
An Evaluation of the Temporal Coherence Heuristic in

Partial�Order Planning�

Qiang Yang Cheryl Murray

Department of Computer Science
University of Waterloo

Abstract

This paper presents an evaluation of a heuristic for partial�order planning� known
as temporal coherence� The temporal coherence heuristic was proposed by Drummond
and Currie as a method to improve the e�ciency of partial�order planning without
losing the ability to �nd a solution �i�e� completeness�� It works by using a set of
domain constraints to prune away plans that do not �make sense�	 or temporally inco�
herent� Our analysis shows that� while intuitively appealing� temporal coherence can
only be applied to a very speci�c implementation of a partial�order planner and still
maintain completeness� Furthermore� the heuristic does not always improve planning
e�ciency
 in some cases� its application can actually degrade the e�ciency of planning
dramatically� To understand when the heuristic will work well� we conducted complex�
ity analysis and empirical tests� Our results show that temporal coherence works well
when strong domain constraints exist that signi�cantly reduce the search space� when
the number of subgoals is small� when the plan size is not too large and when it is
inexpensive to check each domain constraint�

Key words� AI planning� Heuristic Problem Solving�

Address� Department of Computer Science
University of Waterloo
Waterloo� Ontario� Canada
N�L �G�
Tel� ���	
 ����
���� E�mail� qyang�logos�waterloo�edu

�The authors are supported in part by grants from the Natural Sciences and Engineering Research Council

of Canada� and ITRC� Information Technology Research Center of Ontario�

�

�

� Introduction

There has recently been a renewed interest in developing algorithms for partial�order plan�
ning� Most of the algorithms� including TWEAK���� SNLP and its variations ��� �� �� �� and
ABTWEAK��
�� are domain�independent in nature� They are� for the main part� aimed at
addressing formal properties such as soundness� completeness and expressive power of the
planning systems� To improve their e�ciency� certain domain�dependent knowledge has to
be utilized� One way to apply domain�dependent heuristics is to prune plans that violate
certain constraints speci�c to a particular domain� thus reducing the size of the search space�

An important property of a pruning heuristic is its completeness� whereby if a solution
exists for a planning problem� one solution can be found� Complete pruning heuristics thus
always make sure that at least one solution path is retained after pruning is done�

The temporal coherence heuristic �
� �� has been proposed as a complete pruning heuristic�
It works by pruning away plans that violate certain domain constraints� i�e�� constraints that
specify physically impossible situations in a domain� To apply the heuristic� a set of precon�
ditions� known as bulk preconditions� are found for each plan� Then the domain constraints
are applied to the bulk preconditions to check whether they are violated� If so� then the plan
is removed from the search space� In �
� ��� Drummond and Currie provided a proof of its
completeness� and reported that it could lead to improved e�ciency in solving several blocks�
world problems� Furthermore� the heuristic has been implemented in O�Plan ���� a successor
of NONLIN����� and was referenced in several in�uential works of AI planning���� ����

Since no complexity result� empirical or analytical� is available that shows how e�ec�
tive the heuristic is� we have implemented it with a version of TWEAK and performed a
complexity analysis� We found that the completeness of the temporal coherence heuristic
is extremely sensitive to the way a planning algorithm is implemented� Many partial�order
planning algorithms work by iterating through cycles of activities� Within each cycle� they
select a plan from the search space and generate successor plans as follows�

Method �� Find one subgoal that is currently not true� Find all operators that
can achieve this goal� Generate successor plans based on the set of operators�

This method is complete �a proof is presented later in this paper
� and is the basis of our
implementation of the TWEAK algorithm as well as other algorithms such as SNLP��� ���

However� our analysis shows that to maintain completeness� temporal coherence cannot
be applied to prune successor plans using the above successor generation method� Instead�
it can only be applied to the following method�

Method �� Find all subgoals that are false or solely supported by the initial
state� Find all operators that can achieve any such subgoal� Generate successor
plans based on these operators�

The main di�erence between the two methods is that while method � generates successor
plans based on one subgoal� method � is based on all false preconditions in the current plan�
Using all subgoals to generate successor plans is likely to increase the branching factor of

�

search� Since both search trees have the same depth� for method � to be more e�cient
the temporal coherence heuristic must be able to prune away a large number of successor
plans� However� through experimentation and an asymptotic analysis� we have found that
temporal coherence does not guarantee an improvement in search for many domains� under
certain conditions� it is in fact dramatically worse to use temporal coherence with method �
as compared to method � without using any heuristic at all�

This negative result prompted us to study the conditions under which temporal coherence
will work well� We have found that for temporal coherence �TC
 to improve the search
e�ciency� a number of conditions must be met� First� the strength of the domain constraints
must be strong enough for TC to prune a substantial amount of the search space� Second� the
number of preconditions of operators must not be too large� Third� very few preconditions in
a solution plan are established by the initial state facts� Fourth� the solution plans contain a
small number of operators� Finally� the domain constraints are inexpensive to check� Under
these conditions� one can show that method � with temporal coherence can be more e�cient
than method ��

The paper is organized as follows� Section � describes a version of TWEAK that will be
used as the basis of our subsequent discussions� Section � introduces the temporal coherence
heuristic and section
 examines the completeness of several implementations of TWEAK
with the application of the heuristic� Sections � and � present analytical and empirical
results on the performance of temporal coherence� Section � concludes the paper�

� A Partial�Order Planning Algorithm

��� De�nitions

We use the TWEAK language to describe our planning problems and provide de�nitions
for those notations used in the paper� Readers should refer to ��� for more details of the
TWEAK language�

A planning domain consists of a set of operators and a set of states� Each state is described
by a set of literals� The operators describe possible transitions from one state to the next�
Each operator � is de�ned in terms of a set of precondition literals� Preconditions��
� and a
set of e�ect literals E�ects��
� We use two special operators to represent the initial and goal
states� the former describing an agent�s initial situation� and the latter stating the desired
conditions� Operator I has a set of empty preconditions� and has as its e�ects the set of
literals true in the initial situation� Likewise� the operator G has a precondition set identical
to the set of goal literals� The e�ect set of G is empty�

A plan � consists of a set of operators restricted by the following constraints�

�� A set of precedence constraints on operator ordering that enforces a partial order on
the operators� If an operator � precedes � then we denote it by ����

�� A set of codesignation constraints on the binding of variables of the operators that
enforces pairs of variables xi and xj to bind to the same constant� Each codesignation

constraint between variables �or constants
 xi and xj is denoted xi � xj�

�� A set of non�codesignation constraints� that forces two variables to instantiate to dif�
ferent constants� Each noncodesignation constraint between xi and xj is denoted as
xi �� xj�

For simplicity� we assume that the special operators I and G exist in every plan� In addition�
the precedence constraints always make sure that I precedes all other operators and G� and
that G is preceded by all other operators�

Let p be a precondition of an operator �� An operator � in the same plan is called
an establisher� if ��� holds� and if p is an e�ect of �� The triple� ��� �� p
 is called an
establishment relation�

An establishment relation can be clobbered by other operators� For the above relation
��� �� p
� let � be an operator such that

�� � can be between � and � without violating the partial order and

�� � has an e�ect q that can negate p�

Then � is called a clobberer with the relation ��� �� p
� We call the tuple

h�� �� p� �� qi

a con�ict in the plan �����
A completion of a plan � is a total order of the operators in which all variables are

replaced by constants and all constraints in � are satis�ed� A precondition p is necessarily
true just before an operator �� if and only if in every completion of the plan� there exists
an operator � such that ��� �� p
 is an establishment relation and there is no clobberer with
the relation� The Modal Truth Criterion��� can verify whether or not every precondition in
a plan is necessarily true in O�N�
 time for a plan with N operators�

A planning problem consists of an initial state� a goal state� and a set of operators� A
plan is a solution for a planning problem if every precondition of every operator in the plan
is necessarily true just before that operator�

��� WatTweak

A partial�order planning algorithm takes as input a set of operators� an initial state and a
goal state� It attempts to �nd a solution plan if one exists� This is done by generating a
search tree� The nodes on the search frontier of the tree are kept track of by an open�list�
Initially� the open�list contains only the initial plan� with the initial state operator I and the
goal state operator G� The algorithm terminates when every precondition of every operator
is necessarily true just before that operator�

The important properties of a partial�order planning algorithm include its soundness�
completeness� and e�ciency� An algorithm is sound if every solution it generates is guaran�
teed to reach the goal from the initial state� It is complete if it always terminates with a
solution provided that one exists�

�

Input� an initial plan� the initial state operator followed by
the goal state operator�
Output� a solution plan if one exists�

Algorithm WatTweak

� open�list �� f initial�plan g�
� repeat
� plan � lowest cost node in open�list�

 remove plan from open�list�
� if plan is a solution plan� then return plan
� else
� successors �� generate�successors�plan
�
� add successors to open�list�
	 endif
	 until open�list is empty�

Table �� WatTweak planning algorithm�

In ���� Chapman presents a high level discussion of the planner Tweak� In this paper�
we consider a particular variation of Tweak called WatTweak� A top�level routine for Wat�
Tweak is presented in Table �� In the algorithm� the generate�successors routine is yet
unspeci�ed� Under a breadth��rst search strategy� this procedure not only determines the
completeness of WatTweak� but also its e�ciency� The successor generation routine �step
�
 can be strengthened by heuristics that eliminate some of the successors which are �dom�
inated� by others� thereby e�ectively reducing the branching factor of the search tree� The
temporal coherence heuristic designed by Drummond and Currie was proposed as such a
successor�elimination heuristic�

� Temporal Coherence

Temporal coherence �TC
 is a heuristic for pruning some plans from the search space in
order to reduce the total cost of search� The heuristic avoids working on partially completed
plans that don�t �make sense�� that is� plans that are not physically realizable� To check if a
partial plan makes sense� the heuristic �rst determines the bulk preconditions of the plan� and
checks them against all the domain constraints for the state space� The bulk preconditions
are preconditions of operators in the current plan� that need to be made true in order for
the rest of the plan to be executable� Domain constraints de�ne a number of physical laws

�

�MOVE �� to �� from ���

Preconditions �IsBlock ���� �IsBlock

���� �CLEAR ���� �CLEAR

���� �ON ������	

E�ects �ON ������� �not CLEAR

���� �CLEAR ��� �not ON

������	

�MOVE �� to Table from �� �

Preconditions �IsBlock ���� �IsBlock

���� �CLEAR ���� �ON

������

E�ects �ON ���Table�� �not ON

������� �CLEAR ���

Table �� Operator de�nition for the blocks world domain�

in a particular application domain� If anyone of the domain constraints is violated in the
current bulk preconditions� then according to TC the current plan should be pruned from
the search space�

Below� we provide a more detailed description of both bulk preconditions and domain
constraints�

��� Bulk Preconditions

The bulk preconditions of a partially ordered plan consist of all the preconditions which are
not necessarily true� and those preconditions which are only true because they are asserted
by the initial state� To illustrate this� consider the following simple example from the blocks
world domain� The operators of this domain are listed in Table �� In the parameter lists�
any symbol preceded by a � sign is an unbound variable�

The initial state is

� �IsBlock A
 �IsBlock B
 �ON A B
 �ON B TABLE
 �CLEAR A

�

and goal state is ��ON B A

� as shown in Figure ��

GoalInitial

A

B

B

A

Figure �� A Blocks World Example

For this problem� a partially completed plan might be�

�

I �� �MOVE B to A from �X
 �� G

The operator �MOVE B to A from �X
 achieves the goal� �ON B A
� and has � precon�
ditions of its own

�IsBlock A
� �IsBlock B
� �ON B �X
� �CLEAR A
� and �CLEAR B
�

Among those� �CLEAR B
 and �ON B �X
 are bulk preconditions of the plan� because
they are not satis�ed� The two IsBlock literals and �CLEAR A
 are also bulk preconditions
because they are only satis�ed by the initial state�

The intuition of bulk preconditions can be explained via a solution plan to the above
problem�

I �� �MOVE A to Table from B
 �� �MOVE B to A from Table
 �� G�

The plan is annotated by three positions between its operators� In the above plan� the partial
plan after position � is the entire solution itself� The bulk preconditions for this plan are the
conditions that must be true in the initial state in order for the entire plan to be executed�
Similarly� the partial plan after position � consists of the operator �MOVE B to A from Table

followed by the goal state� In order for this partial plan to be executable� all preconditions
of the operators must be true� including those asserted by the �rst operator� �MOVE A to
Table from B
� and the initial state� These are the bulk preconditions of the partial plan�
Through this example� it is not hard to see that the de�nition of bulk preconditions is exactly
the partial�order analogue of a kernel in the triangle table of a STRIPS plan�	��

��� Domain Constraints and Temporal Coherence

The domain constraints specify physical laws that cannot be violated by any state of the
agent � For example ��ON �� ��
 �ON �� ��

 might be a domain constraint for the blocks
world� indicating that a block �� cannot be on top of two di�erent blocks� �� and ��� at the
same time� In each domain constraint� unique variable names are assumed to be bound to
unique constants or variables which are necessarily non�codesignating� In the above example�
if the bulk preconditions contained both �ON A B
 and �ON A C
� there would be a violation
of domain constraints� making the bulk preconditions temporally incoherent�

As another example� consider the Towers of Hanoi domain� where there are � pegs and �
disks� Let the three pegs be P�� P�� and P�� and let the disks be Big� Medium and Small� We
can represent the location of the disks using literals ONB��x
� ONM��x
� and ONS��x
� Initially�
all disks are on P�� and in the goal state they are on P�� The operators for moving the disks
can be represented as shown in Table ��

For this domain� the domain constraints specify that a disk can only be on one peg at
a time� that a disk cannot simultaneously be on a peg and not on the same peg� and that
it is impossible that a disk not be on any of the three pegs� For the big disk� these three
constraints imply that when �x� �y and �z are bound to di�erent constants� a violation of
TC occurs if the bulk preconditions match any of the following patterns�

�

Preconditions E�ects

MoveL��x��y�

Ispeg��x�� Ispeg��y�� not �ONS

�x�� �not ONS �y�� not �ONM �x��

�not ONM �y�� �ONB �x�

�not ONB �x�� �ONB �y�

MoveM��x��y�

�Ispeg �x�� �Ispeg �y�� �not ONS

�x�� �not ONS �y�� �ONM x�

�not ONM �x�� �ONM �y�

MoveS��x��y�

�Ispeg �x�� �Ispeg �y�� �ONS �x� �not ONS �x�� �ONS �y�

Table �� Operators for the Tower of Hanoi

�� � �ONB �x
 �ONB �y

�

�� � �ONB �x
 �not ONB �x

�

�� � �not ONB �x
 �not ONB �y
 �not ONB �z

�

Our implementation of domain constraint checking iterates through the list of all domain
constraints� For each constraint list� a test is made on the set of bulk preconditions using
a uni�cation algorithm� If the domain constraint uni�es with a subset of the bulk precon�
ditions� then a violation occurs� The process is repeated until a violation is found or until
the list of domain constraints is exhausted� A detailed description of our implementation is
provided in Appendix B�

Temporal coherence is a pruning heuristic that employs domain constraints� For a given
plan� the set of bulk preconditions is �rst constructed� Then the algorithm is applied to the
bulk preconditions� If any domain constraint is violated by the bulk preconditions� then the
heuristic suggests that this plan be pruned from the search space�

The intuition of temporal coherence was explained in �
�� TWEAK is an incremental
planner in that it adds one operator at a time� During each iteration� TWEAK selects
a partially completed plan� It then generates a set of successor plans by adding a new
operator or new constraints� For each of the successor plans� there may be a set of bulk
preconditions that must be true in order for the partial plan developed so far to be successfully
�executable�� If so� then the bulk preconditions must satisfy the domain constraints� Thus�
the domain constraints are used by TC as a su�cient condition to eliminate plans from the
search space� while hopefully retaining at least one solution path to a goal�

In �
�� Drummond and Currie presented a theorem showing the completeness of TWEAK
with the application of TC� The theorem states that if there is a solution plan� then a
temporally coherent search path exists in TWEAK�s search space� Thus� if a breadth��rst

	

Input� a plan state ��
Output� a set of successor plans�

Algorithm Successor�Generation���
� Let R � f�p� �
 j p is a preconditions of �g be the set of pairs consisting of

preconditions and operators in �� Let P be a subset of R�
� For each pair �p� �
 in P�

��� Let �j� j � �� �� � � � �m� be operators with an e�ect p� �
��� Let nj be a copy of plan � and construct an establishment relation ��j� �� p
 in nj�
��� For each plan nj� j � �� �� � � � �m�

����� Find all con�icts Cj with the establishment relation ��j � �� p
�
����� Find all constraints flj�k� k � �� �� � � � � ujg� for resolving all the con�icts Cj�
����� Impose each constraint set lj�k over a copy of nj� obtaining �j�k�

� Let successors be the set of all �j�k as obtained in the previous step�

 Return �lter�successors�successors��

Table
� A successor generation algorithm�

search strategy is used� TWEAK will always �nd a solution while maintaining temporal
coherence�

However� as we will demonstrate below� a critical assumption for their completeness
theorem to hold is that the search space must be generated by a particular type of successor
generation routine� Other than this particular implementation� there are many simpler ways
of successor generation for which the application of TC destroys TWEAK�s completeness�
In the next section� we present this analysis�

� Applying Temporal Coherence Heuristic to WatTweak

��� Successor Generation

Recall that in Algorithm WatTweak� the procedure generate�successors is left unspec�
i�ed� In this section� we consider several ways of de�ning this procedure� and verify the
completeness properties of the resulting algorithms when the temporal coherence heuristic
is applied�

A generic procedure for the successor generation algorithm is shown in Table
��� Step
� of the algorithm corresponds to a control point� where a decision has to be made as to
what subset of pairs of precondition and operator should be selected� Once the selection
is done� the preconditions will be subsequently achieved� Step � �nds all operators � that

��

can achieve a precondition p of an operator �� where �p� �
 is a pair in subset P found in
step �� It then �nds all con�icts with the new establishment relation ��� �� p
� where each
con�ict consists of a clobbering operator � with an e�ect q which can deny p� Step �����
�nds constraints according to Chapman�s MTC���� The constraints can be classi�ed into
three groups �of which the white knight constraint is a combination
�

Promotion ����

Demotion ����

Separation p �� �q�

After the constraints are found� step ����� imposes these constraints� and obtains new suc�
cessor plans� In step
� the procedure �lter�successors allows the application of temporal
coherence to �lter out some successors� before they are returned to the main planning algo�
rithm� In particular� if temporal coherence is used� then procedure filter�successors will
iterate through all successors� extracting the bulk preconditions of each successor plan and
checking the domain constraints against all bulk preconditions� If a violation is detected for
a successor plan� then the plan is removed from the successor list before it is returned�

Below� we enumerate the di�erent ways of specifying step � of Algorithm Successor�Generation�

��� Without TC

We are interested in successor generation methods that give rise to complete planners� That
is� if there is a solution� then one of them can be found� Without the application of TC�
there is a spectrum of successor generation methods which are all complete� The spectrum
depends on which set of preconditions are selected to be achieved next� The precondition
set can include one precondition� all unsatis�ed preconditions� or all bulk preconditions in
the entire plan� We make the spectrum explicit below�

����� One�Unsat

For One�Unsat� a single pair consisting of an operator and one of its unsatis�ed preconditions
is arbitrarily chosen in step �� and no �ltering is done in step
� That is� P is a singleton set
f�p� �
g� where p is a precondition of operator � that is not necessarily true� This version
of WatTweak is complete� a rigorous proof is given in Appendix A� The intuition of the
completeness proof is to consider the search tree generated by WatTweak with One�Unsat�
and show that if a solution plan exists� then a path exists in this tree� such that

�� every node is a subset of the solution plan� and

�� the number of operators and constraints in each node monotonically increases along
the path�

��

����� All�Unsat

An alternative successor generation method is to generate the successors based on all precon�
ditions that are not necessarily true� This corresponds to setting P to be all pairs of �p� �

where p is a precondition of operator � that is not necessarily true� With this method� in
step � of procedure successor�generation� all establishers for all unsatis�ed preconditions
are found� This second method of successor generation is called All�Unsat�

The All�Unsat method is clearly complete� because the set of successors generated by
All�Unsat is a superset of that by One�Unsat and the latter has been shown to be complete�

����	 All�Bulk

Next on the spectrum is a method based on all bulk preconditions� This is referred to as
All�Bulk� All�Bulk is complete� since its successor set is a superset of All�Unsat� and the
latter is complete�

Notice that for both All�Unsat and All�Bulk methods the branching factors of search
may be much larger than One�Unsat� This is because while One�Unsat�s branching factor
depends only on the number of ways to achieve one precondition or goal� All�Unsat and
All�Bulk � in the worst case� must multiply this by the total number of preconditions and
goals in the entire plan�

��� With TC

We now consider the spectrum again with the application of TC� To facilitate our discussion�
we do this by enumerating the entire spectrum in the opposite direction from the above� That
is� we go from All�Bulk to One�Unsat�

��	�� TC�Bulk

The application of TC to procedure filter�successors eliminates temporally incoherent
plans� We refer to All�Bulk with TC as TC�Bulk� Proof of the completeness of TC�Bulk
has been given by Drummond and Currie�
�� Although this particular successor generation
method was not made explicit in their papers� this was the one implied in their entire
discussion of the completeness proof� To see this� consider an informal discussion of their
proof as follows�

The basis of their completeness proof is essentially that if a plan exists� then a temporally
coherent path for �nding that plan must also exist in the space generated by the set of all
bulk preconditions� For example� suppose that the plan is a sequence of operators ai� i �
�� �� �� ���n� n � �� in which a� � I and an�� � G� Then between any pair of operators in
this plan� ai and ai�� the agent must �nd itself in a temporally coherent state� Thus� if one
traces this sequence backwards from the goal� adding one operator to the inverse subplan at
a time� one can always be guaranteed to be in temporally coherent states until the whole
plan is reconstructed� Moreover� if a solution plan exists for a planning problem� then in

��

the search tree generated by the All�Bulk method there is a search path that corresponds
exactly to this solution plan� Thus� if a solution exists� then a temporally consistent path in
All�Bulk�s search tree also exists�

��	�� All�Unsat with TC

With All�Unsat� successors are only generated based on all unsatis�ed preconditions in a
plan� If TC is applied to �lter successor plans� then All�Unsat becomes incomplete� To see
this� consider the following example from the blocks world domain�

For this problem� the initial state is �ON B Table
� �ON C Table
� �ON A B
� �CLEAR
A
� and �CLEAR C
 and the goal state is �ON A B
 and �ON B C
 as shown in Figure ��

GoalInitial

C

B

A

CB

A

Figure �� A blocks world example�

When the planner begins generating successors� there is only one unsatis�ed precondition
�ON B C
� since �ON A B
 is satis�ed by the initial state� Thus the planner adds the operator
�MOVE B to C from �X
 to achieve this precondition� The bulk preconditions are now

�IsBlock A
� �IsBlock B
� �ON A B
� �CLEAR B
� �CLEAR C
 and �ON B �X
�

The plan after this operator is added is shown in Figure �� This plan contains a violation
of the domain constraints because B cannot be both clear and under A� There are no other
possible ways to achieve �ON B C
 so the planner terminates without �nding a solution�

The incompleteness problem is not unique to the blocks world domain� The next Tower
of Hanoi example illustrates the same incompleteness problem�

Consider a variation of the Tower of Hanoi domain in which the medium and large disks
are initially located on peg � and the small disk is on peg �� Suppose that the goal state is
G � ��ONS P�
 �ONM P�

� representing that the small and medium disks are both on peg
��

��

�
�
�
�
�
�
�
�
���

PP
PPP

PP
PPPi

�CLEAR C

�CLEAR A

�CLEAR C

�CLEAR B

�ON B C

Goals� �ON A B

Initial� �ON A B

Preconditions� �ON B �X

�MOVE B to C from �X

Figure �� A blocks world plan�

Since the subgoal �ONS P�
 is already true in the initial state� the planner selects the
other goal �ONM P�
 to be achieved �rst� The only operator it can add to the initial plan
is �MOVEM �X P�
� This operator has the following preconditions�

�Ispeg �X
 �Ispeg P�
 �ONM �X
 �NOT ONS �X
 �NOT ONS P�
�

The bulk preconditions now include these preconditions as well as a goal� �ONS P�
� We
now have a domain constraint violation because a disk cannot be on a peg and not on a peg
at the same time� Since this is the only successor generated� the planner terminates and no
solution is found�

The above two examples show that TC�Bulk is incomplete� The reason behind its in�
completeness can be understood as follows� In each case� there is a goal condition g which
is already true in the initial state �g is �ON A B
 in blocks world and �ONS P�
 in Tower
of Hanoi example
� However� to achieve all other goal conditions� g must be temporarily
violated and then restored� In the search space� this solution plan corresponds to the only
search path from the root node to a goal node on which every node is temporally coherent�
All other paths will eventually lead to a violation of TC� Since All�Unsat does not gener�
ate a search path that achieves a precondition already established by the initial state� the
temporally coherent path is never generated� Therefore� no solution plan could be found�

A corollary of this result is that no successor generation method based on any subset
of All�Unsat is complete either� This is because� if the search space of a planner does not
contain a solution path� then no subset of the search space contains any solution� Thus� the
corollary implies that One�Unsat wth TC is also incomplete�

�

Method� One�Unsat � � � Some�Unsat � � � All�Unsat � � � All�Unsat
 � � � All�Bulk

W out TC Complete Complete Complete Complete Complete
With TC Incomplete Incomplete Incomplete ! Complete

Table �� A spectrum of successor generation methods�

��� Summary

So far� we have investigated several successor generation schemes along a spectrum of suc�
cessor generation methods� and analyzed their completeness properties when the temporal
coherence heuristic is applied� On one end of the spectrum is One�Unsat� which generates
successor plans based on only one unsatis�ed precondition� On the other end is All�Bulk�
which generates successor plans based on the set of all bulk preconditions in the current plan�
Somewhere in the middle of the spectrum is All�Unsat� which generates successor plans based
on the set of all unsatis�ed preconditions� Between One�Unsat and All�Unsat are methods
based on a subset of the currently unsatis�ed preconditions in a plan� These methods can be
called Some�Unsat� Finally� between All�Unsat and All�Bulk are methods that are based on
All�Unsat as well as a subset of preconditions established solely by the initial state� We call
these methods All�Unsat�� The spectrum is shown graphically in Table �� With respect to
the spectrum� our analysis shows that when TC is applied no successor generation method
between One�Unsat and All�Unsat inclusive is complete� On the other hand� All�Bulk with
TC� i�e� TC�Bulk� is complete�

The question remains whether any successor generation methods between All�Unsat and
All�Bulk on this spectrum would be complete with TC� These methods correspond to All�
Unsat�� Recall that the only di�erence between All�Bulk and All�Unsat is that the latter
does not generate successors for preconditions established in the initial state� while the former
does� Thus� any middle point on the spectrum between these two methods is necessarily
based on All�Bulk plus a subset of preconditions true in the initial state� A choice of a subset
of preconditions established by the initial state must partition the set of initial state facts
into distinct subsets� Only some of these subsets are used for successor generation� while
others are not� We conjecture that any such choice that will make the resulting successor
generation method complete with TC� is domain�dependent in nature� Moreover� even with
a domain�dependent choice of subset� we do not expect the resulting planner to show a
quantitative di�erence in performance from TC�Bulk� Thus� it is likely that TC�Bulk is
e�ectively the only domain�independent method for successor generation with TC�

To conclude� without temporal coherence One�Unsat is complete� but with temporal
coherence All�Bulk is likely to be the only domain�independent and complete method for
successor generation� Because of this� and because of the fact that TC�Bulk was the successor
generation method underlying the introduction of temporal coherence �see �
�� page �
��

��

proof of theorem �
� the evaluation of TC can be done via an evaluation of TC�Bulk� In
particular� we would like to know whether TC�Bulk will always outperform One�Unsat� If
not� when can it do so! This is the main issue we attempt to address next with an asymptotic
analysis and empirical tests�

� Analyzing the Utility of TC

��� Analytical Framework

Above we have shown that without additional domain knowledge� TC�Bulk is likely to be
the only successor generation method for WatTweak to be complete with the application of
temporal coherence� On the other hand� One�Unsat is complete without using any heuristic
at all� Thus� to determine when it is worthwhile to apply the temporal coherence heuristic
to WatTweak� we need to �nd out the conditions under which TC�Bulk can outperform
One�Unsat� In this section� we perform an asymptotic analysis comparing the running times
of TC�Bulk and One�Unsat�

For the ease of analysis� we assume that a breadth��rst search method is used for planning�
Search is then guided by the number of operators in each plan� Under this search strategy�
the average planning cost is determined by the branching factor and depth of the search tree�
as well as the amount of time spent on each plan in the search tree�

Let B be the number of ways to achieve a precondition or goal by One�Unsat� In our
successor generation algorithm� this is the number of successor plans returned by Step �
when Step � �nds just one precondition�operator pair� Let D be the number of operators in
the optimal plan for a planning problem� Since a breadth �rst search is used� D is also the
depth of search using either One�Unsat or TC�Bulk as successor generation methods� Let
TOU be the average amount of time spent by One�Unsat to execute the successor generation
algorithm� Then the average planning time by WatTweak using One�Unsat is

O�BD � TOU
�

For TC�Bulk� let NB be the average number of bulk preconditions in one plan� If no
�ltering is done using temporal coherence� then the successor generation algorithm is simply
All�Bulk� On the average� the branching factor for All�Bulk is B � NB� since B successor
plans must be generated for each bulk precondition� With temporal coherence� a number of
successor plans may be pruned� Let S be the percentage of remaining successor plans after
pruning by TC� We can use S to denote the strength of domain constraints� The domain
constraints get stronger as the value of S approaches zero� Then B �NB � S is the average
branching factor of TC�Bulk� Finally� let TTC be the average amount of time spent by TC�
Bulk on one pass of the successor generation algorithm� Then the average planning time by
WatTweak using TC�Bulk is

TTC � �B �NB � S

D�

The notations de�ned in this section are summarized in Table ��

��

Notations

D The depth of search using either One�Unsat or TC�Bulk�
B The number of ways to achieve each precondition by One�Unsat�
TOU The average amount of time spent by One�Unsat for successor generation�

TTC The average amount of time spent by TC�Bulk for successor generation�
NB The average number of bulk preconditions in one plan�
S The strength of domain constraints�

Table �� Notations used in the analysis�

From the two formulas above� TC�Bulk will outperform One�Unsat when the following
relationship among the various factors holds�

S � �TOU�TTC

��D�NB �

��� Analysis

The relative performance of the two successor generation methods depends mainly on four
factors� The �rst factor is S� which represents the strength of domain constraints� For
di�erent domains� S can vary from weak to strong� In the weakest extreme no successor
plan is pruned� In this case S � ���" and TC�Bulk will be equivalent to All�Bulk� With
the strongest possible domain constraints� every successor plan is pruned and S is �"� In
general� the value of S is between � and �� and the smaller the value of S� the stronger the
domain constraints are�

The second factor is the amount of time each algorithm spent on a plan expansion� The
time taken by One�Unsat� TOU � is always a lower bound of TTC� This is because for any given
plan� the successor plans generated by One�Unsat is always a subset of All�Bulk� Moreover�
TC�Bulk takes extra time to �lter through the successors using domain constraints� Thus�
One�Unsat takes no more time per node than TC�Bulk�

The third main factor determining the relative performance is NB� the average number
of bulk preconditions in a plan� The speci�c value of NB in turn depends on a number of
factors� First� if the number of preconditions for each operator is large� then during search
the number of unachieved preconditions is large� Thus� NB is likely to be large also� Similarly
NB may be large for a planning problem with a large number of goals� Second� if in the
solution plan to a planning problem� a large number of preconditions or goals are established
by the initial state facts� then by the de�nition of bulk preconditions� NB is expected to be
large� Third� if the number of operators in a solution plan is large� then the number of bulk
preconditions is also likely to be large� This implies that for a given planning problem� NB

is likely to increase as the search tree gets deeper�
The fourth main factor is the depth D of the search tree� If breadth �rst search is used

��

for WatTweak and if search is guided by the number of operators in a plan� then D is the
total number of operators in the plan�

Let C be �TOU�TTC
��D�NB � Recall that TC�Bulk will outperform One�Unsat when
S � C� This condition places a lower bound limit on the strength of the domain constraints�
Intuitively� the formula states that for TC�Bulk to outperform One�Unsat� the domain con�
straints must be so strong that the remaining percentage of successors after pruning must
be less than C� For this reason� C is called the critical bound on the strength of domain
constraints�

Based on the formula we can consider the asymptotic behaviour of the time complexity
as D approaches in�nity� In this extreme case� the formula tends to S � ��NB� Intuitively�
this means that for a very large plan� TC�Bulk is expected to outperform One�Unsat if the
domain constraints are so strong that successor plans for all but one bulk preconditions are
pruned�

From the above discussions� we can predict factors a�ecting the performance of TC�Bulk
as compared to One�Unsat� TC�Bulk will perform better than One�Unsat when the strength
value S is small and the critical bound value C is large� Since C depends inversely on TTC�
D and NB� this happens when they all have small values� Therefore� TC�Bulk is preferred
when the following conditions hold�

�� The domain constraints are strong� That is� the value of S is very small� This enables
TC�Bulk to prune a large portion of the successor plans�

�� The number of preconditions of operators and the number of goals are small� This
condition will reduce the value of NB�

�� Few preconditions of operators in a plan can be established by the initial state facts�
This condition will also reduce the value of NB�

� The solution plans have small sizes� Thus� D has a small value�

�� The domain constraints are inexpensive to check� This reduces the time spent by
TC�Bulk on each plan�

The hypotheses are supported by our analyses above� In the next section� we present exper�
iments to empirically verify the conditions�

� Empirical Comparisons

To further support our predictions listed above� we have run experiments that show the
e�ects of various factors on the e�ciency of planning� All routines are coded in Allegro
Common Lisp and run on a Sun
 sparc station� For fair comparison� we have used the
breadth��rst strategy for controlling search in WatTweak� In addition� our choice of which
precondition operator pair to be achieved next is based on the order in which operators
are inserted into the plan� we always choose a newest subgoal from the unsatis�ed or bulk
preconditions�

��

�drive �r �loci �locj�

Preconditions �AT �r �loci�	 E�ects �AT �r �locj� �not AT

�r �loci� 	

�pickup �r Money�

Preconditions �AT �r I� �AT Money I� E�ects �Holding �r Money�	

Table �� Operator de�nition for the robot domain�

��� The Strength of Domain Constraints

The �rst set of tests are designed to explore the e�ect of S on the e�ciency of planning� We
expect that the stronger the constraints� the better the performance of TC�Bulk� When the
domain constraints are strong enough TC�Bulk can outperform One�Unsat�

Our domain consists of a robot who can travel between cities� Initially the robot is located
at the city I� The goal is to reach city G while holding money� To do so� the robot has to
�rst pick up the money at I� then �nd a route to go from the initial city I to the destination
city G� Between the cities I and G there is a four by four matrix of intermediate cities� Each
city cij� � � i �
� � � j �
� is connected to all adjacent cities Ci���k� k � �� �� ��
�

To move from one city to the next� the robot can use an operator drive� To get the
money� the robot can use an operator pickup� The de�nitions of drive and pickup is given
in Table ��

The initial state is� Initial � ��AT R� I
 �AT Money I
 �not Holding R� MONEY

The goal state is� Goal ���At R� G
 �Holding R� Money

An example plan of this domain is�

pickup�R��Money
� drive�R�� I� c��
� drive�R�� c��� c��
� � � � � drive�R�� c��� G
�

To test the e�ect of S on planning e�ciency� we have designed four sets of domain
constraints with varying degrees of strength� The weakest constraint is dc�� which simply
states that the robot R� cannot be at two di�erent cities at the same time� The second
strongest is dc�� which in addition to the requirement by dc�� prunes any plan whose bulk
preconditions contain At�ci�
 and not Holding�R��Money
� That is� the robot can enter a
city ci� only when it is holding money� The third strongest constraint dc� further disallows
a robot to enter a city on the third and fourth column without �rst holding money� The
strongest constraint dc� prohibits the robot from entering any city except those on the �rst
column without �rst holding the money�

The travel domain has the following characteristics�

�� The domain constraints are inexpensive to test� The computation involves only simple
pattern matching that on no more than two literals at a time�

�	

Planner DC Expanded Nodes CPU Seconds Branching
One�Unsat N A �
� ����

TC�Bulk dc�
�� �����

dc� ��� 	��� �
dc�
� ���� �
dc� � ��� �

Table �� Comparing One�Unsat with TC�Bulk in the robot domain�

�� The number of preconditions for each operator is small� In fact� the number is one for
the drive operator� In the next section� we test the e�ect of increasing the number of
preconditions on search e�ciency�

�� The majority of the operators do not depend on the initial facts�

� The number of inserted operators in the optimal solution D is six� a relatively small
number

From the last two characteristics� we know that the number of bulk�preconditions NB is
no more than two� These properties ensure that the e�ect of domain constraint on search
e�ciency is isolated� Thus� with the varying strength of domain constraints� we can better
determine the change in planning cost�

The CPU�time comparison of One�Bulk and TC�Bulk is shown in Table �� As seen from
the table� the CPU Time performance of TC�Bulk improves as the constraints get stronger�
A direct e�ect of strong constraints is the decrease in branching factor of search� We also
see that TC�Bulk is worse than One�Unsat in three out of four cases� TC�Bulk outperforms
One�Unsat only under the strongest constraint dc�� An interesting case is the data under
the constraint dc�� where TC�Bulk can actually have a smaller e�ective branching factor
and need to search fewer nodes� But since it spends an extra amount of time per node� the
cumulative CPU time is still worse than One�Unsat�

��� The E	ect of Operator Preconditions

Based on our asymptotic analysis� we predicted earlier that if the number of preconditions
for each operator is large then NB is likely to be large also� This in turn will degrade the
performance of TC�Bulk� To test this prediction� we augmented the above travel domain
as follows� For each drive operator that connects cities cij to ci���k we added the following
extra preconditions� fp�� p�� � � � � plg� where l � �� �� � � � is an integer value that can be varied�
These literals are also added to the e�ects of the pickup operator�

The test results for each set additional preconditions are shown in Table 	� For all the
tests in this section� the strongest domain constraint dc� is used� The solution length is

��

TC�BULK One�Unsat
Preconditions Expanded Nodes CPU Seconds Expanded Nodes CPU Seconds
�p�
 �� ����� ��� �����
�p�
�p�
 ��
 ����� ���� �	���
�p�
 �p�
 �p�
 �	� 		��	 ���� ����	
�p�
 �p�
 �p�
 �p

 over ���� ���� ��	�

�p�
 �p�
 �p�
 �p

 �p�
 over ���� ����
����

Table 	� Comparing One�Unsat with TC�Bulk with changing preconditions� A CPU time
limit of ���� seconds is imposed�

again six for all problems� As can be seen from the table� as the number of preconditions
increases� the cost of using TC�Bulk increases much faster than One�Unsat� In all but the
�rst cases� One�Unsat is clearly more e�cient than TC�Bulk in terms of CPU time� This
is also expected from our analysis� for the number of preconditions is a major contributing
factor to the value of NB�

The above augmentation to the test domain used the pickup operator to achieve all
added preconditions of the subsequent operators in a solution plan� The next test adds all
additional preconditions to the initial state� and uses the original pickup operator� This
modi�cation veri�es the prediction that if the number of preconditions which depend on the
initial state facts increases in a solution plan� the complexity of TC�Bulk will increase as
well� The test results are shown in Table ��� where each row presents the data corresponding
to the addition of one more precondition to each drive operator and to the initial state� As
can be seen from the table� One�Unsat exhibits an almost linear CPU cost behaviour� In
contrast� TC�Bulk again approaches the CPU time limit of ���� seconds in an exponential
manner�

��� Two Traditional Planning Domains

The above tests used a somewhat idealistic domain� where the number of preconditions
and domain constraints can be easily controlled� In this section� we present test results
in two traditional domains� the blocks world domain and the Tower of Hanoi domain� In
both domains� we used completely instantiated operators where all variables are replaced by
constants� This helps control the explosion problem of TC�Bulk and enables the test to be
performed with relative ease�

We choose the Sussman�s anomaly problem for the blocks world test� which involves the
movement of three blocks� A� B and C� For this problem� the initial state is one in which
the block C is on A� and both A and B are on the table� The goal is to build a tower with
A on B and B on C� The Tower of Hanoi problem has the standard initial and goal states�

��

TC�BULK One�Unsat
Preconditions Expanded Nodes CPU Seconds Expanded Nodes CPU Seconds
�p�
 ��� ����� �
� �
��
�p�
�p�
 ��� 	���
 �
� ���

�p�
 �p�
 �p�
 over ���� �
�
���
�p�
 �p�
 �p�
 �p

 over ���� �
�
��	
�p�
 �p�
 �p�
 �p

 �p�
 over ���� �
�
���

Table ��� Comparing One�Unsat with TC�Bulk with changing preconditions� The additional
preconditions are achieved by the initial state� A CPU time limit of ���� seconds is imposed�

Planner Sol Len States Expanded States Generated CPU Sec Branching NB

Sussman�s Anomaly

TC�bulk � Over �		 Over ���� ���� �� ����
One�Unsat � � �� ��� ��	

Tower of Hanoi

TC�bulk � Over ��� Over ���� ���� ���� ���
One�Unsat � ��� �		 ����� ���

Table ��� Comparing One�Unsat with TC�Bulk on a blocks world problem and the Tower
of Hanoi problem�

with the objective of moving all three disks from peg � to peg �� The domain constraints for
both domains are listed in Appendix B�

The test results of both problems are shown in Table ��� As can be seen from the
table� TC�Bulk performed much worse than One�Unsat� To analyze the reason behind the
performance di�erence� we also recorded the average branching factors and number of bulk
preconditions in each case� It is clear that for these two problems� the branching factors
for TC�Bulk are � to �� times higher than One�Unsat� This can be explained by the large
number bulk preconditions in each case�

As discussed earlier� for TC�Bulk to perform e�ciently� the domain constraints must be
su�ciently strong� It seems that in these two domains� the domain constraints are not strong
enough to reduce the branching factors below that of One�Unsat� To see this conclusion
more precisely� we computed the critical bound on S and S itself for each test problem �see
Table ��
� As can be observed� the actual value of S is much higher than required by the
critical bound C�

��

Test Problem C � Bound on S S

Sussman�s Anomaly ��� � ���� ���
Tower of Hanoi ��� � ���� ���

Table ��� Strengths of Domain Constraints�

TC�Bulk One�Unsat
Sol Len Nodes CPU Branching Nodes CPU Branching

� � ��� � � ���� �
� � ��
 � � ��� �
� �
�
 ��� � ��� �
� 		�� ����� ��� ��� ��	 ��

 �
� ��� ��
 ��
�� �

Table ��� Tower of Hanoi results�

Table �� displays the comparison results with increasing solution lengths� on eight di�er�
ent con�gurations of initial and goal states from the Tower of Hanoi domain� These problems
include all variations of the domain for which the solution lengths are no more than four�
For problems with solution lengths greater than four TC�Bulk will never �nish within a time
limit of ��� CPU seconds� It can be seen that for these problems One�Unsat is more e�cient
than TC�Bulk� and as the solution length D increases� the di�erence between the perfor�
mance of TC�Bulk and One�Unsat also widens� This observation supports our analytical
result that TC�Bulk is likely to perform worse when the search depth D is large�

� Conclusions

In this paper we have examined the temporal coherence heuristic in the context of partial�
order planning� We have analyzed the heuristic along the dimensions of completeness and
e�ciency� Our main conclusions are summarized below�

�� The completeness of planning with the application of temporal coherence depends
critically on how the successor generation routines are implemented� We have examined
a spectrum of successor generation methods� Each point on the spectrum is determined
by a subset of operator preconditions used for generating successor plans� On this
spectrum� All�Bulk is likely to be the only domain�independent method for which the
application of temporal coherence will result in a complete planner�

��

�� The application of TC to WatTweak does not always result in a more e�cient planner�
Among the cases that we have tested� TC�Bulk can be ten times worse than One�Unsat�

�� Our analytical comparison of TC�Bulk and One�Unsat shows that for TC�Bulk to be
more e�cient� a number of conditions must be satis�ed by the planning domain� In
particular� for TC�Bulk to be more e�cient� the domain constraints must be strong�
the number of preconditions for each operator must not be too large� few preconditions
depend on the initial state facts� the solution plan has a small size� and the domain
constraints themselves must be inexpensive to test� These results are further con�rmed
by our empirical tests�

Acknowledgement

The authors would like to thank Mark Drummond for many motivating discussions� The
authors also greatly appreciate many excellent comments made by the referees of the Com�
putational Intelligence Journal�

References

��� Anthony Barrett and Dan Weld� Partial order planning� Evaluating possible e�ciency
gains� Technical Report 	�������� University of Washington� Department of Computater
Science and Engineering� �		��

��� David Chapman� Planning for conjunctive goals� Arti�cial Intelligence� ������#����
�	���

��� Ken Currie and Austin Tate� O�plan� the open planning architecture� Arti�cial Intel�
ligence� ����
�
	#��� �		��

�
� Mark Drummond and Ken Currie� Exploiting temporal coherence in nonlinear plan
construction� Computational Intelligence�
��
��
�#�
�� �	���

��� Mark Drummond and Ken Currie� Goal ordering in partially ordered plans� In Pro�
ceedings of the ��th IJCAI� pages 	��#	��� �	�	�

��� Oren Etzioni� Steve Hanks� Danial Weld� Denise Draper� Neal Lesh� and Mike
Williamson� An approach to planning with incomplete information� submitted for pub�
lication� University of Washington� Department of Computer Science and Engineering�
�		��

��� Subbarao Kambhampati� Characterizing multi�contributor causal structures for plan�
ning� In Proceedings of the First International Conference on AI Planning Systems�
�		��

�

��� David McAllester and David Rosenblitt� Systematic nonlinear planning� In Proceedings
of the �th AAAI� Anaheim� CA� �		��

�	� Nils Nilsson� Principles of Arti�cial Intelligence� Morgan Kaufmann Publishers Inc�
�	���

���� Austin Tate� Generating project networks� In Proceedings of the 	th IJCAI� pages
���#�	�� �	���

���� Austin Tate� James Hendler� and Mark Drummond� A review of ai planning techniques�
In Readings in Planning� pages ��#
	� Morgan Kaufmann Publishers� Inc�� �		��

���� David Wilkins� Practical Planning
 Extending the Classical AI Planning Paradigm�
Morgan Kaufmann� CA� �	���

���� Qiang Yang� An algebraic approach to con�ict resolution in planning� In Proceedings
of the �th AAAI� pages
�#
�� Boston� MA� August �		��

��
� Qiang Yang� Josh Tenenberg� and Steve Woods� Abstraction in nonlinear planning�
University of Waterloo Technical Report CS 	����� �		��

��

A Completeness of One�Unsat

In this section� we prove that One�Unsat is complete� That is� if there is a solution to a
planning problem� then one of them can be found by One�Unsat�

We prove by induction that if a solution plan � exists� then there exists a path in the
search tree of One�Unsat� such that the following conditions hold�

�� For every node n on that path� n 	 �� and

�� For every node ni�� and its successor ni on that path� ni��
 ni�

Condition � states that every node on that path is a subset of the solution plan �� Condition
� states that the size of a node monotonically increases along the path from the root� Since
the number of elements in the solution plan � is �nite� clearly� if these two conditions hold�
the path will eventually stop at the node containing � itself�

We now inductively prove conditions � and � on level i of the search tree� where i �
�� �� �� � � �� For the base case� let i � �� The root node R of One�Unsat�s search tree contains
two operators� I and G� The only constraint is an ordering from I to G� By de�nition� R
is a subset of every plan� Therefore� R 	 � and condition � holds for R� Also� R has no
predecessor� Thus� condition � trivially holds�

For the inductive assumption� suppose that both conditions � and � hold for every node on
a path up to depth k� Let nk be a node at depth k of the path� If nk is a solution plan� then the
theorem holds trivially� If nk is not a solution plan� then there must be some precondition of
an operator � such that p does not necessarily hold just before �� The successor generation
routine of One�Unsat will �nd all establishing operators �j � j � �� �� � � � �m for achieving
p� It then generates m copies of plan nk� n�� � � � � nm� For each copy nj� it inserts the
corresponding operator �j� and imposes all constraints to remove con�icts with establishing
relation ��j� �� p
 in nj� Again all ways of removing con�icts are considered� each giving rise
to a copy �j�l of nj � l � �� �� � � � � Lj� in which all con�icts with the relation ��j� �� p
 are
removed� The set of �nal successors of this step is�

f�j�l j j � �� �� � � � �m� and l � �� �� � � � � Ljg�

These are the successors of the node generated by ONE�UNSAT�
Recall that p is necessarily true in �� just before �� Thus� there must be an establisher

� of p in �� and no con�icts� Since the one�step successor generation process described
above considers all ways of achieving p just before � in nk� � must be one of the establishers
�j � Furthermore� the constraints imposed on nj remove con�icts from existing operators�
by either moving the clobbering operators before �� after �� or force the con�icting e�ect of
the clobbering operator to bind to di�erent constants as p� Since one of the three choices in
constraints must hold in the solution plan �� these constraints must also be members of ��
In other words� there exists a successor �j�l which is a subset of �� This proves condition ��

Since an extra declobbering step is done for generating successors� using existing or new
establishers� each new successor �j�l must have more constraints imposed on it as compared

��

to nk� Thus� condition � also holds� As a result� for some path of the search tree of One�
Unsat� conditions � and � must both hold for every node�

B Domain Constraints for Empirical Tests

B�� Implementation

Algorithm DC shows our implementation used for checking domain constraints� The con�
straints are contained in the global variable $domain�constraints$� The function� check�
all�dom�constr� calls the function check�one�dom�constr for each constraint in the domain
constraint list until a violation is found or until the list of domain constraints is exhausted�
The value �True� is returned if a violation is found�

As speci�ed in �
�� di�erent variable names in a domain constraint must map to di�erent
objects� This is implemented as follows� Each domain constraint consists of a list of assertions
followed by a list of variable pairs� Each pair of variables in the list implies that the variables
must be necessarily noncodesignating in order for the matching to be true� For example�
the domain constraint for specifying that a block cannot be on two di�erent things at the
same time is ���ON �� ��
 �ON �� ��

 ���� ��

� which is true when the two literals unify
with the conditions in the bulk preconditions� and when the variables �� and �� map to
di�erent constants or variables� Similarly� the following domain constraint states that two
blocks cannot be on the same thing� unless that thing is the table� ���ON �� ��
 ��� ��

���� ��
 ��� TABLE

� In this case� �� must necessarily not codesignate with ��� and ��
must necessarily not codesignate with the table�

The function check�one�dom�constr checks all possible matchings between a domain con�
straint and the list of bulk preconditions to determine if a violation exists� After it �nds
a possible violation it veri�es �line ��
 that it really is a violation by checking the list of
necessarily non�codesignating variables� Check�one�dom�constr returns true if a violation is
found�

Algorithm DC

� check�all�dom�constr�bulk�precond

� dc�list � $domain�constraints$�
� violation � false�

 while �notempty�dc�list
 and not violation

� violation � check�one�dom�constr �head�dc�list
� bulk�precond� nil
�
� dc�list � tail�dc�list
�
� endwhile
� return violation�
	 end

�� check�one�dom�constr�dc�list� bulk�precond� map�list

��

�� if �empty�dc�list

 then
�� if map�list is a valid mapping then
�� return true�
�
 else
�� return false�
�� endif
�� else
�� violation � false�
�	 pre�list � bulk�precond�
�� while �notempty�pre�list
 and not violation

�� if �head�prelist
 is uni�able with head�dc�list
 with substitution mapping
 then
�� apply mapping to dc�list�
�� add mapping to map�list�
�
 violation � check�one�dom�constr�tail�dc�list
� bulk�precond� map�list
�
�� else
�� pre�list � tail�pre�list
�
�� endif
�� endwhile
�	 endif
�� end

B�� Domain Constraints in the Robot Travel Domain

Domain Constraints

�setq �domain�constraints�

��

���at �r �x��at �r �y�� ���x �y���

���at �r �x��not at �r �x�� nil�

��

B�� Tower of Hanoi Domain

Domain Constraints

�setq �domain�constraints�

�����onb �x� �onb �y�� ���x �y���

���onm �x� �onm �y�� ���x �y���

��

���ons �x� �ons �y�� ���x �y���

���ons �x� �not ons �x�� nil�

���onm �x� �not onm �x�� nil�

���onb �x� �not onb �x�� nil�

���not ons �x��not ons �y��not ons �z�� ���x �y���y �z���x �z���

���not onm �x��not onm �y��not onm �z�� ���x �y���y �z���x �z���

���not onb �x��not onb �y��not onb �z�� ���x �y���y �z���x �z�����

B�� Blocks World

Domain Constraints

�setq �domain�constraints�

�����on �x �y� �clear �y�� ���y table���

���on �x �y� �on �x �z�� ���y �z���

���on �x �y� �on �z �y�� ���x �z� ��y table���

���on �x �x� � nil�

���on �x �y� �on �y �x�� nil���

�	

List of Symbols

Symbol Meaning
�� �� � Operators
� Plan
� precedence relation
� codesignation constraint
�� noncodesignation constraint
P a set of pairs consisting of preconditions and operators�
D The depth of search using either One�Unsat or TC�Bulk
B The number of ways to achieve each precondition by One�Unsat�
TOU The average amount of time spent by One�Unsat for successor generation
TTC The average amount of time spent by TC�Bulk for successor generation
NB The average number of bulk preconditions in one plan�
S The strength of domain constraints�

��

List of Tables

� WatTweak planning algorithm� �
� Operator de�nition for the blocks world domain� � � � � � � � � � � � � � � � � �
� Operators for the Tower of Hanoi �

 A successor generation algorithm� 	
� A spectrum of successor generation methods� � � � � � � � � � � � � � � � � � � �

� Notations used in the analysis� ��
� Operator de�nition for the robot domain� ��
� Comparing One�Unsat with TC�Bulk in the robot domain� � � � � � � � � � � �	
	 Comparing One�Unsat with TC�Bulk with changing preconditions� A CPU

time limit of ���� seconds is imposed� ��
�� Comparing One�Unsat with TC�Bulk with changing preconditions� The ad�

ditional preconditions are achieved by the initial state� A CPU time limit of
���� seconds is imposed� ��

�� Comparing One�Unsat with TC�Bulk on a blocks world problem and the
Tower of Hanoi problem� ��

�� Strengths of Domain Constraints� ��
�� Tower of Hanoi results� ��

��

List of Figures

� A Blocks World Example �
� A blocks world example� ��
� A blocks world plan� ��

