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Abstract

Most semantic data models and object-oriented data models allow

entity and object classes to be organized according to a generalization

taxonomy. In addition, range restrictions (or property typing) may be

specified not only on properties associated with a given class, but also

on properties inherited from superclasses. In this paper, we consider a

more general form of specialization constraint in which range restrictions

are associated with property value paths, instead of with the properties

themselves. One consequence is that the constraints enable a form of

molecular abstraction, in which the internals of more complicated objects

can be defined in terms of a collection of more primitive classes.

We consider the problem for two models. The first imposes no con-

straints on class membership for an object beyond those implied by sub-

classing constraints. In this case, we present a sound and complete ax-

iomatization for arbitrary specialization constraints, and efficient decision

procedures for the corresponding membership problems.

The second model is more typical and requires that each object is

created with respect to a particular class. Membership problems in this

case are shown to be NP-hard, and NP-complete if class schema include a

“bottom” class. We exhibit polynomial-time decision procedures when a

bottom class does exist and antecedent specialization constraints satisfy

a bounded path length condition.

We also consider a case concerning the second model in which class

schema satisfy a lower semi-lattice condition. A sound and complete

axiomatization for well-formed specialization constraints is presented,

together with efficient decision procedures for the membership problem

for well-formed constraints, and for determining if an arbitrary constraint

is well-formed. We prove that the membership problem for arbitrary

specialization constraints remains NP-complete, however, even for class

schema satisfying the lower semi-lattice condition.

Key Words: complex objects, dependency theory, logical database de-

sign, object-oriented databases
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1. Introduction

Most semantic or object-oriented data models assume that entities or ob-

jects have an identity separate from any of their parts, and allow users to

define complex object types in which part values may be any other objects

[1, 2, 9, 13, 14, 15]. Such types are usually called classes, and can be orga-

nized in a generalization taxonomy by allowing a class definition to mention

at least one superclass—more than one if the data model supports so-called

multiple inheritance. In addition, range restrictions (or property typing) may

be specified, not only on properties associated with a given class, but also on

properties inherited from superclasses. In this paper, we consider a more gen-

eral abstraction, called specialization constraints, in which range restrictions

are associated with path descriptions. Specialization constraints can be used

to assert property typing, since one kind of path description is an individual

property name. Since another kind of path description, denoted Id, allows

one to refer to property value paths of zero length, specialization constraints

also abstract superclass relationships.

To concentrate on the essential ideas, we define a simple complex object

model in the next subsection. An example class schema characterizing infor-

mation about students and courses for a hypothetical UNIVERSITY applica-

tion in terms of this model appears in Figure 1. Our diagrammatic convention

is to represent each class by a labeled rectangular box, where the label men-

tions the class name together with a set of immediate properties; a * following

a property name indicates that the property is set-valued. For example, an

object in the student class has a set-valued Takes property, while each object

in the course class has three single-valued properties: Inst, In and Num.

We represent specialization constraints as directed arcs between classes.

The path description associated with an unlabeled arc is assumed to corre-

spond to Id, and therefore asserts that the ‘to’ class is a superclass of the

‘from’ class. Thus, the unlabeled arc from gradCourse to course implies that

each gradCourse object is also in the course class, and must therefore also

have Inst, In and Num property values (although it is more common to say

that gradCourse inherits these properties from course). The arc labeled Num,

from course to int[100-699], represents a property typing constraint which

restricts the values of the Num property for course objects. Another arc, from

gradCourse to int[500-699], represents another property typing constraint

which further restricts the values of the Num property for course objects that

are also gradCourse objects.

Most semantic or object-oriented data models can express the organiza-
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person

student{Takes*} course{Inst,In,Num}

gradStudent

gradCourse

prof{In}

dept{Head}

int[100-699]

int[400-699]

int[500-699]

Takes

Inst

In

Num

In Head

Takes.Num

Num

Figure 1: A UNIVERSITY Schema Diagram.

tion of information discussed so far in this example, without recourse to a

general purpose constraint language containing arbitrary queries. However, so

far as we are aware, the use of such a language would be necessary to express

the specialization constraint represented by the arc labeled Takes.Num. This

constraint also limits property values, but this time for a complex property of

graduates, corresponding to the (set of) integers that are the course numbers

of courses that they are taking. Since most models are unable to express such

constraints, it is unlikely that existing query languages, or their parsers or

optimizers, can benefit in any way from the use of such constraints.

To see how such constraints can be beneficial, consider a second schema,

Figure 2. This schema characterizes (some of) the form of a parse tree for

the relational algebra, and therefore how a query optimizer may access and

update objects representing algebraic queries. First focus on the part of the

schema outside of the area bounded by the dashed line. The four classes named

sel, proj, join and rName represent four kinds of objects corresponding to

selection, projection, and join operators, and relation names respectively. (For

simplicity our discussion will ignore the project list and selection condition of
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the project and select operators, respectively. That is, we will only consider the

expressions that these operators take as operands.) The sel and proj objects

have single expressions as their Arg, while join objects have any number of

expressions as their Args. The rName objects do not have properties. The

part of the schema inside of the area bounded by the dashed line captures

the additional structure of algebraic expressions in so-called project-select-join

(PSJ) normal form. A PSJ query is a “projection of a selection of a join of a

canonical expression,” where a canonical expression may in turn be a relation

name or PSJ query.

exp

unExp{Arg}

sel proj

join{Args*}

rName

canExp

psj

Arg

Arg

Arg.Arg.Args

Arg.Arg

Args

Figure 2: An ALGEBRA Schema Diagram.

Access to the components of a PSJ object can now be expressed more

easily. For example, suppose it is known (through type checking) that a vari-

able V references a psj object. Then, by following the generalization hierarchy

(i.e. unlabeled arcs) to unExp, we find that V.Arg references an exp object.

However, the arc from psj, labeled Arg, indicates that, for this subclass of

unExp, Arg is actually a sel object. Thus V.Arg references a sel object; a

subclass of exp. Similarly, access to the join of V’s selection can be expressed

simply as V.Arg.Arg.
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It is also possible to create more sophisticated object indices. Assume

that the sel and join classes have additional real-valued Selectivity and

Size properties, respectively. Then one can create an index of PSJ objects

sorted in order of the value of

(Arg.Selectivity)∗(Arg.Arg.Size).

Such an index would be useful, for example, in performing join order selection.

In summary, specialization constraints also support a form of molecu-

lar abstraction useful to components of software development environments,

which often require the manipulation of canonical forms. Although space pre-

vents us from elaborating further on this, they are also useful to applications

in computer aided design; they can be used to model typing information re-

lating to the interconnection of internal components of complicated objects

[4]. Finally, as the previous example illustrates, they enable more convenient

object access as well as more sophisticated object encoding.

The remainder of this section is organized as follows. A formal definition

of specialization constraints and the data model outlined above is presented

next. Note that our definition of logical consequence will be based on a recent

trend to view databases, hereafter referred to as interpretations, as labeled

directed graphs [5, 6, 10, 18, 17]. We conclude with an overview of related

work, and an outline of our results in the remaining sections.

1.1 Definitions

A database schema is an ordered pair 〈S,Σ〉 consisting of a class schema

and a finite set of constraints. The class schema S consists of a finite set

of declarations of the form

C{P1, ..., Pn}

in which C is a class name, and the Pi are its immediate properties, written

Props(C). The set of class names in S is denoted Classes(S), and the do-

main of a property P , written Dom(P ), is defined as {C ∈ Classes(S) | P ∈

Props(C)}. (Our usual convention when presenting examples will be to begin

class names in lowercase and property names in uppercase.)

An interpretation for S is a (possibly infinite) labeled directed graph

G(V,A). The label for a vertex v is denoted Cl(v), and corresponds to a

subset of Classes(S). The label for an arc corresponds to a property name.

G(V,A) must also satisfy the following condition.

A property value integrity condition: If u
P
−→ v ∈ A, then

Cl(u) ∩Dom(P ) 6= ∅.
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The condition requires any object with one or more values for property P to

be in at least one class for which P is an immediate property.

Example 1: The declarations for the ALGEBRA class schema, Figure 2,

are listed in the first column of Table 1. An example interpretation for the

ALGEBRA class schema appears in Figure 3. There are a total of five objects

(we take the words “object” and “vertex” to be synonymous): a projection,

a selection, a join and two relation names. The interpretation corresponds to

(part of) the parse tree that might be produced by a query optimizer when

applied to the input expression πX(σρ(R1 1 R2)). 2

Table 1: An ALGEBRA Schema.

S Σ

exp{}

join{Args} join(Id:exp) join(Args:exp)

rName{} rName(Id:canExp)

unExp{Arg} unExp(Id:exp) unExp(Arg:exp)

FUNC(Arg)

sel{} sel(Id:unExp)

proj{} proj(Id:unExp)

canExp{} canExp(Id:exp)

psj{} psj(Id:proj) psj(Arg:sel)

psj(Id:canExp) psj(Arg.Arg:join)

psj(Arg.Arg.Args:canExp)

A path description, pd , is either Id (short for identity), or a sequence of

property names separated by dots. Their composition and length are defined

as follows:

pd1 ◦ pd2 ≡











pd1 if pd2 is Id,

pd2 if pd1 is Id,

pd1.pd2 otherwise.

len(pd) ≡











0 if pd is Id,

1 + len(pd1) otherwise, where pd has the form P ◦ pd1,

where P is a property.
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{psj,
canExp,
proj,
unExp,
exp}

{sel,
unExp,
exp}

{join,
exp}

{rName,
canExp,
exp}

{rName,
canExp,
exp}

Arg Arg

Args

Args

u

v

Figure 3: An interpretation of the ALGEBRA schema.

Note that composition is associative, that is, pd1◦(pd2◦pd3) = (pd1◦pd2)◦pd3.

The following is also a straightforward consequence of our definitions.

len(pd1 ◦ pd2) = len(pd1) + len(pd2)

Given an interpretation G(V,A), we say that a path in G(V,A) is de-

scribed by a path description pd if and only if the path is of zero length (i.e.

consists of a single vertex) and pd is Id, or pd corresponds to the sequence of

property labels on the path.

Example 2: In Figure 3, the single path from the vertex u to the vertex v is

described by the path description Arg.Arg.Args. 2

We consider two kinds of constraints in Σ. The first, called a property

functionality constraint (FUNC), allows us to characterize properties that are

single-valued and total on their domain classes. Each is declared with the

form FUNC(P ), and is satisfied by an interpretation G(V,A) for S if and only

if G(V,A) satisfies the following two additional conditions.

1. (property functionality) If u
P
−→ v and u

P
−→ w are in A, then v = w.

2. (property value completeness) If Cl(u)∩Dom(P ) 6= ∅, then there is an arc

u
P
−→ v ∈ A.

The second kind of constraint is called a specialization constraint (SC),

and is our main concern in this paper. An SC (over S) is used to assert a

type condition on a path description, and has the form C1(pd : C2). Assuming

that S is the schema over which the constraint is expressed, then C1(pd : C2)
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is satisfied by an interpretation G(V,A) for S if and only if whenever there

exists a path in G(V,A) from a vertex u to a vertex v described by pd , then

C1 ∈ Cl(u) implies C2 ∈ Cl(v).

Example 3: The third entry in the third column of Table 1 is the only FUNC

needed for the ALGEBRA schema. Note that this constraint is satisfied by

the interpretation in Figure 3. The remaining entries in the second and third

columns of Table 1 are the SCs needed for the ALGEBRA database. It is

a simple exercise to confirm that each is satisfied by the interpretation for

ALGEBRA given in Figure 3. Recall from our introductory comments that

the entries in the second column, with the form C1(Id : C2), represent the

superclass relationships. This should be clear from the above definitions, since

such constraints distinguish interpretations in which a vertex v has C1 in its

class label, but not C2. 2

Let Σ be a finite set of constraints (SCs and FUNCs). By ΣFUNC and

ΣSC, we mean the sets of FUNCs and SCs in Σ, respectively. An instance of

either kind of constraint σ is a logical consequence of Σ, written Σ |= σ, if any

interpretation satisfying Σ must also satisfy σ.

As discussed, specialization constraints using Id are our means of estab-

lishing a generalization taxonomy among classes. It is therefore worthwhile to

distinguish database schema which fail to satisfy the usual requirement that

such taxonomies be acyclic. Accordingly, we shall say that S is a generaliza-

tion taxonomy with respect to Σ if and only if there are no two distinct classes

C1, C2 ∈ Classes(S) such that

Σ |= C1(Id : C2) and Σ |= C2(Id : C1).

However, note that we continue to allow multiple inheritance; there may exist

C1, C2, C3 ∈ Classes(S) such that Σ |= C1(Id : C2) and Σ |= C1(Id : C3), but

where Σ 6|= C2(Id : C3) and Σ 6|= C3(Id : C2). The three ALGEBRA classes

psj, proj and canExp are an example of this.

The notion of a specialization constraint so far presented is very general,

allowing us to express such constraints as

exp(Arg : exp) (1.1)

or even

rName(Arg : exp). (1.2)
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Concerning the first example, the diagram of the ALGEBRA schema in Fig-

ure 2, together with our intuition about the information it describes, suggests

that not all exp object can meaningly have an Arg property value, such as

those that are also join objects. The second example is more extreme; we

might expect that there will never be any rName object with an Arg property

value, which implies that 1.2 is vacuously satisfied. These examples illustrate

the need to be able to distinguish some kinds of path descriptions—in partic-

ular, those that correspond to single or set-valued functions which are total

with respect to some class.

We begin by first defining the more restricted notion of well-formed path

function [17]. A path description pd is a well-formed path function with

respect to 〈S,Σ〉 and a class C ∈ Classes(S) if and only if for any interpretation

G(V,A) satisfying Σ, whenever there is a vertex u ∈ V such that C ∈ Cl(u),

then there must be a unique path in G(V,A) from u described by pd . The

set of well-formed path functions with respect to 〈S,Σ〉 and C is denoted

PathFuncs(C), where 〈S,Σ〉 is assumed to be understood from context.

A path description pd is well-formed with respect to 〈S,Σ〉 and a class

C ∈ Classes(S) if and only if it is a well-formed path function with respect to

〈S,Σ ∪ SFUNC〉 and C, where

SFUNC = { FUNC(P ) | P is a property in S}.

As above, the set of path descriptions that are well-formed with respect to

〈S,Σ〉 and C is denoted PathDescs(C). Note that that PathDescs(C) (and

PathFuncs(C)) can still be countably infinite for some classes. For example,

when S = { a{A} } and Σ = { a(A : a) }, then PathDescs(a) consists of Id, A,

A.A, A.A.A, and so on.

We extend the concept of well-formedness to SCs. An SC C1(pd : C2) is

well-formed with respect to 〈S,Σ〉 if and only if pd ∈ PathDescs(C1). Finally,

a finite set of constraints Σ1 is well-formed with respect to 〈S,Σ〉 if and only

if every SC in Σ1 is well-formed with respect to 〈S,Σ〉.

Example 4: For the ALGEBRA schema in Table 1, PathFuncs(psj) and

PathDescs(psj) denote

{Id, Arg, Arg.Arg}

and

{Id, Arg, Arg.Arg, Arg.Arg.Args}
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respectively. Also, both SCs 1.1 and 1.2 above are not well-formed with respect

to the ALGEBRA schema, since Arg 6∈ PathDescs(RName)∪PathDescs(exp).

2

1.2 Review and outline

Our form of specialization constraint is more general than the combination

of subsetting and typing constraints considered by Di Battista and Lenzerini

[11], although other forms of constraints are included in their theory which

are not expressible in our own. Arisawa and Miura [3] consider richer forms

of subclass constraints, such as C1 ∗C2 ∗C3 < C4 +C5, which states that the

intersection of (the extensions of) classes C1, C2 and C3 is a subset of the union

of classes C4 and C5. They also outline polynomial time decision algorithms for

cases in which either unions or intersections appear exclusively. Specialization

and subsetting constraints have also been considered in the context of the

relational model. Such constraints are called inclusion dependencies, and have

the form R(A1, ..., An) ⊆ S(B1, .., Bn), where R and S are relation names,

and A1, ..., Bn are attribute names. The constraint is satisfied by relations r

and s if the projection of r over A1, ..., An is a subset of the projection of s

over B1, ..., Bn. The inference problem for inclusion dependencies is P-space

complete in the general case [7], but can be solved in linear time if dependencies

are unary (i.e. n = 1) [12]. Casanova et al. [7] also considered the interaction

of inclusion dependencies with functional dependencies. A more general form

of functional dependency, for a data model similar to the one in this paper,

has been considered in Weddell [16, 17]; its interaction with specialization

constraints is under study [8].

The concept of a specialization constraint, as we have defined it, was

first presented in [19]. In the remainder of this paper, we expand on the

results presented by this earlier work, focusing on the various membership

problems for specialization constraints, including the problems of identifying

well-formed path functions and path descriptions. In general, we consider

these problems for two models. The first, the subject of Section 2 which

follows, imposes no constraints on class membership for an object beyond

those implied by subclassing constraints. An object may be a member of any

set of classes as long as the superclass-subclass relationships are maintained.

(An interpretation of the UNIVERSITY database schema, Figure 1, might

therefore include objects in both the student and prof classes, or indeed in

all classes.) For this case, we present a sound and complete axiomatization for

arbitrary specialization constraints, and efficient decision procedures for the

corresponding membership problems.
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The second model is more typical and requires that each object is cre-

ated with respect to at most one class. If the set of classes to which an object

belongs is nonempty, then the set must include one class for which all other

classes in the set are superclasses. In Section 3, membership problems for this

model are shown to be NP-hard, and NP-complete if class schema include a

“bottom” class, denoted ⊥. We exhibit polynomial-time decision procedures

when ⊥ does exist and the length of any path descriptions mentioned in an-

tecedent specialization constraints is bounded by some constant.

In Section 4, we consider another special case for the second model,

in which class schema also satisfy a lower semi-lattice condition. A sound

and complete axiomatization for well-formed specialization constraints is pre-

sented, together with efficient decision procedures for the membership prob-

lem for well-formed constraints, and for determining if an arbitrary constraint

is well-formed. We prove that the membership problem for arbitrary spe-

cialization constraints remains NP-complete, however, even for class schema

satisfying the lower semi-lattice condition.

Table 2 summarizes our complexity results for the various membership

problems, and indicates those cases for which a complete axiomatization is also

presented. The number in parenthesis is the subsection in which the result is

derived. Further summary comments appear in Section 5.

2. Implication Problems for Specialization Constraints

2.1 On finite implications

Let Σ be a finite set of constraints and let σ be an additional SC. In this

section, it will be shown that σ is a logical consequence of Σ if and only if σ is

a finite logical consequence of Σ. Formally, σ is a finite logical consequence of

Σ, written Σ |=finite σ, if any finite interpretation satisfying Σ must also satisfy

σ. By definition, Σ |= σ implies Σ |=finite σ. In the following, we will prove

its opposite direction; that is, Σ 6|= σ implies Σ 6|=finite σ. Let us denote σ by

C(pd : C ′).

For a path description pd (= P1.P2. · · · .Pn), a pd-List (for S) is a di-

rected graph

v0
P1−→ v1

P2−→ · · ·
Pn−→ vn,

where each vi has a label Cl(vi) that is a subset of Classes(S). If pd = Id,

then the pd -List consists of a single vertex v0 with no arcs. Note that the

pd -List is not necessarily an interpretation, since it may not satisfy a property

value integrity condition.
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Table 2: Complexity results for membership problems.

problem (general case) MSC/⊥
MSC/⊥

(bounded)
MSC/LSL

pd 6∈ PathDescs(C)
P-time

(2.3)

NP-complete

(3.1)

P-time

(3.2)

P-time

(4.2)

pd 6∈ PathFuncs(C)
P-time

(2.3)

NP-complete

(3.1)

P-time

(3.2)

P-time

(4.2)

Σ 6|= C(pd : C ′)

(where pd ∈ PathDescs(C))

P-time(*)

(2.3)

NP-complete

(3.1)

P-time

(3.2)

P-time(*)

(4.2)

Σ 6|= C(pd : C ′)
P-time(*)

(2.3)

NP-complete

(3.1)

P-time

(3.2)

NP-complete

(4.3)

(*) – complete axiomatization

Lemma 1: If Σ 6|= C(pd : C ′), then there is a pd -List v0
P1−→ v1

P2−→ · · ·
Pn−→ vn

that satisfies the following three conditions, where pd = P1.P2. · · · .Pn.

PDL 1: The pd -List satisfies a property value integrity condition.

PDL 2: The pd -List satisfies ΣSC.

PDL 3: The pd -List violates C(pd : C ′); that is, C ∈ Cl(v0) and C ′ 6∈ Cl(vn).

Proof. Assume that Σ 6|= C(pd : C ′). Then there is an interpretation G(V,A)

that satisfies Σ but violates C(pd : C ′). That is, there is a path in G(V,A) from

a vertex u to a vertex v described by pd such that C ∈ Cl(u) but C ′ 6∈ Cl(v).

The path can be denoted u0
P1−→ u1

P2−→ · · ·
Pn−→ un, where u0 = u and

un = v.1 Let v0
P1−→ v1

P2−→ · · ·
Pn−→ vn be a pd -List such that Cl(vi) = Cl(ui)

for 0 ≤ i ≤ n. We will prove that the pd -List satisfies PDLs 1 to 3.

Since G(V,A) is an interpretation, it satisfies a property value integrity

condition. Thus it holds that Cl(ui−1) ∩ Dom(Pi) 6= ∅ for 1 ≤ i ≤ n. Since

Cl(vi−1) = Cl(ui−1) by definition, the pd -List also satisfies a property value

integrity condition; that is, PDL 1 holds.

1A vertex ui may coincide with another uj , since G(V,A) may contain cycles.
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Since G(V,A) satisfies ΣSC (⊆ Σ) and the path u0
P1−→ u1

P2−→ · · ·
Pn−→ un

is a subgraph of G(V,A), the path must satisfy ΣSC. Thus the pd -List also

satisfies ΣSC; that is, PDL 2 holds.

Since C ∈ Cl(u0) = Cl(v0) and C ′ 6∈ Cl(un) = Cl(vn), the pd -List

violates C(pd : C ′); that is, PDL 3 holds. This completes proving Lemma 1.

2

Example 5: Let S be a class schema defined as follows:

a1{ C }, a2{ }, a3{ B }, b{ A, D }, c1{ }, c2{ }, e{ C },

where

Dom( A ) = { b }, Dom( B ) = { a3 }, Dom( C ) = { a1, e }, Dom( D )

= { b }.

Let ΣSC consist of the following seven SCs:

a1(Id : a2), a1(C : c2), a2(Id : a3), a3(B : b), b(A : a2), c1(Id : c2),

e(C : c2).

Assume that ΣFUNC = ∅. The database schema 〈S,Σ〉 can be illustrated as in

Figure 4.

a3{B}

a2

a1{C}

b{A,D}

c2

c1

e{C}

B

A

C C

Figure 4: A database schema 〈S,Σ〉.

Let us consider whether or not Σ |= a2(B.A.C : c1). To say the conclusion

first, it holds that Σ 6|= a2(B.A.C : c1). In fact, for the SC a2(B.A.C : c1),

there is a ‘B.A.C’-List v0
B
−→ v1

A
−→ v2

C
−→ v3 satisfying PDLs 1 to 3, as is

given in Figure 5. 2
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{a2,a3} {b} {a2,a3,e} {c2}
B A C

v0 v1
v2 v3

Figure 5: A ‘B.A.C’-List.

The pd -List obtained in Lemma 1 does not necessarily satisfy ΣFUNC,

though it satisfies ΣSC. Note that if the pd -List does not satisfy ΣFUNC,

then there is a vertex vi that violates property value completeness for some

FUNC(P ) ∈ ΣFUNC; that is, Cl(vi) ∩Dom(P ) 6= ∅ but vi has no out-arc labeled

P .2 By adding one vertex and a number of arcs to the pd -List, however, we

can construct an interpretation G(V,A) that satisfies Σ ∪ SFUNC.
3 Let us first

consider how to construct such an interpretation.

Let v0
P1−→ v1

P2−→ · · ·
Pn−→ vn be a pd -List, where pd = P1.P2. · · · .Pn.

The augmented graph of the pd -List with respect to S is a directed graph

G(V,A) obtained by the following procedure.

Procedure 1: (Computing the augmented graph G(V,A) of a pd -List with

respect to S.)

input: a database schema 〈S,Σ〉 and a pd -List v0
P1−→ v1

P2−→ · · ·
Pn−→ vn.

1. Assign the pd -List to G(V,A).

2. Add a new vertex u to V , where Cl(u) = Classes(S).

3. For each property P in S and each vi, where 0 ≤ i ≤ n, if Cl(vi)∩Dom(P ) 6=

∅ and vi has no out-arc labeled P , then add an arc vi
P
−→ u to A.

4. For each property P in S, add an arc u
P
−→ u to A. 2

Example 6: Let us consider how to construct the augmented graph G(V,A)

of the ‘B.A.C’-List v0
B
−→ v1

A
−→ v2

C
−→ v3 in Figure 5 with respect to S.

In Step 1, a vertex u with Cl(u) = Classes(S) is added to V . Since

b ∈ Cl(v1)∩Dom(D), an arc v2
B
−→ u is added to A in Step 3. Similarly, since

a3 ∈ Cl(v2) ∩ Dom(B), an arc v2
B
−→ u is also added to A in Step 3. Since

2Since each vertex in the pd-List has at most one out-arc, it satisfies property functionality.

3Note that ΣFUNC ⊆ SFUNC by definition.
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S consists of four properties A, B, C, D, four arcs (such as u
A
−→ u) is added

to A in Step 4. As a result, the augmented graph G(V,A) is constructed as

in Figure 6. It is important to note that G(V,A) is a finite interpretation

satisfying Σ ∪ SFUNC but violating a2(B.A.C : c1), where SFUNC = { FUNC(A),

FUNC(B), FUNC(C), FUNC(D) }. Thus it turns out that Σ 6|=finite a2(B.A.C : c1).

Note that there is an infinite interpretation for S satisfying Σ, because of a

cycle a2(Id : a3), a3(B : b), b(A : a2). 2

{a2,a3} {b} {a2,a3,e} {c2}
B A C

v0 v1
v2 v3

Classes(S)

D B

u
A,B,C,D

Figure 6: The augmented graph of the ‘B.A.C’-List in Figure 5.

Lemma 2: If the pd -List v0
P1−→ v1

P2−→ · · ·
Pn−→ vn satisfies PDLs 1 to 3,

then its augmented graph G(V,A) with respect to S is a finite interpretation

satisfying Σ ∪ SFUNC but violating C(pd : C ′).

Proof. Clearly, G(V,A) is finite. In order to prove that G(V,A) is an inter-

pretation, it suffices to show that G(V,A) satisfies a property value integrity

condition. This is true as explained below: For each vi−1
Pi−→ vi ∈ A, it holds

that Cl(vi−1) ∩ Dom(Pi) 6= ∅, since the pd -List satisfies a property value in-

tegrity condition by PDL 1. For each vi
P
−→ u added to A in Step 3, it follows

from the if condition in Step 3 that Cl(vi) ∩ Dom(P ) 6= ∅. Furthermore, for

each u
P
−→ u added to A in Step 4, it also follows that Cl(u) ∩ Dom(P ) 6= ∅,

since Cl(u) = Classes(S). Thus G(V,A) satisfies a property value integrity

condition.
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We next prove that G(V,A) satisfies Σ ∪ SFUNC. By construction, it is

clear that G(V,A) satisfies FUNC(P ) for every property P in S. It remains to

show that G(V,A) satisfies ΣSC. For an SC C1(pd
′ : C2) ∈ ΣSC, assume that

there is a path in G(V,A) from a vertex w to a vertex w′ described by pd ′ such

that C1 ∈ Cl(w). It suffices to show that C2 ∈ Cl(w′). If w′ = u, then this

is true, since Cl(u) = Classes(S) by definition. Assume that w′ 6= u. Since

the destination of every arc added in Steps 3 and 4 is the new vertex u, the

assumption w′ 6= u implies that the path from w to w′ must be on the pd -List.

Since the pd -List satisfies C1(pd
′ : C2) ∈ ΣSC by PDL 2, C1 ∈ Cl(w) implies

C2 ∈ Cl(w
′).

Finally, G(V,A) violates C(pd : C ′), since the pd -List is a subgraph of

G(V,A) and violates the SC by PDL 3. This completes proving Lemma 2. 2

We are now ready to prove the following theorem.

Theorem 1: The following three statements are equivalent.

1. Σ 6|= C(pd : C ′).

2. Σ 6|=finite C(pd : C ′).

3. There is a pd -List satisfying PDLs 1 to 3.

Proof. By definition, (2) implies (1). By Lemma 1, (1) implies (3). We prove

that (3) implies (2). Assume that there is a pd -List satisfying PDLs 1 to 3.

Let G(V,A) be the augmented graph of the pd -List with respect to S. Since

Σ ⊆ Σ∪SFUNC, it follows from Lemma 2 that G(V,A) is a finite interpretation

satisfying Σ but violating C(pd : C ′). Hence Σ 6|=finite C(pd : C ′). 2

2.2 Axioms for SCs

Let Σ be a finite set of constraints and let σ be an SC. For a finite set A of

axioms, if σ is derivable from Σ using the axioms in A, then we denote Σ `A σ

(or Σ ` σ, if A is understood from context). In this section, we will show the

following result.

The following axioms A1 to A3 are sound and complete for deciding

whether or not Σ |= σ; that is, Σ |= σ if and only if Σ `{A1,A2,A3} σ. In

particular, if σ is well-formed with respect to 〈S,Σ〉, then only A1 and A2 are

sound and complete.

A1: (identity) If C ∈ Classes(S), then C(Id : C).

A2: (composition) If C(pd : C ′) and C ′(pd ′ : C ′′), then C(pd ◦ pd ′ : C ′′).
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A3: (prefix augmentation) For a property P , if Cp(P ◦ pd : C ′) for every

Cp ∈ Dom(P ), then C(pd ′ ◦ P ◦ pd : C ′) for every C ∈ Classes(S) and

every path description pd ′.

Lemma 3: Axioms A1 to A3 are sound; that is, Σ ` σ implies Σ |= σ.

Proof. Clearly, A1 and A2 are sound. Consider A3. Assume that an in-

terpretation G(V,A) satisfies Cp(P ◦ pd : C ′) for every Cp ∈ Dom(P ). We

must show that G(V,A) satisfies C(pd ′ ◦ P ◦ pd : C ′). Assume that there is

a path in G(V,A) from a vertex u to a vertex v described by pd ′ ◦ P ◦ pd

such that C ∈ Cl(u). It suffices to show that C ′ ∈ Cl(v). The path can be

divided into two parts: one path from u to a vertex w described by pd ′ and the

other from w to v described by P ◦ pd . Since (1) G(V,A) satisfies a property

value integrity condition and (2) w has an out-arc labeled P , it holds that

Cl(w) ∩ Dom(P ) 6= ∅. Let Cp ∈ Cl(w) ∩ Dom(P ). Then G(V,A) satisfies

Cp(P ◦ pd : C ′) by assumption. Furthermore, since there is a path in G(V,A)

from w to v described by P ◦ pd , Cp ∈ Cl(w) implies C ′ ∈ Cl(v). 2

Example 7: Consider the database schema 〈S,Σ〉 of Example 5. For prop-

erty C, where Dom( C ) = { a1, e }, both a1(C : c2) and e(C : c2) are in Σ.

Thus by axiom A3, an SC b(D.C : c2) is derived from Σ. Similarly, an SC

a2(B.A.C : c2) is also derived from Σ by axiom A3. 2

In the following we will prove completeness of the axioms; that is, Σ 6` σ

implies Σ 6|= σ. Let us denote σ by C(pd : C ′). The proof will be done by

showing that if Σ 6` C(pd : C ′), then there is a pd -List satisfying PDLs 1 to 3,

and thus Σ 6|= C(pd : C ′) by Theorem 1. In order to construct such a pd -List,

we will introduce the concept of chase, which is a pd -List satisfying ΣSC for a

class C ∈ Classes(S) and a path description pd .

The chase of C and pd under ΣSC, written ChaseΣSC(C, pd), is a pd -

List v0
P1−→ v1

P2−→ · · ·
Pn−→ vn obtained by the following procedure, where

pd = P1.P2. · · · .Pn.

Procedure 2: (Computing ChaseΣSC(C, pd).)

input: a database schema 〈S,Σ〉, a class C ∈ Classes(S), and a path descrip-

tion pd (= P1.P2. · · · .Pn).
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1. Construct a pd -List v0
P1−→ v1

P2−→ · · ·
Pn−→ vn such that Cl(v0) = {C } and

Cl(vi) = ∅ for 1 ≤ i ≤ n.

2. Apply the following rule to the pd -List exhaustively:

SC-rule: For an SC Ca(pd
′ : Cb) ∈ ΣSC, if there are two vertices vi, vj

such that Ca ∈ Cl(vi), Cb 6∈ Cl(vj), and pd ′ = Pi+1.Pi+2. · · · .Pj ,

then add Cb to Cl(vj).
4

2

Example 8: For the database schema 〈S,Σ〉 in Example 5, let us compute

ChaseΣSC(a2, B.A.C).

In Step 1, a ‘B.A.C’-List v0
B
−→ v1

A
−→ v2

C
−→ v3 is constructed, where

Cl(v0) = { a2 } and Cl(vi) = ∅ for 1 ≤ i ≤ 3.

For SC a2(Id : a3) ∈ ΣSC, since a2 ∈ Cl(v0) and a3 6∈ Cl(v0), class a3 is

added to Cl(v0) by applying the SC-rule for a2(Id : a3). Then by applying

the SC-rule for a3(B : b) ∈ ΣSC, class b is added to Cl(v1), since a3 ∈ Cl(v0)

and b 6∈ Cl(v1). Finally, we obtain the ‘B.A.C’-List given in Figure 7 as

ChaseΣSC(a2, B.A.C). Note that ChaseΣSC(a2, B.A.C) satisfies ΣSC. 2

{a2,a3} {b} {a2,a3} ∅
B A C

v0 v1
v2 v3

Figure 7: ChaseΣSC(a2, B.A.C).

Note that the result of Procedure 2 is independent of the order of applying

SC-rules in Step 2.

Let us first consider the case that C(pd : C ′) is well-formed with respect

to 〈S,Σ〉; that is, pd ∈ PathDescs(C). We want to show that if Σ 6`{A1,A2}
C(pd : C ′), then ChaseΣSC(C, pd) satisfies PDLs 1 to 3. We will present three

lemmas, which will be used for the chase to satisfy the three conditions.

Assume in the rest of this section that pd = P1.P2. · · · .Pn and that the

result of ChaseΣSC(C, pd) is v0
P1−→ v1

P2−→ · · ·
Pn−→ vn, unless stated otherwise.

Furthermore, let us denote a prefix P1.P2. · · · .Pi of pd by pdi, where 0 ≤ i ≤

n.5

4If pd ′ = Id, then let i = j.
5Note that pd0 = Id and pdn = pd .
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Lemma 4: (a) The pdi-List v0
P1−→ v1

P2−→ · · ·
Pi−→ vi satisfies ΣSC, where

0 ≤ i ≤ n. In particular, ChaseΣSC(C, pd) satisfies ΣSC.

(b) ChaseΣSC(C, pdi) coincides with the pdi-List v0
P1−→ v1

P2−→ · · ·
Pi−→ vi,

where 0 ≤ i ≤ n.

Proof. By definition, if a pd -List does not satisfy an SC in ΣSC, then the SC-

rule for the SC must apply to the pd -List. In order to compute ChaseΣSC(C, pd),

SC-rules for ΣSC have been exhaustively applied, and thus ChaseΣSC(C, pd)

satisfies ΣSC. Hence the pdi-List also satisfies ΣSC, since it is a subgraph of

ChaseΣSC(C, pd). That is, Lemma 4(a) holds.

We next prove Lemma 4(b). Since the order of applying SC-rules in Step 2

does not affect the final result, Procedure 2 can yield, as an intermediate result,

a pd -List v′0
P1−→ v′1

P2−→ · · ·
Pn−→ v′n such that (1) Cl(v′j) = ∅ for i+ 1 ≤ j ≤ n

and (2) the pdi-List v
′
0

P1−→ v′1
P2−→ · · ·

Pi−→ v′i satisfies ΣSC. Clearly, the pdi-List

coincides with ChaseΣSC(C, pdi). On the other hand, by the definition of SC-

rule, once v0
P1−→ v1

P2−→ · · ·
Pi−→ vi satisfies ΣSC in Step 2, the pdi-List remains

unchanged afterward. Hence Lemma 4(b) holds. 2

Lemma 5: Cl(vi) = {Ci ∈ Classes(S) | ΣSC `{A1,A2} C(pdi : Ci)} for 0 ≤ i ≤

n.

Proof. We first prove that if ΣSC `{A1,A2} C(pdi : Ci), then Ci ∈ Cl(vi).

Assume that ΣSC `{A1,A2} C(pdi : Ci). Then ΣSC |= C(pdi : Ci) by Lemma 3.

Thus ChaseΣSC(C, pd) satisfies C(pdi : Ci) by Lemma 4(a). Hence C ∈ Cl(v0)

implies Ci ∈ Cl(vi).

We next prove that if Ci ∈ Cl(vi), then ΣSC `{A1,A2} C(pdi : Ci). Induc-

tion on the number of applying SC-rules in Step 2.

The basis follows from axiom A1, since Cl(v0) = {C } and Cl(vj) = ∅ for

1 ≤ j ≤ n in Step 1.

As an induction hypothesis, assume during an execution of Step 2 that

ΣSC `{A1,A2} C(pdi : Ci) for every Ci ∈ Cl(vi). Assume that a class Cb should

be added to Cl(vj) by applying an SC-rule for Ca(pd
′ : Cb) ∈ ΣSC. Then by

the definition of SC-rule, it holds that Cb 6∈ Cl(vj), Ca ∈ Cl(vk), and pd ′ =

Pk+1.Pk+2. · · · .Pj for some k. We must prove that ΣSC `{A1,A2} C(pdj : Cb).

By the induction hypothesis, Ca ∈ Cl(vk) implies that ΣSC `{A1,A2} C(pdk :

Ca). By axiom A2, C(pdk : Ca) and Ca(pd
′ : Cb) imply C(pdk ◦pd

′ : Cb). Note

that pdk ◦ pd
′ = pdj . Hence ΣSC `{A1,A2} C(pdj : Cb). This completes proving

Lemma 5. 2
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Lemma 6: pd ∈ PathDescs(C) if and only if ChaseΣSC(C, pd) satisfies a prop-

erty value integrity condition.

Proof. If part. Induction on len(pd).

Basis. If len(pd) = 0, that is pd = Id, then clearly pd ∈ PathDescs(C).

Hence the basis holds.

Induction. As an induction hypothesis, assume that if len(pd) ≤ n − 1

and ChaseΣSC(C, pd) satisfies a property value integrity condition, then pd ∈

PathDescs(C), where n ≥ 1.

Assume that len(pd) = n and ChaseΣSC(C, pd) satisfies a property value

integrity condition. Then it holds that Cl(vi−1)∩Dom(Pi) 6= ∅ for 1 ≤ i ≤ n.

