A Sublinear Space, Polynomial Time
Algorithm for Directed s-t Connectivity

Greg Barnes *
Jonathan F. Buss T
Walter L. Ruzzo ?
Baruch Schieber $

May 27, 1993

Abstract

Directed s-t connectivity is the problem of detecting whether there
is a path from vertex s to vertex t in a directed graph. We present the
first known deterministic sublinear space, polynomial time algorithm
for directed s-t connectivity. For n-vertex graphs, our algorithm can

use as little as n/2°(V1°8™) space while still running in polynomial
time.

1 Introduction

The s-t connectivity problem is a fundamental one, since it is the natural
abstraction of many computational search processes, and a basic building

*Max-Planck-Institut fur Informatik, Im Stadtwald, W 6600 Saarbricken, Germany.
This research was conducted while the author was at the University of Washington. Re-
search supported by NSF Grant CCR-9002891. Email address: barnes@upi-sb.mpg.de.

I Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
N2L 3G1l. Research supported in part by a grant from NSERC. Email address:
jfbuss@math.uwaterloo.ca.

{Dept. of Computer Science and Engineering, FR-35, University of Washington, Seattle,
WA 98195, U.S.A. Research supported by NSF Grant CCR-9002891. Email address:
ruzzo@cs.washington.edu.

$IBM - Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598, U.S.A. Email address: sbar@watson.ibm.com.

block for more complex graph algorithms. In computational complexity the-
ory, it has an additional significance: understanding its complexity is a key
to understanding the relationship between deterministic and nondetermin-
istic space bounded complexity classes. In particular, the s-t connectivity
problem for directed graphs (STCON) is the prototypical complete problem
for nondeterministic logarithmic space [7]. Both STCON and the undirected
version of the problem, USTCON, are DLOG-hard — any problem solvable
deterministically in logarithmic space can be reduced to either problem [4, 7].

Establishing the deterministic space complexity of STCON would tell us a
great deal about the relationship between deterministic and nondeterministic
space bounded complexity classes. For example, showing a deterministic log
space algorithm for directed connectivity would prove that DSPACE(f(n)) =
NSPACE(f(n)) for any constructible f(n) = Q(log(n)) [7]. Unfortunately,
this remains a difficult open problem. A fruitful intermediate step is to
explore time-space tradeoffs for STCON; that is, the simultaneous time and
space requirements of algorithms for directed connectivity. No nontrivial
lower bounds are known for general models of computation (such as Turing
machines) on either the space, or on the simultaneous space and time required
to solve STCON, although Cook and Rackoff [3] and Tompa [8] have obtained
lower bounds for restricted models. This paper presents new upper bounds
for the problem.

The standard algorithms for connectivity, breadth- and depth-first search,
run in optimal time ®(m + n) and use ©(nlogn) space. At the other ex-
treme, Savitch’s Theorem [7] provides a small space (©(log”n)) algorithm
that requires time exponential in its space bound (i.e., time n®1°¢™). Cook
and Rackoff show an algorithm for their more restricted “JAG” model that
is similar to, but more subtle than Savitch’s; it has essentially the same time
and space performance.

Recent progress has been made on the time-space complexity of USTCON.
Barnes and Ruzzo [1] show the first sublinear space, polynomial time algo-
rithms for undirected connectivity. Nisan [5] shows that O(log”®n) space and
polynomial time suffice. Nisan et al. [6] show the first USTCON algorithm
that uses less space than Savitch’s algorithm (O(log'®n) vs. ©(log®n)).

Prior to the present paper, there was no corresponding sublinear space,
polynomial time algorithm known for STCON, and there was some evidence

suggesting that none was possible. It has been conjectured [2] that no de-
terministic STCON algorithm can run in simultaneous polynomial time and
polylogarithmic space. Tompa [8] shows that certain natural approaches to
solving STCON admit no such solution. Indeed, he shows that for these ap-
proaches, performance degrades sharply with decreasing space. Space o(n)
implies superpolynomial time, and space n'~¢ for fixed ¢ > 0 implies time
nft1°8™) essentially as slow as Savitch’s algorithm.

The main result of our paper is a new deterministic algorithm for directed
s-t connectivity that achieves polynomial time and sublinear space simultane-
ously. While not disproving the conjecture of [2], it shows that the behavior
elicited from certain algorithms by Tompa is not intrinsic to the problem.

Our algorithm can use as little as n/2®(\/@) space while still running in
polynomial time. As part of this algorithm, we present an algorithm that
finds short paths in a directed graph in polynomial time and sublinear space.
The short paths problem is a special case of STCON that retains many of the
difficulties of the general problem, and seems particularly central to design-
ing small space algorithms for STCON. We are not aware of any previous
algorithms that solve this problem in sublinear space and polynomial time.
Interestingly, our algorithm for the short paths problem is a generalization of
two well-known algorithms for STCON. In one extreme it reduces to a variant
of the linear time breadth-first search algorithm, and in the other extreme it
reduces to the O(log” n) space, superpolynomial time algorithm of Savitch.

Our algorithm to solve STCON in polynomial time and sublinear space
is constructed from two algorithms with different time-space tradeoffs. The
first performs a modified breadth-first search of the graph, while the second
finds short paths. Alone, neither algorithm can solve STCON in simulta-
neous polynomial time and sublinear space. In the following two sections,
we present the breadth-first search algorithm and the short paths algorithm.
Section 4 shows how the two algorithms can be combined to yield the desired
result. Section 5 presents some notes and concluding remarks.

For more information on graph connectivity, see the survey paper by

Wigderson [9].

2 The Breadth-First Search Tradeoff

Consider the tree constructed by a breadth-first search beginning at s. The
tree can contain n vertices, and thus requires O(nlogn) space to store. In-
stead of constructing the entire tree, our modified breadth-first search gen-
erates a fraction of the tree.

Suppose we want our modified tree to contain at most n/\ vertices. We
can do this by only storing (the vertices in) every Ath level of the tree. Num-
ber the levels of the tree 0, 1, ..., n — 1, where a vertex v is on level [if
the shortest path from s to v is of length [. Divide the levels into equiva-
lence classes Cy,C1,...,Cx_1 based on their number mod A. Besides s, the
algorithm stores only the vertices in one equivalence class (;, where j is the
smallest value for which C; has no more than the average number of vertices,

n/A.

The algorithm constructs this partial tree one level at a time. It begins
with level 0, which consists of s only, and generates levels j, 7 + A, 7 + 2,
.oy 7+ A |n/A]. Given a set, S, of vertices, we can find all vertices within
distance A of S in time n°*) and space O()log n) by enumerating all possible
paths of length at most A and checking which paths exist in G. This can be
used to generate the levels of the partial tree. Let V; be the vertices in levels
0,7,7+A, ..., 7+t Consider the set of vertices, U, that are within distance
A of a vertex in V;. Clearly, U contains all the vertices in level j + (¢ + 1)A.
However, U may also contain vertices in lower numbered levels. The vertices
in level j+ (¢4 1) are those vertices in U that are not within distance A —1
of a vertex in V;. Thus, to get V;;; we add to V; all vertices that are within
distance XA but not A — 1 of V.

Pseudocode for the algorithm appears in Figure 1. Note that to find an
equivalence class with at most n /) vertices, the algorithm just tries all classes
in order, discarding a class if it generates too many vertices.

Referring to Figure 1, the algorithm’s space bound is dominated by the
number of vertices in S and S’, and the space needed to test whether a vertex
is within distance A of a vertex in S. There are never more than n/\ + 1
vertices in S and S’, so the algorithm uses O((nlogn)/A) space to store
these vertices. The time bound is dominated by repeatedly testing whether
a vertex is within distance A of a vertexin S. This test is performed O(n®/))

Algorithm Bfs (integer:));
{remember every Ath level of the breadth-first search tree}
for j = 0to A — 1 do begin {first level to remember, apart from level 0}
S = {s}.
for all vertices, v do begin {Find vertices on the first level}
if v within distance j of s and
v not within distance j — 1 of s then
if |S| > n/) then try next j.
{Don’t store more than n/\ vertices, + vertex s}
else add v to S.

end;
for : =1 to |n/A| do begin
S'=10.
for all vertices, v do begin {Find vertices on the next level. x}

if v within distance A of some vertex in S and
v not within distance A — 1 of any vertex in .S then
if |S|+|S’| > n/) then try next j.
else add v to S'.
end;
S=5uUS".
end;
if ¢ within distance A of a vertex in S then return (CONNECTED);
else return (NOT CONNECTED);
end;

end Bfs.

Figure 1: Details of the breadth-first search algorithm

times — the innermost loop to find the vertices on the next level of the tree
makes O(n - n/A) such tests (testing for a path from the O(n/)) vertices in
S to all other O(n) vertices), and is executed O(X - n/)) times.

In summary, we have shown the following.

Theorem 2.1 For any n-vertex directed graph and any integer A\,1 <

5

A < n, the breadth-first search algorithm presented above solves s-t connec-
tivity in space O((nlogn)/A+Sparu (X, n)) and time O((n®/X)-Tparu (A, n)),
where Spara(A,n) and Tpara (A, n) denote the space and time bounds, respec-
tively, of the algorithm used to test for a path of length at most A between
two vertices in an n-vertex graph.

Note that we assume that testing for a path of length at most j, 7—1, or
A—1 will not take asymptotically more time or space than testing for a path of
length at most A. This is because the first three problems are easily reduced
to the latter. To test for a path of length at most A, A’ < A, from some vertex
in a set S to some vertex v, connect A —)’ new vertices, v1,vs,...,Ux_x, In
a chain to v by adding the edges (v,v1),(v1,v2), (v2,v3),. .., (Va_xi—1,Va-n).
There will be a path in the new graph from some vertex u € § to vy_y of
length at most A if and only if there was a path in the original graph from
u to v of length at most A’.

Using a straightforward enumeration of all paths, testing whether a vertex
is within distance A requires n°*) time and O(\log n) space. This algorithm
is not sufficient for our purposes. In particular, if A is asymptotically greater
than a constant, the algorithm uses superpolynomial time. If we restrict our
input to graphs with bounded degree, there is a slight improvement. In a
graph where the outdegree is bounded by d, the number of paths of length
A from a vertex is at most d*. For these graphs, A can be O(logn), and
the algorithm will run in polynomial time. Note that the overall algorithm
still does not use sublinear space in this case, even though the subroutine for
finding paths of length A does.

The problem with this algorithm is its method of finding vertices within
distance A. Explicitly enumerating all paths is not very clever, and uses too
much time. There is hope for improvement, though, since this method uses
only O(Xlog n) space, much less than the O($ logn) used by the rest of the
algorithm. Indeed, in the next section we give an algorithm that uses more
space but runs much faster.

3 The Short Paths Tradeoff

Consider the short paths problem.

Definition 3.1 Given a directed graph, G, and two distinguished ver-
tices, s and t, the short paths problem for function f(n) is to determine
whether there is a path in G from s to t of length less than or equal to f(n).

The short paths problem is a special case of STCON that seems to retain
many of the difficulties of the general problem. It is particularly interest-
ing given the breadth-first search algorithm above, because a more efficient
method of finding short paths would clearly lead to an improvement in that
algorithm’s time bound.

Our second tradeoff is an algorithm that solves the short paths problem
for many f(n) in sublinear space and polynomial time. As will become

clear, we will eventually want f(n) = 26(\/@), but to simplify the following
discussion, we begin with the more modest goal of finding a sublinear space,
polynomial time algorithm for the short paths problem with f(n) = log®n,
for some integer constant ¢ > 1.

As noted before, we already have a sublinear space, polynomial time al-
gorithm that searches to distance logn on bounded degree graphs — because
there are a constant number of ways to leave each vertex, we can enumerate
and test all paths of length log » in polynomial time. In a general graph, this
approach will not work, because there can be up to n — 1 possible edges from
each vertex, and explicit enumeration can yield a superpolynomial number of
paths of length log n. We can avoid this problem by using a labeling scheme
that limits the number of possible choices at each step of the path.

Suppose we divide the vertices into k sets, according to their vertex num-
ber mod k. Then, every path of length L (L = f(n)) can be mapped to an
(L + 1)-digit number in base k, where digit ¢ has value j if and only if the
tth vertex in the path is in set j. Conversely, each such number defines a set
of possible paths of length L.

Given this mapping, our algorithm is straightforward: generate all possi-
ble (L + 1)-digit k-ary numbers, and check for each number whether there is
a path in the graph that matches it. For a given k-ary number, the algorithm
uses approximately 2n/k space to test for the existence of a matching path
in the graph, as follows. Suppose we are looking for a path from s to ¢, and
want to test the (L 4 1)-digit number (s mod k,d;,ds,...,dr_1,t mod k).
We begin with a bit vector of size [n/k|, which corresponds to the vertex

set d;. Zero the vector, and then examine the outedges of s, marking any
vertex v in set d; (by setting the corresponding bit in the vector) if we find
an edge from s to v. When we are finished, the marked vertices in the vector
are the vertices in d; that have a path from s that maps to the first two
digits of the number. Using this vector, we can run a similar process to find
the vertices in d, that have a path from s that maps to the first three digits
of the number, and store them in a second vector of size [n/k|. In general,
given a bit vector of length [n/k]| representing the vertices in d; with a path
from s that maps to the first 2 + 1 digits of the number, we use the other
vector to store the vertices in d;;; with a path from s that maps to the first
t + 2 digits. Pseudocode for the algorithm appears in Figure 2. Notice that
the algorithm as given does not solve the short paths problem, as it tests for
the existence of a path from s to ¢ of length ezactly L, not at most L. Any
such algorithm can easily be converted into an algorithm for the short paths
problem by adding a self-loop to s. For simplicity, we omit this detail from
our algorithms.

The algorithm uses space O(n/k) to store the vectors, and O(Llog k) to
write down the path to be tested. Let D be the maximum number of edges
from one set of vertices d; to another set of vertices d; (¢ and j can be the
same). For all steps in each path, we do at most O(n/k + D) work zeroing
the vector and testing for edges from d;_; to d;. Since D = O(n?/k?), the
algorithm uses O(kFL - n?/k?) = O(kFn®) time to test all L steps on each of
the kT paths.

Unfortunately, this does not reach our goal of polynomial time and sublin-
ear space when I = log®n. With a distance as small as log n, k” is only poly-
nomial if k is constant, and if k is constant, the algorithm does not use sublin-
ear space. We can achieve polynomial time and sublinear space by reducing
the distance the algorithm searches. For example, if L = logn/loglogn, k
can be log®n for any constant ¢, and the algorithm will run in O(n/log®n)
space and O((log n)clog™/ loglogny3) — O(nc+3) time.

The algorithm can be improved by invoking it recursively. Consider the
loop in the algorithm that tests for edges between one set of vertices and the
next. This loop, in effect, finds paths of length one from marked vertices in
the first set to vertices in the second set. Instead of finding paths of length
one, we can use the short paths algorithm to find paths of length L, yielding

Algorithm SP (integer: k, L; vertex s, t);
{Test for a path of length L between s and ¢ using space O(n/k)}
Create Vp and Vi, two [n/k]| bit vectors.
for all (L + 1)-digit numbers in base &,
(dg = s mod k,dy,...,dr—1,dr =t mod k) do begin
Set all bits in Vj to zero, and mark s (set the corresponding bit to 1).
for i =1 to L do begin
Set all bits in V; p0q2 to zero.
{Find edges from d;_; to d;}
for all v in d;_; marked in V{;_1)moaz and all v in d; do begin
if (u,v)is an edge then
mark v in V; pod2.
end;
end;
if ¢is marked in V7 moa2 then return (CONNECTED);
end;
return (NoT CONNECTED);
end SP.

Figure 2: Details of the short paths algorithm

an algorithm that uses twice as much space, but finds paths of length LZ2.
In general, using r > 1 levels of recursion, the improved algorithm can find
paths of length L™ using O(r(n/k + Llogk)) space. If we make a recursive
call for every possible pair of vertices in d;_; X d;, we get a time bound of
O((kY'L - n?/k?)") = O(n**1k™L), since L" = O(n). In Figure 3, we present
the pseudocode for our recursive algorithm. This algorithm uses a further
refinement to improve the time bound — one recursive call is used to find all
vertices in d; reachable from any reachable vertex in d;_;.

Given the discussion above, the time used by the recursive algorithm is
bounded by the following recurrence relation, where T'(j) is the time used
by the algorithm with j levels of recursion. For an appropriately chosen

Algorithm SPR (integer: k, L, r, d,, d;; vector V;): vector;
{Return the vector of vertices in set d; that are reachable by paths
of length L" from vertices in set d, that are marked in vector V,}
Create Vg, Vi, and V;, three [n/k]|-bit vectors. Set all bits in V; to zero.
if » =0 then {base case}
for all v in d, marked in V, and all v in d; do begin
if (u,v)is an edge then
mark v in V;.
end;
else
for all (L + 1)-digit numbers in base &,
(do = ds,d1,...,dr-1,dr, = d;) do begin
Vo=V,
for : = 1 to L do begin {Find paths from d;_; to d;}
Vimoa2 = SPR(k, L,r — 1,d;_1,di, Vii_1) mod 2)-
end;
Set all bits in V; that are set in Vi modq 2.
end;
return (1});
end SPR.

Figure 3: Details of the recursive short paths algorithm

constant c,

N O(n?/k?) if 5 =0.
T@) = { EEL(T(j — 1) + en/k) ifj’ > 0.

In the base case, the algorithm does O(n?/k?) work. At other levels, the
algorithm makes kUL recursive calls to itself, as well as doing some auxiliary
work, such as setting all vector entries to zero. Solving the recurrence relation

for j = r gives time O((KFL)" - n?/k?) = O(n®k™L).

In summary, we have shown the following.

10

Theorem 3.2 For arbitrary integersr, k, and L, such thatr > 1, L > 1,
n>k>1, and L" < n, the recursive short paths algorithm, presented above,
can search to distance L™ in time O(kK"V L™ - n?/k?) (= O(n®k"!)) and space
O(r(n/k + Llogk)).

3.1 Notes on the Algorithm

This recursive algorithm meets our goal of finding a sublinear space, poly-
nomial time algorithm that detects paths of polylogarithmic length. For
example, for L = logn/loglogn, k = log" n, and constant r > 2, the algo-
rithm searches to distance L” = w(log” *n) in time O(n®k"™L) = O(n""*3)
and space O(rn/log” n). However, as mentioned in the introduction, this al-
gorithm does not by itself give a polynomial time, sublinear space algorithm
for STCON. The algorithm searches to distance L” by testing k"% numbers.
If L" = n, then k'F is polynomial only if & = O(1). But if & = O(1), the

algorithm does not use sublinear space.

The algorithm, which was designed to solve the short paths problem, is
actually a general algorithm for s-¢ connectivity, with behavior and perfor-
mance similar to the best-known previous algorithms. If welet £ =1, L = n,
and » = 1, the algorithm is a somewhat inefficient variant of breadth-first
search that uses O(n) space and O(n(n + m)) time: the algorithm first finds
all vertices at distance 1 from s, then distance 2, etc., until it has searched to
distance n. At the other end of the time-space spectrum, Savitch’s algorithm
is just the special case of this algorithm where k = n, L = 2, and r = [log n]
— this is also the minimum space bound for the algorithm.

4 Combining the Two Algorithms

As an immediate consequence of the previous two sections, we have an algo-
rithm for STCON using sublinear space and polynomial time: use the modified
breadth-first search algorithm to find every (log®n)-th level of the tree (for
integer constant ¢ > 2), with the recursive short paths algorithm (the version
that checks for paths of length up to L") as a subroutine to find the paths
between levels. With careful choices of the parameters k£, L and r, however,

11

the algorithm can use even less space while still maintaining polynomial time.

In general, if we set A in the breadth-first search algorithm to be L", the
breadth-first search algorithm finds every (L")-th level of the tree, and the
short paths algorithm searches to distance L". Substituting the space bound
for the short paths algorithm (see Theorem 3.2) for the term Spy7ry (A, n) in
the breadth-first search algorithm (see Theorem 2.1), we get a space bound
for this algorithm of

O((nlogn)/L" + r(n/k + Llog k)), (1)

where the first term corresponds to the space used by the partial breadth-first
tree, and the second to the space used to find short paths. Substituting the
short paths time bound for the term Tparg (A, n) in the breadth-first search
time bound gives a time bound of

O((n3/Lr) . erLr . 7‘1,2/]{32) _ O(nSer—Z)-

The above time bound applies when we call the short paths algorithm
every time the breadth-first search algorithm needs to know whether one
vertex is within distance L" of another. The two algorithms can be combined
more efficiently by noticing that the short paths algorithm can answer many
short paths queries in one call — for any pair of sets, (Q, R), such that R is
one of the k sets of vertices in the short paths algorithm, and @) is a subset
of one of the k sets, one call to the short paths algorithm can be used to find
all vertices in R within distance L" of a vertex in (). Thus, the short paths
algorithm only needs to be called 2k? times to generate the next level of the
tree, twice for each possible pair of the k sets in the short paths algorithm.
Figure 4 gives the code that should be used in place of the loop in Figure 1
(marked with a *) that finds vertices on the next level of the breadth-first
search tree. Similar code should replace the earlier loop in Figure 1 that
finds the vertices on the first level.

The improved version makes a total of O(k?n/L") calls to the short paths
algorithm, for a time bound of

O((K*n/L") - K'FL" - n®/k*) = O(n®k™F).

We want to find the minimum amount of space the algorithm can use
while still maintaining a polynomial running time. To maintain polynomial

12

{S is the set of vertices on previous tree levels. S’ (initially
the empty set) will be the set of vertices on the next level}
for :; =0 to £ — 1 do begin
Si, = {all vertices whose vertex number mod k = 4, }.
P=10. {P will be all vertices in S;, on the next tree level}
for 15 = 0to k£ — 1 do begin
S;, = {all vertices whose vertex number mod k = i,}.
Q=5NS5,. {Q is all vertices in S;, on previous tree levels}
A = {all vertices in S;, within distance L" of a vertex in Q}.
B = {all vertices in S;; within distance L" — 1 of a vertex in Q}.
P=PU(A- B).
end;
if |S|+|S’UP|>n/L" then try next j.
else S'=5"UP.
end;

Figure 4: Combining the two algorithms efficiently.

time, we must have, for some constant, a,

kL = ne. (2)

For simplicity, we bound expression (1) from below by
Qn/L" 4+ n/k). (3)

(That is, we omit the logn factor in the first summand and the r fac-
tor in the second summand, and leave out the third summand altogether.)
The minimum value of the bound (3) is reached when the denominators
are equal. For any given k, the product rL is fixed; thus the quantity
L" reaches its maximum, and the bound reaches its minimum, when L is
a constant. Substituting L" for k in Equation 2 and solving for r yields

r = 1/(a/L)logn = O(y/Tog n), and thus k = 20(v1os™),
Substituting these values, i/logn for r, 90(+/logn) for k, and a con-

stant for L, into the simplified space bound expression (3) gives a bound

13

of n/29(v1°8™) Substituting these same values into the actual space bound

expression (1) yields the same asymptotic space bound, n/2®(\/@). Since
this matches the minimum for the simplified expression, which was a lower
bound for this expression, we cannot do any better, and this must be the
minimum space bound for the algorithm when using polynomial time.

The results of this section are summarized in the following theorem and
its corollary.

Theorem 4.1 The combined algorithm, described above, solves STCON in
space O((nlogn)/L" +r(n/k+ Llogk)) and time O(n®k™L), for any integers
r,k, and L that satisfyn > k> 1,» > 1,L > 1, and L" < n.

Corollary 4.2 The combined algorithm can solve STCON in time n®®)

and space n/2°9(V1gn),

Proof: Choose r = 1/Togn, k = 2°(V1°¢") and I = 2 in Theorem 4.1.
As discussed above, these choices minimize space while retaining polynomial
time. O

5 Conclusions and Future Work

The obvious open problem raised by this work is to improve our algorithm
to use less space while maintaining polynomial time. There is good reason to
believe that this is possible. First of all, the current bound of simultaneous

n/2®(\/@) space and polynomial time is not aesthetically appealing. More
concretely, our algorithm was devised using a small collection of simple but
useful ideas for trading time for space while searching a graph. Any new
tradeoff, when combined with the old ones, may yield a substantial improve-
ment in the space bound.

Of the two, the breadth-first search tradeoff seems more open to improve-
ment or even replacement. If we view our algorithm as operating on the
breadth-first search tree of s, then it becomes apparent that it uses breadth-
first search to slice the graph into pieces, and the short paths algorithm to

14

explore these pieces. Partitioning the graph into sets of vertices with a cer-
tain property seems a reasonable approach to solving STCON in small space
(in our case, the property relates to the length of the shortest path from s to
the vertices in the set). However, it is not clear that viewing the graph as a
breadth-first search tree yields the best algorithm. Even if we do fix on the
breadth-first search tree, it is not clear that remembering a fraction of the
levels in the tree is the most efficient way to partition the vertices.

The short paths problem seems more central to solving STCON in sublinear
space. Many of the difficulties one faces when designing small space STCON
algorithms exist for the short paths problem as well. As noted in Section 3.1,
our algorithm designed to solve the short paths problem actually turns out
to be a general algorithm for s-¢ connectivity. Any improvement to the short
paths algorithm would probably be very useful in designing future small space
STCON algorithms.

Our algorithm for STCON does not perform nearly as well as the recent
sublinear space algorithms for USTCON by Barnes and Ruzzo [1], Nisan [5],
and Nisan et al. [6]. This may be due to a fundamental difference between
connectivity on directed and undirected graphs. The results of Barnes and
Ruzzo, and of Nisan et al. exploit the symmetry of undirected graphs to
group many vertices into one vertex that has the same connectivity proper-
ties. Nisan and Nisan et al. use techniques based on a random walk on a
graph, a process that is surprisingly eflicient for discovering connectivity in
undirected graphs, but woefully inadequate on directed graphs. Generaliz-
ing these algorithms to directed graphs, or finding a directed graph property
that can be similarly exploited, might yield an improved algorithm for STCON
(and USTCON). In the absence of such shortcuts, it seems likely that future
algorithms must also rely on enumerating all possible paths in limited time
and space.

Acknowledgements

Allan Borodin pointed us toward the short paths problem. Uri Feige helped
find the minimum space bound.

15

References

1]

G. Barnes and W. L. Ruzzo. Deterministic algorithms for undirected s-¢
connectivity using polynomial time and sublinear space. In Proceedings
of the Twenty Third Annual ACM Symposium on Theory of Computing,
pages 43-53, New Orleans, LA, May 1991. To appear Computational
Complexity.

S. A. Cook. Deterministic CFL’s are accepted simultaneously in polyno-
mial time and log squared space. In Proceedings of the Eleventh Annual
ACM Symposium on Theory of Computing, pages 338-345, Atlanta, GA,
Apr.-May 1979.

S. A. Cook and C. W. Rackoft. Space lower bounds for maze threadability
on restricted machines. SIAM Journal on Computing, 9(3):636-652, Aug.
1980.

H. R. Lewis and C. H. Papadimitriou. Symmetric space-bounded com-
putation. Theoretical Computer Science, 19(2):161-187, Aug. 1982.

N. Nisan. RL C SC. In Proceedings of the Twenty Fourth Annual ACM
Symposium on Theory of Computing, pages 619-623, Victoria, B.C.,
Canada, May 1992.

N. Nisan, E. Szemerédi, and A. Wigderson. Undirected connectivity in
O(log*® n) space. In 33rd Annual Symposium on Foundations of Com-
puter Science, Pittsburgh, PA, Oct. 1992. IEEE.

W. J. Savitch. Relationships between nondeterministic and deterministic
tape complexities. Journal of Computer and System Sciences, 4(2):177-
192, 1970.

M. Tompa. Two familiar transitive closure algorithms which admit no
polynomial time, sublinear space implementations. SIAM Journal on

Computing, 11(1):130-137, Feb. 1982.

A. Wigderson. The complexity of graph connectivity. In Mathematical
Foundations of Computer Science: Proceedings, 17th Symposium, vol-
ume 629 of Lecture Notes in Computer Science, pages 112-132, Prague,
Czechoslovakia, Aug. 1992. Springer-Verlag.

RCS Revision: 2.25 Date: 1993/04/28 20:20:35 .

16

