Abstraction in Nonlinear Planning

Qiang Yang * Josh D. Tenenberg
University of Waterloo University of Rochester
Canada USA

Steven Woods?
CSIRO Division of Information Technology
Australia

Abstract

We extend the hierarchical, precondition-elimination abstraction of ABSTRIPS
to nonlinear, least-commitment planners such as TWEAK. Specifically, we show
that the combined planning system, ABTWEAK, satisfies the monotonic property,
whereby the existence of a lowest level solution IT implies the existence of a highest
level solution that is structurally similar to II. This property enables one to prune
a considerable amount of the search space without loss of completeness. In addi-
tion, we develop a criteria for good abstraction hierarchies, and develop a novel,
complete search strategy called Lefi- Wedge that is optimized for good abstraction
hierarchies. We demonstrate the utility of both the monotonic property and the
Left-Wedge strategy through a series of empirical tests.

Abbreviated Title: Same as the title.

*Computer Science Department. Waterloo, Ont. Canada, N2T 3G1l. Email:
qyang@watdragon.waterloo.edu.

fComputer Science Department. Rochester, New York, U.S.A., 14627 E-mail:
josh@cs.rochester.edu

{CSIRO Division of Information Technology, Centre for Spatial Information Systems,
Canberra, ACT, Australia, 2601. Email: sgwoods@csis.dit.csiro.au




1 Introduction

Symbolic planning representations have been useful in AI because they en-
able planning agents that use them to make strong predictions about future
states given the execution of a hypothetical sequence of actions (a plan). In
addition, the associated formal methods allow researchers to make and verify
strong formal claims, for instance, regarding soundness, completeness, and
complexity.

However, one of the central problems with this formalist approach is
that finding plans that will bring about desired states is very resource in-
tensive, typically involving a heuristically guided traversal of large portions
of the state space. Researchers have pursued several approaches to re-
duce this resource cost, two of the most prominent being nonlinear least-
commitment planning, such as Chapman’s TWEAK [1], and hierarchical ab-
straction through precondition elimination, such as Sacerdoti’s ABSTRIPS
[10]. In this paper, we describe our research in combining these two ap-
proaches. The first half of our paper demonstrates that the formal character-
istics of each are preserved when combined, while the second part, describing
a set of experiments and a discussion of search strategies, demonstrates that
significant search efficiencies can often be obtained.

In nonlinear, least-commitment planning, at any time in the plan con-
struction process, the temporal ordering and variable bindings of the opera-
tors need only be partially specified through the incremental posting of pair-
wise constraints. For instance, suppose that one has the problem of drilling
a large hole in a block of wood and nailing a plate to this block. If the plate
and the hole are spatially disjoint, as in figure 1, then there is no reason
to initially order one operation before the other. A linear planning system,
such as STRIPS or ABSTRIPS, because of its weak plan representation, would
be required to impose a total ordering on these operations, such as to first
attach the plate, and then drill the hole. However, constraints added by sub-
sequent planning might impose an order contrary to that which was initially
chosen. One such constraint would arise if one of the nails holding the plate
protrudes into the space carved out by the drill press, as in figure 2. In this
case, the planner would need to backtrack and reorder the plan steps, or add
additional steps into the original plan. A nonlinear planner, however, would
not have imposed an ordering on the operators if none was yet called for,
and thus would not be required to backtrack when the potential clobbering



was uncovered. All that would be required would be to add an ordering
constraint specifying that the drilling must precede the attaching.

A NAIL

| A HOLE

Figure 1: Spatially disjoint nail and hole.

A NAIL

A HOLE

Figure 2: Interacting nail and hole.

Likewise, if any one of a number of drill presses will suffice for the hole
drilling, there is no reason to choose one over the other, at least until sub-
sequent constraints require it. Thus, least-commitment planners will not
require an arbitrary choice of variable bindings. Thus, by deferring planning
choices and incrementally collecting constraints, one performs less backtrack-
ing than would occur from the premature commitment to planning decisions.

A partial plan represented by pairwise ordering and codesignation con-
straints thus stands for a space of plans, namely, all totally ordered, fully



ground plans satisfying these constraints. An assumption underlying this
representation is that only a single one of these plans will be chosen for ex-
ecution. Thus, a formal means is required for determining that each plan
completion, if executed, will solve the goal. Not only is this verification im-
portant for goal satisfaction, but it is crucial in plan construction, since one
must verify for each operator that its preconditions will all be satisfied in
the state in which it is applied, regardless of the ordering and variable in-
stantiations of the predecessor operators. This formal requirement is met by
Chapman in [1], and is termed the Modal Truth Criterion (MTC). The virtue
of this criterion is that it can be checked in polynomial time as a function
of the number of operators in a plan, even though there are potentially an
exponential number of total orderings and an infinite number of codesigna-
tions that satisfy the given constraints. Demonstrating that the conditions
of the Modal Truth Criterion are satisfied at higher levels of abstraction is
one of the main technical results of this paper.

Hierarchical planning through precondition elimination is primarily con-
cerned with the order in which goals and subgoals are solved. All atomic
statements are given a criticality ranking, and all goals and subgoals having
a particular criticality value are solved before any goal or subgoal having a
lower criticality. The intuition has traditionally been that high criticality
propositions are those most difficult to achieve, and low criticality propo-
sitions the least difficult. A criticality assignment thus generates a hierar-
chically ordered sequence of planning levels on an otherwise non-hierarchical
planning system, each level ignoring propositions having lower criticality val-
ues. A plan is first obtained at the highest criticality level. Once a solution
is obtained at a particular criticality level ¢, it is refined at level : — 1 by
inserting operators between the level 7 plan steps in order to satisfy their
criticality ¢ — 1 preconditions. For example, someone traveling from Toronto
to IJCAI91 in Sydney would likely first plan their air-travel before planning
their intra-city travel. In terms of our formulation, this amounts to ignoring
the preconditions that one must be at the airport in order to fly between
cities. These concrete level preconditions are considered only after the entire
abstract air-travel plan has been formulated. Problem-solving in this manner
often promises an exponential amount of savings in computation (see [5, 6]).

A theoretical principle that underlies the abstraction/refinement search
strategy states that for all problems having a lowest criticality level solu-
tion, there exists a highest level solution that refines through insertion in the



above-described manner down to the lowest level. This principle is described
in [4], and is termed Monotonic Refinement. It actually states something
even stronger: that the criticality : subgoals are protected from lower level
insertions, and are thus never violated at lower levels. In essence, this princi-
ple states that one can structure search so that work performed at the higher
levels is never undone at lower levels. What is surprising about this property
is that it holds for any assignment of criticalities to propositions.

We define a planning system, ABTWEAK, which applies ABSTRIPS style
abstraction to TWEAK, yielding a hierarchy of nonlinear planning levels. Our
main theoretical results establish that 1) the correctness of plans as specified
by the Modal Truth Criterion is preserved when going up abstraction levels,
and 2) the Monotonic Property holds of ABTWEAK systems, regardless of
criticality assignment. This latter property thus serves as a basis for an
iterative refinement search strategy, analogous to the case for linear planners.
Due to the fact that this property holds regardless of criticality, it is not
a sufficient constraint to guarantee performance improvements under any
criticality assignment as compared to other search strategies. However, it
does suggest a criterion for good criticality assignments — those assignments
which result in few protection violations. Good criticality assignments will
tend to be those in which satisfaction of a subgoal will not rely upon the
satisfaction of lower-valued subgoals.

Developing criteria for good abstraction hierarchies is not sufficient for
good performance: one must additionally use search strategies that exploit
the control knowledge embedded in the abstraction hierarchy. Is breadth-first
search, depth-first, or some other search strategy most appropriate? How will
this search strategy impact the completeness of the planner? Unfortunately,
this is the aspect of precondition-elimination abstraction that is the least un-
derstood. Thus, in exploring search, we were not able to generalize strategies
useful in previous hierarchical planners.

With good abstraction hierarchies, early plan choices are less likely to be
abandoned. This suggests that search proceed primarily in a depth-first man-
ner. However, since the first abstract plan found might not be monotonically
refinable, completeness requires that alternative abstract plans must at the
same time be pursued. There is, then, a tradeoff between search through the
space of alternative abstract plans, and search through the space of plan re-
finements. To address this tradeoff, we have developed a new search strategy,

the Left-Wedge, which has elements of both depth- and breadth-first search.



Left-Wedge is a complete strategy, but it gives priority to those plans that
are most refined. That is, it prefers to push deeper into the space of refine-
ments, but expends some smaller percentage of its resources in considering
abstract alternatives.

In assessing the practical utility of the monotonic property and the left-
wedge search control strategy, we have conducted a series of empirical tests.
Our results show that in general, an abstract planner using the monotonic
property outperforms one without. We also show that with intuitively good
abstraction hierarchies, the left-wedge search strategy improves search effi-
ciency dramatically over a straightforward application of the breadth-first
search.

We first present brief descriptions of TWEAK and ABSTRIPS, and then de-
fine ABTWEAK. We demonstrate that ABTWEAK has the monotonic prop-
erty, and show how the application of this property affects search.

2 Nonlinear Planning: TWEAK

Chapman [1] provides a formalization of a least commitment, nonlinear plan-
ner, TWEAK. TWEAK extends STRIPS by allowing for

1. a partial temporal ordering on the operators in a plan,

2. partial constraints on the binding of variables (codesignations) of the
operators.

A TwWEAK plan thus represents a space of STRIPS plans: all totally ordered,
fully ground plans that satisfy the ordering and codesignation constraints.
Formally, a TWEAK system is a pair ¥ = (L, O). L is a restricted language
consisting of a finite number of predicate symbols, infinitely many constant
and variable symbols, and negation. The set of terms of L is the constants
unioned with the variables. The set of atoms is all expressions of the form

P(z1,...,z,),

where P is an n-ary predicate and the z; are terms. The ground atoms are
the atoms where all terms are constants. The literals (also called proposi-
tions) include all atoms and their negations. Further, for any literal p, =—p
is equivalent to p. O is a set of operator templates (referred to simply as



operators). Associated with each operator a is a set of precondition literals,
P,, and effect literals, E,. One should note that TWEAK systems are some-
what constrained in their expressive power. In particular, actions cannot
have indirect or context-dependent effects, and the domain of each variable
is taken to be infinite, and identical to the domains of all other variables.
Thus, there is no straightforward way of representing limited resources.

Chapman did not give a formal definition of a TWEAK plan [1]. Because
this concept is very important in defining a number of others later in the
paper, we formally define it as follows.

Definition 2.1 A plan I is a triple (Operatorsy, <1, Co&Noncory), where

o Operatorsy s a set of operators, which are copies of operator templates,
in which the template variables have new, unique names.

e <q, the temporal constraints, is a binary relation on Operatorsy such
that the transitive closure of <y is a partial order (irreflexive, asym-
metric, transitive),

e Co&Noncory, the codesignation constraints, is a pair of binary relations
on the terms in L, with ~y1 being the positive codesignations, and %y be-
ing the non-codesignations. =~ is an equivalence relation. Co&Noncog
18 further constrained so that

Consistency: if (z =y y), then it is not the case that (z #n y), for
any terms x and y, and
Uniqueness of Names: it is not the case that (¢ =y d), for any 2

constants ¢ and d.

We extend ~ and % to propositions:

1. P(z1,...,2n) ~0 QY1,--,Yn) ff P=0Q, m =n, and z; ~ y;
1< <n
2. For atoms p and q, —p =g —q iff p ~n q.

The plan subscripts to =, %, and < will be dropped if the plan to which
these relations refer is clear from context.



With the above definition, we can now restate several terminologies used
in [1] formally. A complete plan II is a plan where <y is a linear ordering on
Operatorsyy, and Co&Noncor is such that every variable in every operator of
Operatorsyy codesignates with some constant. A plan completion of II refers
to any complete plan II' that satisfies the partial constraints of II.

An operator a asserts literal p if there exists ¢ € F, such that p and ¢
codesignate, and denies p if its negation is asserted. A state is defined as a
set of ground atoms in L. An input problem is taken to be a pair p = (I, G),
where [ is a state (the initial state), and G is a set of propositions, (the goal).

For example, consider the 3-disk Tower of Hanoi domain. The locations of
the disks are represented by three predicates, OnLarge OnMediumand OnSmall
each taking a single argument denoting the peg. The IsPeg( )predicate is
used as a precondition in the operator definitions to ensure that every variable
is instantiated to an existing peg. Thus, the language L of the TWEAK system
consists of the symbols listed in Table 1.

Symbols
Predicate | IsPeg(),0nLarge () ,0nMedium(),0nSmall ()
Constant Pegl,Peg2,Peg3, c1,ca,...
Variables Ty, La,...

Table 1: Tower of Hanoi Domain Language.

The MoveLarge operator is given in Table 2, with the full operator set
listed in Appendix A. This operator is used for moving the large disk from
peg z to peg y. An input problem in the Towers of Hanoi domain is to move
all three disks from Pegl to Peg3. For this problem, the goal G is represented
by the set

{OnLarge(Peg3), OnMedium(Peg3), 0nSmall(Peg3)}
A plan for solving this problem is:

(MoveSmall(Pegl,Peg3), MoveMedium(Pegl,Peg2),MoveSmall(Peg3, Peg2),
MoveLarge(Pegl,Peg2), MoveSmall(Peg2,Pegl), MoveMedium(Peg2,Peg3),
MoveSmall(Pegl,Peg3)). (1)



MoveLarge (x y)
Preconditions={IsPeg(x)
IsPeg(y)
- OnMedium(x)
— OnMedium(y)
— OnSmall(x)
— OnSmall(y)
OnLarge(x)}
Effects={— OnLarge(x)
(OnLarge y)}

Table 2: Definition of the MoveLarge operator.

The temporal order is linear, indicated by the left-to-right and top-to-bottom
order of the literals, and the replacement of the operator variables by con-
stants indicates the codesignations. This same convention for writing the
ordering and codesignation constraints will be used throughout.

For simplicity, the goal G can be represented by a special operator G,
where P; = Eg = (. The initial state I can likewise be viewed as a special
operator Z, with P = () and E; = I. These two operators will be an
element of each plan II, under the constraint that, for every other operator
a € Operatorsy, (Z < a) and (a < G).

In general a plan can have many different instantiations and many differ-
ent total orderings consistent with the partial order. We will often want to
talk about constraints that hold in all completions, or that hold in at least
one completion, for which Chapman presents the possibility and necessity
operators. In a partial plan, two terms p and g necessarily codesignate, de-
noted O(p = q), if they codesignate under every completion, and possibly
codesignate, O(p = q), if they codesignate under some completion. Operator
a necessarily precedes 3, denoted O(a < ), if a precedes 8 under every
completion, and a possibly precedes 3, O(a < B), if a precedes 3 under
some completion.



Given our previous definition of plans, we have the following equivalences:

O(a < B) <= (o,B) €<n

Ha<P) — O-(a<p) = (a,8) ¢<m,
DO(p=4q) < (p,9) €~mn,

Op=¢q) <= -O-(p=¢q) <= (p,9) ¢#mn,
O(p # q) <= (p,q) €%,

Olp#4q) = —O-(p#4q) = (p9) ¢=n

The following definitions introduce simplifying notation.

Oa<y<B) = Ola<c)and Oy < B),
O(a<y<fB) < O(a<c)and Oy < g).

3 ABTWEAK

In ABSTRIPS, Sacerdoti developed an elegant means for generating abstract
problem spaces by assigning criticality values (an integer between 0 and &,
for some small k) to preconditions, and abstracting at level ¢ by eliminating
all preconditions having criticality less than 2. This is formalized as follows.

A k level ABTWEAK system is a triple ¥ = (L, O, crit), where L and O
are defined as for TWEAK, and crit is a function mapping preconditions to
non-negative integers:

crit U P, —{0,1,...,k—1}.

acO

Intuitively, crit is an assignment of criticality values to each proposition ap-
pearing in the precondition of an operator.

Let a be an operator. We take ;P, to be the set of preconditions of «
which have criticality values of at least z:

Py ={p|p € P, and crit(p) > i}.

;o is operator a with preconditions ; P, and effects E,. Let the set of all such
sa be ;0. This defines a TWEAK system on each level ¢ of abstraction:

.2 = (L, ;0).



10

For example, an ABTWEAK system can be constructed for the Towers of
Hanoi domain using a criticality assignment to literals as shown in Table 3.
With this hierarchy, the operator MoveLarge(x;,z,), when represented on
level 2 of the hierarchy, appears as:

sMovelLarge (z; z3)
Preconditions={IsPeg(z;)
IsPeg(z,)
OnLarge(z) }
Effects={— OnLarge(z;)
OnLarge(z,) }

Criticality Predicate
2 IsPeg(), - OnLarge(), OnLarge()
1 - OnMedium(), OnMedium()
0 = OnSmall(), OnSmall()

Table 3: A criticality assignment for Towers of Hanoi domain.

At the abstract level, the following plan II solves the original TOH prob-
lem:

Operatorsy = {MoveLarge(x;, X), MoveMedium(x3,x4), MoveSmall(xs, x¢)}
<n= {}
~= {(z1,Pegl),(z,,Peg3), (z4,Peg3), (z¢,Peg3)}

#=¢

There are 3 operators in this plan, one for getting each disk on Peg3. In
addition, at the abstract level, there are no temporal constraints between
the operators. Thus, any ordering will achieve the goal. Finally, the only
instantiations required for solving the goal are that the first operator move
the large disk from Pegl to Peg3, and that the other operators move their
respective disks from some peg to Peg3.



11

4 Upward Solution Property

As with ABSTRIPS, the strategy for planning with ABTWEAK is in a top-
down manner — when a problem is input, planning proceeds first at the most
abstract, least constrained level. This plan is then refined at the next lower
level by inserting new operators to satisfy the re-introduced preconditions.
Only after all of the preconditions are satisfied on the current level does the
planner pass the plan to the level below.

Note the distinction between plan completion and plan refinement. Com-
pletion refers to specifying a totally ordered, fully ground plan that satisfies
all of the ordering and codesignation constraints of the partial plan. Refine-
ment refers to inserting plan steps at level 7 into a plan constructed at levels
greater than <.

Implicit in the top-down search strategy, termed length first search by
Sacerdoti [10], is the assumption that short plans to solve a given problem
are guaranteed to exist at the abstract level which can be successively re-
fined, and that search strategies exist to find such abstract plans. Our intent
is to formally prove this property, and to show how it places some useful
constraints on search. The intuition behind the proof is to show that if there
exists a concrete level solution to a problem, then this solution will also solve
the problem at each higher level of abstraction, since these higher levels do
not place any new constraints on the problem. Further, since there are fewer
preconditions at the higher levels, one can eliminate from this plan those op-
erators whose purpose at lower levels is solely to satisfy, directly or indirectly,
one of the eliminated preconditions.

In order to prove this, we first formalize what is meant by one operator
directly or indirectly satisfying the preconditions of another, and then define
correctness for partial plans. This new definition of correctness is used to
verify that the shorter, abstract plans are correct and satisfy the goal. In the
following definitions, all operators are taken to be relative to a plan II.

4.1 Establishment

Definition 4.1 Let Il be a plan. Operator a establishes proposition p before
operator 3 (Establishes (e, 8,p,u)) if and only if

1. w € E,,



12

2. O(a < B),
3. O(u = p), and
4. Vo' € Operatorsy, Vu' € E, if O(a < o' < ), then —-O(u' = p).

The final condition ensures that « is the last such operator that establishes
p for B. This definition is aimed at formalizing and unifying many similar
notions of causal relationship used in the planning literature, including es-
tablishers used in SIPE[11], contributors in NONLIN, validation structure in
Priar[3], causal links in [7], protection intervals by Charniak and McDermott
[2], and triangle tables used by Fikes and Nilssion|[9].

Consider again the Towers of Hanoi example, where we assume that
initially all three disks are on Pegl. The following plan solves the goal
(OnLarge(Peg3)) at the lowest level.

(MoveSmall(Pegl,Peg3), MoveMedium(Pegl,Peg2),MoveSmall(Peg3, Peg2),
MoveLarge(Pegl,Peg3)) (2)

In this plan, the operator MoveSmall(Pegl,Peg3) establishes the precondi-
tion —0nSmall(Pegl) of operator MoveMedium(Pegl,Peg2). Similarly, MoveSmall (Peg3,Peg2)
is an establisher for MoveLarge (Pegl,Peg3).
Informally, one operator a clobbers a proposition just prior to another
operator B if a possibly precedes 3 and possibly denies this proposition. A
whate knight is another operator which necessarily re-establishes this clob-
bered proposition.

Definition 4.2 v is a clobberer of p before 8, (CB(~,8,p,q)) if and only if

(1) q € E,,

(2) O(=q = p),

(3) Oy < B)
Definition 4.3 § is a white knight of p before 8, (WK($, 8,7, p,q,7)), if and
only if

(1) CB(v,8,p,9),

(2) T € Eg,

(3) O(y <6 <B), and
(4) for every completion o of IL, if (mg =4 p) then (r =, p).



13

4.2 Correctness: The Modal Truth Criterion

A complete plan is correct if every precondition of every operator is satis-
fied in the state in which the operator is applied. By our earlier definitions,
this condition holds whenever every precondition has some establisher and
there is no subsequent clobberer. A TWEAK plan is correct if every com-
pletion is correct. However, given the exponential number of total orderings
and infinite number of constant instantiations, it is impossible to check each
completion separately for correctness. We would instead like a criterion that
decides the truth of a proposition at a given point in a plan, and which can
be translated into a polynomial time algorithm.

Fortunately, Chapman [1] provides a concise statement of the criterion,
which he calls the Modal Truth Criterion (MTC), and which, for each pre-
condition, can be computed in time O(n?), n being the number of operators
in the plan. A problem with his definition, however, is that it is stated in
terms of situations, which are not well-defined in a partial plan. For that
reason, we provide a modified version of the MTC, defined solely in terms
of operators in a plan. Intuitively, it states that a proposition p is true at a
point in a plan if and only if p has an establisher, and for every clobberer of
p, there exists a white knight.

Criterion 4.1 Proposition p is necessarily true just before operator b in plan

IT if and only if

1. there exists operator a € Operatorsy and proposition u such that Establishes(a, 8, p,u),
and

2. for every operator v € Operatorsyy and q € E., such that CB(«y, 8, p,q),
there exists § € Operatorsy and r € Es such that WK(4, 3,7, p,q,7).

4.3 Ascending Preserves Correctness

As defined above, a plan II is correct if and only if every precondition of every
operator is necessarily true just before it is applied. Therefore, removing a
precondition of an operator while holding the plan fixed does not affect the
necessary truth of any condition. Thus, after removing a precondition of an
operator in II, the resulting plan II’ is still correct. This is stated in the
following lemma, whose proof follows trivially from the definition of plan
correctness:



14

Lemma 4.4 Let Il be a plan, and o # G be an operator in II. Let o' be a
with a precondition p removed from P,. Let II' be I with a replaced by o'.
If 11 is correct, then II' is also correct.

Recall that ;& is operator a with preconditions ;P, (those having criti-
cality at least ¢), and effects E,. Let II be a plan on the base level. Then for
1=1,2,...,k—1,,II is formed by replacing every occurrence of a (except T
and G) in II by ;a.

From Lemma 4.4, the following theorem can be easily proven by induction
on the abstraction levels.

Theorem 4.5 If Il is a correct plan for goals G at level 0, then ;II is a
correct plan for solving G on each higher level 1 = 1,2,...,k — 1.

For example, it is not hard to verify that Plan 1 in the Towers of Hanoi
domain is correct, and that it is also correct when abstracted at each higher
level.

This demonstrates that a plan correct at the concrete level is correct at
the abstract level. But, since the abstract level no longer contains some of
the concrete preconditions, the plan steps that were added solely to satisfy
these eliminated preconditions are no longer required. For instance, consider
a plan for getting a box from one room into an adjacent room, in which the
robot picks up the box, goes to the door, sets the box down, opens the door,
picks up the box, and goes through the doorway. Suppose that the status of
the door — whether it is open or closed — is ignored at the abstract level. In
this case, since opening the door is no longer considered as a precondition,
the intermediate steps of setting down and re-picking up the box are no
longer necessary; their sole purpose was to free the agent’s hands for the
door opening. Thus, the abstract level plan is simpler than the concrete level
plan. In the next section, we provide a definition of justification, whereby
all constraints and operators from a lower level not justified at the abstract
level can be safely removed while preserving the correctness of the plan.

4.3.1 Justification

Justification provides a precise specification of those plan steps which are
required in order to solve the goal, either directly or indirectly. By defini-
tion, we take the initial and goal operators to be justified. Other operators



15

and constraints are justified if either 1) they establish a precondition of a
justified operator, 2) they are a white knight for a justified operator, or 3)
they enforce a codesignation or temporal ordering without which a justified
operator would be clobbered.

Definition 4.6 Let I be a plan, and I,G be the special operators for the
wnitial and goal states. Then in plan 11,

Initial/Goal justification Z and G are justified,

Establishment justification If 8 is justified, and 3a,3u € E,,Jp € P;
such that
Establishes(a, 8, p,u), then

(1) « is justified, (2) (o < B) is justified, (3) (v = p) is
Justified

White knight justification If WK(é,5,v,p,q,7) and 8 and v are justi-
fied, then &, (v < §), and (6§ < B) are justified. Moreover, if CO 1is
a set of minimal codesignation and noncodesignation constraints that
ensure the white knight relation, then

1. all operators whose parameters appear in CO are justified, and

2. all constraints in CO are justified.

Separation justification If v and 8 are justified, and Ip € Pz,3q € E,
such that (p % q), then the constraint (p % q) ts justified.

Promotion justification If 8 and v are justified, and Ip € Ps,3q € E,
such that O(p = —q) and O(8 < v) then the constraint (8 < 7v) is
Justified.

Nothing else is justified.

The justification of plan II, Jus(II), is the set of operators, precedence
and codesignation constraints of II that are justified, but not including any
of the operators or constraints that are not justified. It is obvious that the
justified version of a plan is simpler than the plan itself, in the sense that the
set of operators, and constraints of the justified plan are a subset of those in
the unjustified plan.



16

With a complete plan, justification is a simple recursive definition: any
operator that establishes a justified operator is itself justified, with the goal
and initial states being trivially justified (Initial/Goal, and Establishment
justification). However, with partial plans, the situation is more complex.
Figures 3-5 will be helpful in illustrating why the additional justification
conditions are necessary. In each of these figures, the boxes represent oper-
ators, and the arcs represent necessary precedence. If no arc is between two
operators, this means that they are unordered with respect to one another.
That is, each precedes the other in some completion. All literals have the
same criticality, and in the first two figures, Establishes(a, b, p,u).

In Figure 3, suppose that ¢ clobbers b (CB(c,b,p,q)), and w is a white
knight for 8 (WK(rm w, b, ¢, p,q,r)). By Initial/Goal and Establishment
justification, a, b, and ¢ are justified, but w is not justified, since it is not
a necessary establisher. Thus, eliminating the white knight in the justified
plan will result in an incorrect plan for every completion in which ¢ follows
a. Thus, white knights must be justified (along with their precedence and
codesignation constraints).

In Figure 4, suppose that there is a set D of codesignation constraints
such that (O(¢ # p)), whose purpose is to prohibit ¢ from clobbering b.
Without Separation justification, ¢ would not be justified, and there would
exist a completion of the justified plan in which ¢ clobbers b and for which
there is no white knight.

In Figure 5, suppose that if ¢ preceded rather than followed b, ¢ would
clobber b. That is, O(—g = p); the precedence constraint (b < c) exists
to prevent the clobber. Without Promotion justification, this precedence
constraint is not justified, and hence, in the justified plan, there exists a
completion in which ¢ precedes, and therefore clobbers, b.

For example, consider solving a Towers of Hanoi problem for achieving
the goal of having the large disk at Peg3, where all 3 disks are initially at
Pegl. At the lowest level, it is necessary to move the 2 smaller disks from
the largest disk before the largest disk can be moved, as in the following.

(;MoveSmall(Pegl,Peg3),, MoveMedium(Pegl,Peg2),, MoveSmall(Peg3,Peg2),
sMoveLarge(Pegl,Peg3))

Using the abstraction hierarchy in Table 3, the above plan is correct at level
2. However, the first three operators in the above plan do not establish the



17

preconditions of any other operators. Therefore, they can be safely removed,
and the remaining plan

sMoveLarge(Pegl,Peg3)
is still correct at level 2.

Lemma 4.7 If1II is a correct plan that solves goal G, then Jus(II) also is a
correct plan that solves G.

Proof: Suppose by way of contradiction that II' is incorrect. By definition,
38 € Operators(Il'), p € Ps such that p is not necessarily true just before S.
Thus, one of the two conditions of the modal truth criterion for p must be
false.

Suppose the first condition is false; that is, there does not exist an estab-
lisher of p for B in II'. But there must exist an establisher of p for 8 in II,
since II is correct. By establishment justification, the establishing operator
and constraints are justified, thus serving as an establisher of p for 8 in I,
a contradiction.

If the second condition is false, then from the MTC, there is a clobberer
~ in II'; but not a white knight. ~ must also be a clobberer in II, since
by separation and promotion justification, any constraints in II that would
prevent the clobbering would be justified, and hence would also prevent the
clobbering in II'. However, since II is correct, by the MTC, there is a white
knight 6 in II. By white knight justification, é must also be a white knight in
IT', a contradiction. Thus, II' must be correct. Additionally, I’ also solves the
goal, which follows from the definition of justification and a simple induction
on the number of operators in II. a

The following theorem establishes the Upward Solution Property: if there
is a solution to a problem at the base level, then the justified version of that
solution at each higher level of abstraction is correct, and also solves the
problem on that level. More formally,

Theorem 4.8 If1II is a correct plan that solves G at the base level, then the
Justified version of ;II, Jus(;II), is also a correct plan that solves G on the
it level, 0 < ¢ < k — 1.

Proof: From Theorem 4.5, if II is a correct plan that solves G at the base
level, then on each level 7,1 <7 < k — 1, ;Il is a correct plan for solving G.
From Lemma 4.7, Jus(;II) is also a correct plan that solves G on level 7. O



Establisher: a
Effect: u

Clobberer: ¢

Effects: q, g2

Figure 3:

/

Effect: r

White Knight: w

Action: b
Precondition: p

Effect: g1

Goals: g1 and g2

White Knight Justification.

18



Establisher: a
Effect: u

Clobberer: ¢

Effects: q, g2

Action: b
Precondition: p
Effect: gl

Goals: gl and g2

Figure 4: Separation Justification.

Action: b

Precondition; p
Effect g1

Action: ¢

Effects: g, 02

Goals: g and 2

Figure 5: Promotion Justification.

19



20

4.4 Monotonic Refinement

The Upward Solution Property guarantees the existence of an abstract level
solution to a problem, whenever there exists a lowest level solution. Length-
first search, on the other hand, proceeds from the highest level to the lowest.
Since the converse of the Upward Solution Property does not hold, one cannot
be sure that an arbitrary solution obtained at the abstract level is one which
can be refined into a low level solution. It is therefore important to uncover
constraints that will be helpful in plan refinement. The monotonic property
is one such constraint. This property is defined for linear, ABSTRIPS-type
abstraction systems in [4]. We define it here for nonlinear, least-commitment
planning abstraction systems.

Definition 4.9 Let II' be an abstract plan that solves p at level ¢, 7 > 0. II
monotonically refines to level 1 — 1 plan I if and only if

1. 11 solves p at level v — 1, and
2. Jus(;II) = 1I'.

In other words, a plan II is a monotonic refinement of II', if II preserves the
set of all operators, the partial order, and the codesignation and noncodes-
ignation relations of the plan II'. Moreover, the establishment structure of
IT' is also preserved in II. This is because justification does not create new
establishment relations. Therefore, for the equality, Jus(;II) = II', to hold,
every establishment relation of II' must have been one in ;II. Thus, this
definition captures the intuition that one does not want to clobber at lower
levels those goals already established at higher levels.

As an example, consider again the Towers of Hanoi problem of moving
the large disk to Peg3 from Pegl, with an ABTWEAK hierarchy in Table 3.
Recall that the following plan is correct at level two.

II' = (;MoveLarge(Pegl,Peg3))
At level one, the plan II below is a monotonic refinement of II'.
II = (;MoveMedium(Pegl,Peg2),; MoveLarge(Pegl,Peg3))

To establish this, note that the abstract version of II is identical to II,
and that after justification, the operator ,MoveMedium(Pegl,Peg2) can be



21

dropped without affecting the correctness of the plan. Therefore, it is the
case that II,, when justified at level 2 is identical to II.

Definition 4.10 A k-level ABTWEAK system is monotonic, if and only if,
for every problem p solvable at the concrete (0" ) level, there exists a sequence
of plans Iy_4, ..., Iy such that I1;,_, solves p at level k—1, and for 0 < i < k,
II; monotonically refines to II;_.

Now we show that every criticality assignment gives rise to a monotonic
hierarchy.

Theorem 4.11 FEvery ABTWEAK system of k levels, for any k, is mono-
tonic.

Proof: This will be proven by contradiction for a 2 level system, where
extending the result to k levels follows from a trivial induction. Let p be
a problem solved at the concrete level. Let II be a correct base level plan
that solves p. By the Upward Solution Property, there exists an abstract
plan II' = Jus(;11II) solving p at the abstract level. By Definition 4.9, IT is a
monotonic refinement of II'. O

5 Search Control

So far, we have identified a universal property, the monotonic property, for all
abstraction hierarchies. This property guarantees that a sequence of mono-
tonic refinements exists for any hierarchy. However, the way in which one
goes about searching for such a sequence is not obvious. Many different
search control strategies exist, each resulting from a different way of coordi-
nating search in the abstract plan space and search during plan refinement.
In the rest of the paper, we will investigate search control strategies that are
both complete and efficient.

5.1 Completeness of ABTWEAK

The monotonic property states that for solvable problems, there exist ab-
stract solutions that monotonically refine to concrete solutions. Thus, during



22

refinement, the planner need only expand plans which are monotonic refine-
ments of some abstract solution. In particular, abstract plans will constrain
lower level search in that every abstract establishment relationship between
plan steps will be protected during refinement. That is, if at the abstract
level Establishes(a, 8, p,u), one protects this establishment by ensuring that
at lower levels no plan steps are added that clobber p before 8 (a protection
violation). Unfortunately, not all abstract solutions will monotonically re-
fine, and hence, the planner must search through the space of abstract plans
for those that do. In order to ensure completeness, then, the planner must
interleave search both length-wise, across alternatives at any given level of
abstraction, and depth-wise, through the space of monotonic refinements of
any given abstract solution.

An intuitively obvious choice of control is to use a strategy that is com-
plete on each level of abstraction. This is especially appealing, since it is
not difficult to specify complete control strategies for TWEAK, either using
a complete state-space search procedure such as A*, breadth-first search, or
the procedure provided by Chapman [1]. Using this approach, if a plan is
formed on abstraction level 7, then it is passed down to the level below. At
level ¢ — 1, all the conditions of criticalities no less than : — 1 are planned
for. The process continues, until either a correct plan is formed at the base
level, or it is found that a plan cannot be made correct at a level. Then the
planner backtracks to the level immediately above the current one, and tries
to find an alternative solution.

The fact that each level is complete may lead one into believing that the
above control structure is also complete. Unfortunately, this is not the case
in general. The reason is that a complete search strategy for any given level is
only guaranteed to find a single solution at that level. But this first solution
might not be monotonically refinable. Incompleteness might result if either
searching for a refinement never terminates, or the strategy does not search
the space of alternative abstract solutions.

ABTWEAK’s search strategy does not suffer from these drawbacks, but
rather interleaves its effort between expanding downwards by refining ab-
stract solutions to lower level ones, and rightwards by finding more solutions
at each particular level of abstraction. The degree in which a search strategy
tends to favor either dimension of growth is an important aspect governing
search performance. In Figure 6 the abstract solution search space is shown.
This figure shows the relationship between search within an abstract level



23

and search across abstract levels. Each node in the figure represents a so-
lution, that is, a partial plan, found within a particular abstract level. It
is possible that there may exist multiple solutions within a particular level
of abstraction. The leftmost solutions shown in Figure 6 represent the first
or “simplest” solutions found within that abstract level. Subsequent, more
complex solutions found appear in a left to right fashion. In Figure 6, the
solution nodes are labeled such that the abstraction ancestry of that solution
can be seen. For example, at level k — 1, the leftmost node is labeled “1/1”,
indicating that this is the first level £ — 1 solution found, and is descended
from the first level & solution.

A search strategy that we employed in our experiments (described in
the following section) is breadth-first search in a search space in which each
state corresponds to a plan. During each iteration, a plan II is selected for
correctness checking using the Modal Truth Criterion. If II is correct at
level z, then all operators in II are replaced by their corresponding 7 — 1-level
operators (i.e., the level ¢ —1 preconditions are added). Otherwise, the plan is
modified according to TWEAK’s plan modification procedures. The process
terminates when a correct plan is found at level-0. The cost of each plan in
the search tree is simply the total number of operators in the plan.

Breadth-first search shows no preference for concrete level plans over ab-
stract plans. Although this ensures completeness, it exacts a heavy com-
putational cost. We introduce an alternative strategy, which we call Left
Wedge, that allows for plunging more deeply into the search space along the
“leftmost” frontier, yet still remaining complete. The motivation for this
strategy rests on our intuition that the intent of criticalities is to impose
an order on the solution of subgoals. A well chosen abstraction hierarchy
would be one in which the choices made at the abstract level serve as fixed
constraints throughout the planning, and never need to be retracted. Thus, a
solution strategy that exploits such a hierarchy would prefer expanding plan
refinements over plan alternatives, (downwards to rightwards) under the as-
sumption that correct initial choices of abstract plan steps will rarely require
the refinement of abstract alternatives. Thus, for any two plans II; and II,
in the search space such that II, is more abstract than II; (see Figure 6),
for every plan expansion to II,, several more expansions are done for II;.
Further, as in A*, preference is given to expanding the shorter of two plans
at the same level of abstraction. For example, in Figure 6, in breadth-first
search, solution plan 2 at level £ may be expanded with the same prefer-



24

Abstract Solution Space Search Tree

.

Level K oo

LevelK-1

[N X ] [N N ]
Level K - 2
OO0O00O... O0O00...
111 1/1/3
2111 2/11/3
112 1114 2/1/2 2/1/4
OO00O0... QOOO..
21211
1/2/1 ol 1/2/3 o 2/2/2 20213 2/2/4

Figure 6: Representing the abstract solution space



25

ence as plan 1/1 and plan 1/2 at level £ — 1. However, in the framework of
Left-Wedge, plan 2 at level k is expanded with the same preference as plans
1/1/1 through 1/1/4. In this way, the search space grows deeper much more
quickly on the leftmost branches than the right, with the frontier taking on
the characteristic left wedge shape for which the strategy is named.

A detailed description of ABTWEAK is given in Appendix C. In the same
appendix one can also find a description of how the left-wedge control strategy
can be implemented.

5.2 Combining Abstraction with Domain-Dependent
Heuristics

ABTWEAK is a domain-independent planner employing a weak search method.
One might, however, wish to employ ABTWEAK in a domain for which there
is additional heuristic information available. It is natural to want to incor-
porate such heuristics into the planner in order to improve its performance.
An example is when the domain-dependent heuristic is encoded by making
a distinction between primary effects and those effects which are not pri-
mary for each operator. In this way, the branching factor is pruned, since
operators are only considered as plan steps when the current subgoal is a
primary effect. Unfortunately, as we learned in our experiments, under cer-
tain criticality assignments there can be antagonistic interactions between
the new heuristic and the underlying length-first search inherent in abstrac-
tion which render the planner considerably less efficient. In the case with
searching only primary preconditions, under criticalities that assign low crit-
icalities to primary effects, there might be problems solvable at the lowest
level for which no abstract solution exists which is monotonically refinable.
Search at the abstract level, therefore, would never terminate. Although we
are able to provide restrictions on the criticality mappings that prevent this
non-terminating search, this should serve as a caution to those who might
want to add other heuristics to an ABTWEAK-style planner. We describe this
interaction in more detail in the balance of this section, beginning with a de-
scription of the robot task-planning domain, which we will use to illustrate
the problem, and which we will return to in Section 6.

In the robot task-planning domain there is a robot that can move between
a number of connected rooms. Between any two rooms there may be a door,



26

which can be open or closed. In addition, there are also a number of boxes,
which the robot can push from one location to another. Figure 7 shows one
configuration of the domain. A list of operators in this domain can be found
in Appendix B. Both the representation of the domain, and the operator
set in the domain are modified from [10], in order to eliminate the need for
axioms.

Room 1 Room 2

| Room 3

\ |
\
Room 6 Room 5 N Room 4

Figure 7: Robot Task Planning Domain.

This domain can be represented by the following predicates: Box-Inroom(b,r)

representing that box b is inroom 7, Robot-Inroom(r) representing that the
robot is inroom r, Box-At(b, loc) representing that box b is at location loc,
Robot-At(loc) representing that the robot is at location r. Open(door) repre-
senting that the door, door, is open. In addition, there are also a number of
predicates denoting the type of object its argument represents (e.g., IsDoor,
Pushable).

To achieve efficiency, many previous planners which have experimented
in this domain have used what is known as primary effects to achieve goals
and subgoals[10, 8, 5]. For example, the primary effect of pushing a box
between two rooms r; and 7y, is just Box-Inroom Boz,r;). Any additional
effects, such as that the robot is also in room r,, are considered not primary.



27

This distinction indicates to the planner that to move the robot around, the
push-box operator should not be used. It should be used only for moving
boxes around, not for any side-effects that might result. The application of
primary effects corresponds to a special type of domain-dependent heuristic,
which can effectively reduce the branching factor of the search space. In
fact, without the application of this heuristic, many trivial problems cannot
be solved by ABTWEAK.

However, the application of this heuristic threatens the validity of the
Upward-Solution Property for some hierarchies. For example, suppose a
hierarchy is built by placing all Robot-Inroom literals at a higher level than
Box-Inroom literals. Let a goal be represented by Box-Inroom. Then at the
Robot-Inroom level of abstraction, there is no plan for moving a box across
more than one room, simply because the Box-Inroom preconditions cannot
be observed at that level, and the moving box operators cannot be used
for moving the robot around. Thus, although a plan exists for solving the
Box-Inroom goal at the concrete level of abstraction, no plan can be found
at the highest level of abstraction, if primary effects are used. Therefore, the
monotonic property is not satisfied for the hierarchy either.

Fortunately, there is one hierarchy in which both the upward-solution
property and the monotonic property are satisfied. This hierarchy is de-
scribed in Table 4. In this hierarchy, all the Box-Inroom preconditions are
placed above the Robot-Inroomones. Similarly, all the Box-At preconditions
are above the Robot-At ones. Thus, one always first plans the location of
the box before the location of the robot. Doing so while achieving only the
primary effects still preserves the completeness of ABTWEAK.

Thus, placing domain-dependent constraints such as the primary effects
is a tricky matter in terms of the completeness of an abstract planner. The
fact that the above hierarchy is complete even with the use of primary effects
seems to be a fortunate coincidence. However, there is a deeper reason in
this seemingly ad hoc engineering, in that a sufficient condition on the criti-
cality assignments exists which guarantees the completeness of a hierarchical
planner. The condition is described below:

Condition 5.1 Let O be the operator set in a domain. Va € O, e1,es € E,,
if e1 is a primary effect, and ey is not, then crit(e;) > crit(es).

In our robot task planning domain, the move-box operator changes both the
location of the robot, and the location of the box. However, only Box-Inroom



28

is a primary effect. The above condition restricts that the criticality of
Box-Inroom be higher than the criticality of Robot-Inroom. Note also that
the reverse hierarchy does not satisfy this condition.

This condition guarantees the following theorem:

Theorem 5.2 Suppose that an abstraction hierarchy satisfies Condition 5.1.
Let II be a correct, concrete level plan, in which every operator is justified
with respect to a primary effect. Then the Upward-Solution Property holds,
in that there is also a correct plan 1I; at each higher level ¢, in which every
operator is also justified with respect to a primary effect.

Thus, the hierarchy described in Table 4 ensures that the abstract planner
remains complete. We omit the proof here, since it is similar to that for

Theorem 4.8.

6 Experiments

Above we have described the monotonic property for search control within
a level of abstraction, and left-wedge as a control strategy for search across
multiple levels of abstraction. While we are able to show that both methods
guarantee completeness for ABTWEAK, it is difficult, if not impossible, to
conduct a theoretical analysis of their effectiveness in search reduction. An
alternative then, is to test ABTWEAK empirically.

Both ABTWEAK and TWEAK have been implemented in Allegro Common
Lisp, on a SUN4/Sparc station. A detailed explanation of the implementation
can be found in [12]. In the implementation, we have paid special attention in
making sure that the two planners share key subroutines, so the comparison
in their performances can be fair. We have also conducted experiments in
two domains, the Towers of Hanoi domain, and a robot task planning domain
from ABSTRIPS [10]. We have described the Towers of Hanoi domain in detail
earlier, with the full operator descriptions in Appendix A. Appendix B lists
the operators and language used in the robot task planning domain.

In the following section, we discuss the results from each domain in turn.
In doing so, we pay special attention to the following issues concerning search
reduction:

1. Investigating the usefulness of enforcing the monotonic property under
breadth-first and left-wedge search.



29

2. Finding empirical measures of “good” abstraction hierarchies. This
measure should enable one to predict the performance of planning using
any given abstraction hierarchies.

3. Investigating the usefulness of the left-wedge control strategy as com-
pared to uninformed search strategies such as breadth-first search. Of
special importance are the types of hierarchies with which a left-wedge
search is expected to gain a great amount of search reduction.

4. Studying how best to combine domain-dependent heuristics encoded in
terms of primary effects, and abstraction as used in ABTWEAK. As
we have pointed out earlier, an abstract planning system retains its
efficiency as long as the criticality function assigns the primary effects
of each operator to be at least as great as the non-primary effects of
that operator. Thus, we would like to compare ABTWEAK using left-
wedge on such a criticality function, to both TWEAK and ABTWEAK
using breadth-first search in the robot task-planning domain.

6.1 Testing the Towers of Hanoi Domain

In the Towers of Hanoi, 3-disk domain, four predicates are used to describe
the states. These are IsPeg, OnSmall, OnMedium, OnLarge. If a hierarchy
is built based on assigning a distinct criticality value to each of the pred-
icates, then 24 different hierarchies exist. Out of the 24 hierarchies, only
one has been extensively tested in the past with linear, abstract planners
[5]. This well-tested hierarchy corresponds to assigning criticality values in
the following way: crit(ISPEG) = 3, crit(OnLarge) = 2, crit(0nMedium) =
1, crit(0nSmall) = 0. In order to fully investigate the effects of different con-
trol strategies on search efficiency as a function of the hierarchy used, we have
tested all possible permutations of the hierarchies. For ease of exposition, we
use ILMS to represent the above hierarchy. Similarly, SMLI represents the
hierarchy with the reverse order of criticality assignment.

Experimental results in this domain can be divided into three categories:
those demonstrating the usefulness of the monotonic property in restricting
search, those comparing the left-wedge and breadth-first search strategies,
and those establishing empirical criteria for identifying good abstraction hi-
erarchies. Performance results, in the number of state expansions as well as



30

CPU seconds for finding a solution, as a function of the hierarchy used, are
shown in Tables 5 to 8, and Figures 8 and 9

6.1.1 Testing the Monotonic Property

Table 5 shows the performance results of ABTWEAK using a breadth-first
strategy with monotonic property, while Table 6 shows those without the
monotonic property. Overall, breadth-first search using the monotonic prop-
erty (MP) outperforms search without using the monotonic property, in CPU
time, in 15 out of 24 cases of the criticality permutation. In terms of the
total number of states expanded, using ABTWEAK with MP is no worse than
ABTWEAK without MP in 21 out of 24 cases. The reason why ABTWEAK
using MP often outperforms ABTWEAK without MP can be attributed to
the fact that enforcing the monotonic property amounts to the protection of
all abstract establishments. As a consequence, during refinement no opera-
tors are added that violate the establishments. This reduces the branching
factor of search.

On the other hand, there are also cases where applying MP significantly
reduces search efficiency. The first class of such cases occurs with hierarchies
for which no monotonic violation can occur. For example, with hierarchies
where OnLarge is above OnMedium, and OnMedium is above OnSmall, no
monotonic violation exists in the search space. Thus, protecting MP would
waste an extra amount of CPU time. As a result, ABTWEAK with MP is
more costly than ABTWEAK without MP. The second class of such situations
occurs when intuitively “bad” hierarchies are used. For example, in all cases
where OnSmall is above OnMedium and which in turn is above OnLarge, us-
ing MP slows down the search. This effect confirms a general principle which
applies not only to abstract planning, but to planning without abstraction
as well: that protection of establishments only improves search efficiency
when the difficult-to-achieve conditions are protected; otherwise protection
will instead reduce search efficiency. For example, with the hierarchy ISML
using MP amounts to protecting all OnSmall conditions. However, it is the
OnLarge conditions that are more difficult to achieve. Thus, with ISML
the wrong conditions are protected, resulting in an increase in the amount
of search required. In terms of search space, this phenomenon can be eas-
ily explained, as follows. Applying protection of establishments cuts off the
branching factor of search, although it guarantees completeness of a planner



31

by always making sure that at least one path is retained which leads to a
goal. When protecting unimportant conditions such as OnSmall, many paths
that can lead to goals with much shorter solution length in the search space
are also cut off. As a result, while the branching factor is reduced, the depth
of search is enlarged. The end result is that a planner has to search many
more states to find a goal.

6.1.2 The Placement of Object-type Predicates

Many predicates and operators in a particular domain apply only to certain
objects, by their very nature. For example, in a blocks world domain in
which unbound variables can either be a table or a block, an operator such
as Pickup may only apply to blocks, but not tables. The way in which the
application of these operators are constrained is through preconditions that
identify the object-type of each variable in an operator representation. As
another example, the IsPeg predicate in Towers of Hanoi is used to ensure
that only the three pegs can be used to hold the disks, and that no pegs
can be moved around. These object-type predicates are constraints on the
possible bindings of variables during the search process. If we postpone the
constraint of these variables during planning, we often increase the branching
factor by allowing operator instances in our search space which can never be
satisfied, such as Pickup( table ). Thus, it is desirable to satisfy these
object-type predicates early in the search. In other words, during abstract
search, it is more desirable to assign higher criticality values to them.

We see that when using the MP, the criticality assigned to object-type
predicates such as IsPeghas a noticeable effect on search efficiency. Tables 2
through 5 give evidence that placing ISPeg type of predicate at the highest
level of abstraction reduces search.

6.1.3 A Criterion for Good Hierarchies

Figures 8 and 9 display the CPU time as functions of the number of mono-
tonic violations in each experiment. Figure 8 shows the comparison with
ABTWEAK using breadth-first search, while Figure 9 shows those with left-
wedge search. The correlation coefficient for CPU time versus monotonic
violations is 0.68 using breadth-first search, and 0.8 using left wedge. We
can thus see a general rule emerging from the results in these figures, that



32

12000 : ‘
// T
10000 - < PR
//
-

8000 |- e .
CPU o 7
Time 6000 - - .
(sec) &S ///

4000 - © ~ -

2000 7 _

8o
| | | | |

0 1000 2000 3000 4000 5000 6000

Monotonic Violations (number)

Figure 8: Violations versus CPU time, including regression fit curve. Data
are obtained using the breadth-first strategy with MP.

the fewer the number of monotonic violations, the better the performance
in search with an abstraction hierarchy. In particular, ILMS and IMLS are
both the best hierarchies.

This effect can be explained as follows. The number of such violations
measures the number of attempts we make at a particular level of abstrac-
tion to undo the work done at a previous level. Undoing an abstract goal or
subgoal achievement generally represents a waste in effort spent at the ab-
stract level. Thus, a good abstraction hierarchy should arrange the subgoals
at each level, such that the chances for such violation is minimal.

Hence, a good abstraction hierarchy is one with few monotonic violations.
One application of this criterion is to identify a good hierarchy via syntactical
analysis of the operator set. For example, it has been shown from the op-
erator definitions that, for the hierarchy ILMS, no monotonic violations will
ever occur during plan refinement for any refinement of the abstract plan[4].
Knoblock ([5]) provides an example and algorithms of this type of syntactic
analysis.



33

25000

T
d
|

20000

& &
cpy 15000 © & /g/ 7
Time / O O
(se¢) 19000 |- %

<>/
5000 <& .

0@ @ | | | | \
0 1000 2000 3000 4000 5000 6000

Monotonic Violations (number)

Figure 9: Violations versus CPU time, including regression fit curve. Data
are obtained using the left-wedge strategy with MP.



34

6.1.4 Testing the Left-Wedge Control Strategy

Tables 7 and 5 provide a comparison of ABTWEAK using left-wedge and
breadth-first, both with MP. It is evident from the two tables that search
time and space is greatly reduced when using the left-wedge strategy, for
hierarchies with a small number of monotonic violations. However, no im-
provement, or even a decrease in performance is seen for certain other crit-
icality assignments, notably IMLS, IMSL and SMLI. This tells us that the
left-wedge strategy should be used only with good abstraction hierarchies. If
one is not sure about the quality of a hierarchy, then a breadth-first strategy
should instead be adopted.

When comparing left-wedge with and without using the monotonic prop-
erty (Tables 7 and 8), the results indicate that, in general, using the mono-
tonic property with left-wedge works well with good criticalities (those which
generally result in few protection violations), and poorly with bad critical-
ity assignments (those resulting in many protection violations). This result
again confirms our conclusion above. ABTWEAK with the monotonic prop-
erty clearly outperforms one without the monotonic property in the three hi-
erarchies ILMS, ILSM and IMLS. However, for hierarchies ISLM and ISML
it appears that not using the monotonic properties is considerably better.
This result is hardly surprising, if one takes into account the depth-first na-
ture of the left-wedge strategy. For the hierarchies ISLM and ISML, the
abstract versions of the concrete level solutions at the OnSmall level (level-2)
correspond to the fourth alternative correct solution on that level. A left-
wedge search with the monotonic property will commit to the first several
abstract solutions at the OnSmall level, although none of these solutions can
be refined to a final solution without violating the monotonic property. As
a result, for such poorly chosen abstraction hierarchies, a strategy that does
not protect the abstract goal achievement works best, since it is able to undo
poor choices made early in the planning process without having to backtrack
up abstraction levels.

6.1.5 Comparing TWEAK with ABTWEAK

The utility of abstract search will not be completely understood without also
comparing it with search without abstraction. We have implemented the
planner TWEAK, a description of which can be found in Appendix C. To



35

ensure fairness in comparison, the two planners are implemented sharing all
key subroutines such as state expansion and unification.

Figure 10 shows the result of the comparison in the Towers of Hanoi do-
main. In this test, ABTWEAK was run with both the monotonic property
and the left-wedge control strategy, in the hierarchy ILMS. The figure con-
trasts TWEAK with ABTWEAK, in terms of the number of states expanded
as a function of the solution lengths. The data in the figure are generated and
averaged based on planning with a fixed initial state, and 26 different goal
states in this domain. It is clear that ABTWEAK dramatically outperforms
TWEAK when the solution length increases.

450 : :
ABTWEAK-+LW+MP/ISML <—
400 ~ABTWEAK+LW+MP/ILMS H—
350 |- TWEAK & yd |
300 - @// _ i
States 250 |- AN S/ _ B
Expandy( | \\\ / . |
150 - - 4
100 |- o/ X 4
50 |- A ‘E/E'" i
0 o, £—— H I |
1 2 3 4 5 6 7

Solution Length

Figure 10: Comparing TWEAK with ABTWEAK.

The same figure also compares the performances of the two planners, but
using a poorly chosen criticality assignment, namely ISML. The result is that
with this hierarchy, ABTWEAK using both MP and left-wedge performs the
worst. This result leads us to the conclusion that an arbitrary abstraction
hierarchy is not necessarily good. To improve performance using abstraction,
one has to be very careful in the choice of both the abstraction hierarchy



36

and the search strategies guiding the abstract search. This result serves as
a strong motivation for much of the current research in finding syntactic
criteria for good abstraction hierarchies. Examples of such current work can

be found in [4] and [5].

6.2 Robot Task Planning Domain

We have run 50 tests of ABTWEAK with the hierarchy in Table 4 using the
primary effects heuristic. Without this heuristic, many simple problems were
not solvable by any of the planners that we tested. Five different planning
problems of each length were solved using TWEAK, ABTWEAK with breath-
first, and ABTWEAK with both the monotonic property and the left-wedge
control strategy. Both planners in this domain used primary-effects as a
domain-dependent heuristic to restrict the branching factor of search. Fig-
ure 11 shows the number of states expanded as a function of solution length.
It is clear that ABTWEAK with the monotonic property and the left-wedge
control strategy dramatically outperforms both TWEAK and ABTWEAK with
only the breath-first control strategy.

Criticality Predicate
4 Box-Inroom and other sort-type predicates.
3 Robot-Inroom
2 Box-At
1 Robot-At
0 Open

Table 4: Criticality assignments for the Robot Task Planning Domain.

6.3 Summary of the Experiments

To sum up, we make the following observations from the experiments:

1. Using the monotonic property in abstract planning is often more advan-
tageous than without, especially when difficult-to-achieve conditions



37

500
450
400
350

S 300

tates

Expand250
200

150
100
50

I I I
ABTWEAK+BF+MP <— -

ABTWEAK+LW+MP & _|
TwWEAK 2\ -

4 5 6 7 8 9 10 11
Solution Length

Figure 11: Comparing TWEAK with ABTWEAK in the robot task planning
domain.



38

are placed higher up in a hierarchy. This can be seen from the experi-
ments with different hierarchies in the Towers of Hanoi domain. On the
other hand, if a bad hierarchy is used then using monotonic property
can reduce search efliciency.

2. The number of monotonic violations provides a criterion for judging
the effectiveness of an abstraction hierarchy. The fewer there are, the
better the hierarchy. This motivates the investigation of syntactical
restrictions on the criticality assignments which can guarantee good
performance.

3. Having a good abstraction hierarchy is not sufficient for superior per-
formance over planning without using abstraction. An additional re-
quirement is a control strategy that takes advantage of the structure
of the hierarchies. Left-Wedge is one such strategy that preserves com-
pleteness and outperforms TWEAK, on good abstraction hierarchies.

4. Certain domain-dependent heuristics, such as the use of primary effects
in goal-achievement, can jeopardise the completeness of a hierarchy.
However, a sufficient condition exists under which the completeness is
preserved. The condition requires that all primary effects of an op-
erator have criticalities at least as large as the other effects. In the
robot domain, ABTWEAK with the hierarchy satisfying this constraint
and using the left-wedge control has shown a large amount of search
reduction over search without abstraction.

5. The placement of object-type predicates, such as IsPeg, can affect the
efficiency of a hierarchical planner dramatically. Our general conclusion
is that placing them at the highest level of abstraction is almost always
better.

7 Conclusion

This research has been aimed at formalizing and testing domain-independent,
nonlinear planning systems that plan in hierarchies of abstraction levels. The



39

Table 5: ABTWEAK With Monotonic Protection and Breadth-first search.
Search space expansion bound: 5000 expanded.

Hierarchies | Expanded || Generated: || MP Pruned: || CPU Seconds:
ILMS 471 794 0 252.2
IMLS 166 233 65 60.4
IMSL 652 1037 270 421.4
ILSM 765 1205 172 540.2
ISLM 1083 1433 800 929.8
ISML 5001 6157 5282 9579.8
LIMS 609 1004 0 677.1
MILS 295 428 117 235.9
MISL 698 1107 274 868.1
LISM 907 1419 177 1137.4
SILM 522 715 329 480.2
SIML 844 1148 609 993.6
LMIS 1717 3661 0 1853.9
MLIS 313 597 77 304.8
MSIL 1339 2537 378 1862.7
LSIM 3339 6563 321 4207.1
SLIM 389 695 175 395.7
SMIL 989 1571 617 1350.2
LMSI 1894 4613 0 2690.8
MLSI 382 851 77 420.4
MSLI 3263 8065 1261 6460.7
LSMI 5001 12496 665 10339.2
SLMI 640 1388 200 892.3
SMLI 2519 6795 1286 4987.9




40

Table 6: ABTWEAK using Breadth-first search, and without Monotonic Pro-
tection. Search space expansion bound: 5000 expanded.

Hierarchies | Expanded || Generated: || MP Pruned: || CPU Seconds:
ILMS 471 794 0 218.4
IMLS 550 934 0 213.6
IMSL 918 1790 0 548.1
ILSM 1112 1973 0 730.7
ISLM 1771 3142 0 1224.5
ISML 3142 6171 0 3333.5
LIMS 609 1004 0 531.2
MILS 700 1215 0 500.2
MISL 964 1864 0 948.6
LISM 1257 2197 0 1321.1
SILM 1578 2899 0 1442.7
SIML 3249 6388 0 3589.5
LMIS 1717 3661 0 1668.8
MLIS 1181 2736 0 1020.8
MSIL 1605 3398 0 1728.3
LSIM 3700 7509 0 4355.0
SLIM 2249 5014 0 2363.6
SMIL 1449 3124 0 1514.4
LMSI 1894 4613 0 21114
MLSI 1217 3060 0 1255.3
MSLI 3874 10782 0 5783.0
LSMI 5001 13029 0 6849.5
SLMI 2940 7619 0 3821.4
SMLI 2359 6445 0 2892.1




41

Table 7: ABTWEAK using Left-wedge search, and with Monotonic Protec-
tion. Search space expansion bound: 5000 expanded.

Hierarchies | Expanded || Generated: || MP Pruned: || CPU Seconds:
ILMS 57 99 0 38.2
IMLS 86 129 16 38.1
IMSL 3904 4776 3891 4971.6
ILSM 608 808 408 1102.0
ISLM 5001 6268 3979 15491.3
ISML 5001 5841 5391 12688.5
LIMS 56 98 0 79.1
MILS 94 138 21 81.3
MISL 5001 6115 5015 12604.9
LISM 607 807 408 1599.1
SILM 4094 5018 2954 17645.9
SIML 4992 5780 5119 14341.2
LMIS 56 101 0 87.9
MLIS 73 122 9 126.4
MSIL 5001 6011 5116 17385.6
LSIM 1587 2116 931 7030.2
SLIM 5001 6592 3670 24998.1
SMIL 5001 6161 5151 16803.1
LMSI 250 636 0 540.5
MLSI 170 363 9 255.1
MSLI 5001 13780 3935 14721.4
LSMI 3142 7587 831 9513.8
SLMI 5001 12050 1526 17247.3
SMLI 5001 15215 4991 10773.0




42

Table 8: ABTWEAK using Left-wedge search, and without Monotonic Pro-

tection. Search s

pace expansion bound: 5000 expanded.

Hierarchies | Expanded || Generated: || MP Pruned: || CPU Seconds:
ILMS 57 99 0 30.5
IMLS 1009 1811 0 1470.5
IMSL 5001 9675 0 6670.5
ILSM 828 1471 0 1260.3
ISLM 168 284 0 214.9
ISML 963 1771 0 1459.0
LIMS 56 98 0 55.0
MILS 1008 1810 0 2278.8
MISL 5001 9675 0 9322.0
LISM 827 1470 0 1327.0
SILM 167 283 0 200.3
SIML 962 1770 0 1628.7
LMIS 56 101 0 84.7
MLIS 989 1785 0 2474.5
MSIL 5001 9691 0 10777.2
LSIM 1915 3500 0 4815.7
SLIM 148 258 0 195.7
SMIL 943 1745 0 1764.5
LMSI 250 636 0 402.7
MLSI 379 828 0 458.1
MSLI 5001 14416 0 9294 .4
LSMI 4737 12387 0 9627.0
SLMI 5001 13633 0 10813.7
SMLI 5001 14571 0 10189.5




43

resulting planner, ABTWEAK, extends the precondition-elimination meth-
ods in ABSTRIPS for building abstraction hierarchies, and allows for a least-
commitment representation of plans in TWEAK. We have shown that ABTWEAK
satisfies the monotonic property; that is, as planning descends from abstract
to concrete levels, the precondition establishment structure of a plan need
not be changed. This, to a large extent, formalizes our intuition for using
abstraction in planning: that it is generally more efficient to use an abstract
solution to guide search at lower levels of abstractions than without abstrac-
tion. In addition, we have demonstrated that a simplistic application of a
control strategy for a single-level problem solver to each level of the abstrac-
tion hierarchy will not in general provide completeness for the multiple-level
system. Completeness can be obtained by searching simultaneously in the
space of alternative abstract plans (rightwards in the search tree), and in the
space of refinements (downwards in the search tree). Preferring refinements
over alternatives is the basis for the left-wedge strategy, which our experi-
ments show optimizes performance over those abstraction hierarchies having
fewest monotonic violations.

In the future, we plan to further investigate criteria for checking good ab-
straction hierarchies, as well as extend the present framework of ABTWEAK
to include also other types of abstraction hierarchies used in practice.

Acknowledgement

We thank Craig Knoblock for many useful comments. This work was supported in
part by research grants to Qiang Yang, from the Natural Sciences and Engineering
Research Council of Canada, and by grants to Josh D. Tenenberg in part from
ONR research grant no. N00014-90-J-1811, Air Force - Rome Air Development
Center research contract no. F30602-91-C-0010, and Air Force research grant no.
AFOSR-91-0108.

References

[1] David Chapman. Planning for conjunctive goals. Artificial Intelligence,
32:333-377, 1987.



44

[2] Eugene Charniak and Drew McDermott. Introduction to Artificial In-
telligence. Addison-Wesley Publishing Company, 1985.

[3] Subbarao Kambhampati. Flezible Reuse and Modification in Hierar-
chical Planning: A Validation Structure Based Approach. PhD thesis,
University of Maryland, College Park, Maryland, Oct. 1989.

[4] Craig Knoblock, Josh Tenenberg, and Qiang Yang. Characterizing ab-
straction hierarchies for planning. In Proceedings of the 9th AAAIL Ana-
heim, CA, 1991.

[5] Craig A. Knoblock. Automatically Generating Abstractions for Prob-
lem Solving. PhD thesis, School of Computer Science, Carnegie Mellon
University, 1991. Tech. Report CMU-CS-91-120.

[6] Richard Korf. Planning as search: A quantitative approach. Artificial
Intelligence, 33:65-88, 1985.

[7] David McAllester and David Rosenblitt. Systematic nonlinear planning.
In Proceedings of the 9th AAAI, Anaheim, CA, 1991.

[8] Steve Minton. Quantitative results concerning the utility of explanation-

based learning. Artificial Intelligence, 42:363-391, 1990.

[9] Nils Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann
Publishers Inc, 1980.

[10] Earl Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial
Intelligence, 5:115-135, 1974.

[11] David Wilkins. Practical Planning: Extending the Classical Al Planning
Paradigm. Morgan Kaufmann, CA, 1988.

[12] Steven G. Woods. An implementation and evaluation of a hierarchi-
cal non-linear planner. Master’s thesis, Computer Science Department,
University of Waterloo, 1991.



45

A Operators in the 3-disk Towers of Hanoi

Domain

MoveLarge (x y)
Preconditions={IsPeg(x)
IsPeg(y)
- OnMedium(x)
- OnMedium(y)
— OnSmall(x)
— OnSmall(y)
OnLarge(x)}
Effects={— OnLarge(x)
(OnLarge y)}

MoveMedium (x y)
Preconditions={IsPeg(x)
IsPeg(y)
— OnSmall(x)
— OnSmall(y)
OnMedium(x)}
Effects={— OnMedium(x)
OnMedium(y)}

MoveSmall (x y)
Preconditions={IsPeg(x)
IsPeg(y)
OnSmall(x)}
Effects={— OnSmall(x)
OnSmall(y)}



46

B Operators in the Robot Task Planning
Domain.

This appendix lists the operators used in the robot task planning domain.

Primary effects of operators are marked by “*.”

B.1 Operators for going between rooms

To push a box through a door between 2 rooms.

push-thru-dr (box door-nm from-room to-room door-loc-from door-loc-to robot)
Preconditions={Is-Door(door-nm from-room to-room door-loc-from door-loc-to)
Pushable(box)
Box-Inroom(box from-room)
Robot-Inroom(from-room)
Box-At(box door-loc-from)
Robot-At( door-loc-from)
Open( door-nm) }
Effects={— Robot-Inroom(from-room)
Robot-Inroom(to-room)
— Box-Inroom(box from-room)
Box-Inroom(box to-room)*
Robot-At(door-loc-to)
Box-At(box door-loc-to)*
— Robot-At(door-loc-from)
— Box-At( box door-loc-from) }

To go through door from room2 to rooml.

go-thru-dr (door-nm from-room to-room door-loc-from door-loc-to )
Preconditions={Is-Door( door-nm from-room to-room door-loc-from door-loc-to)
Robot-Inroom(from-room)
Robot-At( door-loc-from)
Open( door-nm) }
Effects={Robot-At(door-loc-to)*
— Robot-At(door-loc-from)



— Robot-Inroom(from-room)
Robot-Inroom(to-room)*}

B.2 Operators for going within a room

Operator for going to a location in a room.

goto-room-loc (from to room)
Preconditions={Location-Inroom( to room)
Location-Inroom( from room)
Robot-Inroom(room)
Robot-At(from) }
Effects={— Robot-At(from)
Robot-At(to)*}

Operator for pushing box between locations within one room.

push-box (box room box-from-loc box-to-loc robot)

Preconditions={Pushable(box)
Location-Inroom( box-to-loc room)
Location-Inroom( box-from-loc room)
Box-Inroom(box room)
Robot-Inroom(room)
Box-At(box box-from-loc)
Robot-At(box-from-loc) }
Effects={— Robot-At(box-from-loc)
- Box-At( box box-from-loc)
Robot-At(box-to-loc)
Box-At(box box-to-loc)*}

B.3 Operators for Opening and closing doors

To Open a door.

47



48

Open (door-nm from-room to-room door-loc-from door-loc-to)
Preconditions={Is-Door( door-nm from-room to-room door-loc-from door-loc-to)
— Open(door-nm)
Robot-At(door-loc-from) }
Effects={Open(door-nm)*}

To close a door.

close (door-nm from-room to-room door-loc-from door-loc-to)
Preconditions={Is-Door( door-nm from-room to-room door-loc-from door-loc-to)
Open(door-nm)
Robot-At(door-loc-from) }
Effects={— Open(door-nm)*}



49

C ABTWEAK Algorithm

C.1 Data Structures and Subroutines

1. OPEN — A priority queue of plans on the frontier of the search tree.
The list is sorted in ascending order of the plans’ costs, Cost(II).

2. MTC(II) — A predicate on plans, which is true of II exactly when II
is necessarily correct.

3. Successors(Il) — A function mapping each plan to a set of successor
plans.

C.2 ABTWEAK
Algorithm ABTWEAK (initial, goal):

OPEN « Initial-Plan,
{where Initial-Plan is a plan with two operators, initial and goal).}
Loop
If OPEN is empty, Then exit with failure.
Else, let Il = First(OPEN), and OPEN «— Remove(Il, OPEN).
Endif
If crit(II) = 0 and MTC(II) = True, Then return II, and exit with success.
Else, If MTC(II) = True, Then
{the plan II is correct at an abstract level},
erit(Il) — crit(I) — 1,
OPEN « Insert({Il},OPEN),
Else,
{Successor Generation: Plan II must contain at least one
precondition that does not necessarily hold.}
OPEN « Insert(Successors(Il),OPEN — First(OPEN)).
Endif
Endif
Endloop



50

C.3 Successor Generation

Subroutine Successor (II)
{Comment: The global variable MP is True whenever the Monotonic Pro-
tection is used in ABTWEAK.}

succ := ()
successors := ()
Find a precondition precond of an operator User in plan II,
such that precond is not necessarily true
If MP = True and crit(precond) > crit(Il) Then
Est := an abstract establishment relation, Establishes(a, User, precond, e, ),
that has been clobbered at the current level,
succ := {(IL, Est)}
Else
Let Old be the set of operators in II which effects possibly
establish precond for User, and let New be the set of new
operators taken from the operator schemas of the domain, that have
effects which possibly codesignate with precond.

For each operator a in Old|J New Do
(1) Add temporal and codesignation constraints to a copy II' of II
so that for some effect e, of a, the relation
Est = Establishes(a, User, precond, e, ) holds
(2) succ := succ Y{(II', Est)}
Endif
{ Declobber }
For each pair (II',Est = Establishes(a, User, precond, e,)) in succ, Do
If Est is clobbered Then
For each clobberer C of Est, with a clobbering effect ez, Do
(1) impose the constraint C < «, onto a copy II; of II,
(2) impose the constraint User < C, onto a copy II, of II',
(3) impose the constraint eg % —precond, onto a copy II, of II'.
(4) successors := successors | J{Il;,II,, 15},
{Each copy is a new successor in the search space.}
Endfor
Else successors := successors J{II'}

Endif



51

Endfor
If MP = True Then {Monotonic Protection }
For each plan II' in successors, Do
If there is an operator v and an abstract establishment relation

Establishes(a, 3, pg, e,) such that

{Note: This condition defines monotonic violation.}
(1) S(a < 7 < B),
(2) For some effect e, of v,
either O(e, = pg) or

D(ey = —ep).
Then successors := successors — {II'}
Endif
Endfor
Endif

Return successors

C.4 Cost Function and Left Wedge Implementation

The cost function cost(Il) can be defined as the total number of operators
in II, if a breadth-first control strategy is used. The left wedge heuristic
is implemented by adding to the cost function an additional value, which
depends on the level of abstraction:

cost(Il) = |Operatorsy| — lw(crit(I)),

where [w(7) is any monotonically decreasing function of ¢, such that lw(k — 1) = 0,
for a hierarchy with k levels of abstraction.

C.5 TweAK Implementation

TWEAK can be implemented by making the following modifications to the
ABTWEAK routines:

1. erit(Il) = 0, for all II,

2. In the successor generation part, remove the two monotonic protection
components.



