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Abstract

We extend the hierarchical� precondition�elimination abstraction of Abstrips

to nonlinear� least�commitment planners such as Tweak� Speci�cally� we show

that the combined planning system� AbTweak� satis�es the monotonic property�

whereby the existence of a lowest level solution � implies the existence of a highest

level solution that is structurally similar to �� This property enables one to prune

a considerable amount of the search space without loss of completeness� In addi�

tion� we develop a criteria for good abstraction hierarchies� and develop a novel�

complete search strategy called Left�Wedge that is optimized for good abstraction

hierarchies� We demonstrate the utility of both the monotonic property and the

Left�Wedge strategy through a series of empirical tests�
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� Introduction

Symbolic planning representations have been useful in AI because they en�
able planning agents that use them to make strong predictions about future
states given the execution of a hypothetical sequence of actions �a plan�� In
addition� the associated formal methods allow researchers to make and verify
strong formal claims� for instance� regarding soundness� completeness� and
complexity�

However� one of the central problems with this formalist approach is
that �nding plans that will bring about desired states is very resource in�
tensive� typically involving a heuristically guided traversal of large portions
of the state space� Researchers have pursued several approaches to re�
duce this resource cost� two of the most prominent being nonlinear least�
commitment planning� such as Chapman	s Tweak 
��� and hierarchical ab�
straction through precondition elimination� such as Sacerdoti	s Abstrips

���� In this paper� we describe our research in combining these two ap�
proaches� The �rst half of our paper demonstrates that the formal character�
istics of each are preserved when combined� while the second part� describing
a set of experiments and a discussion of search strategies� demonstrates that
signi�cant search e�ciencies can often be obtained�

In nonlinear� least�commitment planning� at any time in the plan con�
struction process� the temporal ordering and variable bindings of the opera�
tors need only be partially speci�ed through the incremental posting of pair�
wise constraints� For instance� suppose that one has the problem of drilling
a large hole in a block of wood and nailing a plate to this block� If the plate
and the hole are spatially disjoint� as in �gure �� then there is no reason
to initially order one operation before the other� A linear planning system�
such as Strips or Abstrips� because of its weak plan representation� would
be required to impose a total ordering on these operations� such as to �rst
attach the plate� and then drill the hole� However� constraints added by sub�
sequent planning might impose an order contrary to that which was initially
chosen� One such constraint would arise if one of the nails holding the plate
protrudes into the space carved out by the drill press� as in �gure 
� In this
case� the planner would need to backtrack and reorder the plan steps� or add
additional steps into the original plan� A nonlinear planner� however� would
not have imposed an ordering on the operators if none was yet called for�
and thus would not be required to backtrack when the potential clobbering






was uncovered� All that would be required would be to add an ordering
constraint specifying that the drilling must precede the attaching�

A HOLE

A NAIL

Figure �� Spatially disjoint nail and hole�

A HOLE

A NAIL

Figure 
� Interacting nail and hole�

Likewise� if any one of a number of drill presses will su�ce for the hole
drilling� there is no reason to choose one over the other� at least until sub�
sequent constraints require it� Thus� least�commitment planners will not
require an arbitrary choice of variable bindings� Thus� by deferring planning
choices and incrementally collecting constraints� one performs less backtrack�
ing than would occur from the premature commitment to planning decisions�

A partial plan represented by pairwise ordering and codesignation con�
straints thus stands for a space of plans� namely� all totally ordered� fully
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ground plans satisfying these constraints� An assumption underlying this
representation is that only a single one of these plans will be chosen for ex�
ecution� Thus� a formal means is required for determining that each plan
completion� if executed� will solve the goal� Not only is this veri�cation im�
portant for goal satisfaction� but it is crucial in plan construction� since one
must verify for each operator that its preconditions will all be satis�ed in
the state in which it is applied� regardless of the ordering and variable in�
stantiations of the predecessor operators� This formal requirement is met by
Chapman in 
��� and is termed the Modal Truth Criterion �MTC�� The virtue
of this criterion is that it can be checked in polynomial time as a function
of the number of operators in a plan� even though there are potentially an
exponential number of total orderings and an in�nite number of codesigna�
tions that satisfy the given constraints� Demonstrating that the conditions
of the Modal Truth Criterion are satis�ed at higher levels of abstraction is
one of the main technical results of this paper�

Hierarchical planning through precondition elimination is primarily con�
cerned with the order in which goals and subgoals are solved� All atomic
statements are given a criticality ranking� and all goals and subgoals having
a particular criticality value are solved before any goal or subgoal having a
lower criticality� The intuition has traditionally been that high criticality
propositions are those most di�cult to achieve� and low criticality propo�
sitions the least di�cult� A criticality assignment thus generates a hierar�
chically ordered sequence of planning levels on an otherwise non�hierarchical
planning system� each level ignoring propositions having lower criticality val�
ues� A plan is �rst obtained at the highest criticality level� Once a solution
is obtained at a particular criticality level i� it is re�ned at level i � � by
inserting operators between the level i plan steps in order to satisfy their
criticality i� � preconditions� For example� someone traveling from Toronto
to IJCAI�� in Sydney would likely �rst plan their air�travel before planning
their intra�city travel� In terms of our formulation� this amounts to ignoring
the preconditions that one must be at the airport in order to �y between
cities� These concrete level preconditions are considered only after the entire
abstract air�travel plan has been formulated� Problem�solving in this manner
often promises an exponential amount of savings in computation �see 
�� ����

A theoretical principle that underlies the abstraction�re�nement search
strategy states that for all problems having a lowest criticality level solu�
tion� there exists a highest level solution that re�nes through insertion in the
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above�described manner down to the lowest level� This principle is described
in 
��� and is termed Monotonic Re�nement� It actually states something
even stronger� that the criticality i subgoals are protected from lower level
insertions� and are thus never violated at lower levels� In essence� this princi�
ple states that one can structure search so that work performed at the higher
levels is never undone at lower levels� What is surprising about this property
is that it holds for any assignment of criticalities to propositions�

We de�ne a planning system� AbTweak� which applies Abstrips style
abstraction to Tweak� yielding a hierarchy of nonlinear planning levels� Our
main theoretical results establish that �� the correctness of plans as speci�ed
by the Modal Truth Criterion is preserved when going up abstraction levels�
and 
� the Monotonic Property holds of AbTweak systems� regardless of
criticality assignment� This latter property thus serves as a basis for an
iterative re�nement search strategy� analogous to the case for linear planners�
Due to the fact that this property holds regardless of criticality� it is not
a su�cient constraint to guarantee performance improvements under any
criticality assignment as compared to other search strategies� However� it
does suggest a criterion for good criticality assignments � those assignments
which result in few protection violations� Good criticality assignments will
tend to be those in which satisfaction of a subgoal will not rely upon the
satisfaction of lower�valued subgoals�

Developing criteria for good abstraction hierarchies is not su�cient for
good performance� one must additionally use search strategies that exploit
the control knowledge embedded in the abstraction hierarchy� Is breadth��rst
search� depth��rst� or some other search strategy most appropriate� How will
this search strategy impact the completeness of the planner� Unfortunately�
this is the aspect of precondition�elimination abstraction that is the least un�
derstood� Thus� in exploring search� we were not able to generalize strategies
useful in previous hierarchical planners�

With good abstraction hierarchies� early plan choices are less likely to be
abandoned� This suggests that search proceed primarily in a depth��rst man�
ner� However� since the �rst abstract plan found might not be monotonically
re�nable� completeness requires that alternative abstract plans must at the
same time be pursued� There is� then� a tradeo� between search through the
space of alternative abstract plans� and search through the space of plan re�
�nements� To address this tradeo�� we have developed a new search strategy�
the Left�Wedge� which has elements of both depth� and breadth��rst search�
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Left�Wedge is a complete strategy� but it gives priority to those plans that
are most re�ned� That is� it prefers to push deeper into the space of re�ne�
ments� but expends some smaller percentage of its resources in considering
abstract alternatives�

In assessing the practical utility of the monotonic property and the left�
wedge search control strategy� we have conducted a series of empirical tests�
Our results show that in general� an abstract planner using the monotonic
property outperforms one without� We also show that with intuitively good
abstraction hierarchies� the left�wedge search strategy improves search e��
ciency dramatically over a straightforward application of the breadth��rst
search�

We �rst present brief descriptions of Tweak and Abstrips� and then de�
�ne AbTweak� We demonstrate that AbTweak has the monotonic prop�
erty� and show how the application of this property a�ects search�

� Nonlinear Planning� Tweak

Chapman 
�� provides a formalization of a least commitment� nonlinear plan�
ner� Tweak� Tweak extends Strips by allowing for

�� a partial temporal ordering on the operators in a plan�


� partial constraints on the binding of variables �codesignations� of the
operators�

A Tweak plan thus represents a space of Strips plans� all totally ordered�
fully ground plans that satisfy the ordering and codesignation constraints�

Formally� aTweak system is a pair � � �L�O�� L is a restricted language
consisting of a �nite number of predicate symbols� in�nitely many constant
and variable symbols� and negation� The set of terms of L is the constants
unioned with the variables� The set of atoms is all expressions of the form

P �x�� � � � � xn��

where P is an n�ary predicate and the xi are terms� The ground atoms are
the atoms where all terms are constants� The literals �also called proposi�
tions� include all atoms and their negations� Further� for any literal p� ��p
is equivalent to p� O is a set of operator templates �referred to simply as
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operators�� Associated with each operator a is a set of precondition literals�
Pa� and e�ect literals� Ea� One should note that Tweak systems are some�
what constrained in their expressive power� In particular� actions cannot
have indirect or context�dependent e�ects� and the domain of each variable
is taken to be in�nite� and identical to the domains of all other variables�
Thus� there is no straightforward way of representing limited resources�

Chapman did not give a formal de�nition of a Tweak plan 
��� Because
this concept is very important in de�ning a number of others later in the
paper� we formally de�ne it as follows�

De�nition ��� A plan � is a triple �Operators�����Co�Nonco��� where

� Operators� is a set of operators� which are copies of operator templates�
in which the template variables have new� unique names�

� ��� the temporal constraints� is a binary relation on Operators� such
that the transitive closure of �� is a partial order �irre�exive� asym�
metric� transitive��

� Co�Nonco�� the codesignation constraints� is a pair of binary relations
on the terms in L� with �� being the positive codesignations� and ��� be�
ing the non�codesignations� �� is an equivalence relation� Co�Nonco�
is further constrained so that

Consistency� if �x �� y�� then it is not the case that �x ��� y�� for
any terms x and y� and

Uniqueness of Names� it is not the case that �c �� d�� for any �
constants c and d�

We extend � and �� to propositions	


� P �x�� � � � � xm� �� Q�y�� � � � � yn� i� P � Q� m � n� and xi �� yi
� � i � n

�� For atoms p and q� �p �� �q i� p �� q�

The plan subscripts to �� ��� and � will be dropped if the plan to which
these relations refer is clear from context�
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With the above de�nition� we can now restate several terminologies used
in 
�� formally� A complete plan � is a plan where �� is a linear ordering on
Operators�� and Co�Nonco� is such that every variable in every operator of
Operators� codesignates with some constant� A plan completion of � refers
to any complete plan �� that satis�es the partial constraints of ��

An operator � asserts literal p if there exists q � E� such that p and q

codesignate� and denies p if its negation is asserted� A state is de�ned as a
set of ground atoms in L� An input problem is taken to be a pair � � �I�G��
where I is a state �the initial state�� and G is a set of propositions� �the goal��

For example� consider the ��disk Tower of Hanoi domain� The locations of
the disks are represented by three predicates� OnLarge OnMediumand OnSmall
each taking a single argument denoting the peg� The IsPeg� �predicate is
used as a precondition in the operator de�nitions to ensure that every variable
is instantiated to an existing peg� Thus� the language L of theTweak system
consists of the symbols listed in Table ��

Symbols
Predicate IsPeg���OnLarge���OnMedium���OnSmall��
Constant Peg��Peg��Peg�� c�� c�� � � �
Variables x�� x�� � � �

Table �� Tower of Hanoi Domain Language�

The MoveLarge operator is given in Table 
� with the full operator set
listed in Appendix A� This operator is used for moving the large disk from
peg x to peg y� An input problem in the Towers of Hanoi domain is to move
all three disks from Peg� to Peg�� For this problem� the goal G is represented
by the set

fOnLarge�Peg��� OnMedium�Peg��� OnSmall�Peg��g

A plan for solving this problem is�

hMoveSmall�Peg��Peg��� MoveMedium�Peg�� Peg��� MoveSmall�Peg��Peg���

MoveLarge�Peg�� Peg��� MoveSmall�Peg��Peg��� MoveMedium�Peg��Peg���

MoveSmall�Peg��Peg��i� ���
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MoveLarge �x y�
Preconditions�fIsPeg�x�

IsPeg�y�
� OnMedium�x�
� OnMedium�y�
� OnSmall�x�
� OnSmall�y�
OnLarge�x�g

E�ects�f� OnLarge�x�
�OnLarge y�g

Table 
� De�nition of the MoveLarge operator�

The temporal order is linear� indicated by the left�to�right and top�to�bottom
order of the literals� and the replacement of the operator variables by con�
stants indicates the codesignations� This same convention for writing the
ordering and codesignation constraints will be used throughout�

For simplicity� the goal G can be represented by a special operator G�
where PG � EG � G� The initial state I can likewise be viewed as a special
operator I� with PI � 	 and EI � I� These two operators will be an
element of each plan �� under the constraint that� for every other operator
� � Operators

�
� �I �� �� and �� �� G��

In general a plan can have many di�erent instantiations and many di�er�
ent total orderings consistent with the partial order� We will often want to
talk about constraints that hold in all completions� or that hold in at least
one completion� for which Chapman presents the possibility and necessity
operators� In a partial plan� two terms p and q necessarily codesignate� de�
noted ��p � q�� if they codesignate under every completion� and possibly
codesignate� ��p � q�� if they codesignate under some completion� Operator
� necessarily precedes �� denoted ��� � ��� if � precedes � under every
completion� and � possibly precedes �� ��� � ��� if � precedes � under
some completion�
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Given our previous de�nition of plans� we have the following equivalences�

��� � �� 
� ��� �� ���

��� � �� 
� ����� � �� 
� ��� �� �����

��p � q� 
� �p� q� ����

��p � q� 
� ����p � q� 
� �p� q� ������

��p �� q� 
� �p� q� �����

��p �� q� 
� ����p �� q� 
� �p� q� ����

The following de�nitions introduce simplifying notation�

��� � � � �� 
� ��� � c� and ��� � ���

��� � � � �� 
� ��� � c� and ��� � ���

� AbTweak

In Abstrips� Sacerdoti developed an elegant means for generating abstract
problem spaces by assigning criticality values �an integer between � and k�
for some small k� to preconditions� and abstracting at level i by eliminating
all preconditions having criticality less than i� This is formalized as follows�

A k level AbTweak system is a triple � � �L�O� crit�� where L and O

are de�ned as for Tweak� and crit is a function mapping preconditions to
non�negative integers�

crit �
�

��O

P� � f�� �� � � � � k � �g�

Intuitively� crit is an assignment of criticality values to each proposition ap�
pearing in the precondition of an operator�

Let � be an operator� We take iP� to be the set of preconditions of �
which have criticality values of at least i�

iP� � fp j p � P� and crit�p� 
 ig�

i� is operator a with preconditions iP� and e�ects E�� Let the set of all such

i� be iO� This de�nes a TWEAK system on each level i of abstraction�

i� � �L� iO��
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For example� an AbTweak system can be constructed for the Towers of
Hanoi domain using a criticality assignment to literals as shown in Table ��
With this hierarchy� the operator MoveLarge�x��x��� when represented on
level 
 of the hierarchy� appears as�

�MoveLarge �x� x��
Preconditions�fIsPeg�x��

IsPeg�x��

OnLarge�x��g
E�ects�f� OnLarge�x��

OnLarge�x��g

Criticality Predicate

 IsPeg��� � OnLarge��� OnLarge��
� � OnMedium��� OnMedium��
� � OnSmall��� OnSmall��

Table �� A criticality assignment for Towers of Hanoi domain�

At the abstract level� the following plan � solves the original TOH prob�
lem�

Operators� � fMoveLarge�x�� x��� MoveMedium�x�� x��� MoveSmall�x�� x��g
��� fg
�� f�x�� Peg��� �x�� Peg��� �x�� Peg��� �x�� Peg��g
��� �

There are � operators in this plan� one for getting each disk on Peg�� In
addition� at the abstract level� there are no temporal constraints between
the operators� Thus� any ordering will achieve the goal� Finally� the only
instantiations required for solving the goal are that the �rst operator move
the large disk from Peg� to Peg�� and that the other operators move their
respective disks from some peg to Peg��
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� Upward Solution Property

As with Abstrips� the strategy for planning with AbTweak is in a top�
down manner � when a problem is input� planning proceeds �rst at the most
abstract� least constrained level� This plan is then re�ned at the next lower
level by inserting new operators to satisfy the re�introduced preconditions�
Only after all of the preconditions are satis�ed on the current level does the
planner pass the plan to the level below�

Note the distinction between plan completion and plan re�nement� Com�
pletion refers to specifying a totally ordered� fully ground plan that satis�es
all of the ordering and codesignation constraints of the partial plan� Re�ne�
ment refers to inserting plan steps at level i into a plan constructed at levels
greater than i�

Implicit in the top�down search strategy� termed length �rst search by
Sacerdoti 
���� is the assumption that short plans to solve a given problem
are guaranteed to exist at the abstract level which can be successively re�
�ned� and that search strategies exist to �nd such abstract plans� Our intent
is to formally prove this property� and to show how it places some useful
constraints on search� The intuition behind the proof is to show that if there
exists a concrete level solution to a problem� then this solution will also solve
the problem at each higher level of abstraction� since these higher levels do
not place any new constraints on the problem� Further� since there are fewer
preconditions at the higher levels� one can eliminate from this plan those op�
erators whose purpose at lower levels is solely to satisfy� directly or indirectly�
one of the eliminated preconditions�

In order to prove this� we �rst formalize what is meant by one operator
directly or indirectly satisfying the preconditions of another� and then de�ne
correctness for partial plans� This new de�nition of correctness is used to
verify that the shorter� abstract plans are correct and satisfy the goal� In the
following de�nitions� all operators are taken to be relative to a plan ��

��� Establishment

De�nition 	�� Let � be a plan� Operator � establishes proposition p before
operator � �Establishes��� �� p� u�� if and only if


� u � E��



�


�� ��� � ���

�� ��u � p�� and


� ��� � Operators���u� � E��� if ��� � �� � ��� then ���u� � p��

The �nal condition ensures that � is the last such operator that establishes
p for �� This de�nition is aimed at formalizing and unifying many similar
notions of causal relationship used in the planning literature� including es�
tablishers used in SIPE
���� contributors in NONLIN� validation structure in
Priar
��� causal links in 
��� protection intervals by Charniak and McDermott


�� and triangle tables used by Fikes and Nilssion
���

Consider again the Towers of Hanoi example� where we assume that
initially all three disks are on Peg�� The following plan solves the goal
�OnLarge�Peg��� at the lowest level�

hMoveSmall�Peg��Peg��� MoveMedium�Peg�� Peg��� MoveSmall�Peg��Peg���

MoveLarge�Peg��Peg��i �
�

In this plan� the operator MoveSmall�Peg��Peg�� establishes the precondi�
tion �OnSmall�Peg�� of operator MoveMedium�Peg��Peg��� Similarly� MoveSmall�Peg��Peg��
is an establisher for MoveLarge�Peg��Peg���

Informally� one operator � clobbers a proposition just prior to another
operator � if � possibly precedes � and possibly denies this proposition� A
white knight is another operator which necessarily re�establishes this clob�
bered proposition�

De�nition 	�� � is a clobberer of p before �� �CB��� �� p� q�� if and only if

�
� q � E��
��� ���q � p��
��� ��� � ��

De�nition 	�
 	 is a white knight of p before �� �WK�	� �� �� p� q� r��� if and
only if

�
� CB��� �� p� q��
��� r � E��
��� ��� � 	 � ��� and
�
� for every completion � of �� if ��q �� p� then �r �� p��
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��� Correctness� The Modal Truth Criterion

A complete plan is correct if every precondition of every operator is satis�
�ed in the state in which the operator is applied� By our earlier de�nitions�
this condition holds whenever every precondition has some establisher and
there is no subsequent clobberer� A Tweak plan is correct if every com�
pletion is correct� However� given the exponential number of total orderings
and in�nite number of constant instantiations� it is impossible to check each
completion separately for correctness� We would instead like a criterion that
decides the truth of a proposition at a given point in a plan� and which can
be translated into a polynomial time algorithm�

Fortunately� Chapman 
�� provides a concise statement of the criterion�
which he calls the Modal Truth Criterion �MTC�� and which� for each pre�
condition� can be computed in time O�n��� n being the number of operators
in the plan� A problem with his de�nition� however� is that it is stated in
terms of situations� which are not well�de�ned in a partial plan� For that
reason� we provide a modi�ed version of the MTC� de�ned solely in terms
of operators in a plan� Intuitively� it states that a proposition p is true at a
point in a plan if and only if p has an establisher� and for every clobberer of
p� there exists a white knight�

Criterion 	�� Proposition p is necessarily true just before operator b in plan
� if and only if


� there exists operator � � Operators� and proposition u such that Establishes��� �� p� u��
and

�� for every operator � � Operators� and q � E� such that CB��� �� p� q��
there exists 	 � Operators� and r � E� such that WK�	� �� �� p� q� r��

��� Ascending Preserves Correctness

As de�ned above� a plan � is correct if and only if every precondition of every
operator is necessarily true just before it is applied� Therefore� removing a
precondition of an operator while holding the plan �xed does not a�ect the
necessary truth of any condition� Thus� after removing a precondition of an
operator in �� the resulting plan �� is still correct� This is stated in the
following lemma� whose proof follows trivially from the de�nition of plan
correctness�



��

Lemma 	�	 Let � be a plan� and � �� G be an operator in �� Let �� be �
with a precondition p removed from P�� Let �� be � with � replaced by ���
If � is correct� then �� is also correct�

Recall that i� is operator � with preconditions iP� �those having criti�
cality at least i�� and e�ects E�� Let � be a plan on the base level� Then for
i � �� 
� � � � � k� �� i� is formed by replacing every occurrence of � �except I
and G� in � by i��

From Lemma ���� the following theorem can be easily proven by induction
on the abstraction levels�

Theorem 	�� If � is a correct plan for goals G at level �� then i� is a
correct plan for solving G on each higher level i � �� 
� � � � � k � ��

For example� it is not hard to verify that Plan � in the Towers of Hanoi
domain is correct� and that it is also correct when abstracted at each higher
level�

This demonstrates that a plan correct at the concrete level is correct at
the abstract level� But� since the abstract level no longer contains some of
the concrete preconditions� the plan steps that were added solely to satisfy
these eliminated preconditions are no longer required� For instance� consider
a plan for getting a box from one room into an adjacent room� in which the
robot picks up the box� goes to the door� sets the box down� opens the door�
picks up the box� and goes through the doorway� Suppose that the status of
the door � whether it is open or closed � is ignored at the abstract level� In
this case� since opening the door is no longer considered as a precondition�
the intermediate steps of setting down and re�picking up the box are no
longer necessary� their sole purpose was to free the agent	s hands for the
door opening� Thus� the abstract level plan is simpler than the concrete level
plan� In the next section� we provide a de�nition of justi�cation� whereby
all constraints and operators from a lower level not justi�ed at the abstract
level can be safely removed while preserving the correctness of the plan�

	�
�� Justi�cation

Justi�cation provides a precise speci�cation of those plan steps which are
required in order to solve the goal� either directly or indirectly� By de�ni�
tion� we take the initial and goal operators to be justi�ed� Other operators
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and constraints are justi�ed if either �� they establish a precondition of a
justi�ed operator� 
� they are a white knight for a justi�ed operator� or ��
they enforce a codesignation or temporal ordering without which a justi�ed
operator would be clobbered�

De�nition 	�� Let � be a plan� and I�G be the special operators for the
initial and goal states� Then in plan ��

Initial
Goal justi�cation I and G are justi�ed�

Establishment justi�cation If � is justi�ed� and ����u � E���p � P�
such that
Establishes��� �� p� u�� then

�
� � is justi�ed� ��� �� � �� is justi�ed� ��� �u � p� is
justi�ed

White knight justi�cation If WK�	� �� �� p� q� r� and � and � are justi�
�ed� then 	� �� � 	�� and �	 � �� are justi�ed� Moreover� if CO is
a set of minimal codesignation and noncodesignation constraints that
ensure the white knight relation� then


� all operators whose parameters appear in CO are justi�ed� and

�� all constraints in CO are justi�ed�

Separation justi�cation If � and � are justi�ed� and �p � P���q � E�

such that �p �� q�� then the constraint �p �� q� is justi�ed�

Promotion justi�cation If � and � are justi�ed� and �p � P� ��q � E�

such that ��p � �q� and ��� � �� then the constraint �� � �� is
justi�ed�

Nothing else is justi�ed�

The justi�cation of plan �� Jus���� is the set of operators� precedence
and codesignation constraints of � that are justi�ed� but not including any
of the operators or constraints that are not justi�ed� It is obvious that the
justi�ed version of a plan is simpler than the plan itself� in the sense that the
set of operators� and constraints of the justi�ed plan are a subset of those in
the unjusti�ed plan�
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With a complete plan� justi�cation is a simple recursive de�nition� any
operator that establishes a justi�ed operator is itself justi�ed� with the goal
and initial states being trivially justi�ed �Initial�Goal� and Establishment
justi�cation�� However� with partial plans� the situation is more complex�
Figures ��� will be helpful in illustrating why the additional justi�cation
conditions are necessary� In each of these �gures� the boxes represent oper�
ators� and the arcs represent necessary precedence� If no arc is between two
operators� this means that they are unordered with respect to one another�
That is� each precedes the other in some completion� All literals have the
same criticality� and in the �rst two �gures� Establishes�a� b� p� u��

In Figure �� suppose that c clobbers b �CB�c�b�p�q��� and w is a white
knight for � �WK�rm w� b� c� p�q�r��� By Initial�Goal and Establishment
justi�cation� a� b� and c are justi�ed� but w is not justi�ed� since it is not
a necessary establisher� Thus� eliminating the white knight in the justi�ed
plan will result in an incorrect plan for every completion in which c follows
a� Thus� white knights must be justi�ed �along with their precedence and
codesignation constraints��

In Figure �� suppose that there is a set D of codesignation constraints
such that ���q �� p��� whose purpose is to prohibit c from clobbering b�
Without Separation justi�cation� c would not be justi�ed� and there would
exist a completion of the justi�ed plan in which c clobbers b and for which
there is no white knight�

In Figure �� suppose that if c preceded rather than followed b� c would
clobber b� That is� ���q � p�� the precedence constraint �b � c� exists
to prevent the clobber� Without Promotion justi�cation� this precedence
constraint is not justi�ed� and hence� in the justi�ed plan� there exists a
completion in which c precedes� and therefore clobbers� b�

For example� consider solving a Towers of Hanoi problem for achieving
the goal of having the large disk at Peg�� where all � disks are initially at
Peg�� At the lowest level� it is necessary to move the 
 smaller disks from
the largest disk before the largest disk can be moved� as in the following�

h�MoveSmall�Peg��Peg���� MoveMedium�Peg��Peg���� MoveSmall�Peg��Peg���

�MoveLarge�Peg��Peg��i

Using the abstraction hierarchy in Table �� the above plan is correct at level

� However� the �rst three operators in the above plan do not establish the
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preconditions of any other operators� Therefore� they can be safely removed�
and the remaining plan

�MoveLarge�Peg��Peg��

is still correct at level 
�

Lemma 	�� If � is a correct plan that solves goal G� then Jus��� also is a
correct plan that solves G�

Proof� Suppose by way of contradiction that �� is incorrect� By de�nition�
�� � Operators����� p � P� such that p is not necessarily true just before ��
Thus� one of the two conditions of the modal truth criterion for p must be
false�

Suppose the �rst condition is false� that is� there does not exist an estab�
lisher of p for � in ��� But there must exist an establisher of p for � in ��
since � is correct� By establishment justi�cation� the establishing operator
and constraints are justi�ed� thus serving as an establisher of p for � in ���
a contradiction�

If the second condition is false� then from the MTC� there is a clobberer
� in ��� but not a white knight� � must also be a clobberer in �� since
by separation and promotion justi�cation� any constraints in � that would
prevent the clobbering would be justi�ed� and hence would also prevent the
clobbering in ��� However� since � is correct� by the MTC� there is a white
knight 	 in �� By white knight justi�cation� 	 must also be a white knight in
��� a contradiction� Thus� �� must be correct� Additionally� �� also solves the
goal� which follows from the de�nition of justi�cation and a simple induction
on the number of operators in �� �

The following theorem establishes the Upward Solution Property� if there
is a solution to a problem at the base level� then the justi�ed version of that
solution at each higher level of abstraction is correct� and also solves the
problem on that level� More formally�

Theorem 	�� If � is a correct plan that solves G at the base level� then the
justi�ed version of i�� Jus�i��� is also a correct plan that solves G on the
ith level� � � i � k � ��

Proof� From Theorem ���� if � is a correct plan that solves G at the base
level� then on each level i� � � i � k � �� i� is a correct plan for solving G�
From Lemma ���� Jus�i�� is also a correct plan that solves G on level i� �
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Establisher:  a

Effect:  u

Clobberer:  c

Effects:  q, g2

White Knight:  w

Effect: r

Action:  b

Precondition:  p

Effect:  g1

Goals:  g1  and  g2

Figure �� White Knight Justi�cation�
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Establisher:  a

Effect:  u

Clobberer:  c

Effects:  q, g2

Action:  b

Precondition:  p

Effect:  g1

Goals:  g1  and  g2

Figure �� Separation Justi�cation�

Action:  b

Precondition:  p

Effect:  g1

Goals:  g1  and  g2

Action:  c

Effects:  q, g2

Figure �� Promotion Justi�cation�
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��� Monotonic Re�nement

The Upward Solution Property guarantees the existence of an abstract level
solution to a problem� whenever there exists a lowest level solution� Length�
�rst search� on the other hand� proceeds from the highest level to the lowest�
Since the converse of the Upward Solution Property does not hold� one cannot
be sure that an arbitrary solution obtained at the abstract level is one which
can be re�ned into a low level solution� It is therefore important to uncover
constraints that will be helpful in plan re�nement� The monotonic property
is one such constraint� This property is de�ned for linear� Abstrips�type
abstraction systems in 
��� We de�ne it here for nonlinear� least�commitment
planning abstraction systems�

De�nition 	�� Let �� be an abstract plan that solves � at level i� i 
 �� ��

monotonically re�nes to level i� � plan � if and only if


� � solves � at level i� �� and

�� Jus�i�� � ���

In other words� a plan � is a monotonic re�nement of ��� if � preserves the
set of all operators� the partial order� and the codesignation and noncodes�
ignation relations of the plan ��� Moreover� the establishment structure of
�� is also preserved in �� This is because justi�cation does not create new
establishment relations� Therefore� for the equality� Jus�i�� � ��� to hold�
every establishment relation of �� must have been one in i�� Thus� this
de�nition captures the intuition that one does not want to clobber at lower
levels those goals already established at higher levels�

As an example� consider again the Towers of Hanoi problem of moving
the large disk to Peg� from Peg�� with an AbTweak hierarchy in Table ��
Recall that the following plan is correct at level two�

�� � h�MoveLarge�Peg��Peg��i

At level one� the plan � below is a monotonic re�nement of ���

� � h�MoveMedium�Peg��Peg���� MoveLarge�Peg��Peg��i

To establish this� note that the abstract version of � is identical to ��
and that after justi�cation� the operator �MoveMedium�Peg��Peg�� can be
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dropped without a�ecting the correctness of the plan� Therefore� it is the
case that ��� when justi�ed at level 
 is identical to ��

De�nition 	��� A k�level AbTweak system is monotonic� if and only if�
for every problem � solvable at the concrete ��th� level� there exists a sequence
of plans �k��� � � � ��� such that �k�� solves � at level k��� and for � � i � k�
�i monotonically re�nes to �i���

Now we show that every criticality assignment gives rise to a monotonic
hierarchy�

Theorem 	��� Every AbTweak system of k levels� for any k� is mono�
tonic�

Proof� This will be proven by contradiction for a 
 level system� where
extending the result to k levels follows from a trivial induction� Let � be
a problem solved at the concrete level� Let � be a correct base level plan
that solves �� By the Upward Solution Property� there exists an abstract
plan �� � Jus���� solving � at the abstract level� By De�nition ���� � is a
monotonic re�nement of ��� �

� Search Control

So far� we have identi�ed a universal property� the monotonic property� for all
abstraction hierarchies� This property guarantees that a sequence of mono�
tonic re�nements exists for any hierarchy� However� the way in which one
goes about searching for such a sequence is not obvious� Many di�erent
search control strategies exist� each resulting from a di�erent way of coordi�
nating search in the abstract plan space and search during plan re�nement�
In the rest of the paper� we will investigate search control strategies that are
both complete and e�cient�

��� Completeness of AbTweak

The monotonic property states that for solvable problems� there exist ab�
stract solutions that monotonically re�ne to concrete solutions� Thus� during







re�nement� the planner need only expand plans which are monotonic re�ne�
ments of some abstract solution� In particular� abstract plans will constrain
lower level search in that every abstract establishment relationship between
plan steps will be protected during re�nement� That is� if at the abstract
level Establishes��� �� p� u�� one protects this establishment by ensuring that
at lower levels no plan steps are added that clobber p before � �a protection
violation�� Unfortunately� not all abstract solutions will monotonically re�
�ne� and hence� the planner must search through the space of abstract plans
for those that do� In order to ensure completeness� then� the planner must
interleave search both length�wise� across alternatives at any given level of
abstraction� and depth�wise� through the space of monotonic re�nements of
any given abstract solution�

An intuitively obvious choice of control is to use a strategy that is com�
plete on each level of abstraction� This is especially appealing� since it is
not di�cult to specify complete control strategies for Tweak� either using
a complete state�space search procedure such as A�� breadth��rst search� or
the procedure provided by Chapman 
��� Using this approach� if a plan is
formed on abstraction level i� then it is passed down to the level below� At
level i � �� all the conditions of criticalities no less than i � � are planned
for� The process continues� until either a correct plan is formed at the base
level� or it is found that a plan cannot be made correct at a level� Then the
planner backtracks to the level immediately above the current one� and tries
to �nd an alternative solution�

The fact that each level is complete may lead one into believing that the
above control structure is also complete� Unfortunately� this is not the case
in general� The reason is that a complete search strategy for any given level is
only guaranteed to �nd a single solution at that level� But this �rst solution
might not be monotonically re�nable� Incompleteness might result if either
searching for a re�nement never terminates� or the strategy does not search
the space of alternative abstract solutions�

AbTweak	s search strategy does not su�er from these drawbacks� but
rather interleaves its e�ort between expanding downwards by re�ning ab�
stract solutions to lower level ones� and rightwards by �nding more solutions
at each particular level of abstraction� The degree in which a search strategy
tends to favor either dimension of growth is an important aspect governing
search performance� In Figure � the abstract solution search space is shown�
This �gure shows the relationship between search within an abstract level
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and search across abstract levels� Each node in the �gure represents a so�
lution� that is� a partial plan� found within a particular abstract level� It
is possible that there may exist multiple solutions within a particular level
of abstraction� The leftmost solutions shown in Figure � represent the �rst
or  simplest! solutions found within that abstract level� Subsequent� more
complex solutions found appear in a left to right fashion� In Figure �� the
solution nodes are labeled such that the abstraction ancestry of that solution
can be seen� For example� at level k � �� the leftmost node is labeled  ���!�
indicating that this is the �rst level k � � solution found� and is descended
from the �rst level k solution�

A search strategy that we employed in our experiments �described in
the following section� is breadth��rst search in a search space in which each
state corresponds to a plan� During each iteration� a plan � is selected for
correctness checking using the Modal Truth Criterion� If � is correct at
level i� then all operators in � are replaced by their corresponding i� ��level
operators �i�e�� the level i�� preconditions are added�� Otherwise� the plan is
modi�ed according to Tweak	s plan modi�cation procedures� The process
terminates when a correct plan is found at level��� The cost of each plan in
the search tree is simply the total number of operators in the plan�

Breadth��rst search shows no preference for concrete level plans over ab�
stract plans� Although this ensures completeness� it exacts a heavy com�
putational cost� We introduce an alternative strategy� which we call Left
Wedge� that allows for plunging more deeply into the search space along the
 leftmost! frontier� yet still remaining complete� The motivation for this
strategy rests on our intuition that the intent of criticalities is to impose
an order on the solution of subgoals� A well chosen abstraction hierarchy
would be one in which the choices made at the abstract level serve as �xed
constraints throughout the planning� and never need to be retracted� Thus� a
solution strategy that exploits such a hierarchy would prefer expanding plan
re�nements over plan alternatives� �downwards to rightwards� under the as�
sumption that correct initial choices of abstract plan steps will rarely require
the re�nement of abstract alternatives� Thus� for any two plans �� and ��

in the search space such that �� is more abstract than �� �see Figure ���
for every plan expansion to ��� several more expansions are done for ���
Further� as in A�� preference is given to expanding the shorter of two plans
at the same level of abstraction� For example� in Figure �� in breadth��rst
search� solution plan 
 at level k may be expanded with the same prefer�
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Figure �� Representing the abstract solution space
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ence as plan ��� and plan ��
 at level k � �� However� in the framework of
Left�Wedge� plan 
 at level k is expanded with the same preference as plans
����� through ������ In this way� the search space grows deeper much more
quickly on the leftmost branches than the right� with the frontier taking on
the characteristic left wedge shape for which the strategy is named�

A detailed description of AbTweak is given in Appendix C� In the same
appendix one can also �nd a description of how the left�wedge control strategy
can be implemented�

��� Combining Abstraction with Domain	Dependent

Heuristics

AbTweak is a domain�independent planner employing a weak search method�
One might� however� wish to employ AbTweak in a domain for which there
is additional heuristic information available� It is natural to want to incor�
porate such heuristics into the planner in order to improve its performance�
An example is when the domain�dependent heuristic is encoded by making
a distinction between primary e�ects and those e�ects which are not pri�
mary for each operator� In this way� the branching factor is pruned� since
operators are only considered as plan steps when the current subgoal is a
primary e�ect� Unfortunately� as we learned in our experiments� under cer�
tain criticality assignments there can be antagonistic interactions between
the new heuristic and the underlying length��rst search inherent in abstrac�
tion which render the planner considerably less e�cient� In the case with
searching only primary preconditions� under criticalities that assign low crit�
icalities to primary e�ects� there might be problems solvable at the lowest
level for which no abstract solution exists which is monotonically re�nable�
Search at the abstract level� therefore� would never terminate� Although we
are able to provide restrictions on the criticality mappings that prevent this
non�terminating search� this should serve as a caution to those who might
want to add other heuristics to anAbTweak�style planner� We describe this
interaction in more detail in the balance of this section� beginning with a de�
scription of the robot task�planning domain� which we will use to illustrate
the problem� and which we will return to in Section ��

In the robot task�planning domain there is a robot that can move between
a number of connected rooms� Between any two rooms there may be a door�
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which can be open or closed� In addition� there are also a number of boxes�
which the robot can push from one location to another� Figure � shows one
con�guration of the domain� A list of operators in this domain can be found
in Appendix B� Both the representation of the domain� and the operator
set in the domain are modi�ed from 
���� in order to eliminate the need for
axioms�

Room 1 Room 2

Room 3

Room 4Room 5Room 6

Box 1

Box 3

Box 2

Robot

Figure �� Robot Task Planning Domain�

This domain can be represented by the following predicates� Box�Inroom�b� r�
representing that box b is inroom r� Robot�Inroom�r� representing that the
robot is inroom r� Box�At�b� loc� representing that box b is at location loc�
Robot�At�loc� representing that the robot is at location r� Open�door� repre�
senting that the door� door� is open� In addition� there are also a number of
predicates denoting the type of object its argument represents �e�g�� IsDoor�
Pushable��

To achieve e�ciency� many previous planners which have experimented
in this domain have used what is known as primary e�ects to achieve goals
and subgoals
��� �� ��� For example� the primary e�ect of pushing a box
between two rooms r� and r�� is just Box�Inroom�Box� r��� Any additional
e�ects� such as that the robot is also in room r�� are considered not primary�




�

This distinction indicates to the planner that to move the robot around� the
push�box operator should not be used� It should be used only for moving
boxes around� not for any side�e�ects that might result� The application of
primary e�ects corresponds to a special type of domain�dependent heuristic�
which can e�ectively reduce the branching factor of the search space� In
fact� without the application of this heuristic� many trivial problems cannot
be solved by AbTweak�

However� the application of this heuristic threatens the validity of the
Upward�Solution Property for some hierarchies� For example� suppose a
hierarchy is built by placing all Robot�Inroom literals at a higher level than
Box�Inroom literals� Let a goal be represented by Box�Inroom� Then at the
Robot�Inroom level of abstraction� there is no plan for moving a box across
more than one room� simply because the Box�Inroom preconditions cannot
be observed at that level� and the moving box operators cannot be used
for moving the robot around� Thus� although a plan exists for solving the
Box�Inroom goal at the concrete level of abstraction� no plan can be found
at the highest level of abstraction� if primary e�ects are used� Therefore� the
monotonic property is not satis�ed for the hierarchy either�

Fortunately� there is one hierarchy in which both the upward�solution
property and the monotonic property are satis�ed� This hierarchy is de�
scribed in Table �� In this hierarchy� all the Box�Inroom preconditions are
placed above the Robot�Inroom ones� Similarly� all the Box�At preconditions
are above the Robot�At ones� Thus� one always �rst plans the location of
the box before the location of the robot� Doing so while achieving only the
primary e�ects still preserves the completeness of AbTweak�

Thus� placing domain�dependent constraints such as the primary e�ects
is a tricky matter in terms of the completeness of an abstract planner� The
fact that the above hierarchy is complete even with the use of primary e�ects
seems to be a fortunate coincidence� However� there is a deeper reason in
this seemingly ad hoc engineering� in that a su�cient condition on the criti�
cality assignments exists which guarantees the completeness of a hierarchical
planner� The condition is described below�

Condition ��� Let O be the operator set in a domain� �� � O� e�� e� � E��
if e� is a primary e�ect� and e� is not� then crit�e�� 
 crit�e���

In our robot task planning domain� themove�box operator changes both the
location of the robot� and the location of the box� However� only Box�Inroom
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is a primary e�ect� The above condition restricts that the criticality of
Box�Inroom be higher than the criticality of Robot�Inroom� Note also that
the reverse hierarchy does not satisfy this condition�

This condition guarantees the following theorem�

Theorem ��� Suppose that an abstraction hierarchy satis�es Condition ��
�
Let � be a correct� concrete level plan� in which every operator is justi�ed
with respect to a primary e�ect� Then the Upward�Solution Property holds�
in that there is also a correct plan �i at each higher level i� in which every
operator is also justi�ed with respect to a primary e�ect�

Thus� the hierarchy described in Table � ensures that the abstract planner
remains complete� We omit the proof here� since it is similar to that for
Theorem ����

� Experiments

Above we have described the monotonic property for search control within
a level of abstraction� and left�wedge as a control strategy for search across
multiple levels of abstraction� While we are able to show that both methods
guarantee completeness for AbTweak� it is di�cult� if not impossible� to
conduct a theoretical analysis of their e�ectiveness in search reduction� An
alternative then� is to test AbTweak empirically�

BothAbTweak and Tweak have been implemented in Allegro Common
Lisp� on a SUN��Sparc station� A detailed explanation of the implementation
can be found in 
�
�� In the implementation� we have paid special attention in
making sure that the two planners share key subroutines� so the comparison
in their performances can be fair� We have also conducted experiments in
two domains� the Towers of Hanoi domain� and a robot task planning domain
fromAbstrips 
���� We have described the Towers of Hanoi domain in detail
earlier� with the full operator descriptions in Appendix A� Appendix B lists
the operators and language used in the robot task planning domain�

In the following section� we discuss the results from each domain in turn�
In doing so� we pay special attention to the following issues concerning search
reduction�

�� Investigating the usefulness of enforcing the monotonic property under
breadth��rst and left�wedge search�
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� Finding empirical measures of  good! abstraction hierarchies� This
measure should enable one to predict the performance of planning using
any given abstraction hierarchies�

�� Investigating the usefulness of the left�wedge control strategy as com�
pared to uninformed search strategies such as breadth��rst search� Of
special importance are the types of hierarchies with which a left�wedge
search is expected to gain a great amount of search reduction�

�� Studying how best to combine domain�dependent heuristics encoded in
terms of primary e�ects� and abstraction as used in AbTweak� As
we have pointed out earlier� an abstract planning system retains its
e�ciency as long as the criticality function assigns the primary e�ects
of each operator to be at least as great as the non�primary e�ects of
that operator� Thus� we would like to compare AbTweak using left�
wedge on such a criticality function� to both Tweak and AbTweak

using breadth��rst search in the robot task�planning domain�


�� Testing the Towers of Hanoi Domain

In the Towers of Hanoi� ��disk domain� four predicates are used to describe
the states� These are IsPeg� OnSmall� OnMedium� OnLarge� If a hierarchy
is built based on assigning a distinct criticality value to each of the pred�
icates� then 
� di�erent hierarchies exist� Out of the 
� hierarchies� only
one has been extensively tested in the past with linear� abstract planners

��� This well�tested hierarchy corresponds to assigning criticality values in
the following way� crit�ISPEG� � �� crit�OnLarge� � 
� crit�OnMedium� �
�� crit�OnSmall� � �� In order to fully investigate the e�ects of di�erent con�
trol strategies on search e�ciency as a function of the hierarchy used� we have
tested all possible permutations of the hierarchies� For ease of exposition� we
use ILMS to represent the above hierarchy� Similarly� SMLI represents the
hierarchy with the reverse order of criticality assignment�

Experimental results in this domain can be divided into three categories�
those demonstrating the usefulness of the monotonic property in restricting
search� those comparing the left�wedge and breadth��rst search strategies�
and those establishing empirical criteria for identifying good abstraction hi�
erarchies� Performance results� in the number of state expansions as well as
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CPU seconds for �nding a solution� as a function of the hierarchy used� are
shown in Tables � to �� and Figures � and �

����� Testing the Monotonic Property

Table � shows the performance results of AbTweak using a breadth��rst
strategy with monotonic property� while Table � shows those without the
monotonic property� Overall� breadth��rst search using the monotonic prop�
erty �MP� outperforms search without using the monotonic property� in CPU
time� in �� out of 
� cases of the criticality permutation� In terms of the
total number of states expanded� using AbTweak with MP is no worse than
AbTweak without MP in 
� out of 
� cases� The reason why AbTweak
using MP often outperforms AbTweak without MP can be attributed to
the fact that enforcing the monotonic property amounts to the protection of
all abstract establishments� As a consequence� during re�nement no opera�
tors are added that violate the establishments� This reduces the branching
factor of search�

On the other hand� there are also cases where applying MP signi�cantly
reduces search e�ciency� The �rst class of such cases occurs with hierarchies
for which no monotonic violation can occur� For example� with hierarchies
where OnLarge is above OnMedium� and OnMedium is above OnSmall� no
monotonic violation exists in the search space� Thus� protecting MP would
waste an extra amount of CPU time� As a result� AbTweak with MP is
more costly than AbTweak without MP� The second class of such situations
occurs when intuitively  bad! hierarchies are used� For example� in all cases
where OnSmall is above OnMedium and which in turn is above OnLarge� us�
ing MP slows down the search� This e�ect con�rms a general principle which
applies not only to abstract planning� but to planning without abstraction
as well� that protection of establishments only improves search e�ciency
when the di�cult�to�achieve conditions are protected� otherwise protection
will instead reduce search e�ciency� For example� with the hierarchy ISML
using MP amounts to protecting all OnSmall conditions� However� it is the
OnLarge conditions that are more di�cult to achieve� Thus� with ISML
the wrong conditions are protected� resulting in an increase in the amount
of search required� In terms of search space� this phenomenon can be eas�
ily explained� as follows� Applying protection of establishments cuts o� the
branching factor of search� although it guarantees completeness of a planner
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by always making sure that at least one path is retained which leads to a
goal� When protecting unimportant conditions such as OnSmall� many paths
that can lead to goals with much shorter solution length in the search space
are also cut o�� As a result� while the branching factor is reduced� the depth
of search is enlarged� The end result is that a planner has to search many
more states to �nd a goal�

����� The Placement of Object�type Predicates

Many predicates and operators in a particular domain apply only to certain
objects� by their very nature� For example� in a blocks world domain in
which unbound variables can either be a table or a block� an operator such
as Pickup may only apply to blocks� but not tables� The way in which the
application of these operators are constrained is through preconditions that
identify the object�type of each variable in an operator representation� As
another example� the IsPeg predicate in Towers of Hanoi is used to ensure
that only the three pegs can be used to hold the disks� and that no pegs
can be moved around� These object�type predicates are constraints on the
possible bindings of variables during the search process� If we postpone the
constraint of these variables during planning� we often increase the branching
factor by allowing operator instances in our search space which can never be
satis�ed� such as Pickup� table �� Thus� it is desirable to satisfy these
object�type predicates early in the search� In other words� during abstract
search� it is more desirable to assign higher criticality values to them�

We see that when using the MP� the criticality assigned to object�type
predicates such as IsPeg has a noticeable e�ect on search e�ciency� Tables 

through � give evidence that placing ISPeg type of predicate at the highest
level of abstraction reduces search�

����
 A Criterion for Good Hierarchies

Figures � and � display the CPU time as functions of the number of mono�
tonic violations in each experiment� Figure � shows the comparison with
AbTweak using breadth��rst search� while Figure � shows those with left�
wedge search� The correlation coe�cient for CPU time versus monotonic
violations is ���� using breadth��rst search� and ��� using left wedge� We
can thus see a general rule emerging from the results in these �gures� that
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Figure �� Violations versus CPU time� including regression �t curve� Data
are obtained using the breadth��rst strategy with MP�

the fewer the number of monotonic violations� the better the performance
in search with an abstraction hierarchy� In particular� ILMS and IMLS are
both the best hierarchies�

This e�ect can be explained as follows� The number of such violations
measures the number of attempts we make at a particular level of abstrac�
tion to undo the work done at a previous level� Undoing an abstract goal or
subgoal achievement generally represents a waste in e�ort spent at the ab�
stract level� Thus� a good abstraction hierarchy should arrange the subgoals
at each level� such that the chances for such violation is minimal�

Hence� a good abstraction hierarchy is one with few monotonic violations�
One application of this criterion is to identify a good hierarchy via syntactical
analysis of the operator set� For example� it has been shown from the op�
erator de�nitions that� for the hierarchy ILMS� no monotonic violations will
ever occur during plan re�nement for any re�nement of the abstract plan
���
Knoblock �
��� provides an example and algorithms of this type of syntactic
analysis�
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Figure �� Violations versus CPU time� including regression �t curve� Data
are obtained using the left�wedge strategy with MP�
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����	 Testing the Left�Wedge Control Strategy

Tables � and � provide a comparison of AbTweak using left�wedge and
breadth��rst� both with MP� It is evident from the two tables that search
time and space is greatly reduced when using the left�wedge strategy� for
hierarchies with a small number of monotonic violations� However� no im�
provement� or even a decrease in performance is seen for certain other crit�
icality assignments� notably IMLS� IMSL and SMLI� This tells us that the
left�wedge strategy should be used only with good abstraction hierarchies� If
one is not sure about the quality of a hierarchy� then a breadth��rst strategy
should instead be adopted�

When comparing left�wedge with and without using the monotonic prop�
erty �Tables � and ��� the results indicate that� in general� using the mono�
tonic property with left�wedge works well with good criticalities �those which
generally result in few protection violations�� and poorly with bad critical�
ity assignments �those resulting in many protection violations�� This result
again con�rms our conclusion above� AbTweak with the monotonic prop�
erty clearly outperforms one without the monotonic property in the three hi�
erarchies ILMS� ILSM and IMLS� However� for hierarchies ISLM and ISML
it appears that not using the monotonic properties is considerably better�
This result is hardly surprising� if one takes into account the depth��rst na�
ture of the left�wedge strategy� For the hierarchies ISLM and ISML� the
abstract versions of the concrete level solutions at the OnSmall level �level�
�
correspond to the fourth alternative correct solution on that level� A left�
wedge search with the monotonic property will commit to the �rst several
abstract solutions at the OnSmall level� although none of these solutions can
be re�ned to a �nal solution without violating the monotonic property� As
a result� for such poorly chosen abstraction hierarchies� a strategy that does
not protect the abstract goal achievement works best� since it is able to undo
poor choices made early in the planning process without having to backtrack
up abstraction levels�

����� Comparing Tweak with AbTweak

The utility of abstract search will not be completely understood without also
comparing it with search without abstraction� We have implemented the
planner Tweak� a description of which can be found in Appendix C� To
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ensure fairness in comparison� the two planners are implemented sharing all
key subroutines such as state expansion and uni�cation�

Figure �� shows the result of the comparison in the Towers of Hanoi do�
main� In this test� AbTweak was run with both the monotonic property
and the left�wedge control strategy� in the hierarchy ILMS� The �gure con�
trasts Tweak with AbTweak� in terms of the number of states expanded
as a function of the solution lengths� The data in the �gure are generated and
averaged based on planning with a �xed initial state� and 
� di�erent goal
states in this domain� It is clear that AbTweak dramatically outperforms
Tweak when the solution length increases�
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Figure ��� Comparing Tweak with AbTweak�

The same �gure also compares the performances of the two planners� but
using a poorly chosen criticality assignment� namely ISML� The result is that
with this hierarchy� AbTweak using both MP and left�wedge performs the
worst� This result leads us to the conclusion that an arbitrary abstraction
hierarchy is not necessarily good� To improve performance using abstraction�
one has to be very careful in the choice of both the abstraction hierarchy
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and the search strategies guiding the abstract search� This result serves as
a strong motivation for much of the current research in �nding syntactic
criteria for good abstraction hierarchies� Examples of such current work can
be found in 
�� and 
���


�� Robot Task Planning Domain

We have run �� tests of AbTweak with the hierarchy in Table � using the
primary e�ects heuristic� Without this heuristic� many simple problems were
not solvable by any of the planners that we tested� Five di�erent planning
problems of each length were solved using Tweak� AbTweak with breath�
�rst� and AbTweak with both the monotonic property and the left�wedge
control strategy� Both planners in this domain used primary�e�ects as a
domain�dependent heuristic to restrict the branching factor of search� Fig�
ure �� shows the number of states expanded as a function of solution length�
It is clear that AbTweak with the monotonic property and the left�wedge
control strategy dramatically outperforms both Tweak andAbTweak with
only the breath��rst control strategy�

Criticality Predicate
� Box�Inroom and other sort�type predicates�
� Robot�Inroom


 Box�At

� Robot�At

� Open

Table �� Criticality assignments for the Robot Task Planning Domain�


�� Summary of the Experiments

To sum up� we make the following observations from the experiments�

�� Using the monotonic property in abstract planning is often more advan�
tageous than without� especially when di�cult�to�achieve conditions
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Figure ��� Comparing Tweak with AbTweak in the robot task planning
domain�
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are placed higher up in a hierarchy� This can be seen from the experi�
ments with di�erent hierarchies in the Towers of Hanoi domain� On the
other hand� if a bad hierarchy is used then using monotonic property
can reduce search e�ciency�


� The number of monotonic violations provides a criterion for judging
the e�ectiveness of an abstraction hierarchy� The fewer there are� the
better the hierarchy� This motivates the investigation of syntactical
restrictions on the criticality assignments which can guarantee good
performance�

�� Having a good abstraction hierarchy is not su�cient for superior per�
formance over planning without using abstraction� An additional re�
quirement is a control strategy that takes advantage of the structure
of the hierarchies� Left�Wedge is one such strategy that preserves com�
pleteness and outperforms Tweak� on good abstraction hierarchies�

�� Certain domain�dependent heuristics� such as the use of primary e�ects
in goal�achievement� can jeopardise the completeness of a hierarchy�
However� a su�cient condition exists under which the completeness is
preserved� The condition requires that all primary e�ects of an op�
erator have criticalities at least as large as the other e�ects� In the
robot domain� AbTweak with the hierarchy satisfying this constraint
and using the left�wedge control has shown a large amount of search
reduction over search without abstraction�

�� The placement of object�type predicates� such as IsPeg� can a�ect the
e�ciency of a hierarchical planner dramatically� Our general conclusion
is that placing them at the highest level of abstraction is almost always
better�

� Conclusion

This research has been aimed at formalizing and testing domain�independent�
nonlinear planning systems that plan in hierarchies of abstraction levels� The
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Table �� AbTweak With Monotonic Protection and Breadth��rst search�
Search space expansion bound� ���� expanded�

Hierarchies Expanded Generated� MP Pruned� CPU Seconds�

ILMS ��	 �
� � �
���

IMLS 	�� ��� �
 ����

IMSL �
� 	��� ��� ��	��

ILSM ��
 	��
 	�� 
����

ISLM 	��� 	��� ��� 
�
��

ISML 
��	 �	
� 
��� 

�
��

LIMS ��
 	��� � ����	

MILS �

 ��� 		� ��
�


MISL �
� 		�� ��� ����	

LISM 
�� 	�	
 	�� 		����

SILM 
�� �	
 ��
 �����

SIML ��� 		�� ��
 

���

LMIS 	�	� ���	 � 	�
��


MLIS �	� 

� �� �����

MSIL 	��
 �
�� ��� 	�����

LSIM ���
 �
�� ��	 �����	

SLIM ��
 �

 	�
 �

��

SMIL 
�
 	
�	 �	� 	�
���

LMSI 	�
� ��	� � ��
���

MLSI ��� �
	 �� �����

MSLI ���� ���
 	��	 ������

LSMI 
��	 	��
� ��
 	���
��

SLMI ��� 	��� ��� �
���

SMLI �
	
 ��

 	��� �
���
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Table �� AbTweak using Breadth��rst search� and without Monotonic Pro�
tection� Search space expansion bound� ���� expanded�

Hierarchies Expanded Generated� MP Pruned� CPU Seconds�

ILMS ��	 �
� � �	���

IMLS 

� 
�� � �	���

IMSL 
	� 	�
� � 
���	

ILSM 			� 	
�� � �����

ISLM 	��	 �	�� � 	����


ISML �	�� �	�	 � �����


LIMS ��
 	��� � 
�	��

MILS ��� 	�	
 � 
����

MISL 
�� 	��� � 
����

LISM 	�
� �	
� � 	��	�	

SILM 	
�� ��

 � 	�����

SIML ���
 ���� � �
�
�


LMIS 	�	� ���	 � 	�����

MLIS 		�	 ���� � 	�����

MSIL 	��
 ��
� � 	�����

LSIM ���� �
�
 � ��

��

SLIM ���
 
�	� � ������

SMIL 	��
 �	�� � 	
	���

LMSI 	�
� ��	� � �			��

MLSI 	�	� ���� � 	�

��

MSLI ���� 	���� � 
�����

LSMI 
��	 	���
 � ���
�


SLMI �
�� ��	
 � ���	��

SMLI ��

 ���
 � ��
��	



��

Table �� AbTweak using Left�wedge search� and with Monotonic Protec�
tion� Search space expansion bound� ���� expanded�

Hierarchies Expanded Generated� MP Pruned� CPU Seconds�

ILMS 
� 

 � ����

IMLS �� 	�
 	� ���	

IMSL �
�� ���� ��
	 �
�	��

ILSM ��� ��� ��� 		����

ISLM 
��	 ���� �
�
 	
�
	��

ISML 
��	 
��	 
�
	 	�����


LIMS 
� 
� � �
�	

MILS 
� 	�� �	 �	��

MISL 
��	 �		
 
�	
 	�����


LISM ��� ��� ��� 	


�	

SILM ��
� 
�	� �

� 	���
�


SIML �

� 
��� 
		
 	���	��

LMIS 
� 	�	 � ���


MLIS �� 	�� 
 	����

MSIL 
��	 ��		 
		� 	���
��

LSIM 	
�� �		� 
�	 ������

SLIM 
��	 �

� ���� ��

��	

SMIL 
��	 �	�	 
	
	 	�����	

LMSI �
� ��� � 
���


MLSI 	�� ��� 
 �

�	

MSLI 
��	 	���� �
�
 	���	��

LSMI �	�� �
�� ��	 

	���

SLMI 
��	 	��
� 	
�� 	������

SMLI 
��	 	
�	
 �

	 	������
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Table �� AbTweak using Left�wedge search� and without Monotonic Pro�
tection� Search space expansion bound� ���� expanded�

Hierarchies Expanded Generated� MP Pruned� CPU Seconds�

ILMS 
� 

 � ���


IMLS 	��
 	�		 � 	����


IMSL 
��	 
��
 � �����


ILSM ��� 	��	 � 	�����

ISLM 	�� ��� � �	��


ISML 
�� 	��	 � 	�

��

LIMS 
� 
� � 

��

MILS 	��� 	�	� � ������

MISL 
��	 
��
 � 
�����

LISM ��� 	��� � 	�����

SILM 	�� ��� � �����

SIML 
�� 	��� � 	�����

LMIS 
� 	�	 � ����

MLIS 
�
 	��
 � �����


MSIL 
��	 
�
	 � 	������

LSIM 	
	
 �
�� � ��	
��

SLIM 	�� �
� � 	

��

SMIL 
�� 	��
 � 	����


LMSI �
� ��� � �����

MLSI ��
 ��� � �
��	

MSLI 
��	 	��	� � 
�
���

LSMI ���� 	���� � 
�����

SLMI 
��	 	���� � 	��	���

SMLI 
��	 	�
�	 � 	�	�
�
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resulting planner� AbTweak� extends the precondition�elimination meth�
ods in Abstrips for building abstraction hierarchies� and allows for a least�
commitment representation of plans in Tweak� We have shown thatAbTweak
satis�es the monotonic property� that is� as planning descends from abstract
to concrete levels� the precondition establishment structure of a plan need
not be changed� This� to a large extent� formalizes our intuition for using
abstraction in planning� that it is generally more e�cient to use an abstract
solution to guide search at lower levels of abstractions than without abstrac�
tion� In addition� we have demonstrated that a simplistic application of a
control strategy for a single�level problem solver to each level of the abstrac�
tion hierarchy will not in general provide completeness for the multiple�level
system� Completeness can be obtained by searching simultaneously in the
space of alternative abstract plans �rightwards in the search tree�� and in the
space of re�nements �downwards in the search tree�� Preferring re�nements
over alternatives is the basis for the left�wedge strategy� which our experi�
ments show optimizes performance over those abstraction hierarchies having
fewest monotonic violations�

In the future� we plan to further investigate criteria for checking good ab�
straction hierarchies� as well as extend the present framework of AbTweak
to include also other types of abstraction hierarchies used in practice�
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A Operators in the �	disk Towers of Hanoi

Domain

MoveLarge �x y�
Preconditions�fIsPeg�x�

IsPeg�y�
� OnMedium�x�
� OnMedium�y�
� OnSmall�x�
� OnSmall�y�
OnLarge�x�g

E�ects�f� OnLarge�x�
�OnLarge y�g

MoveMedium �x y�
Preconditions�fIsPeg�x�

IsPeg�y�
� OnSmall�x�
� OnSmall�y�
OnMedium�x�g

E�ects�f� OnMedium�x�
OnMedium�y�g

MoveSmall �x y�
Preconditions�fIsPeg�x�

IsPeg�y�
OnSmall�x�g

E�ects�f� OnSmall�x�
OnSmall�y�g
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B Operators in the Robot Task Planning

Domain


This appendix lists the operators used in the robot task planning domain�
Primary e�ects of operators are marked by  "�!

B�� Operators for going between rooms

To push a box through a door between 
 rooms�

push�thru�dr �box door�nm from�room to�room door�loc�from door�loc�to robot�
Preconditions�fIs�Door�door�nm from�room to�room door�loc�from door�loc�to�

Pushable�box�
Box�Inroom�box from�room�
Robot�Inroom�from�room�
Box�At�box door�loc�from�
Robot�At� door�loc�from�
Open� door�nm� g

E�ects�f� Robot�Inroom�from�room�
Robot�Inroom�to�room�
� Box�Inroom�box from�room�
Box�Inroom�box to�room�"
Robot�At�door�loc�to�
Box�At�box door�loc�to�"
� Robot�At�door�loc�from�
� Box�At� box door�loc�from� g

To go through door from room
 to room��

go�thru�dr �door�nm from�room to�room door�loc�from door�loc�to �
Preconditions�fIs�Door� door�nm from�room to�room door�loc�from door�loc�to�

Robot�Inroom�from�room�
Robot�At� door�loc�from�
Open� door�nm� g

E�ects�fRobot�At�door�loc�to�"
� Robot�At�door�loc�from�
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� Robot�Inroom�from�room�
Robot�Inroom�to�room�"g

B�� Operators for going within a room

Operator for going to a location in a room�

goto�room�loc �from to room�
Preconditions�fLocation�Inroom� to room�

Location�Inroom� from room�
Robot�Inroom�room�
Robot�At�from� g

E�ects�f� Robot�At�from�
Robot�At�to�"g

Operator for pushing box between locations within one room�

push�box �box room box�from�loc box�to�loc robot�
Preconditions�fPushable�box�

Location�Inroom� box�to�loc room�
Location�Inroom� box�from�loc room�
Box�Inroom�box room�
Robot�Inroom�room�
Box�At�box box�from�loc�
Robot�At�box�from�loc� g

E�ects�f� Robot�At�box�from�loc�
� Box�At� box box�from�loc�
Robot�At�box�to�loc�
Box�At�box box�to�loc�"g

B�� Operators for Opening and closing doors

To Open a door�



��

Open �door�nm from�room to�room door�loc�from door�loc�to�
Preconditions�fIs�Door� door�nm from�room to�room door�loc�from door�loc�to�

� Open�door�nm�
Robot�At�door�loc�from� g

E�ects�fOpen�door�nm�"g

To close a door�

close �door�nm from�room to�room door�loc�from door�loc�to�
Preconditions�fIs�Door� door�nm from�room to�room door�loc�from door�loc�to�

Open�door�nm�
Robot�At�door�loc�from� g

E�ects�f� Open�door�nm�"g
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C AbTweak Algorithm

C�� Data Structures and Subroutines

�� OPEN # A priority queue of plans on the frontier of the search tree�
The list is sorted in ascending order of the plans	 costs� Cost����


� MTC��� # A predicate on plans� which is true of � exactly when �
is necessarily correct�

�� Successors��� # A function mapping each plan to a set of successor
plans�

C�� AbTweak

Algorithm AbTweak �initial� goal��

OPEN � Initial�Plan�
fwhere Initial�Plan is a plan with two operators� initial and goal��g

Loop
If OPEN is empty� Then exit with failure�
Else� let � � First�OPEN�� and OPEN � Remove��� OPEN��
Endif
If crit��� � � and MTC��� � True� Then return �� and exit with success�
Else� If MTC��� � True� Then

fthe plan � is correct at an abstract levelg�
crit���� crit���� ��
OPEN � Insert�f�g� OPEN��
Else�
fSuccessor Generation� Plan � must contain at least one
precondition that does not necessarily hold�g
OPEN � Insert�Successors���� OPEN � First�OPEN���
Endif

Endif
Endloop
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C�� Successor Generation

Subroutine Successor ���
fComment� The global variable MP is True whenever the Monotonic Pro�
tection is used in AbTweak�g

succ �� 	
successors �� 	
Find a precondition precond of an operator User in plan ��
such that precond is not necessarily true
If MP � True and crit�precond� 
 crit��� Then
Est �� an abstract establishment relation� Establishes���User� precond� e���

that has been clobbered at the current level�
succ �� f��� Est�g

Else
Let Old be the set of operators in � which e�ects possibly
establish precond for User� and let New be the set of new
operators taken from the operator schemas of the domain� that have
e�ects which possibly codesignate with precond�

For each operator � in Old
S
New Do

��� Add temporal and codesignation constraints to a copy �� of �
so that for some e�ect e� of �� the relation
Est � Establishes���User� precond� e�� holds
�
� succ �� succ

S
f���� Est�g

Endif
f Declobber g
For each pair ����Est � Establishes���User� precond� e��� in succ� Do

If Est is clobbered Then
For each clobberer C of Est� with a clobbering e�ect eC � Do

��� impose the constraint C � �� onto a copy �� of ���
�
� impose the constraint User � C� onto a copy �� of ���
��� impose the constraint eC �� �precond� onto a copy �� of ���
��� successors �� successors

S
f��������g�

fEach copy is a new successor in the search space�g
Endfor

Else successors �� successors
S
f��g

Endif
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Endfor
If MP � True Then fMonotonic Protection g
For each plan �� in successors� Do

If there is an operator � and an abstract establishment relation
Establishes��� �� p�� e�� such that

fNote� This condition de�nes monotonic violation�g
��� ��� � � � ���
�
� For some e�ect e� of ��

either ��e� � p�� or
��e� � �e���

Then successors �� successors� f��g
Endif

Endfor
Endif
Return successors

C�� Cost Function and Left Wedge Implementation

The cost function cost��� can be de�ned as the total number of operators
in �� if a breadth��rst control strategy is used� The left wedge heuristic
is implemented by adding to the cost function an additional value� which
depends on the level of abstraction�

cost��� � jOperators
�
j � lw�crit�����

where lw�i� is any monotonically decreasing function of i� such that lw�k � �� � ��
for a hierarchy with k levels of abstraction�

C�� Tweak Implementation

Tweak can be implemented by making the following modi�cations to the
AbTweak routines�

�� crit��� � �� for all ��


� In the successor generation part� remove the two monotonic protection
components�


