
A Sublinear Space� Polynomial Time

Algorithm for Directed s�t Connectivity

Greg Barnes �

Jonathan F� Buss y

Walter L� Ruzzo z

Baruch Schieber x

May ��� ����

Abstract

Directed s�t connectivity is the problem of detecting whether there

is a path from vertex s to vertex t in a directed graph� We present the

	rst known deterministic sublinear space� polynomial time algorithm

for directed s�t connectivity� For n�vertex graphs� our algorithm can

use as little as n����
p

logn� space while still running in polynomial

time�

� Introduction

The s�t connectivity problem is a fundamental one� since it is the natural
abstraction of many computational search processes� and a basic building

�Max�Planck�Institut f�ur Informatik� Im Stadtwald� W ���� Saarbr�ucken� Germany�

This research was conducted while the author was at the University of Washington� Re�

search supported by NSF Grant CCR�����	�
� Email address� barnes�mpi�sb�mpg�de�
yDepartment of Computer Science� University of Waterloo� Waterloo� Ontario� Canada

N�L �G
� Research supported in part by a grant from NSERC� Email address�

jfbuss�math�uwaterloo�ca�
zDept� of Computer Science and Engineering� FR��
� University ofWashington� Seattle�

WA �	
�
� U�S�A� Research supported by NSF Grant CCR�����	�
� Email address�

ruzzo�cs�washington�edu�
xIBM � Research Division� T�J� Watson Research Center� P�O� Box �
	� Yorktown

Heights� NY 
�
�	� U�S�A� Email address� sbar�watson�ibm�com�

�



block for more complex graph algorithms� In computational complexity the�
ory� it has an additional signi�cance� understanding its complexity is a key
to understanding the relationship between deterministic and nondetermin�
istic space bounded complexity classes� In particular� the s�t connectivity
problem for directed graphs �stcon� is the prototypical complete problem
for nondeterministic logarithmic space 	
�� Both stcon and the undirected
version of the problem� ustcon� are DLOG�hard � any problem solvable
deterministically in logarithmic space can be reduced to either problem 	
� 
��

Establishing the deterministic space complexity of stcon would tell us a
great deal about the relationship between deterministic and nondeterministic
space bounded complexity classes� For example� showing a deterministic log
space algorithm for directed connectivity would prove that DSPACE�f�n�� �
NSPACE�f�n�� for any constructible f�n� � ��log�n�� 	
�� Unfortunately�
this remains a di�cult open problem� A fruitful intermediate step is to
explore time�space tradeo�s for stcon� that is� the simultaneous time and
space requirements of algorithms for directed connectivity� No nontrivial
lower bounds are known for general models of computation �such as Turing
machines� on either the space� or on the simultaneous space and time required
to solve stcon� although Cook and Racko� 	�� and Tompa 	�� have obtained
lower bounds for restricted models� This paper presents new upper bounds
for the problem�

The standard algorithms for connectivity� breadth� and depth��rst search�
run in optimal time ��m � n� and use ��n log n� space� At the other ex�
treme� Savitch�s Theorem 	
� provides a small space ���log� n�� algorithm
that requires time exponential in its space bound �i�e�� time n��logn��� Cook
and Racko� show an algorithm for their more restricted �JAG� model that
is similar to� but more subtle than Savitch�s� it has essentially the same time
and space performance�

Recent progress has been made on the time�space complexity of ustcon�
Barnes and Ruzzo 	�� show the �rst sublinear space� polynomial time algo�
rithms for undirected connectivity� Nisan 	�� shows that O�log� n� space and
polynomial time su�ce� Nisan et al� 	�� show the �rst ustcon algorithm
that uses less space than Savitch�s algorithm �O�log��� n� vs� ��log� n���

Prior to the present paper� there was no corresponding sublinear space�
polynomial time algorithm known for stcon� and there was some evidence

�



suggesting that none was possible� It has been conjectured 	�� that no de�
terministic stcon algorithm can run in simultaneous polynomial time and
polylogarithmic space� Tompa 	�� shows that certain natural approaches to
solving stcon admit no such solution� Indeed� he shows that for these ap�
proaches� performance degrades sharply with decreasing space� Space o�n�
implies superpolynomial time� and space n��� for �xed � � � implies time
n��logn�� essentially as slow as Savitch�s algorithm�

The main result of our paper is a new deterministic algorithm for directed
s�t connectivity that achieves polynomial time and sublinear space simultane�
ously� While not disproving the conjecture of 	��� it shows that the behavior
elicited from certain algorithms by Tompa is not intrinsic to the problem�

Our algorithm can use as little as n����
p

logn� space while still running in
polynomial time� As part of this algorithm� we present an algorithm that
�nds short paths in a directed graph in polynomial time and sublinear space�
The short paths problem is a special case of stcon that retains many of the
di�culties of the general problem� and seems particularly central to design�
ing small space algorithms for stcon� We are not aware of any previous
algorithms that solve this problem in sublinear space and polynomial time�
Interestingly� our algorithm for the short paths problem is a generalization of
two well�known algorithms for stcon� In one extreme it reduces to a variant
of the linear time breadth��rst search algorithm� and in the other extreme it
reduces to the O�log� n� space� superpolynomial time algorithm of Savitch�

Our algorithm to solve stcon in polynomial time and sublinear space
is constructed from two algorithms with di�erent time�space tradeo�s� The
�rst performs a modi�ed breadth��rst search of the graph� while the second
�nds short paths� Alone� neither algorithm can solve stcon in simulta�
neous polynomial time and sublinear space� In the following two sections�
we present the breadth��rst search algorithm and the short paths algorithm�
Section 
 shows how the two algorithms can be combined to yield the desired
result� Section � presents some notes and concluding remarks�

For more information on graph connectivity� see the survey paper by
Wigderson 	���

�



� The Breadth�First Search Tradeo�

Consider the tree constructed by a breadth��rst search beginning at s� The
tree can contain n vertices� and thus requires O�n log n� space to store� In�
stead of constructing the entire tree� our modi�ed breadth��rst search gen�
erates a fraction of the tree�

Suppose we want our modi�ed tree to contain at most n�� vertices� We
can do this by only storing �the vertices in� every �th level of the tree� Num�
ber the levels of the tree �� �� � � � � n � �� where a vertex v is on level l if
the shortest path from s to v is of length l� Divide the levels into equiva�
lence classes C�� C�� � � � � C��� based on their number mod �� Besides s� the
algorithm stores only the vertices in one equivalence class Cj� where j is the
smallest value for which Cj has no more than the average number of vertices�
n���

The algorithm constructs this partial tree one level at a time� It begins
with level �� which consists of s only� and generates levels j� j � �� j � ���
� � � � j � � � bn��c� Given a set� S� of vertices� we can �nd all vertices within
distance � of S in time nO��� and space O�� log n� by enumerating all possible
paths of length at most � and checking which paths exist in G� This can be
used to generate the levels of the partial tree� Let Vi be the vertices in levels
�� j� j��� � � � � j�i�� Consider the set of vertices� U � that are within distance
� of a vertex in Vi� Clearly� U contains all the vertices in level j � �i� ����
However� U may also contain vertices in lower numbered levels� The vertices
in level j��i���� are those vertices in U that are not within distance �� �
of a vertex in Vi� Thus� to get Vi	� we add to Vi all vertices that are within
distance � but not �� � of Vi�

Pseudocode for the algorithm appears in Figure �� Note that to �nd an
equivalence class with at most n�� vertices� the algorithm just tries all classes
in order� discarding a class if it generates too many vertices�

Referring to Figure �� the algorithm�s space bound is dominated by the
number of vertices in S and S�� and the space needed to test whether a vertex
is within distance � of a vertex in S� There are never more than n�� � �
vertices in S and S�� so the algorithm uses O��n log n���� space to store
these vertices� The time bound is dominated by repeatedly testing whether
a vertex is within distance � of a vertex in S� This test is performed O�n
���






Algorithm Bfs �integer� ���
fremember every �th level of the breadth��rst search treeg

for j � � to �� � do begin f�rst level to remember� apart from level �g
S � fsg�
for all vertices� v do begin fFind vertices on the �rst levelg
if v within distance j of s and

v not within distance j � � of s then
if jSj � n�� then try next j�

fDon�t store more than n�� vertices� � vertex sg
else add v to S�

end�
for i � � to bn��c do begin

S � � ��
for all vertices� v do begin fFind vertices on the next level� �g
if v within distance � of some vertex in S and

v not within distance �� � of any vertex in S then

if jSj� jS�j � n�� then try next j�
else add v to S��

end�
S � S � S��

end�
if t within distance � of a vertex in S then return �Connected��
else return �Not Connected��

end�
end Bfs�

Figure �� Details of the breadth��rst search algorithm

times � the innermost loop to �nd the vertices on the next level of the tree
makes O�n � n��� such tests �testing for a path from the O�n��� vertices in
S to all other O�n� vertices�� and is executed O�� � n��� times�

In summary� we have shown the following�

Theorem ��� For any n�vertex directed graph and any integer �� � �

�



� � n� the breadth��rst search algorithm presented above solves s�t connec�
tivity in space O��n log n����SPATH ��� n�� and time O��n
����TPATH ��� n���
where SPATH ��� n� and TPATH ��� n� denote the space and time bounds� respec�

tively� of the algorithm used to test for a path of length at most � between

two vertices in an n�vertex graph�

Note that we assume that testing for a path of length at most j� j� �� or
��� will not take asymptotically more time or space than testing for a path of
length at most �� This is because the �rst three problems are easily reduced
to the latter� To test for a path of length at most ��� �� � �� from some vertex
in a set S to some vertex v� connect � � �� new vertices� v�� v�� � � � � v����� in
a chain to v by adding the edges �v� v��� �v�� v��� �v�� v
�� � � � � �v����

��� v������
There will be a path in the new graph from some vertex u � S to v���� of
length at most � if and only if there was a path in the original graph from
u to v of length at most ���

Using a straightforward enumeration of all paths� testing whether a vertex
is within distance � requires nO��� time and O�� log n� space� This algorithm
is not su�cient for our purposes� In particular� if � is asymptotically greater
than a constant� the algorithm uses superpolynomial time� If we restrict our
input to graphs with bounded degree� there is a slight improvement� In a
graph where the outdegree is bounded by d� the number of paths of length
� from a vertex is at most d�� For these graphs� � can be O�log n�� and
the algorithm will run in polynomial time� Note that the overall algorithm
still does not use sublinear space in this case� even though the subroutine for
�nding paths of length � does�

The problem with this algorithm is its method of �nding vertices within
distance �� Explicitly enumerating all paths is not very clever� and uses too
much time� There is hope for improvement� though� since this method uses
only O�� log n� space� much less than the O�n

�
log n� used by the rest of the

algorithm� Indeed� in the next section we give an algorithm that uses more
space but runs much faster�

� The Short Paths Tradeo�

Consider the short paths problem�

�



De�nition ��� Given a directed graph� G� and two distinguished ver�

tices� s and t� the short paths problem for function f�n� is to determine

whether there is a path in G from s to t of length less than or equal to f�n��

The short paths problem is a special case of stcon that seems to retain
many of the di�culties of the general problem� It is particularly interest�
ing given the breadth��rst search algorithm above� because a more e�cient
method of �nding short paths would clearly lead to an improvement in that
algorithm�s time bound�

Our second tradeo� is an algorithm that solves the short paths problem
for many f�n� in sublinear space and polynomial time� As will become

clear� we will eventually want f�n� � ���
p

logn�� but to simplify the following
discussion� we begin with the more modest goal of �nding a sublinear space�
polynomial time algorithm for the short paths problem with f�n� � logc n�
for some integer constant c � ��

As noted before� we already have a sublinear space� polynomial time al�
gorithm that searches to distance log n on bounded degree graphs � because
there are a constant number of ways to leave each vertex� we can enumerate
and test all paths of length log n in polynomial time� In a general graph� this
approach will not work� because there can be up to n�� possible edges from
each vertex� and explicit enumeration can yield a superpolynomial number of
paths of length log n� We can avoid this problem by using a labeling scheme
that limits the number of possible choices at each step of the path�

Suppose we divide the vertices into k sets� according to their vertex num�
ber mod k� Then� every path of length L �L � f�n�� can be mapped to an
�L � ���digit number in base k� where digit i has value j if and only if the
ith vertex in the path is in set j� Conversely� each such number de�nes a set
of possible paths of length L�

Given this mapping� our algorithm is straightforward� generate all possi�
ble �L����digit k�ary numbers� and check for each number whether there is
a path in the graph that matches it� For a given k�ary number� the algorithm
uses approximately �n�k space to test for the existence of a matching path
in the graph� as follows� Suppose we are looking for a path from s to t� and
want to test the �L � ���digit number hs mod k� d�� d�� � � � � dL��� t mod ki�
We begin with a bit vector of size dn�ke� which corresponds to the vertex






set d�� Zero the vector� and then examine the outedges of s� marking any
vertex v in set d� �by setting the corresponding bit in the vector� if we �nd
an edge from s to v� When we are �nished� the marked vertices in the vector
are the vertices in d� that have a path from s that maps to the �rst two
digits of the number� Using this vector� we can run a similar process to �nd
the vertices in d� that have a path from s that maps to the �rst three digits
of the number� and store them in a second vector of size dn�ke� In general�
given a bit vector of length dn�ke representing the vertices in di with a path
from s that maps to the �rst i � � digits of the number� we use the other
vector to store the vertices in di	� with a path from s that maps to the �rst
i� � digits� Pseudocode for the algorithm appears in Figure �� Notice that
the algorithm as given does not solve the short paths problem� as it tests for
the existence of a path from s to t of length exactly L� not at most L� Any
such algorithm can easily be converted into an algorithm for the short paths
problem by adding a self�loop to s� For simplicity� we omit this detail from
our algorithms�

The algorithm uses space O�n�k� to store the vectors� and O�L log k� to
write down the path to be tested� Let D be the maximum number of edges
from one set of vertices di to another set of vertices dj �i and j can be the
same�� For all steps in each path� we do at most O�n�k �D� work zeroing
the vector and testing for edges from di�� to di� Since D � O�n��k��� the
algorithm uses O�kLL � n��k�� � O�kLn
� time to test all L steps on each of
the kL paths�

Unfortunately� this does not reach our goal of polynomial time and sublin�
ear space when L � logc n� With a distance as small as log n� kL is only poly�
nomial if k is constant� and if k is constant� the algorithm does not use sublin�
ear space� We can achieve polynomial time and sublinear space by reducing
the distance the algorithm searches� For example� if L � log n� log log n� k
can be logc n for any constant c� and the algorithm will run in O�n� logc n�
space and O��log n�c logn� log lognn
� � O�nc	
� time�

The algorithm can be improved by invoking it recursively� Consider the
loop in the algorithm that tests for edges between one set of vertices and the
next� This loop� in e�ect� �nds paths of length one from marked vertices in
the �rst set to vertices in the second set� Instead of �nding paths of length
one� we can use the short paths algorithm to �nd paths of length L� yielding

�



Algorithm SP �integer� k� L� vertex s� t��
fTest for a path of length L between s and t using space O�n�k�g

Create V� and V�� two dn�ke bit vectors�
for all �L� ���digit numbers in base k�

hd� � s mod k� d�� � � � � dL��� dL � t mod ki do begin

Set all bits in V� to zero� and mark s �set the corresponding bit to ���
for i � � to L do begin

Set all bits in Vimod� to zero�
fFind edges from di�� to dig

for all u in di�� marked in V�i��� mod � and all v in di do begin

if �u� v� is an edge then
mark v in Vimod��

end�
end�
if t is marked in VLmod � then return �Connected��

end�
return �Not Connected��

end SP�

Figure �� Details of the short paths algorithm

an algorithm that uses twice as much space� but �nds paths of length L��
In general� using r � � levels of recursion� the improved algorithm can �nd
paths of length Lr using O�r�n�k � L log k�� space� If we make a recursive
call for every possible pair of vertices in di�� � di� we get a time bound of
O��kLL � n��k��r� � O�n�r	�krL�� since Lr � O�n�� In Figure �� we present
the pseudocode for our recursive algorithm� This algorithm uses a further
re�nement to improve the time bound � one recursive call is used to �nd all
vertices in di reachable from any reachable vertex in di���

Given the discussion above� the time used by the recursive algorithm is
bounded by the following recurrence relation� where T �j� is the time used
by the algorithm with j levels of recursion� For an appropriately chosen

�



Algorithm SPR �integer� k� L� r� ds� dt� vector Vs�� vector�
fReturn the vector of vertices in set dt that are reachable by paths
of length Lr from vertices in set ds that are marked in vector Vsg

Create V�� V�� and Vt� three dn�ke�bit vectors� Set all bits in Vt to zero�
if r � � then fbase caseg
for all u in ds marked in Vs and all v in dt do begin

if �u� v� is an edge then
mark v in Vt�

end�
else

for all �L � ���digit numbers in base k�
hd� � ds� d�� � � � � dL��� dL � dti do begin

V� � Vs�
for i � � to L do begin fFind paths from di�� to dig
Vimod � � SPR�k� L� r � �� di��� di� V�i��� mod ���

end�
Set all bits in Vt that are set in VLmod ��

end�
return �Vt��

end SPR�

Figure �� Details of the recursive short paths algorithm

constant c�

T �j� �

�
O�n��k�� if j � ��
kLL�T �j � �� � cn�k� if j � ��

In the base case� the algorithm does O�n��k�� work� At other levels� the
algorithm makes kLL recursive calls to itself� as well as doing some auxiliary
work� such as setting all vector entries to zero� Solving the recurrence relation
for j � r gives time O��kLL�r � n��k�� � O�n
krL��

In summary� we have shown the following�

��



Theorem ��� For arbitrary integers r� k� and L� such that r � �� L � ��
n � k � �� and Lr � n� the recursive short paths algorithm� presented above�

can search to distance Lr in time O�krLLr � n��k�� �� O�n
krL�� and space

O�r�n�k � L log k���

��� Notes on the Algorithm

This recursive algorithm meets our goal of �nding a sublinear space� poly�
nomial time algorithm that detects paths of polylogarithmic length� For
example� for L � log n� log log n� k � logr n� and constant r � �� the algo�
rithm searches to distance Lr � 	�logr�� n� in time O�n
krL� � O�nr�	
�
and space O�rn� logr n�� However� as mentioned in the introduction� this al�
gorithm does not by itself give a polynomial time� sublinear space algorithm
for stcon� The algorithm searches to distance Lr by testing krL numbers�
If Lr � n� then krL is polynomial only if k � O���� But if k � O���� the
algorithm does not use sublinear space�

The algorithm� which was designed to solve the short paths problem� is
actually a general algorithm for s�t connectivity� with behavior and perfor�
mance similar to the best�known previous algorithms� If we let k � �� L � n�
and r � �� the algorithm is a somewhat ine�cient variant of breadth��rst
search that uses O�n� space and O�n�n�m�� time� the algorithm �rst �nds
all vertices at distance � from s� then distance �� etc�� until it has searched to
distance n� At the other end of the time�space spectrum� Savitch�s algorithm
is just the special case of this algorithm where k � n� L � �� and r � dlog ne
� this is also the minimum space bound for the algorithm�

� Combining the Two Algorithms

As an immediate consequence of the previous two sections� we have an algo�
rithm for stcon using sublinear space and polynomial time� use the modi�ed
breadth��rst search algorithm to �nd every �logc n��th level of the tree �for
integer constant c � ��� with the recursive short paths algorithm �the version
that checks for paths of length up to Lr� as a subroutine to �nd the paths
between levels� With careful choices of the parameters k� L and r� however�

��



the algorithm can use even less space while still maintaining polynomial time�

In general� if we set � in the breadth��rst search algorithm to be Lr� the
breadth��rst search algorithm �nds every �Lr��th level of the tree� and the
short paths algorithm searches to distance Lr� Substituting the space bound
for the short paths algorithm �see Theorem ���� for the term SPATH ��� n� in
the breadth��rst search algorithm �see Theorem ����� we get a space bound
for this algorithm of

O��n log n��Lr � r�n�k � L log k��� ���

where the �rst term corresponds to the space used by the partial breadth��rst
tree� and the second to the space used to �nd short paths� Substituting the
short paths time bound for the term TPATH ��� n� in the breadth��rst search
time bound gives a time bound of