In particular, there is a class Cn−1 ∈ Classes(S) such that

Cn−1 ∈ Cl(vn−1) ∩Dom(Pn). (2.1)

Let G(V,A) be an interpretation satisfying Σ ∪ SFUNC. Let u be a vertex in V

such that C ∈ Cl(u). In order to prove that pd ∈ PathDescs(C), it suffices to

show that there is a path in G(V,A) from u described by pd . We claim that

pdn−1 ∈ PathDescs(C). (2.2)

Since len(pdn−1) = n − 1, it follows from the induction hypothesis that

if ChaseΣSC(C, pdn−1) satisfies a property value integrity condition, then 2.2

holds. Thus it suffices to show that ChaseΣSC(C, pdn−1) satisfies a property

value integrity condition. By Lemma 4(b), ChaseΣSC(C, pdn−1) coincides with

the pdn−1-List v0
P1−→ v1

P2−→ · · ·
Pn−1
−→ vn−1. Furthermore, the pdn−1-List

satisfies a property value integrity condition, since ChaseΣSC(C, pd) satisfies

that condition by assumption and pdn−1 is a prefix of pd . Hence 2.2 holds.

By 2.2, there must be a path in G(V,A) from u to a vertex w described

by pdn−1.
6 We next claim that

Cl(w) ∩Dom(Pn) 6= ∅. (2.3)

By 2.1, it suffices to show that Cn−1 ∈ Cl(w). Since Cn−1 ∈ Cl(vn−1) by

2.1, it follows from Lemma 5 that Σ `{A1,A2} C(pdn−1 : Cn−1), and thus Σ |=

C(pdn−1 : Cn−1) by Lemma 3. This implies that G(V,A) satisfies C(pdn−1 :

Cn−1), since G(V,A) satisfies Σ. Note that C ∈ Cl(u) and there is a path in

G(V,A) from u to w described by pdn−1. Hence it must hold that Cn−1 ∈

Cl(w), which implies 2.3.

6Since G(V,A) satisfies SFUNC, the vertex w is unique.
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Since G(V,A) satisfies FUNC(Pn) ∈ SFUNC, it follows from 2.3 and property

value completeness for FUNC(Pn) that there must be an arc w
Pn−→ w′ ∈ A.

Furthermore, since there is a path in G(V,A) from u to w described by pdn−1,

there is also a path in G(V,A) from u to w′ described by pdn−1 ◦ Pn (= pd).

This completes the induction proof of the if part.

Only if part. Assume that ChaseΣSC(C, pd) does not satisfy a property

value integrity condition. (We will prove that pd 6∈ PathDescs(C).) Then

there is an index i such that

Cl(vi) ∩Dom(Pi+1) = ∅, (2.4)

where 0 ≤ i ≤ n − 1. Let i be the smallest index satisfying 2.4. For the

pdi-List v0
P1−→ v1

P2−→ · · ·
Pi−→ vi, construct the augmented graph G(V,A)

with respect to S. We will prove that G(V,A) is an example showing that

pd 6∈ PathDescs(C). It suffices to show that (1) G(V,A) is an interpretation

satisfying Σ ∪ SFUNC and (2) there is no path in G(V,A) from v0 described by

pd . Note that C ∈ Cl(v0).

By the minimality of i, it holds that Cl(vj) ∩ Dom(Pj+1) 6= ∅ for 0 ≤

j ≤ i − 1. Thus the pdi-List satisfies a property value integrity condition.

Furthermore, since the pdi-List satisfies ΣSC by Lemma 4(a), it follows from

Lemma 2 that G(V,A) is an interpretation satisfying Σ ∪ SFUNC.

Clearly, there is a path in G(V,A) from v0 to vi described by pdi. Note

that the path is unique, sinceG(V,A) satisfies SFUNC. By Step 3 of Procedure 1,

if there is an arc vi
P
−→ u ∈ A, then Cl(vi) ∩ Dom(P ) 6= ∅. Hence it follows

from 2.4 that there is no arc vi
Pi+1
−→ u ∈ A. That is, there is no path in G(V,A)

from v0 described by pdi ◦ Pi+1. Since pdi ◦ Pi+1 is a prefix of pd , there is no

path in G(V,A) from v0 described by pd , either. This completes proving the

only if part. Hence Lemma 6 holds. 2

Example 9: Consider ChaseΣSC(a2, B.A.C), given in Figure 7, for the database

schema 〈S,Σ〉 of Example 5. Then ChaseΣSC(a2, B.A.C) does not satisfy a

property value integrity condition, since Cl(v2) ∩ Dom(C) = ∅. Thus B.A.C 6∈

PathDescs(a2) by Lemma 6. On the other hand, ChaseΣSC(a2, B.A) satisfies

a property value integrity condition, since a3 ∈ Cl(v0) ∩ Dom(B) and a2 ∈

Cl(v1) ∩Dom(A). Thus B.A ∈ PathDescs(a2) by Lemma 6. 2

We are now ready to prove the following theorem.
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Theorem 2: If pd ∈ PathDescs(C), then the following three statements are

equivalent.7

1. Σ |= C(pd : C ′).

2. Σ `{A1,A2} C(pd : C ′).

3. C ′ ∈ Cl(vn).

Proof. By Lemma 3, (2) implies (1). By Lemma 5, (3) implies (2). We

prove that (1) implies (3); that is, if C ′ 6∈ Cl(vn), then Σ 6|= C(pd : C ′).

By Theorem 1, it suffices to show that if C ′ 6∈ Cl(vn), then ChaseΣSC(C, pd)

satisfies PDLs 1 to 3.

Since pd ∈ PathDescs(C), PDL 1 follows from Lemma 6. PDL 2 follows

from Lemma 4(a). Finally, since C ∈ Cl(v0) by definition, if C ′ 6∈ Cl(vn), then

ChaseΣSC(C, pd) violates C(pd : C ′); that is, PDL 3 follows. 2

Finally, let us consider the case that pd is not necessarily in PathDescs(C).

Then we have the following theorem, which is a generalization of Theorem 2.

Theorem 3: The following three statements are equivalent.

1. Σ |= C(pd : C ′).

2. Σ `{A1,A2,A3} C(pd : C ′).

3. At least one of the following two conditions holds.

Condition A: Σ `{A1,A2} C(pd : C ′).

Condition B : For some i such that 0 ≤ i ≤ n− 1,

Σ `{A1,A2} Ci(Pi+1.Pi+2. · · · .Pn : C ′) for every Ci ∈ Dom(Pi+1).

Proof. By Lemma 3, (2) implies (1). We next prove that (3) implies (2).

Clearly, Condition A implies (2). Assume that Condition B holds. Then

by axiom A3, for every C ′′ ∈ Classes(S) and every path description pd ′,

Σ `{A1,A2,A3} C ′′(pd ′ ◦ Pi+1.Pi+2. · · · .Pn : C ′).

In particular, by letting C ′′ = C and pd ′ = pd i,

Σ `{A1,A2,A3} C(pd : C ′).

Hence Condition B also implies (2). As a result, (3) implies (2).

Finally, we prove that (1) implies (3) by induction on len(pd).

7Σ is not necessarily well-formed with respect to 〈S,Σ〉.
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Basis. If len(pd) = 0, that is pd = Id, then clearly pd ∈ PathDescs(C).

Thus (1) implies Condition A by Theorem 2. Hence the basis holds.

Induction. As an induction hypothesis, assume that for any SC C(pd :

C ′), if len(pd) ≤ n− 1, then (1) implies (3). Assume that len(pd) = n. In the

following we will prove that if C(pd : C ′) satisfies neither Condition A nor B,

then Σ 6|= C(pd : C ′). (Thus it will turn out that (1) implies (3).)

Assume that C(pd : C ′) satisfies neither Condition A nor B. The negation

of Condition A is that

Σ 6`{A1,A2} C(pd : C ′). (2.5)

The negation of Condition B is that for every i such that 0 ≤ i ≤ n− 1,

Σ 6`{A1,A2} Ci(Pi+1.Pi+2. · · · .Pn : C ′) for some Ci ∈ Dom(Pi+1). (2.6)

There are two cases to be considered: C ∈ Dom(P1) and C 6∈ Dom(P1).

Case 1. Assume that C ∈ Dom(P1). For simplicity, let pd ′ = P2.P3. · · · .Pn.

By 2.6, there is a class C1 ∈ Dom(P2) such that

Σ 6`{A1,A2} C1(pd
′ : C ′). (2.7)

We claim that

Σ 6|= C1(pd
′ : C ′). (2.8)

Since len(pd ′) = n − 1, it follows from the induction hypothesis that if

C1(pd
′ : C ′) satisfies neither Condition A nor B, then 2.8 holds. Hence it

suffices to show that C1(pd
′ : C ′) satisfies neither Condition A nor B. By 2.7,

C1(pd
′ : C ′) does not satisfy Condition A. Furthermore, by ignoring the case

of i = 0 in 2.6, we notice that C1(pd
′ : C ′) does not satisfy Condition B, either.

This completes proving 2.8.

By 2.8 and Theorem 1, there is a pd ′-List u1
P2−→ u2

P3−→ · · ·
Pn−→ un

satisfying PDLs 1 to 3. Let w0
P1−→ w1

P2−→ · · ·
Pn−→ wn be a pd -List such that

Cl(w0) = Cl(v0) and Cl(wi) = Cl(ui) ∪ Cl(vi) for 1 ≤ i ≤ n. By Theorem 1,

in order to prove that Σ 6|= C(pd : C ′), it suffices to show that the pd -List

w0
P1−→ w1

P2−→ · · ·
Pn−→ wn satisfies PDLs 1 to 3.

As for PDL 1, it suffices to show that Cl(wi−1) ∩ Dom(Pi) 6= ∅ for 1 ≤

i ≤ n. If i = 0, then Cl(w0) ∩ Dom(P1) 6= ∅, since C ∈ Cl(v0) = Cl(w0) and

C ∈ Dom(P1). Assume that i ≥ 1. Since the pd ′-List u1
P2−→ u2

P3−→ · · ·
Pn−→ un

satisfies PDL 1, it holds that Cl(ui)∩Dom(Pi+1) 6= ∅. Since Cl(ui) ⊆ Cl(wi),

it holds that Cl(wi) ∩Dom(Pi+1) 6= ∅. Hence PDL 1 holds.



26 Ito, Weddell and Coburn

As for PDL 2, assume that there is an SC Ca(Pj .Pj+1. · · · .Pk : Cb) ∈ ΣSC

such that Ca ∈ Cl(wj), where 0 ≤ j ≤ k ≤ n. It suffices to show that Cb ∈

Cl(wk). If Ca ∈ Cl(vj), then Cb ∈ Cl(vk) ⊆ Cl(wk), since ChaseΣSC(C, pd)

satisfies Ca(Pj .Pj+1. · · · .Pk : Cb) ∈ ΣSC by Lemma 4(a). On the other hand,

if Ca ∈ Cl(uj), then Cb ∈ Cl(uk) ⊆ Cl(wk), since the pd ′-List u1
P2−→ u2

P3−→

· · ·
Pn−→ un satisfies Ca(Pj .Pj+1. · · · .Pk : Cb) ∈ ΣSC by PDL 2. Hence PDL 2

holds.

Finally, since the pd ′-List u1
P2−→ u2

P3−→ · · ·
Pn−→ un satisfies PDL 3, it

holds that C ′ 6∈ Cl(un). Furthermore, C ′ 6∈ Cl(vn) by 2.5 and Lemma 5.

Since Cl(wn) = Cl(vn) ∪ Cl(un), it holds that C ′ 6∈ Cl(wn). On the other

hand, C ∈ Cl(v0) implies C ∈ Cl(w0). Hence PDL 3 holds. This completes

Case 1.

Case 2. Assume that C 6∈ Dom(P1). By 2.6, there is a class C0 ∈

Dom(P1) such that Σ 6`{A1,A2} C0(pd : C ′). Since C0 ∈ Dom(P1), it follows

from Case 1 above that

Σ 6`{A1,A2} C0(pd : C ′) implies Σ 6|= C0(pd : C ′).

Thus by Theorem 1, there is a pd -List u0
P1−→ u1

P2−→ · · ·
Pn−→ un satisfying

PDLs 1 to 3. Let w0
P1−→ w1

P2−→ · · ·
Pn−→ wn be a pd -List such that Cl(wi) =

Cl(ui) ∪ Cl(vi) for 0 ≤ i ≤ n. It can be proved in the same way as in

Case 1 that the latter pd -List satisfies PDLs 1 to 3. Hence Σ 6|= C(pd :

C ′) by Theorem 1. This completes the induction proof that (1) implies (3).

Consequently, Theorem 3 holds. 2

2.3 Decision Procedures

In this section, we will prove the following theorem.

Theorem 4: The following three decision problems can be solved in O(D ·

(len(pd) + 1)) time, where D is the size of database schema 〈S,Σ〉.

a. pd ∈ PathDescs(C) ?

b. pd ∈ PathFuncs(C) ?

c. Σ |= C(pd : C ′) ? 2

To say the conclusion first, the time for computing ChaseΣSC(C, pd) dom-

inates the time complexities of the three decision problems. Let us present
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a procedure for computing ChaseΣSC(C, pd), which is a refinement of Pro-

cedure 2, and then estimate its computation time. In order to construct

ChaseΣSC(C, pd), it suffices to compute Cl(v0),Cl(v1), · · · ,Cl(vn). The fol-

lowing procedure will compute them in the order of 0, 1, · · · , n.

Procedure 3: (Computing Cl(v0),Cl(v1), · · · ,Cl(vn).)

input: a database schema 〈S,Σ〉, a class C ∈ Classes(S), and a path descrip-

tion pd (= P1.P2. · · · .Pn).

1. Divide ΣSC into two sets: ΣId = {Ca(pd
′ : Cb) ∈ ΣSC | pd

′ = Id} and

Σ¬Id = ΣSC − ΣId.

2. Let CL0 ← {C0 ∈ Classes(S) | ΣId `{A1,A2} C(Id : C0)}.

3. for i← 1 to n

do begin

4. Let CL ← {Cb ∈ Classes(S) | there is an SC Ca(pd
′ : Cb) ∈ Σ¬Id

such that pd ′ = Pj+1.Pj+2. · · · .Pi and Ca ∈ CLj for some j }.

5. Let CLi ←
⋃

Cb∈CL{Ci ∈ Classes(S) | ΣId `{A1,A2} Cb(Id : Ci)}.

end 2

Example 10: Consider the database schema 〈S,Σ〉 in Example 5. Let us

execute Procedure 3 for class a2 and path description B.A.C. In Step 1, ΣSC

is divided as follows:

ΣId = {a1(Id : a2), a2(Id : a3), c1(Id : c2)}

Σ¬Id = {a1(C : c2), a3(B : b), b(A : a2), e(C : c2)}

In Step 2, CL0 = {a2, a3}, since (1) ΣId `A1 a2(Id : a2) and (2) a2(Id : a2)

and a2(Id : a3) ∈ ΣId imply a2(Id : a3) by axiom A2; that is, ΣId `{A1,A2}
a2(Id : a3). No other classes are added to CL0.

Consider the for loop in Step 3. Let i = 1. In Step 4, for each Ca(pd
′ :

Cb) ∈ Σ¬Id, it is examined whether or not Cb should be added to CL. In

this case, only for a3(B : b), class b is added to CL, since a3 ∈ CL0. That

is, CL = {b}. In Step 5, CL1 = {b}, since there is no SC in ΣId of the form

b(Id : C) for any C ∈ Classes(S). Similarly, for i = 2, we have CL = {a2}

and CL2 = {a2, a3}. For i = 3, we have CL = CL3 = ∅.

Consider ChaseΣSC(a2, B.A.C) (= v0
B
−→ v1

A
−→ v2

C
−→ v3), which was

constructed in Example 8. Then it holds that Cl(vi) = CLi for all i. 2
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The correctness of Procedure 3 follows from the following lemma.

Lemma 7: CLi = Cl(vi) for 0 ≤ i ≤ n.

Proof. Induction on i.

Basis. Consider the case that i = 0. Assume that a class Cb should

be added to Cl(v0) by applying an SC-rule for Ca(pd
′ : Cb) ∈ ΣSC in Step 2

of Procedure 2. Then clearly, pd ′ = Id, that is, Ca(pd
′ : Cb) ∈ ΣId. Thus

ΣSC `{A1,A2} C(Id : C0) if and only if ΣId `{A1,A2} C(Id : C0). Hence it follows

from Lemma 5 that CL0 = Cl(v0). That is, the basis holds.

Induction. As an induction hypothesis, assume that if j ≤ i − 1, then

CLj = Cl(vj), where i ≥ 1. By Lemma 5, it suffices to show that

CLi = {Ci ∈ Classes(S) | ΣSC `{A1,A2} C(pdi : Ci)}. (2.1)

Proof of ‘⊆’: We prove that if Ci ∈ CLi, then ΣSC `{A1,A2} C(pdi : Ci). Let

Ci ∈ CLi. There are two cases to be considered: Ci ∈ CL and Ci 6∈ CL.

Case 1. Assume that Ci ∈ CL. By definition, there is an SC Ca(pd
′ :

Ci) ∈ Σ¬Id such that pd ′ = Pj+1.Pj+2. · · · .Pi and Ca ∈ CLj for some j.

Since pd ′ 6= Id by the definition of Σ¬Id, it holds that j ≤ i − 1. Thus

Ca ∈ CLj implies Ca ∈ Cl(vj) by the induction hypothesis. Hence ΣSC `{A1,A2}
C(pdj : Ca) by Lemma 5. By axiom A2, C(pdj : Ca) and Ca(pd

′ : Ci) imply

C(pdi : Ci), where pdj ◦ pd
′ = pdi. That is, ΣSC `{A1,A2} C(pdi : Ci).

Case 2. Assume that Ci 6∈ CL. By the definition of CLi, the assumption

implies that ΣId `{A1,A2} Cb(Id : Ci) for some Cb ∈ CL. Since Cb ∈ CL,

it follows from Case 1 above that Σ `{A1,A2} C(pdi : Cb). By axiom A2,

C(pdi : Cb) and Cb(Id : Ci) imply C(pdi : Ci), since pdi ◦ Id = pdi. That is,

ΣSC `{A1,A2} C(pdi : Ci). This completes the proof of ‘⊆’.

Proof of ‘⊇’: We prove that if ΣSC `{A1,A2} C(pdi : Ci), then Ci ∈ CLi.

Assume that ΣSC `{A1,A2} C(pdi : Ci). Then ΣSC |= C(pdi : Ci) by Lemma 3.

Let u0
P1−→ u1

P2−→ · · ·
Pi−→ ui be a pdi-List such that Cl(uj) = CLj for

0 ≤ j ≤ i. We will prove that the pdi-List satisfies ΣSC. Since C ∈ CL0, this

will imply that Ci ∈ CLi.

Since CLj = Cl(vj) for 0 ≤ j ≤ i− 1 by the induction hypothesis, it fol-

lows from Lemma 4(a) that the pd i−1-List u0
P1−→ u1

P2−→ · · ·
Pi−→ ui−1 satisfies

ΣSC. By Step 4, for every SC Ca(pd
′ : Cb) ∈ Σ¬Id, if pd

′ = Pj+1.Pj+2. · · · .Pi

and Ca ∈ CLj , then Cb ∈ CLi. Thus the pdi-List satisfies Σ¬Id. Similarly, by

Step 5, for every SC Ca(Id : Cb) ∈ ΣId, if Ca ∈ CLi, then Cb ∈ CLi. Thus the
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pdi-List also satisfies ΣId. Since ΣSC = Σ¬Id ∪ ΣId by definition, the pdi-List

satisfies ΣSC. This completes the induction proof. Consequently, Lemma 7

holds. 2

Now consider the time complexity of Procedure 3. Let Classes(S) consist

of K classes. (Note that K ≤ D.) We use bit arrays of size K to represent

arbitrary subsets of Classes(S), such as those denoted by the variables CL or

CLi which are used in the procedure. Testing for class membership or inserting

a class into a given subset can then be executed in constant time. Also, each

of these variables can then be initialized to the empty set in O(K) time.

Clearly, Step 1 runs in O(‖Σ‖) time, where ‖Σ‖ is the size of Σ, and

Step 2 requires O(K) time to initialize CL0. By the definition of ΣId, each

application of axiom A2 must be of the form: ‘if C1(Id : C2) and C2(Id : C3),

then C1(Id : C3).’ That is, axiom A2 is considered as a transitivity rule.

Clearly, axiom A1 is considered as a reflexivity rule. Thus CL0 must coincide

with the reflexive transitive closure of C with respect to ΣId. Hence CL0 can

be computed by a usual algorithm for computing a reflexive transitive closure.

In fact, CL0 can be computed in O(‖ΣId‖) time. Since ‖ΣId‖ ≤ D, Step 2

can be executed in O(D) time.

In Step 4, it takes O(K) time to initialize CL. In order to compute CL,

it suffices to test once for each Ca(pd
′ : Cb) ∈ Σ¬Id whether or not pd ′ =

Pj+1.Pj+2. · · · .Pi and Ca ∈ CLj for some j. Testing pd ′ = Pj+1.Pj+2. · · · .Pi

can be done in O(len(pd ′)) time. Testing Ca ∈ CLj can be done in constant

time. If both conditions holds, then Cb is inserted into CL, which can be done

in constant time. That is, for each Ca(pd
′ : Cb), it takes O(len(pd ′)) time.

Since
∑

Ca(pd
′:Cb)∈Σ¬Id

len(pd ′) ≤ ‖Σ¬Id‖, it can be done in O(‖Σ¬Id‖) time

as a whole. Since ‖Σ¬Id‖ ≤ D, Step 4 can be executed in O(D) time.

In Step 5, it takes O(K) time to initialize CLi. As in Step 2, CLi coincides

with the reflexive transitive closure of CL with respect to ΣId, and can be

computed in O(‖ΣId‖) time. Thus Step 5 can be executed in O(D) time.

As a result, one execution of Steps 4 and 5 can be done in O(D) time.

Since n = len(pd), the for loop in Step 3 can be executed in O(D · len(pd))

time as a whole. Consequently, we have the following lemma.

Lemma 8: ChaseΣSC(C, pd) can be computed in O(D · (len(pd) + 1)) time.

2

Since it follows from Lemma 6 that pd ∈ PathDescs(C) if and only if

Cl(vi−1)∩Dom(Pi) 6= ∅ for 1 ≤ i ≤ n, it can be decided inO(‖ChaseΣSC(C, pd)‖)
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time whether or not pd ∈ PathDescs(C). Hence Theorem 4(a) follows from

Lemma 8.

The following lemma implies that it can be decided inO(‖ChaseΣSC(C, pd)‖+

‖ΣFUNC‖) time whether or not pd ∈ PathFuncs(C). Note that ‖ΣFUNC‖ ≤ D.

Hence Theorem 4(b) follows from Lemma 8.

Lemma 9: pd ∈ PathFuncs(C) if and only if pd ∈ PathDescs(C) and FUNC(Pi) ∈

ΣFUNC for 1 ≤ i ≤ n.

Proof. If part. Assume that (1) pd ∈ PathDescs(C) and (2) FUNC(Pi) ∈ ΣFUNC

for 1 ≤ i ≤ n. Let G(V,A) be an interpretation satisfying Σ. Let u be a

vertex in V such that C ∈ Cl(u). In order to prove that pd ∈ PathFuncs(C),

it suffices to show that there is a unique path in G(V,A) from u described by

pd . Since Σ = Σ ∪ {FUNC(Pi) | 1 ≤ i ≤ n} by assumption 2, G(V,A) satisfies

Σ ∪ {FUNC(Pi) | 1 ≤ i ≤ n}. Hence assumption 1 implies that there must be

a path in G(V,A) from u described by pd . (Strictly, G(V,A) should satisfy

not Σ ∪ {FUNC(Pi) | 1 ≤ i ≤ n} but Σ ∪ SFUNC according to the definition of

PathDescs(C). Each FUNC constraint not in {FUNC(Pi) | 1 ≤ i ≤ n}, however,

is independent of the path described by pd .) Furthermore, assumption 2

implies that such a path must be unique.

Only if part. Assume that pd ∈ PathFuncs(C). Then it holds that pd ∈

PathDescs(C), since PathFuncs(C) ⊆ PathDescs(C) by definition. We next

prove that FUNC(Pi) ∈ ΣFUNC for 1 ≤ i ≤ n.

Assume contrary that FUNC(Pi) 6∈ ΣFUNC for some i. Let G(V,A) be

the augmented graph of the pd i−1-List v0
P1−→ v1

P2−→ · · ·
Pi−1
−→ vi−1 with re-

spect to S. It suffices to prove that G(V,A) is an example showing that

pd 6∈ PathFuncs(C). It suffices to show that (1) G(V,A) is an interpretation

satisfying Σ and (2) there is no path in G(V,A) from v0 described by pd . Note

that C ∈ Cl(v0).

Since pd ∈ PathDescs(C), ChaseΣSC(C, pd) satisfies a property value

integrity condition by Lemma 6. Thus so does the pd i−1-List. Furthermore,

the pd i−1-List satisfies ΣSC by Lemma 4(a). Hence G(V,A) is an interpretation

satisfying Σ (⊆ Σ ∪ SFUNC) by Lemma 2.

By Step 3 of Procedure 1, if there is an arc vi−1
P
−→ u ∈ A, then

FUNC(P ) ∈ ΣFUNC. Since FUNC(Pi) 6∈ ΣFUNC, there is no arc vi−1
Pi−→ u ∈ A.

Thus there is no path in G(V,A) from v0 described by pd i−1 ◦ Pi. Since
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pd i−1 ◦ Pi is a prefix of pd , there is no path in G(V,A) from v0 described by

pd , either. This completes the only if part proof. 2

Finally, let us consider Theorem 4(c). We must show that it can be

decided in O(D · (len(pd) + 1)) time whether or not Σ |= C(pd : C ′). By

Theorem 2, if pd ∈ PathDescs(C), then Σ |= C(pd : C ′) if and only if C ′ ∈

Cl(vn). Hence by Lemma 8, it can be decided in O(D · (len(pd) + 1)) time.

Theorem 2, however, does not apply to the case that pd 6∈ PathDescs(C). In

general, by Theorem 3, Σ |= C(pd : C ′) if and only if C(pd : C ′) satisfies either

Condition A or B. In the following, let us consider how to decide whether or

not C(pd : C ′) satisfies either Condition A or B.

Since C(pd : C ′) satisfies Condition A if and only if C ′ ∈ Cl(vn) by

Lemma 5, Condition A can be tested in O(‖ChaseΣSC(C, pd)‖) time, and hence

in O(D · (len(pd) + 1)) time by Lemma 8.

It remains to show that Condition B can be tested in O(D · (len(pd)+1))

time. A naive method for Condition B is to test whether or not Σ `{A1,A2}
Ci(Pi.Pi+1. · · · .Pn : C ′) for every i and every Ci ∈ Dom(Pi). It, however,

takes exponential time in the worst case. There is a tricky way for testing

Condition B.

For 0 ≤ i ≤ n− 1, let us define

CLi = {Ci ∈ Classes(S) | Σ `{A1,A2} Ci(Pi+1.Pi+2. · · · .Pn : C ′)}.

Then C(pd : C ′) satisfies Condition B if and only if Dom(Pi+1) ⊆ CLi for

some i. We consider how to compute CL0, CL1, · · · , CLn−1. Note the analogy

between Cl(vi) and CLi, where

Cl(vi) = {Ci ∈ Classes(S) | Σ `{A1,A2} C(P1.P2. · · · .Pi : Ci)}.

Hence CLi can be obtained by executing Procedure 2 in the reverse direction

as follows:

Procedure 4: (Computing CL0, CL1, · · · , CLn−1.)

input: a database schema 〈S,Σ〉, a class C ′ ∈ Classes(S), and a path descrip-

tion pd (= P1.P2. · · · .Pn.)

1. Construct a pd -List u0
P1−→ u1

P2−→ · · ·
Pn−→ un such that Cl(un) = {C ′ }

and Cl(ui) = ∅ for 0 ≤ i ≤ n− 1.8

8Note that Cl(v0) = {C } and Cl(vn) = ∅ in Procedure 2.
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2. Apply the following rule to the pd -List exhaustively:

Reverse-SC-rule: For an SC Ca(pd
′ : Cb) ∈ ΣSC, if there are two

vertices ui, uj such that Ca 6∈ Cl(ui), Cb ∈ Cl(uj), and pd ′ =

Pi+1.Pi+2. · · · .Pj , then add Ca to Cl(ui).
9

3. Let CLi ← Cl(ui) for 0 ≤ i ≤ n− 1. 2

Example 11: For the database schema 〈S,Σ〉 in Example 5, let us decide

whether or not Σ |= a2(B.A.C : c2). ChaseΣSC(a2, B.A.C) is given in Figure 7.

Since c2 6∈ Cl(v3), Condition A does not hold for a2(B.A.C : c2). By Example 9,

B.A.C 6∈ PathDescs(a2). Thus it must be decided whether or not Condition B

holds for a2(B.A.C : c2). For SC a2(B.A.C : c2), let us compute CL0, CL1, CL2
by Procedure 4.

In Step 1, a ‘B.A.C’-List u0
B
−→ u1

A
−→ u2

C
−→ u3 is constructed, where

Cl(u3) = { c2 } and Cl(ui) = ∅ for 0 ≤ i ≤ 2.

For SC e(C : c2) in ΣSC, since c2 ∈ Cl(u3) and e 6∈ Cl(u2), class e is

added to Cl(u2) by applying the Reverse-SC-rule for e(C : c2). By applying

the Reverse-SC-rule for c1(Id : c2) in ΣSC, class c1 is added to Cl(u3), since

c2 ∈ Cl(u3) and c1 6∈ Cl(u3). By applying the Reverse-SC-rule for a1(C : c2)

in ΣSC, class a1 is added to Cl(u2), since c2 ∈ Cl(u3) and a1 6∈ Cl(u2). After

that, no Reverse-SC-rule can be applied to the ‘B.A.C’-List any more. Thus

we obtain the ‘B.A.C’-List given in Figure 8; that is, CL0 = Cl(u0) = ∅,

CL1 = Cl(u1) = ∅, and CL2 = Cl(u2) = {a1, e}.

∅ ∅ {a1,e} {c1,c2}
B A C

u0 u1
u2 u3

Figure 8: Computing CL0, CL1, CL2 by Procedure 4.

Note that Dom(C) = {a1, e} ⊆ CL2; that is, Condition B holds for SC

a2(B.A.C : c2). Thus Σ |= a2(B.A.C : c2) by Theorem 3. In fact, it was shown

in Example 7 that a2(B.A.C : c2) is derived from Σ by axiom A3. 2

The correctness of Procedure 4 can be proved along the same line as

proving Lemma 5. Furthermore, it can also be proved along the same line as

9Note that Ca ∈ Cl(vi) and Cb 6∈ Cl(vj) in SC-Rule of Procedure 2.
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proving Lemma 8 that Procedure 4 can be executed in O(D · (len(pd) + 1))

time. Thus it can be decided in that time whether or not Dom(Pi+1) ⊆ CLi
for some i. Hence Condition B can also be tested in that time. Consequently,

Theorem 4(c) follows. By the discussions above, we have the following proce-

dure that returns YES if and only if Σ |= C(pd : C ′).

Procedure 5: (Deciding whether or not Σ |= C(pd : C ′).)

input: a database schema 〈S,Σ〉 and an SC C(pd : C ′).

1. Execute Procedure 3 to get Cl(vn).

2. if C ′ ∈ Cl(vn) then return YES

else begin

3. Execute Procedure 4 to get CL0, CL1, · · · , CLn−1.

4. if Dom(Pi+1) ⊆ CLi for some i then return YES else return NO.

end. 2

By Theorems 2 and 3, if C ′ ∈ Cl(vn), then Σ |= C(pd : C ′), no matter

whether or not pd ∈ PathDescs(C). The test is done in Step 2. If C ′ 6∈ Cl(vn),

that is, C(pd : C ′) does not satisfy Condition A, then it is tested in Step 4

whether or not C(pd : C ′) satisfies Condition B.

3. The Most Specialized Class Rule (MSC)

Most object-oriented data models and many semantic data models impose an

additional condition on a database that requires each object to be created with

respect to one particular class. For example, in the case of the UNIVERSITY

database schema in Figure 1, this would preclude the possibility of there ex-

isting an object in both the student and prof classes. As one might expect,

limiting our notion of an interpretation in an analogous fashion will affect

the various membership problems. In this section, we begin to explore these

problems when imposing such a condition on interpretations. The condition,

called the most specialized class rule, is formally defined as follows.

The most specialized class rule: Let G(V,A) be an interpretation for S. For

a vertex v ∈ V , if there is a class C1 ∈ Cl(v) such that Σ |= C1(Id : C2) for

every C2 ∈ Cl(v), then the class C1 is called the most specialized class (MSC)
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of v, denoted Msc(v). G(V,A) satisfies the most specialized class rule (MSC)

with respect to Σ if and only if for every v ∈ V , whenever Cl(v) 6= ∅, then

there exists Msc(v). 2

For example, the interpretation in Figure 3 for the ALGEBRA schema satisfies

MSC with respect to the set of constraints in Table 1.

A constraint σ is a logical consequence of Σ satisfying MSC , written

Σ |=MSC σ, if any interpretation satisfying MSC as well as Σ must satisfy σ.

We also write PathDescsMSC(C) and PathFuncsMSC(C) to denote the sets of

well-formed path descriptions and path functions for a class C, respectively,

in which only interpretations satisfying MSC are considered. Since every in-

terpretation satisfying MSC is also a usual interpretation, it holds that:

Σ |= σ implies Σ |=MSC σ (3.1)

PathDescs(C) ⊆ PathDescsMSC(C) (3.2)

PathFuncs(C) ⊆ PathFuncsMSC(C) (3.3)

In the remainder of this section, we make an additional assumption about

a database schema 〈S,Σ〉, beyond the above requirement that interpretations

satisfy MSC; we shall assume S contains a unique bottom class, written ⊥,

satisfying

Σ |= ⊥(Id : C) for every C ∈ Classes(S). (3.4)

This implies, for example, that ⊥ qualifies as the most specialized class in

Classes(S).

Our assumption concerning ⊥ is really our means of avoiding issues relat-

ing to schema evaluation, which are beyond the scope this paper. For example,

consider the database schema illustrated in Figure 9. Note that an object u

in class a must have an A property value to some object v in class b. A rea-

sonable grounds for schema well-formedness might be to require that v may

also be in class c, since c is a subclass of class b. However, this is not possible

if classes d and e do not have a common subclass—if there is no bottom class

⊥, for example. Our assumption about the existence of ⊥ is a sufficient (but

not necessary) condition for avoiding this sort of problem. In particular, it is

relatively straightforward to derive the following version of Theorem 1 with

regard to finite implication.

Theorem 5: The following three statements are equivalent.
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a{A} b

c{B} d e

A

B

A.B

Figure 9: The need for ⊥.

1. Σ 6|=MSC C(pd : C ′).

2. Σ 6|=finite
MSC C(pd : C ′).

3. There is a pd -List satisfying MSC as well as PDLs 1 to 3.

Proof. By definition, (2) implies (1). It can be proved along the same line as

proving Lemma 1 that (1) implies (3). We prove that (3) implies (2).

Assume that there is a pd -List v0
P1−→ v1

P2−→ · · ·
Pn−→ vn satisfying MSC as

well as PDLs 1 to 3, where pd = P1.P2. · · · .Pn. Let G(V,A) be the augmented

graph of the pd -List with respect to S. Note that G(V,A) is constructed

from the pd -List by adding one vertex u and a number of arcs. Since ⊥ ∈

Classes(S) = Cl(u) by definition, it follows from 3.4 that Msc(u) = ⊥, and

thus G(V,A) satisfies MSC. Furthermore, it can be proved along the same line

as proving Lemma 2 that G(V,A) is a finite interpretation satisfying Σ∪SFUNC
but violating C(pd : C ′). Hence Σ 6|=finite

MSC C(pd : C ′). That is, (3) implies (2).

2

Example 12: Let 〈S,Σ〉 be a database schema illustrated in Figure 10, where

Dom( A ) = { a1 }, Dom( B ) = { a3 }, Dom( C ) = { b2 }, Dom( D ) = { b3 }.

Assume that ΣFUNC = ∅. Then it holds that Σ 6|=MSC a1(A.B.C : c1). In fact,

for the SC a1(A.B.C : c1), there is an ‘A.B.C’-List v0
A
−→ v1

B
−→ v2

C
−→ v3 sat-

isfying MSC as well as PDLs 1 to 3, as is given in Figure 11. Here, each vertex

vi is labeled Msc(vi) instead of Cl(vi) in order to clarify that the ‘A.B.C’-List

satisfies MSC. Since Cl(vi) = {C ∈ Classes(S) | Σ |= Msc(vi)(Id : C)} by

definition, Cl(vi) can be computed from Msc(vi). It holds that Cl(v0) = {a1},

Cl(v1) = {a1, a2, a3}, Cl(v2) = {b1, b2, b4}, and Cl(v3) = {c2}.

The augmented graph G(V,A) of the ‘A.B.C’-List with respect to S is

given in Figure 12. Note that G(V,A) is a finite interpretation satisfying MSC
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a1{A} a2

a3{B}

b1 b2{C}

b3{D} b4 c1 c2d

⊥

D

C C

B

B

A

A

Figure 10: A database schema 〈S,Σ〉.

a1 a3 b4 c2
A B C

Figure 11: An ‘A.B.C’-List satisfying MSC.

as well as PDLs 1 to 3. Thus it holds that Σ 6|=finite
MSC a1(A.B.C : c1). 2

3.1 NP-completeness results

In this section, we will prove the following theorem.

Theorem 6: The following three decision problems are NP-complete.

a. Σ 6|=MSC C(pd : C ′) ? (It is still NP-complete, even if C(pd : C ′) is

well-formed with respect to 〈S,Σ〉.)

b. pd 6∈ PathDescsMSC(C) ?

c. pd 6∈ PathFuncsMSC(C) ? 2

Theorem 6(a) implies that axioms A1 to A3 are no longer complete for

deciding Σ |=MSC C(pd : C ′), though the axioms are still sound. Theorem 6(a)

follows from the following two lemmas.
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a1 a3 b4 c2
A B C

⊥

A

A,B,C,D

Figure 12: The augmented graph of the ‘A.B.C’-List in Figure 11.

Lemma 10: It is in NP to decide whether or not Σ 6|=MSC C(pd : C ′).

Proof. By Theorem 5, Σ 6|=MSC C(pd : C ′) if and only if there is a pd -List

satisfying MSC as well as PDLs 1 to 3. Since the size of a pd -List is at most

D · len(pd), where D is the size of 〈S,Σ〉, such a pd -List can be guessed in NP

time. After that, it can be tested in (deterministic) polynomial time whether

or not the pd -List satisfies MSC and PDLs 1 to 3. Hence Lemma 10 holds. 2

Lemma 11: It is NP-hard to decide whether or not Σ 6|=MSC C(pd : C ′), even

if C(pd : C ′) is well-formed with respect to 〈S,Σ〉.

Proof. As an NP-complete problem, which will be transformed to the present

problem, we consider the dual problem of 3-Satisfiability problem (3SAT). The

problem is defined as follows:

A Boolean expression E is in 3DNF if it is in disjunctive normal form such

that each term consists of exactly three literals. The problem is: “Is a 3DNF

Boolean expression E not a tautology; that is, is there a truth assignment

that makes E false?” Since 3SAT is NP-complete, so is this problem.

Let E = t1 ∨ t2 ∨ · · · ∨ tm be a 3DNF Boolean expression over a set of

variables {x1, x2, · · · , xn}. For 1 ≤ j ≤ m, let us denote the three literals

in tj by lj1 , lj2 , lj3 . That is, tj is of the form lj1 lj2 lj3 . We must construct,

in polynomial time with respect to E, a database schema 〈S,Σ〉 and an SC

C(pd : C ′), which is well-formed with respect to 〈S,Σ〉, such that Σ 6|=MSC

C(pd : C ′) if and only if E is not a tautology.

1. The definition of S: S contains the following 4n+ 8m+ 2 class names:

C, Z, {Ai, Bi, Xi, Xi | 1 ≤ i ≤ n}, and
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{Cj , Tj , Ljk ,Mjk | 1 ≤ j ≤ m and 1 ≤ k ≤ 3}

Xi and X i correspond to xi and xi, respectively. Ljk corresponds to ljk , where

1 ≤ k ≤ 3. The intention of Xi and X i is that xi is true and false, respectively.

The intention of Mj1 ,Mj2 , and Mj3 is that Lj1Lj2 , Lj2Lj3 , and Lj3Lj1 are true,

respectively. The intention of Tj is that tj is true.

S contains the following n+m+ 1 properties:

R, {Pi | 1 ≤ i ≤ n} and {Qj | 1 ≤ j ≤ m}

The domain of each property is defined as follows:

Dom(R) = {Z }

Dom(P1) = {C } and Dom(Pi) = {Ai−1, Bi−1 } for 2 ≤ i ≤ n

Dom(Q1) = {An, Bn } and Dom(Qj) = {Cj−1 } for 2 ≤ j ≤ m

2. The definition of C(pd : C ′): Let C ′ = Tm and assume pd has the form

P1.P2. · · · .Pn.Q1.Q2. · · · .Qm.

3. The definition of Σ: Let ΣFUNC = {FUNC(P ) | P is a property in S}; that

is, Σ contains FUNC(P ) for every property P in S. ΣSC consists of 4n + 12m

SCs of the form Ca(Id : Cb) and other 2n+5m+1 SCs. Only 3m SCs depend

on the content of E. All other SCs are defined independently of the content

of E; that is, these depend only on the number of variables and the number

of terms in E. The former is a varying part and the latter is a fixed part.

3.1. The fixed part : Intuitively, the fixed part consists of n truth-setting

components, andm satisfaction testing components, and additional 2n+2m+1

SCs for communicating between the various components.

(a) Truth-setting components: For each variable xi, 1 ≤ i ≤ n, there is a

truth-setting component that consists of the following four SCs:

{Xi(Id : Ai), Xi(Id : Bi), X i(Id : Ai), X i(Id : Bi)}

Note that every SC has Id as its path description. A truth-setting component

is illustrated in Figure 13.

(b) Satisfaction testing components: For each term tj , 1 ≤ j ≤ m, there

is a satisfaction testing component that consists of the following twelve SCs:

{Ljk(Id : Cj),Mjk(Id : Ljk),Mjk(Id : Ljk+1), Tj(Id : Mjk) | 1 ≤ k ≤ 3}
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Ai{Pi+1} Bi{Pi+1}

Xi Xi

Figure 13: A truth-setting component.

Cj{Qj+1}

Lj1 Lj2 Lj3

Mj1 Mj2 Mj3

Tj

Figure 14: A satisfaction testing component.

where if k = 3 then let k + 1 = 1 for convenience. Note that every SC has

Id as its path description. A satisfaction testing component is illustrated in

Figure 14.

(c) The other SCs: The fixed part contains additional 2n+ 2m+ 1 SCs

as follows:

Tm(R : Z)

{C(P1 : A1), C(P1 : B1)} and {Ai−1(Pi : Ai), Bi−1(Pi : Bi) | 2 ≤ i ≤ n}

{An(Q1 : C1), Bn(Q1 : C1)} and {Cj−1(Qj : Cj), Tj−1(Qj : Tj) | 2 ≤ j ≤ m}

This completes constructing the fixed part. Its whole construction is illus-

trated in Figure 15. Class Z, property R, and SC Tm(R : Z) are not used in

this proof, but will be used for proving Theorems 6(b) and (c), later.

3.2. The varying part : This consists of 3m SCs, each of which corresponds

to a literal occurring in E. (Hence this part depends on the content of E.)

For 1 ≤ j ≤ m and 1 ≤ k ≤ 3, if ljk is a positive (or negative) literal of a

variable xi, then the varying part contains an SC Xi(pd ij : Ljk) (or an SC

Xi(pd ij : Ljk)), where
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C{P1} A1{P2} B1{P2}

X1 X1

A2{P3} B2{P3}

X2 X2

An{Q1} Bn{Q1}

Xn Xn

P1 P1 P2 P2 P3 P3 Pn Pn

C1{Q2}

T1

C2{Q3}

T2

Cm

Tm{R}Z

Q1 Q1

Q2

Q2

Q3

Q3

Qm

QmR

· · ·

· · ·

Figure 15: The fixed part of ΣSC.

pd ij = Pi+1.Pi+2. · · · .Pn.Q1.Q2. · · · .Qj .
10

An example of the varying part will be illustrated in Figure 16 of Example 13,

later.

This completes constructing 〈S,Σ〉 and C(pd : C ′) from E. It is not hard

to see that 〈S,Σ〉 and C(pd : C ′) can be constructed from E in polynomial

time. Strictly, 〈S,Σ〉 should contain the bottom class ⊥ and its related SCs.

The bottom class, however, is unimportant for this proof, and is not described

explicitly. It remains to prove that (1) C(pd : C ′) is well-formed with respect

to 〈S,Σ〉 and (2) Σ 6|=MSC C(pd : C ′) if and only if E is not a tautology.

Let us first prove that C(pd : C ′) is well formed with respect to 〈S,Σ〉;

that is, pd ∈ PathDescsMSC(C). By 3.2, it suffices to show that pd ∈ PathDescs(C).

Let ChaseΣSC(C, pd) be

w0
P1−→ w1

P2−→ · · ·
Pn−→ wn

Q1−→ wn+1
Q2−→ · · ·

Qm
−→ wn+m.

10If i = n, then let pd ij = Q1.Q2. · · · .Qj .
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Since ΣSC contains C(P1 : A1), Ai−1(Pi : Ai) for 2 ≤ i ≤ n, An(Q1 : C1), and

Cj−1(Qj : Cj) for 2 ≤ j ≤ m, it holds that:

ΣSC `A2 C(P1.P2. · · · .Pi : Ai) for 1 ≤ i ≤ n (3.5)

ΣSC `A2 C(P1.P2. · · · .Pn.Q1.Q2. · · · .Qj : Cj) for 1 ≤ j ≤ m (3.6)

Thus it follows from Lemma 5 that Ai ∈ Cl(wi) and Cj ∈ Cl(wn+j). Since (1)

C ∈ Dom(P1), (2) Ai−1 ∈ Dom(Pi) for 2 ≤ i ≤ n, (3) An ∈ Dom(Q1), and (4)

Cj−1 ∈ Dom(Qj) for 2 ≤ j ≤ m, it holds that Cl(wi−1)∩Dom(Pi) 6= ∅ for 1 ≤

i ≤ n and Cl(wn+j−1)∩Dom(Qj) 6= ∅ for 1 ≤ j ≤ m. That is, ChaseΣSC(C, pd)

satisfies a property value integrity condition. Hence pd ∈ PathDescs(C) by

Lemma 6. This completes proving that C(pd : C ′) is well-formed with respect

to 〈S,Σ〉. In the following we will prove that Σ 6|=MSC C(pd : C ′) if and only if

E is not a tautology.

Only if part. Assume that Σ 6|=MSC C(pd : C ′). By Theorem 5, there is a

pd -List

v0
P1−→ v1

P2−→ · · ·
Pn−→ vn

Q1−→ u1
Q2−→ · · ·

Qm
−→ um

satisfying MSC and PDLs 1 to 3. We first prove the following three claims.

Claim 1: Cl(vi) contains either Xi or X i for 1 ≤ i ≤ n.

Claim 2: {Lj1 , Lj2 , Lj3} 6⊆ Cl(uj) for 1 ≤ j ≤ m.

Claim 3: If either (1) Xi ∈ Cl(vi) and ljk is a positive literal of xi or (2)

X i ∈ Cl(vi) and ljk is a negative literal of xi, then Ljk ∈ Cl(uj), where

1 ≤ i ≤ n, 1 ≤ j ≤ m, and 1 ≤ k ≤ 3.

Proof of Claim 1 : Since ΣSC |= C(P1.P2. · · · .Pi : Ai) by 3.5 and Lemma 3,

it follows from 3.1 that ΣSC |=MSC C(P1.P2. · · · .Pi : Ai), where 1 ≤ i ≤ n.

Furthermore, since (1) C ∈ Cl(v0) by PDL 3 and (2) the pd -List satisfies ΣSC

by PDL 2, Cl(vi) should contain Ai. Similarly, Cl(vi) should also contain Bi

by the symmetry between Ai and Bi. That is, {Ai, Bi} ⊆ Cl(vi) for 1 ≤ i ≤ n.

Since the pd -List satisfies MSC, Msc(vi) exists for vi. From Figure 13, we can

see that Cl(vi) should contain either Xi or X i.
11 Hence Claim 1 follows.

Proof of Claim 2 : Assume that {Lj1 , Lj2 , Lj3} ⊆ Cl(uj) for some j. From

Figure 14, we can see that Cl(uj) should contain Tj in order that Msc(uj) ex-

ists for uj . Since ΣSC contains Tl−1(Ql : Tl) for 2 ≤ l ≤ m, it holds that

ΣSC |=MSC Tj(Qj+1.Qj+2. · · · .Qm : Tm). Furthermore, since the pd -List satis-

fies ΣSC by PDL 2, Tj ∈ Cl(uj) implies Tm ∈ Cl(um). On the other hand, since

11Cl(vi) may contain both of them. Then Msc(vi) is the bottom class ⊥.
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the pd -List satisfies PDL 3, it holds that Tm = C ′ 6∈ Cl(um). Contradiction.

Hence {Lj1 , Lj2 , Lj3} 6⊆ Cl(uj) for any j. That is, Claim 2 follows.

Proof of Claim 3 : Assume that ljk is a positive literal of xi. Since (1)

ΣSC contains Xi(pd ij : Ljk) by definition and (2) the pd -List satisfies ΣSC by

PDL 2, Xi ∈ Cl(vi) implies Ljk ∈ Cl(uj). Similarly, if ljk is a negative literal

of xi, then X i ∈ Cl(vi) implies Ljk ∈ Cl(uj). Hence Claim 3 follows.

Let us define a truth assignment τ : {x1, x2, · · · , xn} → {T (rue), F (alse)}

such that if Xi ∈ Cl(vi), then τ(xi) = T ; otherwise τ(xi) = F . We prove that

τ makes E false; that is, E is not a tautology. It suffices to prove that τ makes

tj false for 1 ≤ j ≤ m.

By Claim 2, there is a class Ljk that is not in Cl(wj), where 1 ≤ k ≤ 3.

There are two cases to be considered.

Assume that ljk is a positive literal of a variable xi. Then Ljk 6∈ Cl(wj)

implies Xi 6∈ Cl(vi) by Claim 3. Thus τ(xi) = F by definition. Hence τ makes

tj false.

Assume that ljk is a negative literal of xi. Then Ljk 6∈ Cl(wj) implies

Xi 6∈ Cl(vi) by Claim 3. Furthermore, X i 6∈ Cl(vi) implies Xi ∈ Cl(vi) by

Claim 1. Thus τ(xi) = T by definition. Hence τ also makes tj false in this

case. Consequently, if Σ 6|=MSC C(pd : C ′), then E is not a tautology.

If part. Assume that E is not a tautology. There is a truth assignment

τ : {x1, x2, · · · , xn} → {T, F} that makes E false. Let us define a pd -List

v0
P1−→ v1

P2−→ · · ·
Pn−→ vn

Q1−→ u1
Q2−→ · · ·

Qm
−→ um,

which satisfies MSC (by showing Msc(vi) and Msc(uj) for all i and j), as

follows:

1. Cl(v0) = {C } and Msc(v0) = C.

2.1. If τ(xi) = T , then Cl(vi) = {Ai, Bi, Xi} and Msc(vi) = Xi, where

1 ≤ i ≤ n.

2.2. If τ(xi) = F , then Cl(vi) = {Ai, Bi, Xi} and Msc(vi) = X i.

3.1. If τ makes all the three literals in tj false, then Cl(uj) = {Cj} and

Msc(uj) = Cj , where 1 ≤ j ≤ m.

3.2. If τ makes just one literal ljk true, then Cl(uj) = {Cj , Ljk} and

Msc(uj) = Ljk , where 1 ≤ k ≤ 3.

3.3. If τ makes two literals ljk and ljk+1 true, then Cl(uj) must be

{Cj , Ljk , Ljk+1 ,Mjk} and Msc(uj) = Mjk .
12

12Since τ makes E false, τ does not make all the three literals true.
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By Theorem 5, in order to prove that Σ 6|=MSC C(pd : C ′), it suffices to

show that the pd -List satisfies PDLs 1 to 3 (as well as MSC).

By considering the domain of each property, we can see that C ∈ Cl(v0)∩

Dom(P1), Ai−1 ∈ Cl(vi−1)∩Dom(Pi) for 2 ≤ i ≤ n, An ∈ Cl(vn)∩Dom(Q1),

and Cj−1 ∈ Cl(uj−1) ∩ Dom(Qj) for 2 ≤ j ≤ m. Hence the pd -List satisfies

PDL 1.

It is easy to see that the pd -List satisfies all the SCs in the fixed part.

By 2.1 and 2.2 above, Xi ∈ Cl(vi) if and only if τ(xi) = T , and X i ∈ Cl(vi)

if and only if τ(xi) = F . Furthermore, by 3.1 to 3.3, Ljk ∈ Cl(uj) if and only

if τ makes ljk true. Thus the pd -List also satisfies all the SCs in the varying

part. That is, the pd -List satisfies PDL 2.

Since C ∈ Cl(v0) and C ′ = Tm 6∈ Cl(um), the pd -List satisfies PDL 3.

This completes proving that Σ 6|=MSC C(pd : C ′) if and only if E is not a

tautology. As a result, Lemma 11 holds. 2

Example 13: Let E = x1 x2 x3 ∨ x1 x2 x3 be a 3DNF Boolean expression.

Then the SC C(pd : C ′) has the form C(P1.P2.P3.Q1.Q2 : T2). Furthermore,

the varying part of ΣSC consists of the following six SCs, as illustrated in

Figure 16:

X1(P2.P3.Q1 : L11), X2(P3.Q1 : L12), X3(Q1 : L13),

X1(P2.P3.Q1.Q2 : L21), X2(P3.Q1.Q2 : L22), X3(Q1.Q2 : L23)

It is easy to construct the whole database schema 〈S,Σ〉 from E. 2

X1 X1 X2 X2 X3 X3 L11 L12 L13 L21 L22 L23

P2.P3.Q1

P3.Q1

Q1

P2.P3.Q1.Q2

P3.Q1.Q2

Q1.Q2

Figure 16: The varying part of ΣSC.



44 Ito, Weddell and Coburn

This completes proving Theorem 6(a). Let us next prove Theorem 6(b);

that is, it is NP-complete to decide whether or not pd 6∈ PathDescsMSC(C).

The following lemma will be used for proving that the problem is in NP.

Lemma 12: Let pd = P1.P2. · · · .Pn. Then pd 6∈ PathDescsMSC(C) if and

only if there is a pdi-List v0
P1−→ v1

P2−→ · · ·
Pi−→ vi satisfying the following six

conditions: (1) i < n, (2) C ∈ Cl(v0), (3) Cl(vi) ∩ Dom(Pi+1) = ∅, (4) MSC,

(5) PDL 1, and (6) PDL 2.

Proof. If part. Assume that there is a pdi-List v0
P1−→ v1

P2−→ · · ·
Pi−→ vi

satisfying the six conditions above. Let G(V,A) be the augmented graph

of the pdi-List with respect to S. As is proving Theorem 5, G(V,A) is an

interpretation satisfying MSC as well as Σ∪SFUNC. By Step 3 of Procedure 1, if

there is an arc vi
P
−→ u ∈ A, then Cl(vi)∩Dom(P ) 6= ∅. Thus by condition (3),

there is no arc vi
Pi+1
−→ u ∈ A. Hence there is no path in G(V,A) from v0

described by pdi ◦ Pi+1. Since pdi ◦ Pi+1 is a prefix of pd , there is no path in

G(V,A) from v0 described by pd , either. As a result, pd 6∈ PathDescsMSC(C).

Only if part. Assume that pd 6∈ PathDescsMSC(C). Let i be the largest

index such that pdi ∈ PathDescsMSC(C). Then pd i+1 6∈ PathDescsMSC(C). By

definition, there is an interpretation G(V,A) satisfying MSC and Σ ∪ SFUNC

such that for a vertex u0 ∈ V with C ∈ Cl(u0), there is no path in G(V,A)

from u0 described by pd i+1. Since pdi ∈ PathDescsMSC(C), however, there

must be a path in G(V,A) from u0 described by pdi. Let us denote the path

by u0
P1−→ u1

P2−→ · · ·
Pi−→ ui. Let v0

P1−→ v1
P2−→ · · ·

Pi−→ vi be a pdi-List such

that Cl(vj) = Cl(uj) for 0 ≤ j ≤ n. We will prove that the pdi-List satisfies

all the six conditions.

Clearly, the pdi-List satisfies conditions (1), (2), and (4). As is prov-

ing Lemma 1, the pdi-List satisfies PDLs 1 and 2, that is, conditions (5)

and (6). If the pdi-List does not satisfy condition (3), then it holds that

Cl(ui) ∩ Dom(Pi+1) 6= ∅, since Cl(vi) = Cl(ui). Since FUNC(Pi+1) ∈ SFUNC,

this implies that there must be an arc ui
Pi+1
−→ w ∈ A. Hence G(V,A) contains

a path from u0 to w described by pd i+1, since G(V,A) contains a path from

u0 to ui described by pdi and pd i+1 = pdi ◦ Pi+1. Contradiction. Thus the

pdi-List must satisfy condition (3). This completes proving the only if part.

2
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Example 14: For the database schema 〈S,Σ〉 in Example 12, let us show that

A.B.D 6∈ PathDescsMSC(a1) by Lemma 12. Consider the ‘A.B’-List in Figure 17,

where each vertex is labeled its MSC. It is easy to verify that the ‘A.B’-List

satisfies all the conditions of Lemma 12. For example, it satisfies condition (3),

since Cl(v2) ∩ Dom(D) = {c1, c2, c4} ∩ {c3} = ∅. On the other hand, it holds

that A.B.C ∈ PathDescsMSC(a1), since there is no list satisfying the conditions

of Lemma 12. 2

µ´
¶³

µ´
¶³

µ´
¶³

- -a1 a3 b4

v0 v1 v2
A B

Figure 17: An ‘A.B’-List showing A.B.D 6∈ PathDescsMSC(a1).

Proof of Theorem 6(b):

We first prove that it is in NP to decide whether or not pd 6∈ PathDescsMSC(C).

By Lemma 12, pd 6∈ PathDescsMSC(C) if and only if there is a pdi-List sat-

isfying the six conditions of Lemma 12. Since the size of the pdi-List is at

most D · len(pd), where D is the size of 〈S,Σ〉, the pdi-List can be guessed in

NP time. After that, it can be tested in polynomial time whether or not the

pdi-List satisfies all the six conditions. Hence the problem is in NP.

We now prove that it is NP-hard to decide if pd 6∈ PathDescsMSC(C).

Consider the database schema 〈S,Σ〉 in Lemma 11. We will prove that

Σ |=MSC C(pd : C ′) if and only if pd ◦R ∈ PathDescsMSC(C).

Since Σ 6|=MSC C(pd : C ′) if and only if E is not a tautology, this implies that

pd ◦ R 6∈ PathDescsMSC(C) if and only if E is not a tautology. Hence it is

NP-hard to decide whether or not pd ◦R 6∈ PathDescsMSC(C).

If part. Assume that pd ◦ R ∈ PathDescsMSC(C). Let G(V,A) be an

interpretation satisfying MSC and Σ. Assume that there is a path in G(V,A)

from a vertex u to a vertex v described by pd , where C ∈ Cl(u). In order to

prove that Σ |=MSC C(pd : C ′), it suffices to show that C ′ = Tm ∈ Cl(v).

Since FUNC(P ) ∈ Σ for every property P in S by definition, it holds that

Σ = Σ∪SFUNC. Thus G(V,A) satisfies Σ∪SFUNC as well as MSC. Furthermore,

since pd ◦ R ∈ PathDescsMSC(C), there must be a path from u to a vertex w

described by pd ◦R. Because of property functionality, the path from u to w

is unique. Hence the path from u to v should be on the path from u to w; that

is, there is an arc v
R
−→ w ∈ A. Since G(V,A) is an interpretation, it satisfies
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a property value integrity condition. Thus it holds that Cl(v) ∩ Dom(R) 6=

∅. Since Dom(R) = {Tm } by definition, it holds that Tm ∈ Cl(v). Hence

Σ |=MSC C(pd : C ′).

Only if part. Assume that Σ |=MSC C(pd : C ′). Let G(V,A) be an inter-

pretation satisfying MSC and Σ∪SFUNC. Let u ∈ V , where C ∈ Cl(u). In order

to prove that pd ◦R ∈ PathDescsMSC(C), it suffices to show that there is a path

in G(V,A) from u described by pd ◦ R. Since C(pd : C ′) is well-formed with

respect to 〈S,Σ〉, that is, pd ∈ PathDescsMSC(C), there is a path in G(V,A)

from u to a vertex v described by pd . Since Σ |=MSC C(pd : C ′), C ∈ Cl(u)

implies C ′ = Tm ∈ Cl(v). Since Tm ∈ Dom(R) by definition, it holds that

Cl(v) ∩ Dom(R) 6= ∅. Furthermore, since G(V,A) satisfies FUNC(R) ∈ SFUNC,

there must be an arc v
R
−→ w ∈ A. Thus G(V,A) contains a path from u to

w described by pd ◦ R. Hence pd ◦ R ∈ PathDescsMSC(C). This completes

proving Theorem 6(b). 2

We finally prove Theorem 6(c); that is, it is NP-complete to decide

whether or not pd 6∈ PathFuncsMSC(C). It is easy to see that the proof of

Lemma 9 applies also to the case of MSC, and thus we have the following

corollary of Lemma 9.

Corollary 1: pd ∈ PathFuncsMSC(C) if and only if pd ∈ PathDescsMSC(C)

and FUNC(Pi) ∈ ΣFUNC for 1 ≤ i ≤ n, where pd = P1.P2. · · · .Pn. 2

Proof of Theorem 6(c):

Since (1) it is in NP to decide whether or not pd 6∈ PathDescsMSC(C) by

Theorem 6(b) and (2) it can be decided in polynomial time whether or not

FUNC(Pi) ∈ ΣFUNC for 1 ≤ i ≤ n, it follows from Corollary 1 that it is in NP to

decide whether or not pd 6∈ PathFuncsMSC(C).

Finally, we prove that it is NP-hard to decide if pd 6∈ PathFuncsMSC(C).

Consider the database schema 〈S,Σ〉 in Lemma 11. Since FUNC(P ) ∈ Σ for

every property P in S by definition, it follows from Corollary 1 that pd ◦R ∈

PathFuncsMSC(C) if and only if pd ◦ R ∈ PathDescsMSC(C). Since it is NP-

hard to decide whether or not pd ◦ R 6∈ PathDescsMSC(C), it is also NP-hard

to decide whether or not pd ◦ R 6∈ PathFuncsMSC(C). Hence Theorem 6(c)

holds. 2
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3.2 The case of bounded path lengths

Let l = max {len(pd ′) | Ca(pd
′ : Cb) ∈ Σ}. If l = 0, that is, if every SC in

ΣSC has the form Ca(Id : Cb), then the problems in this section will be trivial.

Thus consider the case that l ≥ 1. Let Classes(S) = {C1, C2, · · · , CK}.

In the following we will prove the following theorem. By the theorem, if

l is bounded , then the three decision problems of Theorem 6 can be solved in

polynomial time.

Theorem 7: The following decision problems are solved in O(K l+1 · D · l ·

(len(pd) + 1)) time, where D is the size of 〈S,Σ〉.

a. Σ |=MSC C(pd : C ′) ?

b. pd ∈ PathDescsMSC(C) ?

c. pd ∈ PathFuncsMSC(C) ? 2

Proof of Theorem 7(a):

As before, let us denote pd by P1.P2. · · · .Pn. For 0 ≤ i ≤ n, let PDLi denote

the set of pdi-Lists v0
P1−→ v1

P2−→ · · ·
Pi−→ vi satisfying the four conditions:

(1) MSC, (2) PDL 1, (3) PDL 2, and (4) C ∈ Cl(v0). Then by Theorem 5,

Σ 6|=MSC C(pd : C ′) if and only if there is a pd -Lists v0
P1−→ v1

P2−→ · · ·
Pn−→ vn

in PDLn such that C ′ 6∈ Cl(vn).
13 Thus by computing PDLn, we can decide

whether or not Σ |=MSC C(pd : C ′). It is important to note that a pdi-List

satisfying MSC can be represented by specifying Msc(vj) (instead of Cl(vj))

for each vertex vj , where 0 ≤ j ≤ i, since

Cl(vj) = {C
′′ ∈ Classes(S) | Σ |= Msc(vj)(Id : C ′′)}.14

Strictly, there may be a vertex vj such that Cl(vj) = ∅. (Then Msc(vj)

is undefined.) In order to treat such a case uniformly, it is convenient to

introduce a special class C0, and to consider Cl(vj) = ∅ if Msc(vj) = C0. By

the observations above, the number of pdi-Lists in PDLi is at most (K+1)i+1,

since a pdi-List consists of i+ 1 vertices.

The following procedure computes PDLi by (1) generating all pdi-Lists

satisfying MSC and (2) checking PDL 1, PDL 2, and C ∈ Cl(v0) for each

generated pdi-List.

13Note that pdn = pd by definition.
14If the pdi-List does not satisfy MSC, then Cl(vj) may be an arbitrary subset of

Classes(S), so that the number of possible Cl(vj) becomes 2
K .
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Procedure 6: (Computing PDLi.)

input: a database schema 〈S,Σ〉, a class C ∈ Classes(S), and a path descrip-

tion pdi (= P1.P2. · · · .Pi).

1. Let PDLi ← ∅.

2. for k0 ← 0 to K; for k1 ← 0 to K; · · · ; for ki ← 0 to K

do begin

3. Construct a pdi-List v0
P1−→ v1

P2−→ · · ·
Pi−→ vi such that Msc(vj) =

Ckj
, that is, Cl(vj) = {Cj ∈ Classes(S) | Σ |= Ckj

(Id : Cj)} for

0 ≤ j ≤ i.

4. if the pdi-List v0
P1−→ v1

P2−→ · · ·
Pi−→ vi satisfies PDL 1, PDL 2, and

C ∈ Cl(v0)

then add the pdi-List to PDLi.

end 2

Example 15: Consider the database schema 〈S,Σ〉 in Example 12. For a

class a3 and a path description A.B, let us execute Procedure 6. Then PDL2
consists of the following twelve ‘A.B’-Lists, where each ‘A.B’-List v0

A
−→ v1

B
−→

v2 is denoted by (Msc(v0),Msc(v1),Msc(v2)) for simplicity:

(a3, a3, b3), (a3, a3, b4), (a3, a3,⊥), (a3,⊥, b3), (a3,⊥, b4), (a3,⊥,⊥),

(⊥, a3, b3), (⊥, a3, b4), (⊥, a3,⊥), (⊥,⊥, b3), (⊥,⊥, b4), (⊥,⊥,⊥)

Since b2 ∈ Cl(v2) for every ‘A.B’-List in PDL2, it holds that Σ |=MSC a3(A.B :

b2). On the other hand, since b4 6∈ Cl(v2) for (a3, a3, b3) ∈ PDL2, it holds

that Σ 6|=MSC a3(A.B : b4). 2

Let us estimate the time complexity of Procedure 6. By the for loop of

Step 2, Steps 3 and 4 are executed exactly (K +1)i+1 times, that is, O(Ki+1)

times. Step 3 can be executed in O(D · (i + 1)) time, since each Cl(vj) can

be computed in O(D) time as in estimating Step 2 of Procedure 3. Step 4

can be executed in O(D · (i+1)) time, since the size of the pdi-List is at most

D · (i+ 1). Hence Procedure 6 can be executed in O(K i+1 ·D · (i+ 1)) time.

We now consider how to decide whether or not Σ |=MSC C(pd : C ′). There

are two cases to be considered: len(pd) ≤ l and len(pd) > l.
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Case 1. Assume that len(pd) ≤ l. PDLn can be computed inO(K len(pd)+1·

D · (len(pd) + 1)) time by Procedure 6. After that, it can be decided in

O(K len(pd)+1 · D · (len(pd) + 1)) time whether or not there is a pd -Lists

v0
P1−→ v1

P2−→ · · ·
Pn−→ vn in PDLn such that C ′ 6∈ Cl(vn), since the size

of PDLn is O(K len(pd)+1 · D · (len(pd) + 1)). Thus it can be decided in

O(K len(pd)+1 · D · (len(pd) + 1)) time whether or not Σ |=MSC C(pd : C ′).

Hence Theorem 7(a) holds in this case.

Case 2. Assume that len(pd) > l. PDLn cannot be used, since its

size may exceed O(K l+1 · D · l · (len(pd) + 1)). Note that in order to decide

whether or not Σ |=MSC C(pd : C ′), we do not need PDLn but only the set

{vn | v0
P1−→ v1

P2−→ · · ·
Pn−→ vn ∈ PDLn}. The following lemma will be useful

for computing the set.

Lemma 13: A pd i+l-List v0
P1−→ v1

P2−→ · · ·
Pi+l
−→ vi+l is in PDLi+l if and only if

(1) the pd i+l−1-List v0
P1−→ v1

P2−→ · · ·
Pi+l−1
−→ vi+l−1 is in PDLi+l−1 and (2) the

Pi+1.Pi+2. · · · .Pi+l-List vi
Pi+1
−→ vi+1

Pi+2
−→ · · ·

Pi+l
−→ vi+l satisfies MSC, PDL 1,

and PDL 2, where 1 ≤ i ≤ n− l.

Proof. The only if part is clear. Assume that (1) the pd i+l−1-List v0
P1−→

v1
P2−→ · · ·

Pi+l−1
−→ vi+l−1 is in PDLi+l−1 and (2) the Pi+1.Pi+2. · · · .Pi+l-List

vi
Pi+1
−→ vi+1

Pi+2
−→ · · ·

Pi+l
−→ vi+l satisfies MSC, PDL 1, and PDL 2. By the

definition of PDLi+l, it suffices to show that the pd i+l-List v0
P1−→ v1

P2−→

· · ·
Pi+l
−→ vi+l satisfies MSC, PDL 1, PDL 2, and C ∈ Cl(v0).

Clearly, the pd i+l-List satisfies MSC, PDL 1, and C ∈ Cl(v0). As for

PDL 2, assume that there is an SC Ca(pd
′ : Cb) ∈ ΣSC such that Ca ∈

Cl(vj) and pd ′ = Pj+1.Pj+2. · · · .Pj+m for some j and m. It suffices to show

that Cb ∈ Cl(vj+m). Note that m ≤ l by the definition of l. Hence the

Pj+1.Pj+2. · · · .Pj+m-List vj
Pj+1
−→ vj+1

Pj+2
−→ · · ·

Pj+m
−→ vj+m must be included in

either the pd i+l−1-List or the Pi+1.Pi+2. · · · .Pi+l-List. Since both the pd i+l−1-

List and the Pi+1.Pi+2. · · · .Pi+l-List satisfy Ca(pd
′ : Cb) by PDL 2, Ca ∈

Cl(vj) implies Cb ∈ Cl(vj+l). This completes proving Lemma 13. 2

For 1 ≤ i ≤ n−l+1, let PDLii+l−1 denote the set of Pi+1.Pi+2. · · · .Pi+l−1-

Lists such that vi
Pi+1
−→ vi+1

Pi+2
−→ · · ·

Pi+l−1
−→ vi+l−1 is in PDLii+l−1 if and only if

there is a pd i+l−1-List v0
P1−→ v1

P2−→ · · ·
Pi+l−1
−→ vi+l−1 in PDLi+l−1 satisfying

the four conditions: MSC, PDL 1, PDL 2, and C ∈ Cl(v0). Note that if l = 1,
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then PDLii+l−1 is the set of vertices vi such that vi is in PDLii+l−1 if and only

if there is a pd i+l−1-List v0
P1−→ v1

P2−→ · · ·
Pi+l−1
−→ vi+l−1 in PDLi+l−1 satisfying

those four conditions. In order to decide whether or not Σ |=MSC C(pd : C ′), it

suffices to compute PDLn−l+1n . Lemma 13 suggests that PDLi+1i+l is computed

from PDLii+l−1, as follows:

Procedure 7: (Computing PDLi+1i+l from PDLii+l−1.)

input: a database schema 〈S,Σ〉, a path description pd (= P1.P2. · · · .Pn), and

PDLii+l−1.

1. Let PDLi+1i+l ← ∅.

2. for each vi
Pi+1
−→ vi+1

Pi+2
−→ · · ·

Pi+l−1
−→ vi+l−1 in PDLii+l−1; for k ← 0 to K

do begin

3. Construct a Pi+1.Pi+2. · · · .Pi+l-List

vi
Pi+1
−→ vi+1

Pi+2
−→ · · ·

Pi+l−1
−→ vi+l−1

Pi+l
−→ vi+l

by adding a vertex vi+l such thatMsc(vi+l) = Ck, that is, Cl(vi+l) =

{Ci+l ∈ Classes(S) | Σ |= Ck(Id : Ci+l)}.

4. if the Pi+1.Pi+2. · · · .Pi+l-List satisfies PDLs 1 and 2

then add the Pi+2.Pi+3. · · · .Pi+l-List vi+1
Pi+2
−→ vi+2

Pi+3
−→ · · ·

Pi+l
−→

vi+l to PDL
i+1
i+l .

end 2

Example 16: In Example 15, let us compute PDL22 from PDL11. Note that l =

1 in the example. By executing Procedure 6 for class a3 and path description A,

we obtain PDL1 as follows: {(a3, a3), (a3,⊥), (⊥, a3), (⊥,⊥)}. Thus PDL
1
1 =

{(a3), (⊥)}, which is obtained from PDL1 by removing v0 for each ‘A’-List

v0
A
−→ v1 ∈ PDL1.

For (a3) ∈ PDL11, the set of ‘B’-Lists satisfying the if condition of Step 4

is {(a3, b3), (a3, b4), (a3,⊥)}, which are constructed in Step 3. Thus (b3),

(b4), and (⊥) should be added to PDL22 in Step 4. Similarly, Steps 3 and 4

are executed for (⊥) ∈ PDL11. Finally, we obtain PDL22 = {(b3), (b4), (⊥)}.

For (b3) ∈ PDL22, since b4 6∈ Cl(v2) = {b1, b2, b3} where Msc(v2) = b3,

it holds that Σ 6|=MSC a3(A.B : b4). On the other hand, since b2 ∈ Cl(v2) for

every list in PDL22, it holds that Σ |=MSC a3(A.B : b2). These facts was also

shown in Example 15. 2
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We prove that PDLi+1i+l is correctly computed by Procedure 7. Let vi
Pi+1
−→

vi+1
Pi+2
−→ · · ·

Pi+l−1
−→ vi+l−1 be in PDLii+l−1. By definition, there is a pd i+l−1-

List v0
P1−→ v1

P2−→ · · ·
Pi+l−1
−→ vi+l−1 in PDLi+l−1 satisfying the four conditions:

MSC, PDL 1, PDL 2, and C ∈ Cl(v0). By the for loop on variable k in Step 2,

we check exhaustively whether or not the Pi+1.Pi+2. · · · .Pi+l-List vi
Pi+1
−→

vi+1
Pi+2
−→ · · ·

Pi+l
−→ vi+l satisfies PDLs 1 and 2 for all possible Msc(vi+l). Clearly,

the Pi+1.Pi+2. · · · .Pi+l-List satisfies MSC. Thus by Lemma 13, PDLi+1i+l can

be computed by Procedure 7.

Now consider the time complexity of Procedure 7. Since a Pi+1.Pi+2 · · · .Pi+l−1-

List consists of l vertices, the number of lists in PDLi
i+l−1 is at most (K +

1)l. Thus by the for loop of Step 2, Steps 3 and 4 are executed at most

(K + 1)l+1 times, that is, O(K l+1) times. Step 3 can be executed in O(D)

time, since Cl(vi+l) can be computed in O(D) time. Since the size of a

Pi+1.Pi+2. · · · .Pi+l-List is O(D · l), it can be tested in O(D · l) time whether or

not the Pi+1.Pi+2. · · · .Pi+l-List constructed in Step 4 satisfies PDLs 1 and 2.

That is, one execution of Steps 3 and 4 can be done in O(D · l) time. Hence

Procedure 7 can be executed in O(K l+1 ·D · l) time.

In order to decide whether or not Σ |=MSC C(pd : C ′), we want to compute

PDLn−l+1n by Procedure 7. Initially, we must compute PDL1l . By Procedure 6,

PDLl can be computed in O(K l+1 · D · l) time. After that, PDL1l can be

constructed by removing vertex v0 and its incident arc v0
P1−→ v1 for each

pdl-List v0
P1−→ v1

P2−→ · · ·
Pl−→ vl in PDLl. This can be done in O(K l+1 ·D · l)

time, since the size of PDLl is O(K l+1 ·D · l). Thus PDL1l can be computed

in O(K l+1 ·D · l) time.

By executing Procedure 7 for 2 ≤ i ≤ n−l+1, we can compute PDLn−l+1
n .

It takes O(K l+1 ·D · l · (n− l + 1)) time, since each execution of Procedure 7

takes O(K l+1 · D · l) time. Hence PDLn−l+1n can be computed in O(K l+1 ·

D · l · (len(pd) + 1)) time, where n = len(pd). Since the size of PDLn−l+1
n

is O(K l+1 · D · l), it can be decided in O(K l+1 · D · l) time whether or not

there is a Pn−l+2.Pn−l+3. · · · .Pn-List vn−l+1
Pn−l+2
−→ vn−l+2

Pn−l+3
−→ · · ·

Pn−→ vn in

PDLn−l+1n such that C ′ 6∈ Cl(vn).

Therefore, it can be decided in in O(K l+1 · D · l · (len(pd) + 1)) time

whether or not Σ |=MSC C(pd : C ′). Consequently, Theorem 7(a) also holds in

the case that len(pd) > l. This completes proving Theorem 7(a). 2

Proof of Theorem 7(b):
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Since Id is trivially in PathDescsMSC(C), assume that pd 6= Id. By Lemma 12,

pd 6∈ PathDescsMSC(C) if and only if there is a pdi-List satisfying the six

conditions of Lemma 12. We first show that given an integer i with i < len(pd),

it can be decided in O(K i+1 ·D ·(i+1)) time whether or not there is a pdj-List

satisfying the six conditions of Lemma 12 and j ≤ i.

Intuitively, this can be done by (1) generating all pdi-Lists satisfying MSC

and (2) checking whether or not there is a pdj-List v0
P1−→ v1

P2−→ · · ·
Pj
−→ vj

satisfying the six conditions of Lemma 12 for each generated pdi-List v0
P1−→

v1
P2−→ · · ·

Pi−→ vi. By slightly modifying Procedure 6, we can execute Step 1.

Consider Step 2. Let v0
P1−→ v1

P2−→ · · ·
Pi−→ vi be a pdi-List satisfying MSC.

We must check whether or not there is an index j such that the pdj-List

v0
P1−→ v1

P2−→ · · ·
Pj
−→ vj satisfies the six conditions of Lemma 12. This can be

done by the following procedure.

Procedure 8: (Deciding whether or not there is an index j such that the

pdj-List v0
P1−→ v1

P2−→ · · ·
Pj
−→ vj satisfies the six conditions of Lemma 12.)

input: a class C ∈ Classes(S), a path description pd (= P1.P2. · · · Pn), and a

pdi-List v0
P1−→ v1

P2−→ · · ·
Pi−→ vi satisfying MSC.

1. for j ← 0 to i do

2. if C ∈ Cl(v0), Cl(vj) ∩ Dom(Pj+1) = ∅, and the pdj-List v0
P1−→ v1

P2−→

· · ·
Pj
−→ vj satisfies ΣSC then return YES. 2

Example 17: Consider Example 14. Let us execute Procedure 8 for class

a1, path description A.B.C, and the ‘A.B’-List given in Figure 17. Then YES

should be returned when j = 2. In fact, the ‘A.B’-List satisfies all the condi-

tions of Lemma 12. 2

We prove that Procedure 8 returns YES if and only if there is an index

j such that the pdj-List satisfies the six conditions of Lemma 12. Assume

that Procedure 8 returns YES when j = m. We must prove that the pdm-

List v0
P1−→ v1

P2−→ · · ·
Pm−→ vm satisfies the six conditions of Lemma 12. By

the if condition of Step 2, the pdm-List satisfies conditions (2), (3), and (6)

of Lemma 12. Since the pdi-List satisfies MSC, so does the pdm-List; that
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is, the pdm-List satisfies condition (4). Since m < i ≤ len(pd), the pdm-

List satisfies conditions (1). It remains to show that the pdm-List satisfies

condition (5). Assume that the pdm-List does not satisfy condition (5). Let

m′ be the smallest index such that the pdm′-List satisfies condition (5). Then

m′ < m. Since the pdm-List satisfies ΣSC and C ∈ Cl(v0), so does the pdm′-

List. By the minimality of m′, it holds that Cl(vm′)∩Dom(Pm′+1) = ∅. Thus

the if condition of Step 2 should hold when j = m′; that is, Procedure 8

should return YES when j = m′. Contradiction. Hence the pdm-List satisfies

the six conditions of Lemma 12. Conversely, assume that there is an index m

such that the pdm-List satisfies the six conditions of Lemma 12. It is easy to

see that Procedure 8 returns YES when j = m. This completes proving the

correctness of Procedure 8.

We now estimate the time complexity. By slightly modifying Procedure 6,

we can generate all pdi-Lists v0
P1−→ v1

P2−→ · · ·
Pl−→ vi satisfying MSC in

O(Ki+1 ·D·(i+1)) time. After that, Procedure 8 is executed for each generated

pdi-List. Since the number of pdi-Lists is at most (K + 1)i+1, Procedure 8 is

executed at most (K + 1)i+1 times, that is, O(K l+1) times. Furthermore,

since the size of a pdi-List is O(D · (i + 1)), Procedure 8 can be executed in

O(D · (i+1)) time. Thus the total time for Procedure 8 is O(K i+1 ·D · (i+1)).

Consequently, it can be decided in O(K i+1 ·D · (i + 1)) time whether or not

there is a pdj-List satisfying the six conditions of Lemma 12 and j ≤ i.

Consider how to decide whether or not pd ∈ PathDescsMSC(C). By the

discussions above, it can be decided in O(K len(pd)+1 ·D · (len(pd) + 1)) time

whether or not there is a pdj-List satisfying the six conditions of Lemma 12

and j < len(pd). That is, it can be decided in O(K len(pd)+1 ·D · (len(pd)+1))

time whether or not pd ∈ PathDescsMSC(C). Hence if len(pd) ≤ l, then

Theorem 7(b) holds.

Assume that len(pd) > l. By the discussions above, it can be decided

in O(K l+1 · D · l) time whether or not there is a pdj-List satisfying the six

conditions of Lemma 12 and j < l. It remains to check whether or not there is

a pdj-List satisfying the six conditions of Lemma 12 for some j such that

l ≤ j ≤ n − 1. Note that PDLii+l−1 is the set of Pi+1.Pi+2. · · · .Pi+l−1-

Lists such that vi
Pi+1
−→ vi+1

Pi+2
−→ · · ·

Pi+l−1
−→ vi+l−1 is in PDLii+l−1 if and

only if there is a pd i+l−1-List v0
P1−→ v1

P2−→ · · ·
Pi+l
−→ vi+l−1 satisfying the

four conditions: MSC, PDL 1, PDL 2, and C ∈ Cl(v0). Thus there is a

pd i+l−1-List satisfying the six conditions of Lemma 12 if and only if there is a

Pi+1.Pi+2. · · · .Pi+l−1-List vi
Pi+1
−→ vi+1

Pi+2
−→ · · ·

Pi+l−1
−→ vi+l−1 in PDLii+l−1 satis-
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fying Cl(vi+l−1)∩Dom(Pi+l) = ∅. That is, by using PDLii+l−1 for 1 < i ≤ n−l,

we can check whether or not there is a pdj-List satisfying the six condi-

tions of Lemma 12 for some j such that l ≤ j ≤ n − 1. Since the size of

PDLii+l−1 is O(K l+1 ·D · l), it can be decided in O(K l+1 ·D · l) time whether

or not there is a Pi+1.Pi+2. · · · .Pi+l−1-List vi
Pi+1
−→ vi+1

Pi+2
−→ · · ·

Pi+l−1
−→ vi+l−1

in PDLii+l−1 satisfying Cl(vi+l−1) ∩ Dom(Pi+l) = ∅. Thus we can check in

O(K l+1·D·l·(len(pd)+1)) time, provided that PDLi
i+l−1 is known for all i such

that 1 ≤ i ≤ n−1. Note that when deciding whether or not Σ |=MSC C(pd : C ′),

we have computed PDLii+l−1 for all i in O(K l+1 · D · l · (len(pd) + 1)) time.

As a result, it can be checked in O(K l+1 ·D · l · (len(pd) + 1)) time whether

or not there is a pdj-List satisfying the six conditions of Lemma 12 for some

j such that l ≤ j ≤ n− 1. Consequently, Theorem 7(b) also holds in the case

that len(pd) > l. This completes proving Theorem 7(b). 2

Proof of Theorem 7(c):

Consider how to decide whether or not pd ∈ PathFuncsMSC(C). Since it can

be decided in O(D · (len(pd) + 1)) time whether or not FUNC(Pi) ∈ ΣFUNC for

1 ≤ i ≤ n, Theorem 7(c) follows from Corollary 1 and Theorem 7(b). 2

4. MSC with the Lower Semilattice Condition

If we restrict our attention to interpretations which satisfy MSC, then the

decision problems related to SCs are NP-complete, as shown in Section 3.1.

In this section, we consider a special case in which a given database schema

〈S,Σ〉 satisfies the following additional condition.

The lower semilattice condition: A class C is called a greatest common subclass

of C1 and C2 if and only if the following two conditions hold.

1. Σ |= C(Id : C1) and Σ |= C(Id : C2).

2. If there is a class C3 ∈ Classes(S) such that Σ |= C3(Id : C1) and Σ |=

C3(Id : C2), then Σ |= C3(Id : C).

Then 〈S,Σ〉 satisfies the lower semilattice condition if and only if for all

C1, C2 ∈ Classes(S), there is a unique greatest common subclass of C1 and

C2, denoted C1 u C2.
15

2

For example, the taxonomy illustrated in Figure 14 satisfies the lower

semilattice condition (if the taxonomy is considered as a database schema

15This condition implies that Classes(S) contains a bottom class ⊥.
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by itself). On the other hand, the taxonomy illustrated in Figure 13 does

not satisfy the lower semilattice condition, since classes Ai and Bi do not

have a unique greatest common subclass. Thus the whole database schema

constructed in Lemma 11 does not satisfy the lower semilattice condition,

either. Through this section, we consider the case that 〈S,Σ〉 satisfies the

lower semilattice condition.

4.1 Axiomatization

In this section, it will be shown that the following axiom together with A1

and A2 in Section 2.2 are sound and complete for deciding whether or not

Σ |=MSC C(pd : C ′), provided that pd ∈ PathDescsMSC(C).

A4: (restriction) If C1(pd : C2) and C1(pd : C3), then C1(pd : C2 u C3).

Soundness of axiom A4 is straightforward. The proof of completeness is

analogous to Theorem 2 in Section 2.2. In particular, if Σ 6`{A1,A2,A4} C(pd :

C ′), then we will construct a pd -List satisfying MSC as well as PDLs 1 to 3.

(Thus Σ 6|=MSC C(pd : C ′) by Theorem 5.) We need to modify the concept of

chase in order to satisfy MSC.

The MSC-chase of C and pd under ΣSC, written ChaseMSC

ΣSC
(C, pd), is a

pd -List v0
P1−→ v1

P2−→ · · ·
Pn−→ vn obtained by the following procedure, where

pd = P1.P2. · · · .Pn.

Procedure 9: (Computing ChaseMSC

ΣSC
(C, pd).)

input: a database schema 〈S,Σ〉 satisfying the lower semilattice condition, a

class C ∈ Classes(S), and a path description pd (= P1.P2. · · · .Pn).

1. Construct a pd -List v0
P1−→ v1

P2−→ · · ·
Pn−→ vn such that Cl(v0) = {C } and

Cl(vi) = ∅ for 1 ≤ i ≤ n.

2. Apply the following rule to the pd -List exhaustively. Note that the pd -List

always satisfies MSC, as will be shown in Lemma 14 below.

MSC-SC-rule: For an SC Ca(pd
′ : Cb) ∈ ΣSC, if there are two vertices

vi, vj such that Ca ∈ Cl(vi), Cb 6∈ Cl(vj), and pd ′ has the form

Pi+1.Pi+2. · · · .Pj , then add not only Cb but also Msc(vj) u Cb to

Cl(vj).
16 For convenience, if Cl(vj) = ∅, then letMsc(vj)uCb = Cb.

2

16Msc(vj) u Cb is unique, since 〈S,Σ〉 satisfies the lower semilattice condition.
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Example 18: Let 〈S,Σ〉 be a database schema illustrated in Figure 18, where

Dom( A ) = { a1 }, Dom( B ) = { a3 }, Dom( C ) = { b2 }. For class a1 and

path description A.B.C, let us execute Procedure 9.

a1{A} a2

a3{B}

b1 b2{C}

b3

c1

c2 c3

⊥

C

CB

B

A

A

Figure 18: A database schema 〈S,Σ〉.

In Step 1, an ‘A.B.C’-List v0
B
−→ v1

A
−→ v2

C
−→ v3 is constructed, where

Cl(v0) = { a1 } and Cl(vi) = ∅ for 1 ≤ i ≤ 3.

For SC a1(A : a1) in ΣSC, since a1 ∈ Cl(v0) and a1 6∈ Cl(v1), class

a1 is added to Cl(v1) by applying the MSC-SC-rule for a1(A : a1), where

Msc(v1) u a1 = a1 since Cl(v1) = ∅. The MSC of v1 becomes a1 by the appli-

cation. For SC a1(A : a2) in ΣSC, since a1 ∈ Cl(v0) and a2 6∈ Cl(v1), classes

Msc(v1) u a2 as well as a2 are added to Cl(v1) by applying the MSC-SC-rule

for a1(A : a2), where Msc(v1) u a2 = a1 u a2 = a3. The MSC of v1 changes

from a1 to a3 by the application. Finally, we obtain the ‘A.B.C’-List given in

Figure 19 as ChaseMSC

ΣSC
(a1, A.B.C), where each vertex is labeled its MSC. Note

that ChaseMSC

ΣSC
(a1, A.B.C) satisfies ΣSC. 2

a1 a3 b3 c2
A B C

Figure 19: ChaseMSC

ΣSC
(a1, A.B.C).

It will be shown that if Σ 6`{A1,A2,A4} C(pd : C ′) and pd ∈ PathDescsMSC(C),

then ChaseMSC

ΣSC
(C, pd) satisfies MSC as well as PDLs 1 to 3.
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Lemma 14: ChaseMSC

ΣSC
(C, pd) satisfies MSC.

Proof. We prove by induction on the number of applying MSC-SC-rules in

Step 2 that the pd -List v0
P1−→ v1

P2−→ · · ·
Pn−→ vn satisfies MSC during Proce-

dure 9. Thus Lemma 14 will hold.

The basis is trivial, since Cl(v0) = {C } and Cl(vi) = ∅ for 1 ≤ i ≤ n in

Step 1.

As an induction hypothesis, assume that the pd -List satisfies MSC during

an execution of Step 2. LetMsc(vj) = Cj and assume that CjuCb as well as Cb

are added to Cl(vj) by applying an MSC-SC-rule to the pd -List. We show that

Msc(vj) is changed from Cj to CjuCb by the application. Since Msc(vj) = Cj

before the application, Σ |= Cj(Id : C ′j) for every C ′j ∈ Cl(vj)−{Cb, Cj uCb}.

By definition, Σ |= Cj u Cb(Id : Cj) and Σ |= Cj u Cb(Id : Cb). Thus

Σ |= Cj u Cb(Id : C ′j) for every C ′j ∈ Cl(vj). That is, Msc(vj) = Cj u Cb

after the application. Hence the pd -List still satisfies MSC. This completes

the induction proof. 2

Consider PDL 2. By the definition of MSC-SC-rule, unless the pd -List

satisfies ΣSC, Procedure 9 does not terminate. Thus ChaseMSC

ΣSC
(C, pd) satisfies

ΣSC; that is, PDL 2 holds.

Consider PDL 3. By Step 1 of Procedure 9, it holds that C ∈ Cl(v0). By

the following lemma, if Σ 6`{A1,A2,A4} C(pd : C ′), then it holds that C ′ 6∈ Cl(vn).

Thus if Σ 6`{A1,A2,A4} C(pd : C ′), then ChaseMSC

ΣSC
(C, pd) satisfies PDL 3.

Lemma 15: Cl(vi) = {Ci ∈ Classes(S) | ΣSC `{A1,A2,A4} C(pdi : Ci)} for

0 ≤ i ≤ n.

Proof. The proof is analogous to Lemma 5.

We first prove that if ΣSC `{A1,A2,A4} C(pdi : Ci), then Ci ∈ Cl(vi).

Assume that ΣSC `{A1,A2,A4} C(pdi : Ci). Then ΣSC |=MSC C(pdi : Ci) by

soundness of the axioms. Thus ChaseMSC

ΣSC
(C, pd) satisfies C(pdi : Ci), since it

satisfies ΣSC by PDL 2. Hence C ∈ Cl(v0) implies Ci ∈ Cl(vi).

We next prove that if Ci ∈ Cl(vi), then ΣSC `{A1,A2,A4} C(pdi : Ci). If

Cl(vi) = ∅, then there is nothing to prove. Assume that Ci ∈ Cl(vi). By

definition, Σ |= Msc(vi)(Id : Ci). Thus by Theorem 2, Σ `{A1,A2} Msc(vi)(Id :

Ci), since Id ∈ PathDescs(C). Hence in order to prove that ΣSC `{A1,A2,A4}
C(pdi : Ci), it suffices to show that Σ `{A1,A2,A4} C(pdi : Msc(vi)). Induction

on the number of applying MSC-SC-rules in Step 2.
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The basis follows from axiom A1, since Cl(v0) = {C } and Cl(vi) = ∅ for

1 ≤ i ≤ n in Step 1.

As an induction hypothesis, assume that Σ `{A1,A2,A4} C(pdi : Msc(vi))

during an execution of Step 2, where Cl(vi) 6= ∅. Assume that Msc(vj) u Cb

as well as Cb should be added to Cl(vj) by applying an MSC-SC-rule for

Ca(pd
′ : Cb) ∈ ΣSC. Then by the definition of SC-rule, it holds that Cb 6∈

Cl(vj), Ca ∈ Cl(vk), and pd ′ = Pk+1.Pk+2. · · · .Pj for some k. It suffices

to show that Σ `{A1,A2,A4} C(pdj : Msc(vj) u Cb), since the MSC of vj is

changed from Msc(vj) to Msc(vj)uCb. Since Ca ∈ Cl(vk), it follows from the

induction hypothesis that Σ `{A1,A2,A4} C(pdk : Ca). By axiom A2, C(pdk : Ca)

and Ca(pd
′ : Cb) imply C(pdk ◦ pdj : Cb), where pdk ◦ pd

′ = pdj . That is,

Σ `{A1,A2,A4} C(pdj : Cb). Furthermore, Σ `{A1,A2,A4} C(pdj : Msc(vj)) by

the induction hypothesis. Thus C(pdj : Msc(vj)) and C(pdj : Cb) imply

C(pdj : Msc(vj)uCb) by axiom A4. Hence Σ `{A1,A2,A4} C(pdj : Msc(vj)uCb).

This completes the induction proof. Consequently, Lemma 15 holds. 2

By the following lemma, if pd ∈ PathDescsMSC(C), then ChaseMSC

ΣSC
(C, pd)

satisfies PDL 3.

Lemma 16: pd ∈ PathDescsMSC(C) if and only if ChaseMSC

ΣSC
(C, pd) satisfies a

property value integrity condition.

Proof. (Almost the same as proving Lemma 6.) 2

Consequently, we have the following theorem, which can be proved in the

same way as proving Theorem 2.

Theorem 8: Assume that 〈S,Σ〉 satisfies the lower semilattice condition. If

pd ∈ PathDescsMSC(C), then the following three statements are equivalent.17

1. Σ |=MSC C(pd : C ′).

2. Σ `{A1,A2,A4} C(pd : C ′).

3. C ′ ∈ Cl(vn). 2

17Σ is not necessarily well-formed with respect to 〈S,Σ〉.
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Example 19: Consider Example 18. We have obtained the ‘A.B.C’-List in

Figure 19 as ChaseMSC

ΣSC
(a1, A.B.C). The ‘A.B.C’-List satisfies a property value

integrity condition. Thus A.B.C ∈ PathDescsMSC(a1) by Lemma 16. Since c2 ∈

Cl(v2) = {c1, c2} whereMsc(v2) = c2, it follows from Theorem 8 that Σ |=MSC

a1(A.B.C : c2). On the other hand, Σ 6|=MSC a1(A.B.C : c3) by Theorem 8, since

c3 6∈ Cl(v2). 2

4.2 The three decision problems

In this section, we will prove the following theorem.

Theorem 9: Assume that 〈S,Σ〉 satisfies the lower semilattice condition. The

following three decision problems are solved in O(D ·(len(pd)+1)) time, where

D is the size of 〈S,Σ〉.

a. Σ |=MSC C(pd : C ′) (provided that pd ∈ PathDescsMSC(C)) ?

b. pd ∈ PathDescsMSC(C) ?

c. pd ∈ PathFuncsMSC(C) ? 2

As in Section 2.3, the time for computing ChaseMSC

ΣSC
(C, pd) dominates

the time complexities of the three decision problems. In the following, we

will present a procedure for computing ChaseMSC

ΣSC
(C, pd). After that, it will

be proved that the procedure can be executed in O(D · (len(pd) + 1)) time.

Hence Theorem 10 can be proved in the same way as Theorem 4.

The procedure is a modification of Procedure 3. Note that Cl(vi) is

computed from Msc(vi). In fact, the procedure will compute Msc(vi) and

then Cl(vi) for 1 ≤ i ≤ n.

Procedure 10: (Computing ChaseMSC

ΣSC
(C, pd).)

input: a database schema 〈S,Σ〉 satisfying the lower semilattice condition, a

class C ∈ Classes(S), and a path description pd (= P1.P2. · · · .Pn).

1. Divide ΣSC into two sets: ΣId = {Ca(pd
′ : Cb) ∈ ΣSC | pd

′ = Id} and

Σ¬Id = ΣSC − ΣId.

2. Let CL0 ← {C0 ∈ Classes(S) | ΣId `{A1,A2} C(Id : C0)}.

3. for i← 1 to n

do begin
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4. Let CL ← {Cb ∈ Classes(S) | there is an SC Ca(pd
′ : Cb) ∈ Σ¬Id

such that pd ′ = Pj+1.Pj+2. · · · .Pi and Ca ∈ CLj for some j }.

5. if CL = ∅ then let CLi ← ∅

else begin

6. Let Mi ← uCb∈CL Cb.
18

7. Let CLi ← {Ci ∈ Classes(S) | ΣId `{A1,A2} Mi(Id : Ci)}.

end

end 2

The correctness of Procedure 10 follows from the following lemma.

Lemma 17: CLi = Cl(vi) for 0 ≤ i ≤ n, where ChaseMSC

ΣSC
(C, pd) is v0

P1−→

v1
P2−→ · · ·

Pn−→ vn.

Proof. The proof is analogous to Lemma 7. By Lemma 15, it suffices to show

that

CLi = {Ci ∈ Classes(S) | ΣSC `{A1,A2,A4} C(pdi : Ci)}. (4.1)

We prove 4.1 by induction on i.

Basis. Consider the case that i = 0. Note that Steps 1 and 2 of Pro-

cedure 10 is the same as Steps 1 and 2 of Procedure 3. Thus it follows from

Lemmas 5 and 7 that CL0 = {C0 ∈ Classes(S) | ΣSC `{A1,A2} C(Id : C0)}.

Hence v0 satisfies ΣSC by itself. Clearly, Msc(v0) = C; that is, v0 satisfies

MSC. These facts imply that no class is added to CL0 by applying axiom A4.

Thus 4.1 holds for i = 0.

Induction. As an induction hypothesis, assume that 4.1 holds for j ≤ i−1,

where i ≥ 1.

Proof of ‘⊆’: We prove that if Ci ∈ CLi, then ΣSC `{A1,A2,A4} C(pdi : Ci). If

CLi = ∅, then there is nothing to prove. Assume that CLi 6= ∅. We claim that

ΣSC `{A1,A2,A4} C(pdi : Cb) for every Cb ∈ CL.

Let Cb ∈ CL. By Step 4, there is an SC Ca(pd
′ : Cb) ∈ Σ¬Id such that

pd ′ = Pj+1.Pj+2. · · · .Pi and Ca ∈ CLj for some j. Since pd ′ 6= Id by the

definition of Σ¬Id, it holds that j ≤ i− 1. Thus by the induction hypothesis,

Ca ∈ CLj implies that ΣSC `{A1,A2,A4} C(pdj : Ca). By axiom A2, C(pdj : Ca)

18Mi is well-defined, since 〈S,Σ〉 satisfies the lower semilattice condition.
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and Ca(pd
′ : Cb) imply C(pdj ◦ pd

′ : Cb), where pdj ◦ pd
′ = pdi. That is,

ΣSC `{A1,A2,A4} C(pdi : Cb). Hence the claim holds.

Note that Mi ← uCb∈CL Cb by Step 6. Thus C(pdi : Mi) can be derived

by applying axiom A4 repeatedly to {C(pdi : Cb) | Cb ∈ CL}. Hence by the

claim above, it holds that ΣSC `{A1,A2,A4} C(pdi : Mi). Since Mi = Msc(vi) by

Step 7, this implies that ΣSC `{A1,A2,A4} C(pdi : Ci) for every Ci ∈ CLi. This

completes the proof of ‘⊆’.

Proof of ‘⊇’: We prove that if ΣSC `{A1,A2,A4} C(pdi : Ci), then Ci ∈ CLi.

Assume that ΣSC `{A1,A2,A4} C(pdi : Ci). Then ΣSC |=MSC C(pdi : Ci) by

soundness of the axioms. Let u0
P1−→ u1

P2−→ · · ·
Pi−→ ui be a pdi-List such that

Cl(uj) = CLj for 0 ≤ j ≤ i. We will prove that the pdi-List satisfies ΣSC, and

thus C(pdi : Ci). Since C ∈ CL0, this will imply that Ci ∈ CLi.

Since CLj = Cl(vj) for 0 ≤ j ≤ i − 1 by the induction hypothesis and

Lemma 15, the pd i−1-List u0
P1−→ u1

P2−→ · · ·
Pi−→ ui−1 satisfies ΣSC, which

can be proved along the same line as proving Lemma 4(a). By Step 4, for

every SC Ca(pd
′ : Cb) ∈ Σ¬Id, if pd

′ = Pj+1.Pj+2. · · · .Pi and Ca ∈ CLj , then

Cb ∈ CLi. Thus the pdi-List satisfies Σ¬Id. Similarly, by Step 7, for every

SC Ca(Id : Cb) ∈ ΣId, if Ca ∈ CLi, then Cb ∈ CLi. Thus the pdi-List also

satisfies ΣId. Since ΣSC = Σ¬Id ∪ΣId by definition, the pdi-List satisfies ΣSC.

This completes the induction proof. Consequently, Lemma 17 holds. 2

Let us estimate the time complexity of Procedure 10. As before, let

Classes(S) consist of K classes and use a bit array of size K in order to

represent a subset of Classes(S). Procedure 10 is essentially the same as Pro-

cedure 3 except Step 6. One obvious way for executing Step 6 is to construct

in advance a table containing Ca u Cb for every pair of Ca, Cb ∈ Classes(S).

Once the table is constructed, Step 6 can be executed in O(K) time, since

the size of CL is at most K. Note that K ≤ D. Thus it will be shown in

the same way as estimating Procedure 3 that Procedure 10 can be executed

in O(D · (len(pd) + 1)) time. In the following we will present a procedure for

constructing the table in O(K3) time. The procedure consists of the following

three parts.

1. Sort the classes in Classes(S) in a topological order with respect to the

generalization taxonomy. Here, a sequence Ct1 , Ct2 , · · · , CtK is in a topo-

logical order if and only if ΣId |= Cti(Id : Ctj ) implies i ≤ j.

2. Compute {Ci ∈ Classes(S) | ΣId `{A1,A2} Cti(Id : Ci)} for 1 ≤ i ≤ K.

3. Compute Ca u Cb for every pair of Ca, Cb ∈ Classes(S).
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Consider how to execute Part 1. Let G(V,A) be a directed graph such

that V = Classes(S) and A = {Ca → Cb | Ca(Id : Cb) ∈ ΣId}. G(V,A) can be

constructed in O(K+‖ΣId‖) time. Clearly, there is a directed path in G(V,A)

from a vertex C1 to a vertex C2 if and only if ΣId |= C1(Id : C2). Since S is

a generalization taxonomy with respect to Σ by assumption, G(V,A) contains

no directed cycle. Thus the vertices in V can be sorted in a topological order.

Let Ct1 , Ct2 , · · · , CtK be a sequence in a topological order; that is, if there is

a directed path in G(V,A) from Cti to Ctj , then i ≤ j. In other words, if

ΣId |= Cti(Id : Ctj ), then i ≤ j. Such a sequence Ct1 , Ct2 , · · · , CtK can be

obtained in O(K + ‖ΣId‖) time by using G(V,A).19 Since the number of SCs

of the form Ca(Id : Cb) is at most K2, the size of ΣId is O(K2). Hence Part 1

can be execute in O(K2) time.

Consider Part 2. Since {Ci ∈ Classes(S) | ΣId `{A1,A2} Cti(Id : Ci)} can

be computed in O(K + ‖ΣId‖) time by using an algorithm for computing a

reflexive transitive closure as discussed in Section 2.3, Part 2 can be executed

in O(K · (K + ‖ΣId‖)) time, that is, O(K3) time.

Finally, consider how to execute Part 3. For a pair of Ca, Cb ∈ Classes(S),

let i be the largest integer satisfying

{Ca, Cb} ⊆ {Ci ∈ Classes(S) | ΣId `{A1,A2} Cti(Id : Ci)}. (4.2)

We claim that Cti = Ca u Cb.

Let tj be an index such that Ctj = Ca u Cb. Since ΣId |= Cti(Id : Ca)

and ΣId |= Cti(Id : Cb) by 4.2, it follows from the definition of Ca u Cb that

ΣId |= Cti(Id : Ctj ). Since Ct1 , Ct2 , · · · , CtK is in a topological order, this

implies that i ≤ j. On the other hand, it must hold that j ≤ i, since i is

the largest integer satisfying 4.2. Thus i = j, that is, Cti = Ca u Cb. This

completes proving the claim.

Since a subset of Classes(S) can be represented by a bit array of size K,

a set membership can be tested in constant time. Thus it can be decided in

constant time whether or not an integer i satisfies 4.2, where 1 ≤ i ≤ K. Hence

we can find in O(K) time the largest integer i satisfying 4.2, and therefore

Ca u Cb. Since the number of entries of the table is O(K2), we can construct

the table in O(K3) time. That is, Part 3 can be executed in O(K3) time.

Consequently, Parts 1 to 3 can also be executed in O(K3) time.

19In general, given a directed acyclic graph G(V,A), the vertices in V can be sorted in a

topological order in linear time.
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Example 20: For the database schema 〈S,Σ〉 in Example 18, let us construct

the table by the procedure above. In Part 1, the directed graph G(V,A) is

constructed as in Figure 20. By using G(V,A), we may have the following

sequence (as an example), which is in a topological order:

〈⊥, a3, a2, c2, b3, a1, b1, b2, c3, c1〉

Part 2 is easy to execute. In Part 3, consider how to compute, for example,

b1 u b2. It is easy to see that only ⊥ and b3 satisfy 4.2 with respect to b1 and

b2. Since b3 occurs later than ⊥ in the sequence above; that is, b3 has a larger

index than ⊥, it holds that b1 u b2 = b3. 2

a1 a2

a3

b1 b2

b3

c1

c2 c3

⊥

Figure 20: The directed graph G(V,A) in Part 1.

Once the table above is constructed, for any class C and any path de-

scription pd , ChaseMSC

ΣSC
(C, pd) can be computed in O(D · (len(pd) + 1)) time

by Procedure 10. Thus it is reasonable to exclude the time for constructing

the table from the time complexity of Procedure 10.

4.3 An NP-completeness result

By assuming the lower semilattice condition for 〈S,Σ〉, the NP-complete de-

cision problems given in Theorem 6 largely become solvable in polynomial

time. Unfortunately, it is still NP-complete to decide whether or not Σ 6|=MSC

C(pd : C ′), if pd 6∈ PathDescsMSC(C). (The fact will be proved in this sec-

tion.) At a glance, one might consider that Σ |=MSC C(pd : C ′) if and only if
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Σ `{A1,A2,A3,A4} C(pd : C ′). But this is not the case. The intuitive reason is that

even if two pd -Lists v0
P1−→ v1

P2−→ · · ·
Pn−→ vn and u0

P1−→ u1
P2−→ · · ·

Pn−→ un

satisfy MSC, a pd -List w0
P1−→ w1

P2−→ · · ·
Pn−→ wn does not always satisfy

MSC, where Cl(wi) = Cl(ui) ∪ Cl(vi) for 0 ≤ i ≤ n. Thus we cannot use the

same discussion as in proving Theorem 3.

Theorem 10: Assume that 〈S,Σ〉 satisfies the lower semilattice condition.

It is NP-complete to decide whether or not Σ 6|=MSC C(pd : C ′), if pd 6∈

PathDescsMSC(C).

Proof. By Lemma 10, the problem is in NP. We prove its NP-hardness. The

idea is essentially the same as Lemma 11. We will slightly modify the database

schema 〈S,Σ〉 constructed in Lemma 11.

1. As for the definition of S, remove class names Z, Bi for 1 ≤ i ≤ n, and

property R. The domain of each property is changed as follows:

Dom(P1) = {C } and Dom(Pi) = {Xi−1, X i−1 } for 2 ≤ i ≤ n

Dom(Q1) = {Xn, Xn } and Dom(Qj) = {Cj−1 } for 2 ≤ j ≤ m

2. The SC C(pd : C ′) remains unchanged.

3. As for the definition of Σ, we have only to modify the truth-setting com-

ponents (3.1.a) and the other SCs (3.1.c) in the fixed part of ΣSC as follows:

For each variable xi, 1 ≤ i ≤ n, replace the truth-setting component

illustrated in Figure 13 by the one illustrated in Figure 21. That is, the

modified truth-setting component consists of the following two SCs:

{Xi(Id : Ai), X i(Id : Ai)}

Clearly, the taxonomy illustrated in Figure 21 satisfies the lower semilattice

condition (if the taxonomy is considered as a database schema by itself). Note

that the bottom class ⊥ is explicitly described in Figure 21, though it is

unimportant for this proof as in Lemma 11.

Replace the other SCs by the following 2n+ 2m− 1 SCs:

{C(P1 : A1)} and {Xi−1(Pi : Ai), X i−1(Pi : Ai) | 2 ≤ i ≤ n}

{Xn(Q1 : C1), Xn(Q1 : C1)} and {Cj−1(Qj : Cj), Tj−1(Qj : Tj) | 2 ≤ j ≤ m}

Since class name Bi is removed from S, all the SCs containing Bi (such as

Xi(Id : Bi), Bi(Pi : Bi+1)) are removed from ΣSC accordingly. Similarly, the

SC Tm(R : Z) is also removed from ΣSC, since R and Z are removed from S.
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Ai

Xi{Pi+1} X i{Pi+1}

⊥

Figure 21: A modified truth-setting component.

The modified fixed part of ΣSC is illustrated in Figure 22. The varying part

of ΣSC remains unchanged. It is easy to verify that the resulting database

schema satisfies the lower semilattice condition.

Note that pd 6∈ PathDescsMSC(C). In fact, the interpretation G(V,A) for

S given in Figure 23 satisfies MSC and Σ ∪ SFUNC but does not have a path

from the vertex u described by pd , where C ∈ Cl(u). We must prove that

Σ 6|=MSC C(pd : C ′) if and only if E is not a tautology.

Only if part. Assume that Σ 6|=MSC C(pd : C ′). By Theorem 5, there is a

pd -List

v0
P1−→ v1

P2−→ · · ·
Pn−→ vn

Q1−→ u1
Q2−→ · · ·

Qm
−→ um

satisfying MSC and PDLs 1 to 3. It is easy to see that Claims 2 and 3 given in

the proof of Lemma 11 still hold in this case. As for Claim 1, since the pd -List

satisfies PDL 1, it holds that Cl(vi) ∩ Dom(Pi+1) 6= ∅ for 1 ≤ i ≤ n − 1 and

that Cl(vn) ∩ Dom(Q1) 6= ∅. Since Dom(Pi+1) = {Xi, Xi } and Dom(Q1) =

{Xn, Xn } by definition, Cl(vi) must contain either Xi or X i for 1 ≤ i ≤ n.

That is, Claim 1 still holds. Hence it can be shown that E is not a tautology,

along the same line as in the only if part proof of Lemma 11.

If part. Assume that E is not a tautology. There is a truth assignment

τ : {x1, x2, · · · , xn} → {T, F} that makes E false. We can define the same

pd -List

v0
P1−→ v1

P2−→ · · ·
Pn−→ vn

Q1−→ u1
Q2−→ · · ·

Qm
−→ um

as in the if part proof of Lemma 11 except 2.1 and 2.2. The definitions of 2.1

and 2.2 are changed as follows:

2.1. If τ(xi) = T , then Cl(vi) = {Ai, Xi} and Msc(vi) = Xi, where

1 ≤ i ≤ n.
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C{P1} A1

X1{P2} X1{P2}

A2

X2{P3} X3{P2}

An

Xn{Q1} Xn{Q1}

P1 P2 P3 Pn

C1{Q2}

T1

C2{Q3}

T2

Cm

Tm

Q1 Q1

Q2

Q2

Q3

Q3

Qm

Qm

· · ·

· · ·

Figure 22: The modified fixed part of ΣSC.

½¼
¾»

½¼
¾»

-{C} {A1}

u
P1

Figure 23: An interpretation G(V,A) for S.

2.2. If τ(xi) = F , then Cl(vi) = {Ai, Xi} and Msc(vi) = X i.

It can be shown that Σ 6|=MSC C(pd : C ′), along the same line as in the if part

proof of Lemma 11. Consequently, Theorem 10 holds. 2

5. Conclusion

We have considered a more general form of specialization constraint for data

models supporting complex objects and object identity. The generalization is

achieved by allowing range restrictions to be associated with descriptions of

property value paths, instead of with individual properties. By admitting a

path description, called Id, for paths of zero length (i.e. consisting of a single

object), specialization constraints can also be used to declare subclass rela-

tionships. In our introductory comments, we demonstrated how specialization

constraints can enable a form of molecular abstraction, and indicated how this

can be useful not only in modeling, but also in query formulation and physical
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database design.

In this paper, we have considered the various membership problems for

specialization constraints, including the problems of identifying path descrip-

tions corresponding to single or set-valued functions which are total with re-

spect to a given class. We considered these problems for two models. The first

imposed no constraints on class membership for objects beyond those implied

by subclassing constraints; the second imposed a most specialized class (MSC)

condition on class membership for objects, which effectively required each ob-

ject to have originally been created with respect to at most one class. Table 2

summarizes the various complexity results derived in the paper. For each case

in which Table 2 indicates that a membership problem can be solved in poly-

nomial time, we have exhibited a polynomial time procedure. Also, sound and

complete axiomatizations are given for two cases: arbitrary specialization con-

straints for the first model; and well-formed specialization constraints for the

second model, when problem schema satisfy an additional lower-semilattice

condition.

A complete axiomatization for arbitrary schema, assuming the MSC con-

dition, remains an open problem at this time. At the least, this requires a

more general form of specialization constraint in which union extended gen-

eralizations (UXG), as defined in [3], may be used in place of class names.

An example of a UXG for the ALGEBRA illustrated in Figure 2 is sel+proj,

which represents the union of the (extensions of) classes sel and proj. Note

that UXG’s may also be used to express so-called cover constraints, such as

unExp(Id:sel+proj), which asserts that any unary expression must be at

least one of either a selection or projection. However, note that reasoning

about constraints of the form UXG1(Id:UXG2) can be expensive, even not

assuming MSC. The membership procedure outlined in [3] has O(n4) time

complexity, where n is the description length of the constraints.
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