An Evaluation of the Temporal Coherence Heuristic in
Partial-Order Planning”

Qiang Yang Cheryl Murray

Department of Computer Science
University of Waterloo

Abstract

This paper presents an evaluation of a heuristic for partial-order planning, known
as temporal coherence. The temporal coherence heuristic was proposed by Drummond
and Currie as a method to improve the efficiency of partial-order planning without
losing the ability to find a solution (i.e. completeness). It works by using a set of
domain constraints to prune away plans that do not “make sense,” or temporally inco-
herent. Our analysis shows that, while intuitively appealing, temporal coherence can
only be applied to a very specific implementation of a partial-order planner and still
maintain completeness. Furthermore, the heuristic does not always improve planning
efficiency; in some cases, its application can actually degrade the efficiency of planning
dramatically. To understand when the heuristic will work well, we conducted complex-
ity analysis and empirical tests. Qur results show that temporal coherence works well
when strong domain constraints exist that significantly reduce the search space, when
the number of subgoals is small, when the plan size is not too large and when it is
inexpensive to check each domain constraint.

Key words: Al planning, Heuristic Problem Solving.

Address: Department of Computer Science
University of Waterloo

Waterloo, Ontario, Canada

N2L 3G1

Tel: (519) 888-4716. E-mail: qyang@logos.waterloo.edu

*The authors are supported in part by grants from the Natural Sciences and Engineering Research Council
of Canada, and ITRC: Information Technology Research Center of Ontario.

1 Introduction

There has recently been a renewed interest in developing algorithms for partial-order plan-
ning. Most of the algorithms, including TWEAK][2], SNLP and its variations [8, 1, 6, 7] and
ABTWEAK]|14], are domain-independent in nature. They are, for the main part, aimed at
addressing formal properties such as soundness, completeness and expressive power of the
planning systems. To improve their efficiency, certain domain-dependent knowledge has to
be utilized. One way to apply domain-dependent heuristics is to prune plans that violate
certain constraints specific to a particular domain, thus reducing the size of the search space.

An important property of a pruning heuristic is its completeness, whereby if a solution
exists for a planning problem, one solution can be found. Complete pruning heuristics thus
always make sure that at least one solution path is retained after pruning is done.

The temporal coherence heuristic [4, 5] has been proposed as a complete pruning heuristic.
It works by pruning away plans that violate certain domain constraints, i.e., constraints that
specify physically impossible situations in a domain. To apply the heuristic, a set of precon-
ditions, known as bulk preconditions, are found for each plan. Then the domain constraints
are applied to the bulk preconditions to check whether they are violated. If so, then the plan
is removed from the search space. In [4, 5], Drummond and Currie provided a proof of its
completeness, and reported that it could lead to improved efficiency in solving several blocks-
world problems. Furthermore, the heuristic has been implemented in O-Plan [3], a successor
of NONLIN|[10], and was referenced in several influential works of AI planning[12, 11].

Since no complexity result, empirical or analytical, is available that shows how effec-
tive the heuristic is, we have implemented it with a version of TWEAK and performed a
complexity analysis. We found that the completeness of the temporal coherence heuristic
is extremely sensitive to the way a planning algorithm is implemented. Many partial-order
planning algorithms work by iterating through cycles of activities. Within each cycle, they
select a plan from the search space and generate successor plans as follows:

Method 1: Find one subgoal that is currently not true. Find all operators that
can achieve this goal. Generate successor plans based on the set of operators.

This method is complete (a proof is presented later in this paper), and is the basis of our
implementation of the TWEAK algorithm as well as other algorithms such as SNLP[8, 1].

However, our analysis shows that to maintain completeness, temporal coherence cannot
be applied to prune successor plans using the above successor generation method. Instead,
it can only be applied to the following method:

Method 2: Find all subgoals that are false or solely supported by the initial
state. Find all operators that can achieve any such subgoal. Generate successor
plans based on these operators.

The main difference between the two methods is that while method 1 generates successor
plans based on one subgoal, method 2 is based on all false preconditions in the current plan.
Using all subgoals to generate successor plans is likely to increase the branching factor of

search. Since both search trees have the same depth, for method 2 to be more efficient
the temporal coherence heuristic must be able to prune away a large number of successor
plans. However, through experimentation and an asymptotic analysis, we have found that
temporal coherence does not guarantee an improvement in search for many domains; under
certain conditions, it is in fact dramatically worse to use temporal coherence with method 2
as compared to method 1 without using any heuristic at all.

This negative result prompted us to study the conditions under which temporal coherence
will work well. We have found that for temporal coherence (TC) to improve the search
efficiency, a number of conditions must be met. First, the strength of the domain constraints
must be strong enough for TC to prune a substantial amount of the search space. Second, the
number of preconditions of operators must not be too large. Third, very few preconditions in
a solution plan are established by the initial state facts. Fourth, the solution plans contain a
small number of operators. Finally, the domain constraints are inexpensive to check. Under
these conditions, one can show that method 2 with temporal coherence can be more efficient
than method 1.

The paper is organized as follows. Section 2 describes a version of TWEAK that will be
used as the basis of our subsequent discussions. Section 3 introduces the temporal coherence
heuristic and section 4 examines the completeness of several implementations of TWEAK
with the application of the heuristic. Sections 5 and 6 present analytical and empirical
results on the performance of temporal coherence. Section 7 concludes the paper.

2 A Partial-Order Planning Algorithm

2.1 Definitions

We use the TWEAK language to describe our planning problems and provide definitions
for those notations used in the paper. Readers should refer to [2] for more details of the
TWEAK language.

A planning domain consists of a set of operators and a set of states. Each state is described
by a set of literals. The operators describe possible transitions from one state to the next.
Each operator « is defined in terms of a set of precondition literals, Preconditions(a), and a
set of effect literals Effects(a). We use two special operators to represent the initial and goal
states, the former describing an agent’s initial situation, and the latter stating the desired
conditions. Operator 7 has a set of empty preconditions, and has as its effects the set of
literals true in the initial situation. Likewise, the operator G has a precondition set identical
to the set of goal literals. The effect set of G is empty.

A plan II consists of a set of operators restricted by the following constraints:

1. A set of precedence constraints on operator ordering that enforces a partial order on
the operators. If an operator a precedes B then we denote it by a<g.

2. A set of codesignation constraints on the binding of variables of the operators that
enforces pairs of variables z; and z; to bind to the same constant. Each codesignation

constraint between variables (or constants) z; and z; is denoted z; ~ ;.

3. A set of non-codesignation constraints, that forces two variables to instantiate to dif-
ferent constants. Each noncodesignation constraint between z; and z; is denoted as
L; % Tj;.
For simplicity, we assume that the special operators 7 and G exist in every plan. In addition,
the precedence constraints always make sure that Z precedes all other operators and G, and
that G is preceded by all other operators.

Let p be a precondition of an operator a. An operator 3 in the same plan is called
an establisher, if S<a holds, and if p is an effect of 8. The triple, (8, a,p) is called an
establishment relation.

An establishment relation can be clobbered by other operators. For the above relation
(B, ,p), let ¥ be an operator such that

1. 4 can be between 8 and a without violating the partial order and

2. v has an effect ¢ that can negate p.
Then v is called a clobberer with the relation (3, a,p). We call the tuple

(B, 0,7, 9)

a conflict in the plan [13].

A completion of a plan II is a total order of the operators in which all variables are
replaced by constants and all constraints in II are satisfied. A precondition p is necessarily
true just before an operator «, if and only if in every completion of the plan, there exists
an operator 3 such that (3, a,p) is an establishment relation and there is no clobberer with
the relation. The Modal Truth Criterion[2] can verify whether or not every precondition in
a plan is necessarily true in O(N?) time for a plan with N operators.

A planning problem consists of an initial state, a goal state, and a set of operators. A
plan is a solution for a planning problem if every precondition of every operator in the plan
is necessarily true just before that operator.

2.2 WatTweak

A partial-order planning algorithm takes as input a set of operators, an initial state and a
goal state. It attempts to find a solution plan if one exists. This is done by generating a
search tree. The nodes on the search frontier of the tree are kept track of by an open-list.
Initially, the open-list contains only the initial plan, with the initial state operator Z and the
goal state operator G. The algorithm terminates when every precondition of every operator
is necessarily true just before that operator.

The important properties of a partial-order planning algorithm include its soundness,
completeness, and efficiency. An algorithm is sound if every solution it generates is guaran-
teed to reach the goal from the initial state. It is complete if it always terminates with a
solution provided that one exists.

Input: an initial plan: the initial state operator followed by
the goal state operator.
Output: a solution plan if one exists.

Algorithm WatTweak

open-list := { initial-plan }.
repeat
plan = lowest cost node in open-list;
remove plan from open-list;
if plan is a solution plan, then return plan
else
successors := generate-successors(plan);
add successors to open-list;
endif

until open-list is empty;

O© © 00~ O O i W N =

Table 1: WatTweak planning algorithm.

In [2], Chapman presents a high level discussion of the planner Tweak. In this paper,
we consider a particular variation of Tweak called WatTweak. A top-level routine for Wat-
Tweak is presented in Table 1. In the algorithm, the generate-successors routine is yet
unspecified. Under a breadth-first search strategy, this procedure not only determines the
completeness of WatTweak, but also its efficiency. The successor generation routine (step
7) can be strengthened by heuristics that eliminate some of the successors which are “dom-
inated” by others, thereby effectively reducing the branching factor of the search tree. The
temporal coherence heuristic designed by Drummond and Currie was proposed as such a
successor-elimination heuristic.

3 Temporal Coherence

Temporal coherence (TC) is a heuristic for pruning some plans from the search space in
order to reduce the total cost of search. The heuristic avoids working on partially completed
plans that don’t “make sense,” that is, plans that are not physically realizable. To check if a
partial plan makes sense, the heuristic first determines the bulk preconditions of the plan, and
checks them against all the domain constraints for the state space. The bulk preconditions
are preconditions of operators in the current plan, that need to be made true in order for
the rest of the plan to be executable. Domain constraints define a number of physical laws

(MOVE $1 to $2 from $3)
Preconditions | (IsBlock $1), (IsBlock Effects | (ON $1,$2), (not CLEAR
$2), (CLEAR $1), (CLEAR $2), (CLEAR $3) (not ON
$2), (on $1,$3). $1,$3).
(MOVE $1 to Table from $2)

Preconditions | (IsBlock $1), (IsBlock Effects | (ON $1,Table), (not ON
$2), (CLEAR $1), (ON $1,%$2), (CLEAR $2)
$1,$2)

Table 2: Operator definition for the blocks world domain.

in a particular application domain. If anyone of the domain constraints is violated in the
current bulk preconditions, then according to TC the current plan should be pruned from
the search space.

Below, we provide a more detailed description of both bulk preconditions and domain
constraints.

3.1 Bulk Preconditions

The bulk preconditions of a partially ordered plan consist of all the preconditions which are
not necessarily true, and those preconditions which are only true because they are asserted
by the initial state. To illustrate this, consider the following simple example from the blocks
world domain. The operators of this domain are listed in Table 2. In the parameter lists,
any symbol preceded by a $ sign is an unbound variable.

The initial state is

((IsBlock A) (IsBlock B) (ON A B) (ON B TABLE) (CLEAR A)),
and goal state is ((ON B A)), as shown in Figure 1.

A B
B A
Initial Goal

Figure 1: A Blocks World Example

For this problem, a partially completed plan might be:

7 — (MOVE B to A from $X) — @G

The operator (MOVE B to A from $X) achieves the goal, (ON B A), and has 5 precon-

ditions of its own

(IsBlock A), (IsBlock B), (ON B $X), (CLEAR A), and (CLEAR B).

Among those, (CLEAR B) and (ON B $X) are bulk preconditions of the plan, because
they are not satisfied. The two IsBlock literals and (CLEAR A) are also bulk preconditions
because they are only satisfied by the initial state.

The intuition of bulk preconditions can be explained via a solution plan to the above
problem:

7 —' (MOVE A to Table from B) —2? (MOVE B to A from Table) —2 G.

The plan is annotated by three positions between its operators. In the above plan, the partial
plan after position 1 is the entire solution itself. The bulk preconditions for this plan are the
conditions that must be true in the initial state in order for the entire plan to be executed.
Similarly, the partial plan after position 2 consists of the operator (MOVE B to A from Table)
followed by the goal state. In order for this partial plan to be executable, all preconditions
of the operators must be true, including those asserted by the first operator, (MOVE A to
Table from B), and the initial state. These are the bulk preconditions of the partial plan.
Through this example, it is not hard to see that the definition of bulk preconditions is exactly
the partial-order analogue of a kernel in the triangle table of a STRIPS plan[9].

3.2 Domain Constraints and Temporal Coherence

The domain constraints specify physical laws that cannot be violated by any state of the
agent . For example ((ON §$1 $2) (ON §1 $3)) might be a domain constraint for the blocks
world, indicating that a block $1 cannot be on top of two different blocks, $2 and $3, at the
same time. In each domain constraint, unique variable names are assumed to be bound to
unique constants or variables which are necessarily non-codesignating. In the above example,
if the bulk preconditions contained both (ON A B) and (ON A C), there would be a violation
of domain constraints, making the bulk preconditions temporally incoherent.

As another example, consider the Towers of Hanoi domain, where there are 3 pegs and 3
disks. Let the three pegs be P;,P,, and Ps, and let the disks be Big, Medium and Small. We
can represent the location of the disks using literals ONB($x), ONM($x), and ONS($x). Initially,
all disks are on Py, and in the goal state they are on P;. The operators for moving the disks
can be represented as shown in Table 3.

For this domain, the domain constraints specify that a disk can only be on one peg at
a time, that a disk cannot simultaneously be on a peg and not on the same peg, and that
it is impossible that a disk not be on any of the three pegs. For the big disk, these three
constraints imply that when $z, $y and $z are bound to different constants, a violation of
TC occurs if the bulk preconditions match any of the following patterns:

‘ ‘ Preconditions Effects ‘ ‘

MoveL ($x,$y)
Ispeg($x), Ispeg($y), not (ONS (not ONB $x), (ONB $y)
$x), (not ONS $y), not (ONM $x),
(not ONM $y), (ONB $x)

MoveM($x,$y)
(Ispeg $x), (Ispeg $y), (not ONS | (not ONM $x), (ONM $y)
$x), (not ONS $y), (ONM x)
MoveS ($x,$y)
(Ispeg $x), (Ispeg $y), (ONS $x) ‘ (not ONS $x), (ONS $y)

Table 3: Operators for the Tower of Hanoi

1. ((ONB $x) (ONB $8y)),
2. ((ONB $x) (not ONB $x)),
3. ((not ONB $x) (not ONB $y) (not ONB $z)).

Our implementation of domain constraint checking iterates through the list of all domain
constraints. For each constraint list, a test is made on the set of bulk preconditions using
a unification algorithm. If the domain constraint unifies with a subset of the bulk precon-
ditions, then a violation occurs. The process is repeated until a violation is found or until
the list of domain constraints is exhausted. A detailed description of our implementation is
provided in Appendix B.

Temporal coherence is a pruning heuristic that employs domain constraints. For a given
plan, the set of bulk preconditions is first constructed. Then the algorithm is applied to the
bulk preconditions. If any domain constraint is violated by the bulk preconditions, then the
heuristic suggests that this plan be pruned from the search space.

The intuition of temporal coherence was explained in [4]. TWEAK is an incremental
planner in that it adds one operator at a time. During each iteration, TWEAK selects
a partially completed plan. It then generates a set of successor plans by adding a new
operator or new constraints. For each of the successor plans, there may be a set of bulk
preconditions that must be true in order for the partial plan developed so far to be successfully
“executable.” If so, then the bulk preconditions must satisfy the domain constraints. Thus,
the domain constraints are used by TC as a sufficient condition to eliminate plans from the
search space, while hopefully retaining at least one solution path to a goal.

In [4], Drummond and Currie presented a theorem showing the completeness of TWEAK
with the application of TC. The theorem states that if there is a solution plan, then a
temporally coherent search path exists in TWEAK’s search space. Thus, if a breadth-first

Input: a plan state II.
Output: a set of successor plans.

Algorithm Successor-Generation(II)
1 Let R ={(p,) | pis a preconditions of a} be the set of pairs consisting of
preconditions and operators in II. Let P be a subset of R;
2 For each pair (p,a) in P,
2.1 Let B,,5 =1,2,...,m, be operators with an effect p, ;
2.2 Let n; be a copy of plan II and construct an establishment relation (83;,a,p) in n;;
2.3 For each plan nj, j =1,2,...,m,
2.3.1 Find all conflicts C; with the establishment relation (3;, a, p);
2.3.2 Find all constraints {l;x,k =1,2,...,u;}, for resolving all the conflicts Cj;
2.3.3 Impose each constraint set [;; over a copy of n;, obtaining II; ;
3 Let successors be the set of all II; ;, as obtained in the previous step.
4 Return filter-successors(successors);

Table 4: A successor generation algorithm.

search strategy is used, TWEAK will always find a solution while maintaining temporal
coherence.

However, as we will demonstrate below, a critical assumption for their completeness
theorem to hold is that the search space must be generated by a particular type of successor
generation routine. Other than this particular implementation, there are many simpler ways
of successor generation for which the application of TC destroys TWEAK’s completeness.
In the next section, we present this analysis.

4 Applying Temporal Coherence Heuristic to WatTweak

4.1 Successor Generation

Recall that in Algorithm WatTweak, the procedure generate-successors is left unspec-
ified. In this section, we consider several ways of defining this procedure, and verify the
completeness properties of the resulting algorithms when the temporal coherence heuristic
is applied.

A generic procedure for the successor generation algorithm is shown in Table 4.1. Step
1 of the algorithm corresponds to a control point, where a decision has to be made as to
what subset of pairs of precondition and operator should be selected. Once the selection
is done, the preconditions will be subsequently achieved. Step 2 finds all operators g that

10

can achieve a precondition p of an operator a, where (p,a) is a pair in subset P found in
step 1. It then finds all conflicts with the new establishment relation (3, a,p), where each
conflict consists of a clobbering operator v with an effect ¢ which can deny p. Step 2.3.2
finds constraints according to Chapman’s MTC[2]. The constraints can be classified into
three groups (of which the white knight constraint is a combination):

Promotion a<~,
Demotion v</3,
Separation p 7% —gq.

After the constraints are found, step 2.3.3 imposes these constraints, and obtains new suc-
cessor plans. In step 4, the procedure filter-successors allows the application of temporal
coherence to filter out some successors, before they are returned to the main planning algo-
rithm. In particular, if temporal coherence is used, then procedure filter-successors will
iterate through all successors, extracting the bulk preconditions of each successor plan and
checking the domain constraints against all bulk preconditions. If a violation is detected for
a successor plan, then the plan is removed from the successor list before it is returned.
Below, we enumerate the different ways of specifying step 1 of Algorithm Successor-Generation.

4.2 Without TC

We are interested in successor generation methods that give rise to complete planners. That
is, if there is a solution, then one of them can be found. Without the application of TC,
there is a spectrum of successor generation methods which are all complete. The spectrum
depends on which set of preconditions are selected to be achieved next. The precondition
set can include one precondition, all unsatisfied preconditions, or all bulk preconditions in
the entire plan. We make the spectrum explicit below.

4.2.1 One-Unsat

For One-Unsat, a single pair consisting of an operator and one of its unsatisfied preconditions
is arbitrarily chosen in step 1, and no filtering is done in step 4. That is, P is a singleton set
{(p, @)}, where p is a precondition of operator « that is not necessarily true. This version
of WatTweak is complete; a rigorous proof is given in Appendix A. The intuition of the
completeness proof is to consider the search tree generated by WatTweak with One-Unsat,
and show that if a solution plan exists, then a path exists in this tree, such that

1. every node is a subset of the solution plan, and

2. the number of operators and constraints in each node monotonically increases along
the path.

11

4.2.2 All-Unsat

An alternative successor generation method is to generate the successors based on all precon-
ditions that are not necessarily true. This corresponds to setting P to be all pairs of (p, a)
where p is a precondition of operator « that is not necessarily true. With this method, in
step 2 of procedure successor-generation, all establishers for all unsatisfied preconditions
are found. This second method of successor generation is called All-Unsat.

The All-Unsat method is clearly complete, because the set of successors generated by
All-Unsat is a superset of that by One-Unsat and the latter has been shown to be complete.

4.2.3 All-Bulk

Next on the spectrum is a method based on all bulk preconditions. This is referred to as
All-Bulk. All-Bulk is complete, since its successor set is a superset of All-Unsat, and the
latter is complete.

Notice that for both All-Unsat and All-Bulk methods the branching factors of search
may be much larger than One-Unsat. This is because while One-Unsat’s branching factor
depends only on the number of ways to achieve one precondition or goal, All-Unsat and
All-Bulk , in the worst case, must multiply this by the total number of preconditions and
goals in the entire plan.

4.3 With TC

We now consider the spectrum again with the application of TC. To facilitate our discussion,
we do this by enumerating the entire spectrum in the opposite direction from the above. That
is, we go from All-Bulk to One-Unsat.

4.3.1 TC-Bulk

The application of TC to procedure filter-successors eliminates temporally incoherent
plans. We refer to All-Bulk with TC as TC-Bulk. Proof of the completeness of TC-Bulk
has been given by Drummond and Currie[4]. Although this particular successor generation
method was not made explicit in their papers, this was the one implied in their entire
discussion of the completeness proof. To see this, consider an informal discussion of their
proof as follows.

The basis of their completeness proof is essentially that if a plan exists, then a temporally
coherent path for finding that plan must also exist in the space generated by the set of all
bulk preconditions. For example, suppose that the plan is a sequence of operators a;,t =
0,1,2,..n,n + 1, in which ag = 7 and a,1; = G. Then between any pair of operators in
this plan, a; and a;;; the agent must find itself in a temporally coherent state. Thus, if one
traces this sequence backwards from the goal, adding one operator to the inverse subplan at
a time, one can always be guaranteed to be in temporally coherent states until the whole
plan is reconstructed. Moreover, if a solution plan exists for a planning problem, then in

12

the search tree generated by the All-Bulk method there is a search path that corresponds
exactly to this solution plan. Thus, if a solution exists, then a temporally consistent path in
All-Bulk’s search tree also exists.

4.3.2 All-Unsat with TC

With All-Unsat, successors are only generated based on all unsatisfied preconditions in a
plan. If TC is applied to filter successor plans, then All-Unsat becomes incomplete. To see
this, consider the following example from the blocks world domain.

For this problem, the initial state is (ON B Table), (ON C Table), (ON A B), (CLEAR
A), and (CLEAR C) and the goal state is (ON A B) and (ON B C) as shown in Figure 2.

A

A B

B C C
Initial Goal

Figure 2: A blocks world example.

When the planner begins generating successors, there is only one unsatisfied precondition

(ON B C), since (ON A B) is satisfied by the initial state. Thus the planner adds the operator
(MOVE B to C from $X) to achieve this precondition. The bulk preconditions are now

(IsBlock A), (IsBlock B), (ON A B), (CLEAR B), (CLEAR C) and (ON B $X).

The plan after this operator is added is shown in Figure 3. This plan contains a violation
of the domain constraints because B cannot be both clear and under A. There are no other
possible ways to achieve (ON B C) so the planner terminates without finding a solution.

The incompleteness problem is not unique to the blocks world domain. The next Tower
of Hanoi example illustrates the same incompleteness problem.

Consider a variation of the Tower of Hanoi domain in which the medium and large disks
are initially located on peg 1 and the small disk is on peg 3. Suppose that the goal state is
G = ((ONS P3) (ONM P3)), representing that the small and medium disks are both on peg
3.

13

Goals: (ON A B)
(ON B C)

\

(MOVE B to C from $X)
Preconditions: (ON B $X)

(CLEAR B)

(CLEAR Q)
Initial: (ON A B)
(CLEAR A)
(CLEAR C)

Figure 3: A blocks world plan.

Since the subgoal (ONS P3) is already true in the initial state, the planner selects the
other goal (ONM P3) to be achieved first. The only operator it can add to the initial plan
is (MOVEM $X P3). This operator has the following preconditions,

(Ispeg $X) (Ispeg P3) (ONM $X) (NOT ONS $X) (NOT ONS P3).

The bulk preconditions now include these preconditions as well as a goal, (ONS P3). We
now have a domain constraint violation because a disk cannot be on a peg and not on a peg
at the same time. Since this is the only successor generated, the planner terminates and no
solution is found.

The above two examples show that TC-Bulk is incomplete. The reason behind its in-
completeness can be understood as follows. In each case, there is a goal condition g which
is already true in the initial state (¢ is (ON A B) in blocks world and (ONS P3) in Tower
of Hanoi example). However, to achieve all other goal conditions, g must be temporarily
violated and then restored. In the search space, this solution plan corresponds to the only
search path from the root node to a goal node on which every node is temporally coherent.
All other paths will eventually lead to a violation of TC. Since All-Unsat does not gener-
ate a search path that achieves a precondition already established by the initial state, the
temporally coherent path is never generated. Therefore, no solution plan could be found.

A corollary of this result is that no successor generation method based on any subset
of All-Unsat is complete either. This is because, if the search space of a planner does not
contain a solution path, then no subset of the search space contains any solution. Thus, the
corollary implies that One-Unsat wth TC is also incomplete.

14

Method: One-Unsat | ... Some-Unsat ... | All-Unsat | ... All-Unsat+ ... | All-Bulk
W/out TC | Complete Complete Complete Complete Complete
With TC | Incomplete Incomplete Incomplete ? Complete

Table 5: A spectrum of successor generation methods.

4.4 Summary

So far, we have investigated several successor generation schemes along a spectrum of suc-
cessor generation methods, and analyzed their completeness properties when the temporal
coherence heuristic is applied. On one end of the spectrum is One-Unsat, which generates
successor plans based on only one unsatisfied precondition. On the other end is All-Bulk,
which generates successor plans based on the set of all bulk preconditions in the current plan.
Somewhere in the middle of the spectrum is All-Unsat, which generates successor plans based
on the set of all unsatisfied preconditions. Between One-Unsat and All-Unsat are methods
based on a subset of the currently unsatisfied preconditions in a plan. These methods can be
called Some-Unsat. Finally, between All-Unsat and All-Bulk are methods that are based on
All-Unsat as well as a subset of preconditions established solely by the initial state. We call
these methods All-Unsat+. The spectrum is shown graphically in Table 5. With respect to
the spectrum, our analysis shows that when TC is applied no successor generation method
between One-Unsat and All-Unsat inclusive is complete. On the other hand, All-Bulk with
TC, i.e. TC-Bulk, is complete.

The question remains whether any successor generation methods between All-Unsat and
All-Bulk on this spectrum would be complete with TC. These methods correspond to All-
Unsat+. Recall that the only difference between All-Bulk and All-Unsat is that the latter
does not generate successors for preconditions established in the initial state, while the former
does. Thus, any middle point on the spectrum between these two methods is necessarily
based on All-Bulk plus a subset of preconditions true in the initial state. A choice of a subset
of preconditions established by the initial state must partition the set of initial state facts
into distinct subsets. Only some of these subsets are used for successor generation, while
others are not. We conjecture that any such choice that will make the resulting successor
generation method complete with TC, is domain-dependent in nature. Moreover, even with
a domain-dependent choice of subset, we do not expect the resulting planner to show a
quantitative difference in performance from TC-Bulk. Thus, it is likely that TC-Bulk is
effectively the only domain-independent method for successor generation with TC.

To conclude, without temporal coherence One-Unsat is complete, but with temporal
coherence All-Bulk is likely to be the only domain-independent and complete method for
successor generation. Because of this, and because of the fact that TC-Bulk was the successor
generation method underlying the introduction of temporal coherence (see [4], page 346,

15

proof of theorem 1), the evaluation of TC can be done via an evaluation of TC-Bulk. In
particular, we would like to know whether TC-Bulk will always outperform One-Unsat. If
not, when can it do so? This is the main issue we attempt to address next with an asymptotic
analysis and empirical tests.

5 Analyzing the Utility of TC

5.1 Analytical Framework

Above we have shown that without additional domain knowledge, TC-Bulk is likely to be
the only successor generation method for WatTweak to be complete with the application of
temporal coherence. On the other hand, One-Unsat is complete without using any heuristic
at all. Thus, to determine when it is worthwhile to apply the temporal coherence heuristic
to WatTweak, we need to find out the conditions under which TC-Bulk can outperform
One-Unsat. In this section, we perform an asymptotic analysis comparing the running times
of TC-Bulk and One-Unsat.

For the ease of analysis, we assume that a breadth-first search method is used for planning.
Search is then guided by the number of operators in each plan. Under this search strategy,
the average planning cost is determined by the branching factor and depth of the search tree,
as well as the amount of time spent on each plan in the search tree.

Let B be the number of ways to achieve a precondition or goal by One-Unsat. In our
successor generation algorithm, this is the number of successor plans returned by Step 3
when Step 1 finds just one precondition-operator pair. Let D be the number of operators in
the optimal plan for a planning problem. Since a breadth first search is used, D is also the
depth of search using either One-Unsat or TC-Bulk as successor generation methods. Let
Touv be the average amount of time spent by One-Unsat to execute the successor generation
algorithm. Then the average planning time by WatTweak using One-Unsat is

O(BD * TOU)-

For TC-Bulk, let Ng be the average number of bulk preconditions in one plan. If no
filtering is done using temporal coherence, then the successor generation algorithm is simply
All-Bulk. On the average, the branching factor for All-Bulk is B * Np, since B successor
plans must be generated for each bulk precondition. With temporal coherence, a number of
successor plans may be pruned. Let S be the percentage of remaining successor plans after
pruning by TC. We can use S to denote the strength of domain constraints. The domain
constraints get stronger as the value of S approaches zero. Then B * Np xS is the average
branching factor of TC-Bulk. Finally, let Tr¢ be the average amount of time spent by TC-
Bulk on one pass of the successor generation algorithm. Then the average planning time by
WatTweak using TC-Bulk is

TTC*(B*NB*S)D.

The notations defined in this section are summarized in Table 6.

16

Notations
The depth of search using either One-Unsat or TC-Bulk.

The number of ways to achieve each precondition by One-Unsat.

svJle)

Tov | The average amount of time spent by One-Unsat for successor generation.

Trc | The average amount of time spent by TC-Bulk for successor generation.

Np | The average number of bulk preconditions in one plan.

S The strength of domain constraints.

Table 6: Notations used in the analysis.

From the two formulas above, TC-Bulk will outperform One-Unsat when the following
relationship among the various factors holds:

S < (TOU/TTc)l/D/NB.

5.2 Analysis

The relative performance of the two successor generation methods depends mainly on four
factors. The first factor is S, which represents the strength of domain constraints. For
different domains, S can vary from weak to strong. In the weakest extreme no successor
plan is pruned. In this case S = 100% and TC-Bulk will be equivalent to All-Bulk. With
the strongest possible domain constraints, every successor plan is pruned and S is 0%. In
general, the value of S is between 0 and 1, and the smaller the value of S, the stronger the
domain constraints are.

The second factor is the amount of time each algorithm spent on a plan expansion. The
time taken by One-Unsat, Toy, is always a lower bound of Tr¢. This is because for any given
plan, the successor plans generated by One-Unsat is always a subset of All-Bulk. Moreover,
TC-Bulk takes extra time to filter through the successors using domain constraints. Thus,
One-Unsat takes no more time per node than TC-Bulk.

The third main factor determining the relative performance is Np, the average number
of bulk preconditions in a plan. The specific value of Ng in turn depends on a number of
factors. First, if the number of preconditions for each operator is large, then during search
the number of unachieved preconditions is large. Thus, Np is likely to be large also. Similarly
Np may be large for a planning problem with a large number of goals. Second, if in the
solution plan to a planning problem, a large number of preconditions or goals are established
by the initial state facts, then by the definition of bulk preconditions, Np is expected to be
large. Third, if the number of operators in a solution plan is large, then the number of bulk
preconditions is also likely to be large. This implies that for a given planning problem, Np
is likely to increase as the search tree gets deeper.

The fourth main factor is the depth D of the search tree. If breadth first search is used

17

for WatTweak and if search is guided by the number of operators in a plan, then D is the
total number of operators in the plan.

Let C be (TOU/TTC)l/D/NB. Recall that TC-Bulk will outperform One-Unsat when
S < C. This condition places a lower bound limit on the strength of the domain constraints.
Intuitively, the formula states that for TC-Bulk to outperform One-Unsat, the domain con-
straints must be so strong that the remaining percentage of successors after pruning must
be less than C. For this reason, C is called the critical bound on the strength of domain
constraints.

Based on the formula we can consider the asymptotic behaviour of the time complexity
as D approaches infinity. In this extreme case, the formula tends to S < 1/Np. Intuitively,
this means that for a very large plan, TC-Bulk is expected to outperform One-Unsat if the
domain constraints are so strong that successor plans for all but one bulk preconditions are
pruned.

From the above discussions, we can predict factors affecting the performance of TC-Bulk
as compared to One-Unsat. TC-Bulk will perform better than One-Unsat when the strength
value S is small and the critical bound value C' is large. Since C depends inversely on Tr¢,
D and Np, this happens when they all have small values. Therefore, TC-Bulk is preferred
when the following conditions hold:

1. The domain constraints are strong. That is, the value of S is very small. This enables
TC-Bulk to prune a large portion of the successor plans.

2. The number of preconditions of operators and the number of goals are small. This
condition will reduce the value of Np.

3. Few preconditions of operators in a plan can be established by the initial state facts.
This condition will also reduce the value of Ng.

4. The solution plans have small sizes. Thus, D has a small value.

5. The domain constraints are inexpensive to check. This reduces the time spent by

TC-Bulk on each plan.

The hypotheses are supported by our analyses above. In the next section, we present exper-
iments to empirically verify the conditions.

6 Empirical Comparisons

To further support our predictions listed above, we have run experiments that show the
effects of various factors on the efficiency of planning. All routines are coded in Allegro
Common Lisp and run on a Sun4/sparc station. For fair comparison, we have used the
breadth-first strategy for controlling search in WatTweak. In addition, our choice of which
precondition/operator pair to be achieved next is based on the order in which operators
are inserted into the plan; we always choose a newest subgoal from the unsatisfied or bulk
preconditions.

18

(drive $r $loci $locj)
Preconditions | (AT $r $loci). Effects | (AT $r $locj) (not AT
$r $1loci)

(pickup $r Money)
Preconditions ‘ (AT $r I) (AT Money I) ‘ Effects ‘ (Holding $r Money) .

Table 7: Operator definition for the robot domain.

6.1 The Strength of Domain Constraints

The first set of tests are designed to explore the effect of S on the efficiency of planning. We
expect that the stronger the constraints, the better the performance of TC-Bulk. When the
domain constraints are strong enough TC-Bulk can outperform One-Unsat.

Our domain consists of a robot who can travel between cities. Initially the robot is located
at the city I. The goal is to reach city G while holding money. To do so, the robot has to
first pick up the money at I, then find a route to go from the initial city I to the destination
city G. Between the cities I and G there is a four by four matrix of intermediate cities. Each
city ¢;;, 1 <¢< 4,1 <3 <4, is connected to all adjacent cities C;41 4, k= 1,2,3,4.

To move from one city to the next, the robot can use an operator drive. To get the
money, the robot can use an operator pickup. The definitions of drive and pickup is given
in Table 7.

The initial state is: Initial = ((AT R1I) (AT Money I) (not Holding R1 MONEY))

The goal state is: Goal =((At R1 G) (Holding R1 Money))

An example plan of this domain is:
pickup(R1, Money);drive(R1, I, c11);drive(R1, c11,ca1); . . . s drive(R1, ca1, G).

To test the effect of S on planning efficiency, we have designed four sets of domain
constraints with varying degrees of strength. The weakest constraint is dcg, which simply
states that the robot R1 cannot be at two different cities at the same time. The second
strongest is dc;, which in addition to the requirement by dco, prunes any plan whose bulk
preconditions contain At(c;4) and not Holding(R1, Money). That is, the robot can enter a
city c¢;4 only when it is holding money. The third strongest constraint dc, further disallows
a robot to enter a city on the third and fourth column without first holding money. The
strongest constraint dcs prohibits the robot from entering any city except those on the first
column without first holding the money.

The travel domain has the following characteristics:

1. The domain constraints are inexpensive to test. The computation involves only simple
pattern matching that on no more than two literals at a time.

19

Planner DC | Expanded Nodes | CPU Seconds | Branching

One-Unsat | N/A 343 23.6 4
TC-Bulk | deg 470 205.3 4
dey 176 95.6 3

des 48 22.1 2

des 8 3.6 1

Table 8: Comparing One-Unsat with TC-Bulk in the robot domain.

2. The number of preconditions for each operator is small. In fact, the number is one for
the drive operator. In the next section, we test the effect of increasing the number of
preconditions on search efficiency.

3. The majority of the operators do not depend on the initial facts.

4. The number of inserted operators in the optimal solution D is six, a relatively small
number

From the last two characteristics, we know that the number of bulk-preconditions Np is
no more than two. These properties ensure that the effect of domain constraint on search
efficiency is isolated. Thus, with the varying strength of domain constraints, we can better
determine the change in planning cost.

The CPU-time comparison of One-Bulk and TC-Bulk is shown in Table 8. As seen from
the table, the CPU Time performance of TC-Bulk improves as the constraints get stronger.
A direct effect of strong constraints is the decrease in branching factor of search. We also
see that TC-Bulk is worse than One-Unsat in three out of four cases. TC-Bulk outperforms
One-Unsat only under the strongest constraint dcs. An interesting case is the data under
the constraint dc;, where TC-Bulk can actually have a smaller effective branching factor
and need to search fewer nodes. But since it spends an extra amount of time per node, the
cumulative CPU time is still worse than One-Unsat.

6.2 The Effect of Operator Preconditions

Based on our asymptotic analysis, we predicted earlier that if the number of preconditions
for each operator is large then Np is likely to be large also. This in turn will degrade the
performance of TC-Bulk. To test this prediction, we augmented the above travel domain
as follows. For each drive operator that connects cities ¢;; to ¢;41% we added the following
extra preconditions: {pl,p2,...,pl}, where I = 1,2,...1is an integer value that can be varied.
These literals are also added to the effects of the pickup operator.

The test results for each set additional preconditions are shown in Table 9. For all the
tests in this section, the strongest domain constraint dcs is used. The solution length is

20

‘ TC-BULK One-Unsat
Preconditions Expanded Nodes | CPU Seconds | Expanded Nodes | CPU Seconds
(pl) 58 133.3 576 175.3
(p1)(p2) 154 388.3 1050 193.7
(p1) (p2) (p3) 298 991.9 1050 266.9
(pl) (p2) (p3) (p4) over 1200 1050 329.4
(p1) (p2) (p3) (p4) (p5) over 1200 1050 435.7

Table 9: Comparing One-Unsat with TC-Bulk with changing preconditions. A CPU time
limit of 1200 seconds is imposed.

again six for all problems. As can be seen from the table, as the number of preconditions
increases, the cost of using TC-Bulk increases much faster than One-Unsat. In all but the
first cases, One-Unsat is clearly more efficient than TC-Bulk in terms of CPU time. This
is also expected from our analysis, for the number of preconditions is a major contributing
factor to the value of Np.

The above augmentation to the test domain used the pickup operator to achieve all
added preconditions of the subsequent operators in a solution plan. The next test adds all
additional preconditions to the initial state, and uses the original pickup operator. This
modification verifies the prediction that if the number of preconditions which depend on the
initial state facts increases in a solution plan, the complexity of TC-Bulk will increase as
well. The test results are shown in Table 10, where each row presents the data corresponding
to the addition of one more precondition to each drive operator and to the initial state. As
can be seen from the table, One-Unsat exhibits an almost linear CPU cost behaviour. In
contrast, TC-Bulk again approaches the CPU time limit of 1200 seconds in an exponential
manner.

6.3 Two Traditional Planning Domains

The above tests used a somewhat idealistic domain, where the number of preconditions
and domain constraints can be easily controlled. In this section, we present test results
in two traditional domains, the blocks world domain and the Tower of Hanoi domain. In
both domains, we used completely instantiated operators where all variables are replaced by
constants. This helps control the explosion problem of TC-Bulk and enables the test to be
performed with relative ease.

We choose the Sussman’s anomaly problem for the blocks world test, which involves the
movement of three blocks: A, B and C. For this problem, the initial state is one in which
the block C is on A, and both A and B are on the table. The goal is to build a tower with
A on B and B on C. The Tower of Hanoi problem has the standard initial and goal states,

21

| TC-BULK One-Unsat
Preconditions Expanded Nodes | CPU Seconds | Expanded Nodes | CPU Seconds
(pl) 163 108.8 343 34.2
(p1)(p2) 882 972.4 343 38.4
(p1) (p2) (p3) over 1200 343 40.0
(pl) (p2) (p3) (p4) over 1200 343 43.9
(p1) (p2) (p3) (p4) (p5) over 1200 343 47.1

Table 10: Comparing One-Unsat with TC-Bulk with changing preconditions. The additional
preconditions are achieved by the initial state. A CPU time limit of 1200 seconds is imposed.

Planner ‘ Sol Len ‘ States Expanded ‘ States Generated ‘ CPU Sec ‘ Branching ‘ Np ‘
Sussman’s Anomaly
TC-bulk 3 Over 199 Over 5567 1200 28 | 11.5
One-Unsat 3 8 23 1.6 2.9
Tower of Hanoi
TC-bulk 7 Over 300 Over 3157 1200 10.5 | 5.6
One-Unsat 7 322 899 136.3 2.8

Table 11: Comparing One-Unsat with TC-Bulk on a blocks

of Hanoi problem.

world problem and the Tower

with the objective of moving all three disks from peg 1 to peg 3. The domain constraints for
both domains are listed in Appendix B.

The test results of both problems are shown in Table 11. As can be seen from the
table, TC-Bulk performed much worse than One-Unsat. To analyze the reason behind the
performance difference, we also recorded the average branching factors and number of bulk
preconditions in each case. It is clear that for these two problems, the branching factors
for TC-Bulk are 5 to 10 times higher than One-Unsat. This can be explained by the large
number bulk preconditions in each case.

As discussed earlier, for TC-Bulk to perform efficiently, the domain constraints must be
sufficiently strong. It seems that in these two domains, the domain constraints are not strong
enough to reduce the branching factors below that of One-Unsat. To see this conclusion
more precisely, we computed the critical bound on S and § itself for each test problem (see
Table 12). As can be observed, the actual value of S is much higher than required by the
critical bound C.

Test Problem

C=Boundon S| S

Sussman’s Anomaly

3.1 %10

0.2

Tower of Hanoi

2.6 x 1078

0.3

Table 12: Strengths of Domain Constraints.

TC-Bulk One-Unsat
Sol Len | Nodes | CPU | Branching | Nodes | CPU | Branching
0 0 0.1 0 0| 0.03 0
1 2 0.4 5 2 0.1 2
2 6 4.4 5.3 3 0.2 2
3 99.5 | 180.6 6.7 8.8 0.9 24
4 145 | 600 7.4 20 4.5 3

22

Table 13: Tower of Hanoi results.

Table 13 displays the comparison results with increasing solution lengths, on eight differ-
ent configurations of initial and goal states from the Tower of Hanoi domain. These problems
include all variations of the domain for which the solution lengths are no more than four.
For problems with solution lengths greater than four TC-Bulk will never finish within a time
limit of 600 CPU seconds. It can be seen that for these problems One-Unsat is more efficient
than TC-Bulk, and as the solution length D increases, the difference between the perfor-
mance of TC-Bulk and One-Unsat also widens. This observation supports our analytical
result that TC-Bulk is likely to perform worse when the search depth D is large.

7 Conclusions

In this paper we have examined the temporal coherence heuristic in the context of partial-
order planning. We have analyzed the heuristic along the dimensions of completeness and
efficiency. Our main conclusions are summarized below:

1. The completeness of planning with the application of temporal coherence depends
critically on how the successor generation routines are implemented. We have examined
a spectrum of successor generation methods. Each point on the spectrum is determined
by a subset of operator preconditions used for generating successor plans. On this
spectrum, All-Bulk is likely to be the only domain-independent method for which the
application of temporal coherence will result in a complete planner.

23

2. The application of TC to WatTweak does not always result in a more efficient planner.

Among the cases that we have tested, TC-Bulk can be ten times worse than One-Unsat.

Our analytical comparison of TC-Bulk and One-Unsat shows that for TC-Bulk to be
more eflicient, a number of conditions must be satisfied by the planning domain. In
particular, for TC-Bulk to be more efficient, the domain constraints must be strong,
the number of preconditions for each operator must not be too large, few preconditions
depend on the initial state facts, the solution plan has a small size, and the domain
constraints themselves must be inexpensive to test. These results are further confirmed
by our empirical tests.

Acknowledgement

The authors would like to thank Mark Drummond for many motivating discussions. The

authors also greatly appreciate many excellent comments made by the referees of the Com-

putational Intelligence Journal.

References

1]

Anthony Barrett and Dan Weld. Partial order planning: Evaluating possible efficiency
gains. Technical Report 92-05-01, University of Washington, Department of Computater
Science and Engineering, 1992.

David Chapman. Planning for conjunctive goals. Artificial Intelligence, 32:333-377,
1987.

Ken Currie and Austin Tate. O-plan: the open planning architecture. Artificial Intel-
ligence, 52(1):49-86, 1992.

Mark Drummond and Ken Currie. Exploiting temporal coherence in nonlinear plan
construction. Computational Intelligence, 4(2):341-348, 1988.

Mark Drummond and Ken Currie. Goal ordering in partially ordered plans. In Pro-

ceedings of the 11th IJCAI pages 960-965, 1989.

Oren Etzioni, Steve Hanks, Danial Weld, Denise Draper, Neal Lesh, and Mike
Williamson. An approach to planning with incomplete information. submitted for pub-
lication, University of Washington, Department of Computer Science and Engineering,

1992.

Subbarao Kambhampati. Characterizing multi-contributor causal structures for plan-
ning. In Proceedings of the First International Conference on AI Planning Systems,

1992.

8]

[11]

[12]

[13]

[14]

24

David McAllester and David Rosenblitt. Systematic nonlinear planning. In Proceedings
of the 9th AAAI Anaheim, CA, 1991.

Nils Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann Publishers Inc,
1980.

Austin Tate. Generating project networks. In Proceedings of the 5th IJCAI pages
888-893, 1977.

Austin Tate, James Hendler, and Mark Drummond. A review of ai planning techniques.
In Readings in Planning, pages 26-49. Morgan Kaufmann Publishers, Inc., 1990.

David Wilkins. Practical Planning: FExtending the Classical AI Planning Paradigm.
Morgan Kaufmann, CA, 1988.

Qiang Yang. An algebraic approach to conflict resolution in planning. In Proceedings

of the 8th AAAI pages 40-45, Boston, MA, August 1990.

Qiang Yang, Josh Tenenberg, and Steve Woods. Abstraction in nonlinear planning.

University of Waterloo Technical Report CS 91-65, 1991.

25

A Completeness of One-Unsat

In this section, we prove that One-Unsat is complete. That is, if there is a solution to a
planning problem, then one of them can be found by One-Unsat.

We prove by induction that if a solution plan II exists, then there exists a path in the
search tree of One-Unsat, such that the following conditions hold:

1. For every node n on that path, n C II, and
2. For every node n;_; and its successor n; on that path, n;_; C n;.

Condition 1 states that every node on that path is a subset of the solution plan II. Condition
2 states that the size of a node monotonically increases along the path from the root. Since
the number of elements in the solution plan II is finite, clearly, if these two conditions hold,
the path will eventually stop at the node containing II itself.

We now inductively prove conditions 1 and 2 on level ¢ of the search tree, where ¢ =
0,1,2,.... For the base case, let ¢ = 0. The root node R of One-Unsat’s search tree contains
two operators, Z and G. The only constraint is an ordering from 7 to G. By definition, R
is a subset of every plan. Therefore, R C II and condition 1 holds for R. Also, R has no
predecessor. Thus, condition 2 trivially holds.

For the inductive assumption, suppose that both conditions 1 and 2 hold for every node on
a path up to depth k. Let nj be anode at depth k of the path. If n, is a solution plan, then the
theorem holds trivially. If nj is not a solution plan, then there must be some precondition of
an operator a such that p does not necessarily hold just before a. The successor generation
routine of One-Unsat will find all establishing operators 8;,7 = 1,2,...,m for achieving
p. It then generates m copies of plan ng, nq,...,n,. For each copy nj, it inserts the
corresponding operator 3;, and imposes all constraints to remove conflicts with establishing
relation (8;,a,p) in n;. Again all ways of removing conflicts are considered, each giving rise
to a copy II;; of n;, I = 1,2,...,L;, in which all conflicts with the relation (3,,a,p) are
removed. The set of final successors of this step is:

{Hj;l |j:1727---7m, andl:]‘7277LJ}

These are the successors of the node generated by ONE-UNSAT.

Recall that p is necessarily true in II, just before a. Thus, there must be an establisher
B of p in II, and no conflicts. Since the one-step successor generation process described
above considers all ways of achieving p just before a in ng, 8 must be one of the establishers
B;- Furthermore, the constraints imposed on n; remove conflicts from existing operators,
by either moving the clobbering operators before 3, after a, or force the conflicting effect of
the clobbering operator to bind to different constants as p. Since one of the three choices in
constraints must hold in the solution plan II, these constraints must also be members of II.
In other words, there exists a successor II;; which is a subset of II. This proves condition 1.

Since an extra declobbering step is done for generating successors, using existing or new
establishers, each new successor II;; must have more constraints imposed on it as compared

26

to ng. Thus, condition 2 also holds. As a result, for some path of the search tree of One-
Unsat, conditions 1 and 2 must both hold for every node.

B Domain Constraints for Empirical Tests

B.1 Implementation

Algorithm DC shows our implementation used for checking domain constraints. The con-
straints are contained in the global variable *domain-constraints*. The function, check-
all-dom-constr, calls the function check-one-dom-constr for each constraint in the domain
constraint list until a violation is found or until the list of domain constraints is exhausted.
The value “True” is returned if a violation is found.

As specified in [4], different variable names in a domain constraint must map to different
objects. This is implemented as follows. Each domain constraint consists of a list of assertions
followed by a list of variable pairs. Each pair of variables in the list implies that the variables
must be necessarily noncodesignating in order for the matching to be true. For example,
the domain constraint for specifying that a block cannot be on two different things at the
same time is (((ON $1 $2) (ON $1 $3)) (($2 $3))), which is true when the two literals unify
with the conditions in the bulk preconditions, and when the variables $2 and $3 map to
different constants or variables. Similarly, the following domain constraint states that two
blocks cannot be on the same thing, unless that thing is the table: (((ON $1 $2) ($3 $2))
(($1 $3) ($2 TABLE))). In this case, $1 must necessarily not codesignate with $3, and $2
must necessarily not codesignate with the table.

The function check-one-dom-constr checks all possible matchings between a domain con-
straint and the list of bulk preconditions to determine if a violation exists. After it finds
a possible violation it verifies (line 12) that it really is a violation by checking the list of
necessarily non-codesignating variables. Check-one-dom-constr returns true if a violation is
found.

Algorithm DC

1 check-all-dom-constr(bulk-precond)

2 dc-list = *domain-constraints*;

3 violation = false;

4 while (notempty(dec-list) and not violation)

5 violation = check-one-dom-constr (head(dc-list), bulk-precond, nil);
6 de-list = tail(dc-list);

7 endwhile

8 return violation;

9 end

10 check-one-dom-constr(dec-list, bulk-precond, map-list)

27

11 if (empty(dec-list)) then

12 if map-list is a valid mapping then

13 return true;

14 else

15 return false;

16 endif

17 else

18 violation = false;

19 pre-list = bulk-precond;

20 while (notempty(pre-list) and not violation)

21 if (head(prelist) is unifiable with head(dc-list) with substitution mapping) then
22 apply mapping to dec-list;

23 add mapping to map-list;

24 violation = check-one-dom-constr(tail(dc-list), bulk-precond, map-list);
25 else

26 pre-list = tail(pre-list);

27 endif

28 endwhile

29 endif

30 end

B.2 Domain Constraints in the Robot Travel Domain

Domain Constraints:

(setq *domain-constraints*

(
(((at $r $x) (at $r $y)) (($x $y)))
(((at $r $x) (not at $r $x)) nil)
))

B.3 Tower of Hanoi Domain

Domain Constraints:

(setq *domain-constraints*
’((((onb $x) (omnb $y)) (($x $y)))
(((onm $x) (onm $y)) (($x $y)))

28

(((ons $x) (ons $y)) (($x $y)))

(((ons $x) (not ons $x)) nil)

(((onm $x) (not onm $x)) nil)

(((onb $x) (not onb $x)) nil)

(((not ons $x) (not ons $y) (not ons $z)) (($x $y) ($y $2) ($x $2)))
(((not onm $x) (not onm $y) (not onm $z)) (($x $y) ($y $2) ($x $2)))
(((not onb $x) (not onb $y) (not onb $z)) (($x $y) ($y $2) ($x $2)))))

B.4 Blocks World

Domain Constraints:

(setq *domain-constraints*
"((((on $x $y) (clear $y)) (($y table)))
(((on $x $y) (on $x $2)) (($y $2)))
(((on $x $y) (on $z $y)) (($x $z) ($y table)))
(((on $x $x)) nil)
(((on $x $y) (on $y $x)) nil)))

List of Symbols

Symbol
a, B,

Meaning

Operators

Plan

precedence relation

codesignation constraint

noncodesignation constraint

a set of pairs consisting of preconditions and operators.

The depth of search using either One-Unsat or TC-Bulk

The number of ways to achieve each precondition by One-Unsat.

The average amount of time spent by One-Unsat for successor generation
The average amount of time spent by TC-Bulk for successor generation
The average number of bulk preconditions in one plan.

The strength of domain constraints.

29

List of Tables

© 00 ~J O Ok W N -

—_
(=]

11

12
13

WatTweak planning algorithm.
Operator definition for the blocks world domain.
Operators for the Tower of Hanoi
A successor generation algorithm. o 000000,
A spectrum of successor generation methods.o,
Notations used in the analysis.
Operator definition for the robot domain.
Comparing One-Unsat with TC-Bulk in the robot domain.
Comparing One-Unsat with TC-Bulk with changing preconditions. A CPU
time limit of 1200 seconds is imposed. L.
Comparing One-Unsat with TC-Bulk with changing preconditions. The ad-
ditional preconditions are achieved by the initial state. A CPU time limit of
1200 seconds is imposed. oLl o e
Comparing One-Unsat with TC-Bulk on a blocks world problem and the
Tower of Hanoi problem.,
Strengths of Domain Constraints.
Tower of Hanoi results. o o

30

21

22

List of Figures

1 A Blocks World Example Lo oo
2 A blocks world example. L e
3 A blocks world plan.o

31