O��n
�Lr� � krLLr � n��k�� � O�n�krL����

The above time bound applies when we call the short paths algorithm
every time the breadth��rst search algorithm needs to know whether one
vertex is within distance Lr of another� The two algorithms can be combined
more e�ciently by noticing that the short paths algorithm can answer many
short paths queries in one call � for any pair of sets� �Q� R�� such that R is
one of the k sets of vertices in the short paths algorithm� and Q is a subset
of one of the k sets� one call to the short paths algorithm can be used to �nd
all vertices in R within distance Lr of a vertex in Q� Thus� the short paths
algorithm only needs to be called �k� times to generate the next level of the
tree� twice for each possible pair of the k sets in the short paths algorithm�
Figure 
 gives the code that should be used in place of the loop in Figure �
�marked with a �� that �nds vertices on the next level of the breadth��rst
search tree� Similar code should replace the earlier loop in Figure � that
�nds the vertices on the �rst level�

The improved version makes a total of O�k�n�Lr� calls to the short paths
algorithm� for a time bound of

O��k�n�Lr� � krLLr � n��k�� � O�n
krL��

We want to �nd the minimum amount of space the algorithm can use
while still maintaining a polynomial running time� To maintain polynomial

��



fS is the set of vertices on previous tree levels� S� �initially
the empty set	 will be the set of vertices on the next levelg

for i� � � to k � � do begin

Si� � fall vertices whose vertex number mod k � i�g�
P � �� fP will be all vertices in Si� on the next tree levelg
for i� � � to k � � do begin

Si� � fall vertices whose vertex number mod k � i�g�
Q � S 	 Si�� fQ is all vertices in Si� on previous tree levelsg
A � fall vertices in Si� within distance Lr of a vertex in Qg�
B � fall vertices in Si� within distance Lr � � of a vertex in Qg�
P � P � �A�B��

end�
if jSj� jS� � P j � n�Lr then try next j�
else S� � S� � P �

end�

Figure 
� Combining the two algorithms e�ciently�

time� we must have� for some constant� a�

krL � na� ���

For simplicity� we bound expression ��� from below by

��n�Lr � n�k�� ���

�That is� we omit the log n factor in the �rst summand and the r fac�
tor in the second summand� and leave out the third summand altogether��
The minimum value of the bound ��� is reached when the denominators
are equal� For any given k� the product rL is �xed� thus the quantity
Lr reaches its maximum� and the bound reaches its minimum� when L is
a constant� Substituting Lr for k in Equation � and solving for r yields

r �
q
�a�L� logLn � ��

p
log n�� and thus k � ���

p
logn��

Substituting these values�
p

log n for r� ���
p

logn� for k� and a con�
stant for L� into the simpli�ed space bound expression ��� gives a bound

��



of n����
p

logn�� Substituting these same values into the actual space bound

expression ��� yields the same asymptotic space bound� n����
p

logn�� Since
this matches the minimum for the simpli�ed expression� which was a lower
bound for this expression� we cannot do any better� and this must be the
minimum space bound for the algorithm when using polynomial time�

The results of this section are summarized in the following theorem and
its corollary�

Theorem ��� The combined algorithm� described above� solves stcon in

space O��n log n��Lr � r�n�k�L log k�� and time O�n
krL�� for any integers

r� k� and L that satisfy n � k � �� r � �� L � �� and Lr � n�

Corollary ��� The combined algorithm can solve stcon in time nO���

and space n����
p

logn��

Proof� Choose r �
p

log n� k � ���
p

logn�� and L � � in Theorem 
���
As discussed above� these choices minimize space while retaining polynomial
time� �

� Conclusions and Future Work

The obvious open problem raised by this work is to improve our algorithm
to use less space while maintaining polynomial time� There is good reason to
believe that this is possible� First of all� the current bound of simultaneous

n����
p

logn� space and polynomial time is not aesthetically appealing� More
concretely� our algorithm was devised using a small collection of simple but
useful ideas for trading time for space while searching a graph� Any new
tradeo�� when combined with the old ones� may yield a substantial improve�
ment in the space bound�

Of the two� the breadth��rst search tradeo� seems more open to improve�
ment or even replacement� If we view our algorithm as operating on the
breadth��rst search tree of s� then it becomes apparent that it uses breadth�
�rst search to slice the graph into pieces� and the short paths algorithm to

�




explore these pieces� Partitioning the graph into sets of vertices with a cer�
tain property seems a reasonable approach to solving stcon in small space
�in our case� the property relates to the length of the shortest path from s to
the vertices in the set�� However� it is not clear that viewing the graph as a
breadth��rst search tree yields the best algorithm� Even if we do �x on the
breadth��rst search tree� it is not clear that remembering a fraction of the
levels in the tree is the most e�cient way to partition the vertices�

The short paths problem seems more central to solving stcon in sublinear
space� Many of the di�culties one faces when designing small space stcon
algorithms exist for the short paths problem as well� As noted in Section ����
our algorithm designed to solve the short paths problem actually turns out
to be a general algorithm for s�t connectivity� Any improvement to the short
paths algorithm would probably be very useful in designing future small space
stcon algorithms�

Our algorithm for stcon does not perform nearly as well as the recent
sublinear space algorithms for ustcon by Barnes and Ruzzo 	��� Nisan 	���
and Nisan et al� 	��� This may be due to a fundamental di�erence between
connectivity on directed and undirected graphs� The results of Barnes and
Ruzzo� and of Nisan et al� exploit the symmetry of undirected graphs to
group many vertices into one vertex that has the same connectivity proper�
ties� Nisan and Nisan et al� use techniques based on a random walk on a
graph� a process that is surprisingly e�cient for discovering connectivity in
undirected graphs� but woefully inadequate on directed graphs� Generaliz�
ing these algorithms to directed graphs� or �nding a directed graph property
that can be similarly exploited� might yield an improved algorithm for stcon
�and ustcon�� In the absence of such shortcuts� it seems likely that future
algorithms must also rely on enumerating all possible paths in limited time
and space�

Acknowledgements

Allan Borodin pointed us toward the short paths problem� Uri Feige helped
�nd the minimum space bound�

��



References

	�� G� Barnes and W� L� Ruzzo� Deterministic algorithms for undirected s�t
connectivity using polynomial time and sublinear space� In Proceedings

of the Twenty Third Annual ACM Symposium on Theory of Computing�
pages 
����� New Orleans� LA� May ����� To appear Computational

Complexity�

	�� S� A� Cook� Deterministic CFL�s are accepted simultaneously in polyno�
mial time and log squared space� In Proceedings of the Eleventh Annual

ACM Symposium on Theory of Computing� pages �����
�� Atlanta� GA�
Apr��May ��
��

	�� S� A� Cook and C� W� Racko�� Space lower bounds for maze threadability
on restricted machines� SIAM Journal on Computing� ������������� Aug�
�����

	
� H� R� Lewis and C� H� Papadimitriou� Symmetric space�bounded com�
putation� Theoretical Computer Science� ������������
� Aug� �����

	�� N� Nisan� RL 
 SC � In Proceedings of the Twenty Fourth Annual ACM

Symposium on Theory of Computing� pages �������� Victoria� B�C��
Canada� May �����

	�� N� Nisan� E� Szemer edi� and A� Wigderson� Undirected connectivity in
O�log��� n� space� In ��rd Annual Symposium on Foundations of Com�

puter Science� Pittsburgh� PA� Oct� ����� IEEE�

	
� W� J� Savitch� Relationships between nondeterministic and deterministic
tape complexities� Journal of Computer and System Sciences� 
�����

�
���� ��
��

	�� M� Tompa� Two familiar transitive closure algorithms which admit no
polynomial time� sublinear space implementations� SIAM Journal on

Computing� ������������
� Feb� �����

	�� A� Wigderson� The complexity of graph connectivity� In Mathematical

Foundations of Computer Science� Proceedings� �	th Symposium� vol�
ume ��� of Lecture Notes in Computer Science� pages �������� Prague�
Czechoslovakia� Aug� ����� Springer�Verlag�

RCS Revision� ���� Date� �����	
��� �	��	��� �

��


