�k� � spec��k�Sk��

� E���k �� � f�x � v� � S�k j x �� E���k ��g

� spec�E���k� � f�x � v� � Sk j x �� E���k�g�
�	 de�nition of spec�S� 	�

� E���k �� � f�x � v� � S�k j x �� E���k ��g

� f�x � v� � �E���k� � f�x � v� � Sk j x �� E���k�g� j x is relevantg
�	 break the left�hand side into the union of two sets 	�

� E���k �� � f�x � v� � S�k j x �� E���k ��g

� f�x � v� � E���k� j x is relevantg
�f�x � v� � Sk j x �� E���k� and x is relevantg

�	 since spec��k� � �k
�
 we have E���k�� � f�x � v� � E���k� j x is relevantg 	�


� f�x � v� � E���k� j x is relevantg � f�x � v� � S�k j x �� E���k��g
� f�x � v� � E���k� j x is relevantg
�f�x � v� � Sk j x �� E���k �� and x is relevantg

�	 remove the identical sets from the both sides 	�

� f�x � v� � S�k j x �� E���k ��g � f�x � v� � Sk j x �� E���k�� and x is relevantg

� ���x � v� �� E���k��� �x � v� � S�k

if and only if ��x � v� � Sk and x is relevant�

� ���x � v�� �x � v� � S�k if and only if ��x � v� � Sk and x is relevant�

� S�k � f�x � v� � Sk j x is relevantg

�	 de�nition of spec�Sk� 	�

� S�k � spec�Sk�

Claim �� Let �S�� Sg��� be a correct backward justi�ed linear plan� This plan
is correct if and only if its goal�speci�c version �spec�S��� Sg� spec���� is correct�

We denote the operators of our plans as follows�

� � ���� ��� � � � � �n�
spec��� � ���

�� ��
�� � � � � �n��

We denote intermediate states of � by S�� � � � � Sn
 and intermediate states of spec��� by
S��� � � � � S

�
n� To prove the claim
 it is enough to show that

��� for all k � ����n�
 Pre��k� � Sk if and only if Pre��k �� � S�k
 and
�
� Sg � Sn if and only if Sg � S�n

We derive a proof of statement ��� as follows�



���� USING A GOAL�SPECIFIC DOMAIN IN PLANNING �


Pre��k �� � S�k
�	 �k

� � spec��k�
 and therefore Pre��k �� � Pre��k� 	�

� Pre��k� � S�k

�	 by Claim 

 S�k � f�x � v� � Sk j x is relevantg 	�

� Pre��k� � f�x � v� � Sk j x is relevantg

�	 by Claim �
 �k is relevant
 and therefore all its preconditions are relevant 	�

� Pre��k� � Sk

A proof of statement �
� is similar�

Claim �� Let �S�� Sg��� be a correct backward justi�ed nonlinear plan� This plan
is correct if and only if its goal�speci�c version �spec�S��� Sg� spec���� is correct�

Assume that �S�� Sg��� is correct� To show that �spec�S��� Sg� spec���� is correct
 we need
to show that any linearization of this plan is correct� So consider an arbitrary lineariza�
tion �spec�S��� Sg� spec����� Since �S�� Sg��� is correct as a linearization of a correct plan

�spec�S��� Sg� spec���� is correct by Claim �� The reverse direction is proved similarly� �

��� Using a goal�speci�c domain in planning

It is straightforward to show that if criticality assignment in some domain satis�es Re�
strictions � and 
� �or �a and 
a�
 then this criticality assignment still satis�es the same
restrictions in any goal�speci�c version of the domain� Thus
 an ordered or semi�ordered
hierarchy in a goal�speci�c version of the domain is at least as �ne�grained as the corre�
sponding hierarchy in the initial domain� On the other hand
 since goal�speci�c versions of
operators have less e	ects than the initial operators
 a goal�speci�c version of the domain
allows us to impose less constraints
 which often leads to a �ner�grained hierarchy� Thus

we may increase the number of abstraction levels by using a goal�speci�c domain� This
method of increasing the number of levels is similar to Knoblock algorithm for generating a
goal�speci�c hierarchy �Knoblock
 ���
a��

Observe that reducing a problem domain to its goal�speci�c version always simpli�es
planning
 while preserving the correctness of all plans� This means that the use of the goal�
speci�c domain may improve the e�ciency of not only abstraction techniques described in
this paper
 but also other planning techniques��

Below we describe an algorithm that �nds relevant variables for a given goal Sg
 and thus
allows us to construct the goal�speci�c version of the domain� The algorithm is presented in
Table ���� It uses the data structure called queue with two operations on it�

� Add an element x to the queue�

�It would be more accurate to say that the goal�speci�c domain never decreases the e�ciency of planning�
it may improve the e�ciency or leave it unchanged� For example	 it may be shown that the goal�speci�c
domain does not improve the e�ciency of usual non�hierarchical planning techniques that are based on
backward chaining�
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� Extract some element x from the queue �does not matter which one��
 which means
remove x from the queue and assign x to some program variable�

Both operations may be performed in constant time� For an implementation of the queue
see
 for example
 �Cormen et al�
 ������

Initially all domain variables are white
 and upon the execution of the algorithm all
relevant variables are painted black� For each variable x that proved to be relevant
 the
algorithm considers all operators that change x
 and chooses all precondition variables of all
these operators as relevant� x is added to the queue when x is chosen as a relevant variable
and removed from the queue after the algorithm has considered all the operators changing
x� Thus
 every relevant variable is added to and deleted from the queue exactly once
 and
every irrelevant variable is never added to the queue�

Loop � in lines ��
 of the algorithm paints all domain variables white� Loop 
 in lines ��
� chooses all goal variables as relevant variables� the goal variables are painted black and
added to the queue� The loop � in lines ���
 extracts domain variables one by one from
the queue� For each extracted variable x it considers every operator � that changes x� All
preconditions of � which are still white are chosen as relevant� they are painted black and
added to the queue�

Clearly
 the running time of loops � and 
 is O�jX j�� Loop � is executed once for each
relevant variable x
 loop � within it is executed once for every operator � changing x
 and
the running time of one execution of loop � is O�jPre���j�� Thus
 the running time of all
executions of loop � is

O�
X

x�X

X

��Ox

jPre���j� �	�

where Ox is the set of operators changing x� The total running time of the whole algorithm
is also �	�� Observe that �	� may be rewritten as

O�
X
fjPre���j � for each pair of � and x such that x � E����g�

which in turn may be expressed as

O�
X

��O

X

x�E� ��	

jPre���j�

and the last expression may be simpli�ed to

O�
X

��O

jPre���j � jE����j�

If p and e are such constants that
 for any operator �
 jPre���j � p and jE����j � e
 then
the running time of the algorithm may be expressed as O�jOj � p � e��

�In reality	 we extract the 
oldest member of the queue�	 that is the element that was inserted before all
other elements of the current queue� However	 this additional information is not important for our algorithm�
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Find Relevant Variables�Sg�
�� for each x � X do �	 loop � 	�

� Color�x� �� white�
�� for each x � Sg do �	 loop 
 	�

begin
�� Color�x� �� black�
�� add x to queue

end�
�� while the queue is not empty do �	 loop � 	�

begin
�� extract some x from queue�
�� for each operator � such that x � E���� do �	 loop � 	�
�� for each x� � Pre��� do
��� if Color�x��white

then begin
��� Color�x�� �� black�
�
� add x� to queue

end
end

Table ���� The algorithms paints black all operators relevant w�r�t� Sg

��	 Example of a goal�speci�c domain

We again consider the tower of Hanoi
 this time with four disks� small
 medium
 big
 and
huge �see Figure ���a�� As usual
 we may move each disk alone� Suppose that the huge
disk has not only a hole in the center
 but also a slit as shown in Figure ���c
 and it can be
removed from a peg or put onto a peg by pulling the disk sidewise even if there are other disks
above it� This allow us to introduce an additional operator� we may move the huge disk from
its peg onto any other peg a regardless of the locations of other disks� However
 after doing
so
 we must immediately put the small disk above the same peg a�� Thus the additional
operator allows us to move the small and huge disks from any pegs onto the common peg
b� The variables in this domain are Where S
 Where M
 Where L
 and Where H
 and the
formal description of the operators is presented in Table ��
�

Suppose that we need to �nd a plan with the initial state as shown in Figure ���a
 and the
goal state Sg � f�Where L � 
�g �see Figure ���b�� The constraint graph for this domain
de�ned by Restrictions � and 
� is as shown in Figure ��
a� According to these constraints
we have�

crit�Where S� � crit�Where M� � crit�Where L� � crit�Where H� � crit�Where S�

and therefore the hierarchy based on Restrictions � and 
� collapses into a single level�

�A possible intuitive explanation for this restriction� assume that while pulling the huge disk sidewise	 it
becomes hot because of friction	 and the small disk displays the warning that there may be a dangerously
hot disk under it	 so that nobody could accidentally burn her �ngers�
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Figure ���� The tower of Hanoi with four disks

operator � preconditions Pre��� e�ects E����

Move S�a
b� �Where S�a� �Where S�b�
Move M�a
b� �Where M�a�
 �Where S��a�
 �Where S��b� �Where M�b�
Move L�a
b� �Where L�a�
 �Where S��a�
 �Where S��b� �Where L�b�

�Where M��a�
 �Where M��b�
Move H�a
b� �Where H�a�
 �Where S��a�
 �Where S ��b� �Where H�b�

�Where M��a�
 �Where M��b�
�Where L��a�
 �Where L��b�

Move SH�a� none �Where S�a�
�Where H�a�

Table ��
� The operators in the tower of Hanoi domain with four disks
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�c� Ordered hierarchy in the goal�speci�c domain

Figure �
	� Constraint graphs and the resulting hierarchy
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operator � preconditions Pre��� e�ects E����

spec�Move S�a
b�� �Where S�a� �Where S�b�
spec�Move M�a
b�� �Where M�a�
 �Where S ��a�
 �Where S ��b� �Where M�b�
spec�Move L�a
b�� �Where L�a�
 �Where S ��a�
 �Where S��b� �Where L�b�

�Where M��a�
 �Where M ��b�
spec�Move SH�a�� none �Where S�a�

Table �
�� The goal�speci�c version of the tower of Hanoi domain with four disks

One of the possible ways to increase the number of e�ects is to generate a primary�e�ect
restricted hierarchy
 Another way
 which we are going to use in this example
 is to build the
goal�speci�c domain w
r
t
 Sg


The variable Where L is the only goal variable
 and at the �rst step
 the algorithm
Find Relevant Variables chooses it as a relevant variable
 The only operator that changes
Where L isMove L
 and at the next step the algorithm chooses the still�not�chosen precondi�
tion variables of Move L
 which are Where S and Where M
 as relevant variables
 Then the
algorithm considers the operators changing Where S
 which are Move S and Move SH
 and
the operator Move M
 which changes Where M
 and �nds that the preconditions of these
operators do not contribute any new relevant variables
 The operator Where H does not
establish any of relevant variables
 and so the algorithm does not consider it
 Thus
 the only
relevant variables are Where S
 Where M
 and Where L
 Intuitively this means that while
moving the small
 medium
 or large disk
 we do not need to worry about the position of the
huge disk


The corresponding problem�speci�c versions of operators are shown in Table �
�
 The
constraint graph for these operators is shown in Figure �
	b
 and the corresponding hierar�
chy in Figure �
	c
 The hierarchy contains three levels
 which is better than a single�level
hierarchy in the initial domain




Chapter �

Conclusion

��� Summary

This thesis extends previous work
 most notably Knoblock�s
 on a theory of abstractions

The main results of the thesis are the following


� The thesis formalizes the notion of plan justi�cation
 describes the di�erent kinds of
justi�ed plans and the algorithms for �nding justi�ed versions of a given plan
 and
shows that the task to �nd the optimal justi�cation of a given plan is NP�complete


� We have shown the connection between the notions of plan justi�cation and ordered
abstraction hierarchies
 and demonstrated that di�erent de�nitions of justi�cation lead
to di�erent kinds of ordered hierarchies
 Semi�ordered hierarchies
 introduced in the
thesis
 preserve all advantages of ordered hierarchies
 but may have more levels of
abstraction
 We presented algorithms for generating these �ner�grained hierarchies in
polynomial time


� The technique of forbidding�restricted and primary�e�ect restricted planning allows us
to increase the e�ciency of many planners �not only hierarchical planners� by avoiding
deadends in the search space and reducing the branching factor


� Syntactic conditions of the ordered property of primary�e�ect restricted hierarchies
capture the intuition behind �good� hierarchies in primary�e�ect restricted planning
and enable us to �nd automatically primary e�ects of operators
 Primary�e�ect re�
stricted hierarchies are �ner�grained than hierarchies generated by ALPINE and often
allow us to build a multi�level hierarchies in the cases when ALPINE�s hierarchy col�
lapses into a single level
 The thesis introduces the completeness property and presents
necessary and su�cient conditions of this property for primary�e�ect restricted hierar�
chies
 The technique of automatically �nding primary e�ects and insuring completeness
of primary�e�ect restricted planning may also be used in non�hierarchical planning


� The notion of goal�speci�c domains generalizes the technique of building problem�
speci�c ordered hierarchies �Knoblock
 ����a� and enable us to improve the e�ciency

��
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of planning by tailoring any abstraction technique �not only ordered hierarchies� and

generally
 any planning strategy to a speci�c goal state


��� Future work

Both theoretical and experimental work is required to evaluate the e�ciency of the tech�
niques suggested in this thesis
 We have conducted a few experiments in simple domains
to check usefulness of described algorithms
 but more experiments are required to demon�
strate the general e�ciency of the discussed techniques
 A theoretical work similar to
�Bacchus and Yang
 ���	� may be done to evaluate the e�ciency of planning in semi�ordered
and primary�e�ect restricted hierarchies and give mathematical description of domains in
which these hierarchies may increase the e�ciency of planning
 It may be interesting to per�
form controlled experiments to compare our algorithms and ALPINE with algorithms that
use di�erent methods for generating abstraction hierarchies
 such as ABSTRIPS �Sacerdoti

�����
 PABLO �Christensen
 �����
 and an algorithm based on the downward re�nement
property �Bacchus and Yang
 �����
 This direction of research is closely related to a much
more general open problem of developing a theory for evaluating expected running time of
di�erent planning algorithms


Another question that may be addressed from both experimental and theoretical points
of view is comparative �optimality� of di�erent kinds of plan justi�cations
 For example

while we have shown that backward justi�cation is weaker than well�justi�cation
 we still
do not know how often the justi�cation of a given plan found by the Backward Justi�cation
algorithm is shorter than the justi�cation found by Well Justi�cation
 and whether the
di�erence is signi�cant


More work is required on applications of the notion of domain rules
 Three important
algorithms that may be implemented are

� to check whether a given set of domain rules is an invariant

� to �nd the set of domain rules for a given set of initial�state axioms
 and
� to �nd all �or some� invariants in a problem domain

A possible application of domain rules is to reduce the search during the planning process
by detecting states that do not satisfy domain rules and avoiding these states
 Also
 domain
rules may be used to increase the number of levels while generating abstraction hierarchies
�Knoblock
 ����a�
 The domain rules are used by some planners
 such as PRODIGY �Car�
bonell et al�
 ����� and ALPINE �Knoblock
 ����a�
 and it would be useful to generate
domain rules automatically


We mentioned in Subsection �
	
	 how to use the notion of forbidding operators in im�
plementing a forbidding�restricted planner to avoid deadends during the search for a correct
plan
 This allows us to reduce the search space without violating the completeness of plan�
ning
 This method may be used with many planning techniques �not only hierarchical� to
increase their e�ciency
 A possible direction of future work is to implement a forbidding�
restricted planner


The purpose of our algorithm for selecting primary e�ects is to maximize the number of
strongly connected components
 which means that we take the number of abstraction levels
as the only measure of the �goodness� of a primary�e�ect restricted hierarchy
 However




���� FUTURE WORK ���

other measures of goodness may be introduced
 One intuitive observation in this direction
is that an even distribution of domain variables among abstraction levels may be important

For example
 if a problem domain has n variables
 it is probably better to have two levels
of abstraction
 each containing n�	 variables
 then three levels of abstractions containing
respectively �
 �
 and �n � 	� variables
 �Some theoretical support for this intuition may
be derived by the method presented in �Knoblock
 ����b��
 Also
 it would be interesting to
approach the problem of generating hierarchies with the Downward Re�nement Property
�Bacchus and Yang
 ����� using primary�e�ect restricted planning


If the same primary�e�ect restricted hierarchy is used repeatedly
 it may be worthwhile
to �nd a hierarchy with the maximal possible number of levels using the A� technique
�Nilsson
 ����� instead of our greedy algorithm
 Also it may be possible to use A� for �nding
a perfectly justi�ed subplan of a given plan
 The third
 more interesting and probably much
more complicated problem concerning A� is to adapt an A��based planner for �nding the
optimal plan using a hierarchy of abstraction spaces
 Also
 it may be possible to design
e�cient algorithms for �nding a perfect justi�cation of a plan and for building a hierarchy
with the maximal number of levels in some special types of problem domains
 such as unary
and postunique domains


The methods of �nding primary e�ects suggested in the thesis are purely syntactic
 An
open problem is to �nd the semantical meaning of primary e�ects
 and describe ways of
choosing primary e�ects that formalize human intuition behind the �main result� of an
action


While the use of a primary�e�ect restricted planner is a powerful technique for increasing
the e�ciency of planning
 we have to ensure the completeness property of a hierarchy in order
to use this technique without violating completeness of planning
 This poses the problem of
designing e�cient methods for checking whether a given primary�e�ect restricted hierarchy
has the completeness property and
 if not
 restoring completeness by imposing additional
constraints
 This may be done by an application of a learning technique similar to the
technique presented in Subsection �
�
�
 On the other hand
 it may be possible to ensure
the completeness property during the generation of a hierarchy


Further research in the directions suggested in this section may lead to developing new
methods of abstraction in planning and unifying the existing abstraction techniques with a
general theory of hierarchical planning




Appendix A

Summary of Notation

Below we summarize the notation used in the thesis
 For each letter and abbreviation
used as an element of notation
 the second column indicates the page where the notation is
introduced
 and the third column brie�y explains what this element stands for


notation page meaning

x � variable
�x � v� � the variable x has the value v
�v �� x� � the variable x has a value di�erent from v
D�x� � domain of x �the set of the values that x can accept�
Da�x� � set of all achievable values of x
Du�x� � set of all unachievable values of x
X � set of all variables in a planning domain
X c � set of all changeable variables in a planning domain
X u � set of all unchangeable variables in a planning domain

S � state of the world
jSj � the number of values speci�ed in the state S
S�x� � value of the variable x in the state S
S� � initial state
Sg � goal state
Sm � intermediate state of a linear plan after the �rst m operators
Sn � �nal state of a linear plan

� � operator
Pre��� � preconditions of the operator �
jPre���j � the number of preconditions of �

���



��	

notation page meaning

E���� � e�ects of the operator �
jE����j � the number of e�ects of �
Prim�E���� �� primary e�ects of the operator �
Side�E���� �� side e�ect of the operator �
Out��� � outcomes of the operator �
��S� � state achieved by applying the operator � to the state S
O � set of all operators in a planning domain
O�x�v� � set of all operates that achieve the value v of x
Ox � set of all operators that change the variable x

� � linear plan
��S� � state achieved by applying the linear plan � to the state S
� � nonlinear plan
�� �� �� � time�precedence relation� �� must be executed before �� in �
j�j � the number of operators in the plan �
P � the number of preconditions of all operators in a plan plus the

number of values in its goal Sg� P �
P

��� jPre���j� jSgj
E � the number of e�ects of all operators in a plan� E �

P
��� jE����j

l �� literal
�l �� negation of the literal l
L �� set of all literals in a literal�represented planning domain

r �� domain rule
I �� invariant
A �� initial�state axioms
R �� domain rules

H 	� abstraction hierarchy
crit�x� 	� criticality of the variable x

iS 	� set of the values with criticalities i and more in the state S

iPre��� 	� preconditions of � at the i�th level of abstraction

i� 	� i�th level version of �
 with preconditions iPre��� and e�ects E����

iO 	� set of the i�th level versions of all operators in a problem domain

spec�S� �� goal�speci�c version of the state S
spec��� �� goal�speci�c version of the operator �



Appendix B

List of algorithms

Below we present a brief descriptions of all discussed algorithms in the order as they occur
in the article
 For each algorithm we indicate its average�case running time


Check Preconditions ��S� ��
 page 	�
Check whether the preconditions of the operator � are satis�ed in the state S
 for the full
representation of a problem domain
 The running time is O�jPre���j�


Apply ��S� ��
 page 	�
Find the state resulting from the application of the operator � to the state S
 for the full
representation of a problem domain
 The running time is O�jE����j�


Check Preconditions �
 page 	�
Check whether the preconditions of the operator � are satis�ed in the state S
 for the closed�
world representation of a problem domain
 The running time is O�jPre���j � log jSj�


Apply �
 page 	�
Find the state resulting from the application of the operator � to the state S
 for the closed�
world representation of a problem domain
 The running time is O�jE����j � log jSj�


Minimal Elements�G�
 page 	�
Find the minimal elements of the partially ordered set represented by the directed graph G

The running time is O�jGj�
 where jGj is the number of vertices in the graph
 which is the
same as the number of elements in the corresponding partially ordered set


Backward Justi�cation�S�� Sg���
 page ��
Find a backward justi�ed version of the correct plan �S�� Sg���
 The running time is
O�E � j�j��


Possibly Establish��
��
�x � v��
 page ��
Check whether the operator � possibly establishes the precondition �x � v� for the operator
�� in some plan �
 The running time is O�j�j�


Well Justi�cation
 page ��
Find a backward justi�ed version of the correct plan �S�� Sg���
 The running time is
O�P � j�j��


���



���

Legal Plan�S����
 page ��
Check whether the plan � with the initial state S� is a legal plan
 The running time is
O�P � j�j��


Legal Operator�S���� ��
 page ��
Check whether the operator � is legal in the plan � with the initial state S�
 The running
time is O�P � j�j�


Greedy Justify Checking�S�� Sg��� ��
 page ��
Check whether the operator � in the plan �S�� Sg��� is greedily justi�ed
 The running time
is O�P � j�j	�


Illegal Operators�S�� Sg���
 page ��
Find all illegal operators of the plan �S�� Sg���
 The running time is O�P � j�j��


Greedy Justi�cation
 page ��
Find a greedily justi�ed version of the plan �S�� Sg���
 The running time is O�P � j�j
�


Linear Greedy Justi�cation�S�� Sg���
 page ��
Find a greedily justi�ed version of the correct linear plan �S�� Sg���
 The running time
is O��P � E� � j�j�� for the full representation of states and O�P � j�j� � log jSnj� for the
closed�world representation


Remove Abstract E�ects������ i�
 page ��
Remove all abstract�e�ect operators from the plan �
 where � is an i�th level re�nement of
the higher�level plan ��
 The running time is O�E�


Forbidding Test�O���
 page ��
Perform the Second Forbidding Test to �nd �some of� forbidding preconditions of �
 The
running time is O�jPre���j� �

P
���O�x�v�

�jE����j� jPre���j��


Impose Restriction �
 page ��
Create the constraint graph for the variables in a problem domain and add edges corre�
sponding to Restriction � to the graph
 The running time is O�

P
��O jE����j� jX j��


Check Restriction ����S�� Sg���
 page ��
Find operators of the plan �S�� Sg��� that do not satisfy Restriction 	��
 If such operators
have been found
 impose additional constraints to make Restriction 	�� hold
 The running
time is O�E � j�j� plus the time necessary to add new constraints


Add Constraint�x�� x�
 page ��
Add an edge from x� to x to the constraint graph and modify the abstraction hierarchy
accordingly
 The running time is O�jX j� � log log jX j�


Choose Primary E�ects
 page ��



���

Choose primary e�ects of the operators in a planning domain and build a primary�e�ect
restricted hierarchy
 The running time is O�jX j� �

P
��O jE����j� jOj � jX j� � log log jX j�


User�de�ned Primary E�ects
 page ��
Impose constraints for the primary e�ects of operators determined by a user
 The running
time is O�

P
��O�jPre���j� jE����j� � jX j��


Choose Primary E�ect Of Operator���
 page ��
Choose primary e�ects of � so as to maximize the number of strongly connected components
in the constraint graph
 The running time is O�jE����j � jX j� � jX j� � log log jX j�


Make Value Be Primary E�ect�x � v�
 page ��
Make �x � v� primary e�ect of some operator
 choosing the operator so as to maximize the
number of strongly connected components in the constraint graph
 The running time is
P

��O�x�v�
�jE����j � jX j� � jX j� � log log jX j�


Choose Primary E�ects According To Graph
 page ��
Create the explicit set of the primary e�ects of each operator according to the restrictions
de�ned by the constraint graph
 The running time is O�

P
��O jE����j�


Find Relevant Variables�Sg�
 page ��
Find the set of relevant variables in a problem domain w
r
t
 the goal Sg
 The running time
is O�

P
��O jPre���j � jE����j�




Bibliography

�Aho et al�
 ���	� Alfred V
 Aho
 M
 R
 Garey
 Je�rey D
 Ullman
 The transitive reduction
of a directed graph
 SIAM J� Comput
 ��	�
 pages �������
 ���	


�Aho et al�
 ����� Alfred V
 Aho
 John E
 Hopcroft
 and Je�rey D
 Ullman
 The Design and
Analysis of Computer Algorithms� Addison�Wesley
 Reading
 Massachusetts
 ����


�Bacchus and Yang
 ����� Fahiem Bacchus and Qiang Yang
 The downward re�nement
property
 In Proc� International Joint Conference on Arti�cial Intelligence �IJCAI�

pages 	���	��
 ����


�Bacchus and Yang
 ���	� Fahiem Bacchus and Qiang Yang
 The expected value of hier�
archical problem�solving
 In Proceedings of the Tenth National Conference on Arti�cial
Intelligence
 ���	


�Backstrom and Klein
 ����� Christer Backstrom and Inger Klein
 Parallel non�binary plan�
ning in polynomial time
 In Proc� International Joint Conference on Arti�cial Intelligence
�IJCAI�
 pages 	���	��
 ����


�Carbonell et al�
 ����� Jaime G
 Carbonell
 Craig A
 Knoblock
 and Steven Minton

PRODIGY� an integrated architecture for planning and learning
 Research Report
 School
of Computer Science
 Carnegie Mellon University
 ����
 Tech
 Report CMU�CS�CS����
���


�Chapman
 ����� David Chapman
 Planning for conjunctive goals
 Arti�cial Intelligence
 �	

pages �������
 ����


�Christensen
 ����� Jens Christensen
 A hierarchical planner that generates its own abstrac�
tion hierarchies
 In Proceedings of Eighth National Conference on Arti�cial Intelligence

pages ���������
 ����


�Cormen et al�
 ����� Thomas H
 Cormen
 Charles E
 Leiserson
 Ronald L
 Rivest
 Intro�
duction to algorithms
 MIT Press
 ����


�Enderton
 ����� Herbert B
 Enderton
 Elements of set theory
 Academic Press
 California

����


�Fikes and Nilsson
 ����� Richard E
 Fikes and Nils J
 Nilsson
 STRIPS� a new approach to
the application of theorem proving to problem solving
 Arti�cial Intelligence
 	
 pages ����
	��
 ����


���



BIBLIOGRAPHY ���

�Fink and Yang
 ���	a� Eugene Fink and Qiang Yang
 Formalizing plan justi�cations
 Pro�
ceedings of the Ninth Conference of the Canadian Society for Computational Studies of
Intelligence �CSCSI�
 pages ����
 ���	


�Fink and Yang
 ���	b� Eugene Fink and Qiang Yang
 Automatically abstracting the e�ects
of operators
 Proceedings of the First International Conference on AI Planning Systems

pages 	���	��
 ���	


�Knoblock
 ����� Craig A
 Knoblock
 Learning abstraction hierarchies for problem solving

In Proceedings of the Eighth National Conference on Arti�cial Intelligence
 pages �	���	�

����


�Knoblock
 ����a� Craig A
 Knoblock
 Automatically Generating Abstractions for Problem
Solving� Ph
D
 Thesis
 School of Computer Science
 Carnegie Mellon University
 ����

Tech
 Report CMU�CS�����	�


�Knoblock
 ����b� Craig A
 Knoblock
 Search reduction in hierarchical problem solving
 In
Proceedings of the Ninth National Conference on Arti�cial Intelligence
 pages �������

����


�Knoblock et al�
 ����� Craig A
 Knoblock
 Josh D
 Tenenberg
 and Qiang Yang
 Character�
izing abstraction hierarchies for planning
 In Proceedings of the Ninth National Conference
on Arti�cial Intelligence
 pages ��	����
 ����


�Korf
 ����� Richard E
 Korf
 Learning to solve problems by search for macrooperators
 Pit�
man Publishing Inc
 Marsh�eld
 Massachusetts
 ����


�Minton et al�
 ����� Steven Minton
 John Bresina
 and Mark Drummond
 Commitment
strategies in planning� a comparative analysis
 Proc� International Joint Conference on
Arti�cial Intelligence �IJCAI�
 pages 	���	��
 ����


�Newell and H
 Simon
 ���	� Allen Newell and Herbert A
 Simon
 Human Problem Solving

Prentice�Hall
 Englewood Cli�s
 NJ
 ���	


�Nilsson
 ����� Nils J
 Nilsson
 Principles of arti�cial intelligence
 Tioga Pub
 Co

 Palo Alto

CA
 ����


�Sacerdoti
 ����� Earl D
 Sacerdoti
 Planning in a hierarchy of abstraction spaces
 Arti�cial
Intelligence
 ��	�
 pages �������
 ����


�Sacerdoti
 ����� Earl D
 Sacerdoti
 The nonlinear nature of plans
 Proc� International Joint
Conference on Arti�cial Intelligence �IJCAI�
 page 	���	��
 ����


�K
 Simon
 ����� Klaus Simon
 An improved algorithm for transitive closure on acyclic di�
graphs
 Technical Report A�����
 Universitat des Saarlandes
 Fachbereich ��
 ����


�Tate
 ����� Austin Tate
 Generating project networks
 In Proc� International Joint Con�
ference on Arti�cial Intelligence �IJCAI�
 �������
 ����




BIBLIOGRAPHY ���

�Tenenberg
 ����� Josh D
 Tenenberg
 Abstraction in Planning
 Ph
d
 Thesis
 University of
Rochester
 Dept of Computer Science
 ����
 Tech
 Report 	��


�Wilkins
 ����� David E
 Wilkins
 Domain�independent planning� Representation and plan
generation
 Arti�cial Intelligence
 		���
 pages 	������
 ����


�Yang and Tenenberg
 ����� Qiang Yang and Josh Tenenberg
 ABTWEAK� abstracting a
nonlinear
 least commitment planner
 In Proceedings of Eighth National Conference on
Arti�cial Intelligence
 pages �	���	�
 Boston
 MA
 ����


�Yang et al�
 ����� Qiang Yang
 Josh Tenenberg
 and Steven Woods
 Abstraction in nonlin�
ear planning
 University of Waterloo
 Waterloo
 August ����
 Research Report CS������




Index

abstract�e�ect operator
 ��
abstraction

hierarchy
 see hierarchy
level
 	�
space
 		

ABSTRIPS planner
 	
achievable value
 �
achieving a value
 �
acyclic graph
 	�
adjacency list
 	�
ALPINE planner
 	
 ��
applying an operator
 �
 ��

backward justi�cation
 ��
backward justi�ed

operator
 ��
plan
 ��
 ��

backward ordered
hierarchy
 �	
re�nement
 �	

backward semi�ordered
hierarchy
 ��
re�nement
 ��

black�red tree
 	�

changeable variable
 �
changing a variable
 �
Closed�World Assumption
 	�
closed�world representation
 	�
combining connected components
 	�
completeness condition
 ��
completeness property
 ��
complete state
 �
 ��
constraint graph
 ��
correct

plan
 �
 ��
subplan
 ��

criticality
 		

directed edge
 	�
directed graph
 	�
domain

goal�speci�c version of
 ��
of a variable
 �
postunique
 ��
unary
 ��
water�boiling
 �

domain rules
 ��
preserving
 	�

edge
 	�
transitive
 	�

e�ects
 �
 ��
primary
 	
 ��
 ��
side
 	
 ��
 ��

establishing a value
 �
establishment
 ��

possible
 ��

�ner�grained hierarchy
 	
 	�
�rst

forbidding test
 ��
non�forbidding test
 ��

forbidding preconditions
 ��
forbidding�restricted planner
 ��
forbidding test
 ��

�rst
 ��
second
 ��

full representation
 	�

goal�speci�c version
of a domain
 ��
of an operator
 ��
of a state
 ��
of a plan
 ��

goal state
 �
 �
GPS planner
 	

���



INDEX ���

graph
 	�
acyclic
 	�
constraint
 ��
directed
 	�
transitively closed
 	�
transitively reduced
 	�
vertex of
 	�

greedily justi�ed
operator
 ��
plan
 ��

greedily ordered hierarchy
 ��
greedily semi�ordered

hierarchy
 ��
re�nement
 ��

greedy justi�cation
 ��

hierarchical problem solving
 ��
hierarchy
 �
 		
 	�

�ner�grained
 	
 	�
ordered
 ��
 �	
 ��
backward
 �	
greedily
 ��
perfectly
 ��
well�
 ��

primary�e�ect restricted
 ��
semi�ordered
 ��
 ��
backward
 ��
greedily
 ��
perfectly
 ��
well�
 ��

immediate predecessors
 	�
immediate successors
 	�
initial state
 �
initial�state axioms
 	�
invariant
 	�

justi�cation
 �	
backward
 ��
greedy
 ��
perfect
 ��
well� ��
 ��

justi�ed operator
 see operator
justi�ed plan
 see plan

legal operator
 �
 ��

legal plan
 �
 ��
level of abstraction
 	�
linearization
 ��
 	�
linear plan
 �
literal�representation
 ��
literal
 	
 ��
lower�level replaceability
 ��

minimal element
 ��
monotonicity property
 ��

necessary precedence
 ��
negating a value
 �
non�forbidding test
 ��

�rst
 ��
second
 ��

nonlinear plan
 ��

operator
 �
 �
abstract�e�ect
 ��
applying
 �
 ��
goal�speci�c version of
 ��
justi�ed
backward
 ��
greedily
 ��
well�
 ��

legal
 �
 ��
relevant
 ��
type
 ��

ordered
hierarchy
 ��
 �	
 ��
backward
 �	
greedily
 ��
perfectly
 ��
well�
 ��

re�nement
 �	
outcomes
 �

partial state
 �
 ��
path in a graph
 	�
perfect justi�cation
 ��
perfectly justi�ed plan
 ��
perfectly ordered hierarchy
 ��
perfectly semi�ordered

hierarchy
 ��
re�nement
 ��



INDEX ���

plan
 �
 �
correct
 �
 ��
goal�speci�c version of
 ��
justi�ed
 	
backward
 ��
 ��
greedily
 ��
perfectly
 ��
well�
 ��
 ��

legal
 �
 ��
linear
 �
nonlinear
 ��
replacing
 ��

planner
forbidding�restricted
 ��
linear
 �
primary�e�ect restricted
 	
 ��
 ��

possible establishment
 ��
possible precedence
 ��
postunique domain
 ��
precedence
 ��

necessary
 ��
possible
 ��

preconditions
 �
 ��
forbidding
 ��

preserving a rule
 	�
primary�e�ect restricted hierarchy
 ��
primary�e�ect restricted planner
 	
 ��
 ��
primary e�ects
 	
 ��
 ��
proper subplan
 ��

queue
 ���

re�nement
 ��
ordered
 �	
backward
 �	

semi�ordered
 ��
 ��
backward
 ��
greedily
 ��
perfectly
 ��
well�
 ��

relevant
operator
 ��
variable
 ��

replaceability
 ��
replacing plan
 ��

representation
closed�world
 	�
full
 	�

Restrictions
Restriction �
 �	
Restriction 	
 �	
Restriction 	�
 ��
Restriction 	��
 ��
Restriction �a
 ��
Restriction 	a
 ��
Restriction 	a�
 ��

rule
 see domain rule

second
forbidding test
 ��
non�forbidding test
 ��

semi�ordered
hierarchy
 ��
 ��
backward
 ��
greedily
 ��
perfectly
 ��
well�
 ��

re�nement
 ��
 ��
backward
 ��
greedily
 ��
perfectly
 ��
well�
 ��

side e�ects
 	
 ��
 ��
state
 �
 �

complete
 �
 ��
goal
 �
 �
goal�speci�c version of
 ��
initial
 �
partial
 �
 ��

strongly connected components
 	�
combining
 	�

subplan
 ��
correct
 ��
proper
 ��

test
forbidding
 ��
�rst
 ��
second
 ��

non�forbidding
 ��



INDEX ��	

�rst
 ��
second
 ��

��CNF
 �	
��CNF�SAT problem
 �	
time�precedence relation
 ��
topological sorting
 	�
tower of Hanoi
 ��
transitive closure
 ��
transitive edge
 	�
transitively closed graph
 	�
transitively reduced graph
 	�
transitive reduction
 ��

unary domain
 ��
Upward Solution Property
 	�

value
achievable
 �
achieving
 �
establishing
 �
negating
 �

variable
changeable
 �
changing
 �
domain of
 �
relevant
 ��

variable�representation
 ��
vertex of a graph
 	�

water�boiling domain
 �
well�justi�cation
 ��
 ��
well�justi�ed

operator
 ��
plan ��
 ��

well�ordered hierarchy
 ��
well�semi�ordered

hierarchy
 ��
re�nement
 ��


