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Abstract

We further refine the bounds on the path length of binary trees
of a given size by considering not only the size of a binary tree, but
also its height and fringe thickness (the difference between the length
of a shortest root-to-leaf path and the height). We characterize the
maximum path length binary trees of a given height, size, and fringe
thickness. Using this characterization, we give an algorithm to find the
maximum path length binary trees of a given size and fringe thickness.

1 Introduction

The path length of a tree is the sum of the lengths of the paths from the
root to each node in the tree. When divided by the number of nodes in the
tree, we get the average length of a path from the root to a node. Since
the number of comparisons needed to find an element in a search tree is
the length of the path from the root to the element’s node, the average
path length of a tree gives the average number of comparisons taken by an
insertion, deletion, or member operation on the tree. Thus, one way we can
measure the efficiency of a class of trees is by studying the path length of
trees of a given size.
Knuth [Knu73] showed that a binary tree has the minimum path length

among all binary trees with N + 1 external nodes (nodes with no children)
if and only if the external nodes appear on exactly two levels in the tree and
those two levels are consecutive; see Figure 1. The external path length of
such a tree is

(N + 1)(log2(N + 1) + 1 + θ − 2θ),
where θ = dlog2(N + 1)e − log2(N + 1) ∈ [0, 1). A binary tree has the
maximum path length among all binary trees of size N if and only if it has
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Figure 1: A minimum path length binary tree of size 11.
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Figure 2: A maximum path length binary tree of size 5.

at most one internal node per level; that is, a binary tree has the maximum
path length if and only if every internal node has at most one internal child;
for example, see the tree in Figure 2. The external path length of such a
tree is

N(N + 3)

2
.

The path lengths of most binary trees fall somewhere in the middle of this
range, rather than at the extremes; therefore, there have been attempts to
refine these bounds. Nievergelt and Wong [NW73] give an upper bound for
the path length of a binary tree T in terms of the weight (the number of
external nodes) and the maximum weight balance of T ’s subtrees. Using less
information about a tree, Klein and Wood [KW89] derive the upper bound

(N + 1)(log2(N + 1) + ∆− log2∆−Ψ(∆))

for the external path length of a binary tree of size N and fringe thickness
∆, where Ψ(∆) ≥ 0.6622 . . . . For a given size N and fringe thickness ∆,
Klein and Wood provide a characterization of binary trees that achieve the
bound up to an O(N) term, if ∆ ≤

√
N + 1.

We would like to characterize the maximum path length binary trees
of a given size and fringe thickness. However, what we provide here is
an algorithmic solution rather than a characterization. We characterize
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Figure 3: An example binary tree. It has size 6, height 4, minheight 2 (that
is, it has a Bin(2) prefix), and fringe thickness 2. Furthermore, its EPL is
21.

the maximum path length binary trees of a given height, size, and fringe
thickness, and use this characterization in an algorithm that finds the height
that maximizes the path length for a given size and fringe thickness. In
Section 2, we define most of the terms used, introduce profiles of binary
trees and prove two theorems about profiles. In Section 3, we characterize
the maximum path length binary trees of a given height, size, and fringe
thickness. We first introduce a simple transformation that increases the path
length of a binary tree that has certain properties. Thus, a maximum path
length tree of a given height, size, and fringe thickness cannot have these
properties. Using these properties, we show that the numbers of external
nodes on certain levels of the trees are the digits of the greedy representation
of a certain number in the pseudo-binary number system, in which a number
is represented as a sum of the form

∑

i≥0 ai(2
i+1 − 1), where ai = 0, 1, or

2 and then we complete the characterization. In Section 4, we give an
algorithm to compute the maximum path length binary trees of a given size
and fringe thickness. Finally, in Section 5, we provide some open problems.

2 Definitions

We provide the basic definitions and results for binary search trees. Many
of the following definitions are illustrated in Figure 3. The trees that we
consider are extended trees; that is, the nodes of each tree are divided into
two types: internal nodes (nodes that have at least one child each) and
external nodes (nodes with no children). A binary tree is a tree in which
every internal node has exactly two children.

The size of a binary tree T is the number of internal nodes in the tree;
it is denoted by size(T ). The height of a tree T is the number of edges on
a longest root-to-external-node path; it is denoted by ht(T ). The level of a
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node in a tree is the distance of the node from the root of the tree, where
the distance is the number of edges on the path from the root to the node.
Thus, the root is at level 0, its children (if any) are at level 1, their children
are at level 2, and so on.

Definition 2.1 The minheight of binary tree T , denoted by minht(T ), is
the minimum level containing an external node; that is, minht(T ) is the
number of edges on a shortest path from the root to an external node.

Definition 2.2 The fringe thickness of a tree T is the difference between
the lengths of a longest and a shortest path from the root to an external node;
that is, the fringe thickness is ht(T )−minht(T ).

Note that if we are given any two of the height, minheight, and fringe thick-
ness, then we can calculate the third value.
When we are considering the path length of a binary tree, we are inter-

ested in how far each node is from the root of the tree. We do not need
to know how the nodes are arranged to achieve these distances. Using the
detailed profile of a tree, we focus on the numbers of internal and external
nodes on each level without worrying about the positions of the nodes.

Definition 2.3 The detailed profile of binary tree T of height h is the se-
quence of pairs of integers π(T ) = 〈ι0, ε0〉, 〈ι1, ε1〉, . . . , 〈ιh, εh〉, where T has
ιi internal nodes on level i and εi external nodes on level i, for 0 ≤ i ≤ h.

But how can we prove anything about trees without taking into account
the arrangement of the nodes? We can distinguish between the sequences
of pairs of integers that are the detailed profiles of binary trees and the
sequences that are not, as the following result demonstrates.

Theorem 2.1 Let π = 〈ι0, ε0〉, . . . , 〈ιh, εh〉 be a sequence of integer pairs,
for some h > 0. Then, π is the detailed profile of some non-empty binary
tree T of height h if and only if

1. ι0 = 1 and ε0 = 0;

2. ιh = 0 and εh > 0;

3. ιi ≥ 0 and εi ≥ 0, for 0 ≤ i ≤ h; and

4. 2 · ιi = ιi+1 + εi+1, for 0 ≤ i < h.

Proof: Only If: Assume that π is the detailed profile of some non-empty
binary tree of height h. Every non-empty binary tree has a root and no
external nodes on level 0, so π must satisfy the first condition. A binary
tree of height h has no nodes on levels greater than h, so such a tree has no
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internal nodes on level h because such an internal node would have to have
two children on level h + 1. Furthermore, a tree of height h must have at
least two external nodes on level h. Thus, the second condition holds for π.
Clearly, no binary tree can have a negative number of external or internal
nodes on any level, so the third condition holds for π. Since each internal
node has two children on the level beneath it, each external node has no
children, and each node (except the root) must have a parent on the level
above it, the fourth condition must also hold for π. Thus, if π is the detailed
profile of some non-empty binary tree of height h, then π must satisfy the
four conditions.
If: Assume that π is a sequence of integer pairs that satisfies the above four
conditions. We show that π is the detailed profile of a non-empty binary
tree of height h by constructing such a tree. We simply create the specified
number of each kind of node on each level, then pair the nodes on each level
(except level 0) and make each pair the two children of one of the internal
nodes on the previous level. Since ιi ≥ 0 and εi ≥ 0, for 0 ≤ i ≤ h, we have
a non-negative number of nodes of each kind on each level. The pairing of
nodes on a level and the assigning of an internal node parent to each pair is
possible because 2 · ιi = ιi+1 + εi+1, for 0 ≤ i < h. Since ι0 = 1 and ε0 = 0,
we have a non-empty binary tree with an internal root and no other node
on level 0. Because ιh = 0 and εh > 0, the tree has height h. 2

The perfect binary tree of height h (denoted by Bin(h)) is the only binary
tree of height h whose external nodes all appear on one level. A recursive
definition of Bin(h) is given in Figure 4. It is well-known that Bin(h) has
size 2h − 1 and that this tree has the maximum number of internal nodes
among all binary trees of height h. Level i of Bin(h) contains 2i nodes and
each node on that level is the root of a Bin(h− i) subtree.
A snake of height h, denoted by Snake(h), is any binary tree of height

h that consists of a chain of h internal nodes, one on each of the levels
0, . . . , h − 1. See Figure 5 for an example of a Snake(h). A Snake(h) tree
has size h, the smallest possible size for a binary tree of height h.

Definition 2.4 A binary tree has a binary prefix of height b, that is, a
Bin(b) prefix, if it has b contiguous levels starting at the root (levels 0, . . . , b−
1) that contain only internal nodes and level b contains at least one external
node.

Thus, the detailed profile of a binary tree with a Bin(b) prefix satisfies ιi = 2
i

and εi = 0, for all 0 ≤ i < b, and εb > 0. Since the root of every non-empty
binary tree is an internal node, every non-empty binary tree has at least a
Bin(1) prefix. Note that the height of the binary prefix of a binary tree is
the minheight of the tree.
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Let T be a binary tree and let π = 〈ι0, ε0〉, . . . , 〈ιh, εh〉 be its detailed
profile. The external path length of T is denoted by EPL(T ) and is defined
to be EPL(T ) =

∑h
i=0 i · εi, In other words, the external path length is the

sum, over all external nodes in the tree, of their distances from the root.

To characterize the maximum path length binary trees of a given height
h, size N , and fringe thickness ∆, we determine the number of internal
nodes on level h−∆ and the number of external nodes on each of the levels
h−∆+1, . . . , h− 1. We now show that this description is equivalent to the
detailed profile of the tree.

Theorem 2.2 A binary tree T has height h, fringe thickness ∆, exactly
r internal nodes on level h − ∆, where 0 < r < 2h−∆, and ei external
nodes on level i, for h − ∆ < i < h, if and only if its detailed profile
π(T ) = 〈ι0, ε0〉, . . . , 〈ιh, εh〉 satisfies

• ιj = 2
j and εj = 0, for all 0 ≤ j < h−∆;

• ιh−∆ = r and εh−∆ = 2
h−∆ − r;

• ιj = 2 · ιj−1 − ej and εj = ej, for h−∆ < j < h; and

• ιh = 0 and εh = 2 · ιh−1.

That is, given the height h, the fringe thickness ∆, the number r of internal
nodes on level h−∆, and the number ej of external nodes on level j, for all
h −∆ < j < h, of a binary tree T , we can recover its detailed profile, and
vice versa.

Proof: Clearly, we can compute the values of h, ∆, r, and ei, given the
detailed profile of T . Conversely, if we are given h, ∆, r, and ei, for all
h − ∆ < i < h, we can recover the detailed profile of T . Because T has
height h and fringe thickness ∆, it must have minheight h−∆. Immediately,
we must have ιj = 2

j and εj = 0, for all 0 ≤ j < h − ∆. Since there are
r internal nodes on level h − ∆, we have ιh−∆ = r. Because there are
ei external nodes on level i, then εi = ei, for all h − ∆ < i < h. We
must have ιh = 0. To complete the profile, we compute εh−∆, ιi, for all
h − ∆ < i < h, and εh as follows. Since T is a binary tree, we can use
the fourth condition of Theorem 2.1: 2 · ιi = ιi+1 + εi+1, for all 0 ≤ i < h.
Thus, from ιh−∆−1 and ιh−∆, we compute εh−∆ = 2 · ιh−∆−1 − ιh−∆ and
from ιh−∆ and εh−∆+1, we compute ιh−∆+1. By repeating this process, we
can compute ιh−∆+2, ιh−∆+3, . . . , ιh−1, and εh. 2
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Figure 6: A maximum path length binary tree of height 6, size 43, and fringe
thickness 4.

3 Maximum Path Length Binary Trees

We now characterize the maximum path length binary trees of a given
height, size, and fringe thickness by giving their detailed profile. Suppose
we want to describe a maximum path length binary tree of height 6, size
43, and fringe thickness 4. The tree in Figure 6 is a maximum path length
binary tree of this height, size, and fringe thickness that we computed using
a dynamic programming algorithm; its EPL is 256. Its nodes are placed as
far from the root as possible, increasing the path length as much as possi-
ble, while maintaining the required height and fringe thickness. The idea of
placing nodes as far from the root as possible enables us to find the general
description of a maximum path length binary tree of a given height, size,
and fringe thickness.

Definition 3.1 Let MaxEPL(h,N,∆) be the set of binary trees with the
maximum path length for a given height h, size N , and fringe thickness ∆.

What do such trees look like? Clearly, if ∆ = 0, the tree must be a Bin(h)
tree. Therefore, in the rest of this section, we assume that ∆ > 0. We deduce
where external nodes may appear in a binary tree T in MaxEPL(h,N,∆).
Tree T has height h and fringe thickness ∆, so it must have a Bin(h−∆)
prefix. Therefore, there are no external nodes on the levels 0, . . . , h−∆− 1
and at least one external node on level h − ∆. Furthermore, T must have
at least two external nodes on level h. But what of the levels between the
levels h−∆ and h?

3.1 The Distribution of External Nodes

We give two restrictions on the numbers of external nodes that can appear
on the levels between h−∆ and h. We first show that there can be no more
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Figure 7: The transformation used in Lemma 3.1.

than two external nodes on each of these levels.

Lemma 3.1 Let π(T ) = 〈ι0, ε0〉, . . . , 〈ιh, εh〉 be the detailed profile of a bi-
nary tree T in MaxEPL(h,N,∆). Then, εi ≤ 2, for h−∆ < i < h; that is,
there are at most two external nodes on level i of T , for h−∆ < i < h.

Proof: We argue by contradiction. Assume that there are more than
two external nodes on level j in T , for some h − ∆ < j < h. Then,
εj > 2. We show that there is a binary tree T ′ with detailed profile
π′ = 〈ι′0, ε′0〉, . . . , 〈ι′h, ε′h〉, where

• ι′i = ιi and ε
′
i = εi, for 0 ≤ i < j − 1 and j + 1 < i ≤ h,

• ι′j−1 = ιj−1 − 1 and ε′j−1 = εj−1 + 1,

• ι′j = ιj + 1 and ε
′
j = εj − 3,

• ι′j+1 = ιj+1 and ε
′
j+1 = εj+1 + 2,

such that T ′ has the same height, size, and fringe thickness as T , but a
larger EPL than T . (This corresponds to the transformation pictured in
Figure 7. If no two external nodes on level j have the same parent, we
exchange the positions of an external node on level j and the sibling node
of another external node on level j to create a pair of external nodes on
level j with the same parent before applying the transformation.) Thus, we
shall have obtained a contradiction (since T is in MaxEPL(h,N,∆)) and T
cannot have more than two external nodes on any level between h−∆ and
h.
To show that the sequence π′ is the detailed profile of a binary tree, we

must show that the four conditions of Theorem 2.1 hold. But most of the
conditions already hold over most of π′, since π′ is almost the same as π,
which is the detailed profile of a binary tree. We must show that the third
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condition still holds on the levels j− 1, j, and j+1. Trivially, ε′j−1, ι′j , ι′j+1,
and ε′j+1 are nonnegative since their values are the same as or larger than the
corresponding values in π. Since εj > 2, we have ε

′
j = εj−3 ≥ 0. Also, there

must be at least two internal nodes on level j − 1 in T that are the parents
of the three or more external nodes on level j. Thus, ι′j−1 = ιj−1 − 1 ≥ 0.
We must also show that the fourth condition holds for levels j − 2, j − 1,
and j.

Level j − 2: We have ι′j−1+ ε′j−1 = ιj−1+ εj−1, from the definitions of ι
′
j−1

and ε′j−1. Now each pair of nodes on level j − 1 in T has an internal
node parent on level j − 2, so ιj−1 + εj−1 = 2 · ιj−2. Finally, using the
definition of ι′j−2, we have 2 ·ιj−2 = 2 ·ι′j−2. Thus, ι′j−1+ε′j−1 = 2 ·ι′j−2,
as required.

Level j − 1: Using a similar argument to the one we used above for level
j − 2, we have ι′j + ε′j = ιj + εj − 2 = 2 · ιj−1 − 2 = 2 · ι′j−1.

Level j: In this case, we have ι′j+1+ε
′
j+1 = ιj+1+εj+1+2 = 2·ιj+2 = 2·ι′j .

Since the four conditions of Theorem 2.1 hold for π′, it must be the detailed
profile of some binary tree T ′. Since ε′h ≥ εh > 0 and ι

′
h = ιh = 0, T and T

′

both have height h. Since h−∆ < j, the profiles of T and T ′ are identical
for the first h−∆ levels. Therefore, since T has fringe thickness ∆, tree T ′
has fringe thickness ∆, too. Finally, T ′ has the same size as T since it has
the same number of internal nodes as T .

Finally, we compare the EPL of T and T ′. Since two external nodes were
moved from level j to level j + 1 and one external node was moved from
level j to level j − 1 in the transformation from T to T ′, we have

EPL(T ′) = EPL(T )− 3 · j + (j − 1) + 2 · (j + 1)
> EPL(T ),

which gives a contradiction. 2

Returning to the example maximum path length binary tree of height
6, size 43, and fringe thickness 4 in Figure 6, note that it agrees with the
pattern predicted by Lemma 3.1; there are at most two external nodes on
each of the levels 3, 4, and 5.

Second, we show that if one of the levels between h−∆ and h contains
two external nodes, then no external nodes can appear on the levels beneath
it, apart from level h.

Lemma 3.2 Let π(T ) = 〈ι0, ε0〉, . . . , 〈ιh, εh〉 be the detailed profile of a bi-
nary tree T in MaxEPL(h,N,∆). If εj = 2, for some h −∆ < j < h, then
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Figure 8: The transformation used in Lemma 3.2.

εi = 0, for all j < i < h; that is, if there are two external nodes on level j,
for some h−∆ < j < h, in T , then there are no external nodes on the levels
j + 1, . . . , h− 1.

Proof: We again argue by contradiction. Assume that T has two external
nodes on level j and that there is an external node on level i, for some
j < i < h. Thus, εi > 0. We show that there is a binary tree T

′ with the
detailed profile π′ = 〈ι′0, ε′0〉, . . . , 〈ι′h, ε′h〉, where

• ι′k = ιk and ε′k = εk, for all 0 ≤ k < j − 1 and j < k < i and
i+ 1 < k ≤ h;

• ι′j−1 = ιj−1 − 1 and ε′j−1 = εj−1 + 1;

• ι′j = ιj and ε
′
j = εj − 2;

• ι′i = ιi + 1 and ε
′
i = εi − 1;

• ι′i+1 = ιi+1 and ε
′
i+1 = εi+1 + 2,

such that T ′ has the same height, size, and fringe thickness as T , but larger
EPL than T . (This corresponds to the transformation pictured in Figure 8.
If the two external nodes on level j do not have the same parent, we exchange
the positions of one of the external nodes on level j and the sibling node of
the other external node on level j before applying the transformation.)
First, we show that π′ is the detailed profile of a binary tree. The

conditions of Theorem 2.1 already hold for most of π′, since it is almost the
same as π, which is the detailed profile of a binary tree. So, we have to show
that the third and fourth conditions hold for levels j − 1, j, i, and i+ 1.
Consider the third condition of Theorem 2.1. Obviously, ε′j−1, ι

′
j , ι

′
i,

ι′i+1, and ε
′
i+1 are nonnegative, since their counterparts in π are nonnegative.
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Since εj = 2 and εi ≥ 1, we have ε′j = 0 and ε′i ≥ 0. Furthermore, since
εj = 2, there must be at least one internal node on level j − 1 that is the
parent of the two external nodes. Thus, ι′j−1 = ιj−1 − 1 ≥ 0.
Now consider the fourth condition of Theorem 2.1. Clearly, 2 · ι′j =

ι′j+1+ ε
′
j+1 and 2 · ι′i+1 = ι′i+2+ ε

′
i+2, since none of these values were changed

by the transformation. On level j − 1, we have 2 · ι′j−1 = 2 · ιj−1 − 2, by the
definition of ι′j−1. The fourth condition holds for π, in particular on level
j − 1, so we have 2 · ιj−1 − 2 = ιj + εj − 2. By the definitions of ι′j and ε′j ,
we have ιj + εj − 2 = ι′j + ε′j . Thus, 2 · ι′j−1 = ι′j + ε′j ; that is, the fourth
condition holds for π′ on level j − 1. Similarly,

2 · ι′i−1 = 2 · ιi−1 by the definition of ι′i−1
= ιi + εi − 1 + 1 since π is a detailed profile
= ι′i + ε′i by the definitions of ι′i and ε

′
i.

Also,

2 · ι′i = 2 · ιi + 2 by the definition of ι′i
= ιi+1 + εi+1 + 2 since π is a detailed profile
= ι′i+1 + ε′i+1 by the definitions of ι′i+1 and ε

′
i+1.

Finally,

2 · ι′j−2 = 2 · ιj−2 by the definition of ι′j−2
= ιj−1 + εj−1 + 1− 1 since π is a detailed profile
= ι′j−1 + ε′j−1 by the definitions of ι′j−1 and ε

′
j−1.

Thus, the fourth condition holds for π′ and, therefore, π′ is the detailed
profile of some binary tree T ′.
Next, we show that T and T ′ have the same height, size, and fringe

thickness. Since h − ∆ < j < i < h, the height and the fringe thickness
are unchanged by the transformation. The numbers of internal and external
nodes are not changed, although some of their positions are changed. Thus,
the resulting tree T ′ has the same height, size, and fringe thickness as the
original tree T .
Finally, we show that the EPL of T has increased. Because we moved

two external nodes from level j to level i + 1 and one external node from
level i to level j − 1, we have

EPL(T ′) = EPL(T )− 2 · j + 2 · (i+ 1)− i+ (j − 1)
= EPL(T ) + i− j + 1

> EPL(T ),

since j < i. Once again we have constructed a binary tree T ′ with the same
height, size, and fringe thickness as tree T , but with larger EPL. This is
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a contradiction, since T has the maximum EPL for a binary tree with its
height, size, and fringe thickness. Therefore, our assumption that there is
an external node on level i of tree T , for some j < i < h, is false. 2

Corollary 3.3 Let π(T ) = 〈ι0, ε0〉, . . . , 〈ιh, εh〉 be the detailed profile of a
binary tree T in MaxEPL(h,N,∆). If εj = 2, for some h−∆ < j < h, then
εi ≤ 1, for all h − ∆ < i < j. That is, if there are two external nodes on
level j, for some h−∆ < j < h, then there is at most one external node on
each of the levels h−∆+ 1, . . . , j − 1.

Proof: By Lemma 3.1, there can be at most two external nodes on each of
the levels h−∆+1, . . . , j−1. Assume level i, for some h−∆ < i < j, contains
two external nodes. Then, by Lemma 3.2, levels i+ 1, . . . , h− 1 contain no
external nodes. But level j contains two external nodes, a contradiction.
Thus, if level j contains two external nodes, for some h −∆ < j < h, then
level i contains at most one external node, for all h−∆ < i < j. 2

Thus, external nodes are placed on the levels between (but not including)
levels h−∆ and h in one of two ways. One way is that each level contains
at most one external node. Alternatively, one of these levels, level j, say,
contains two external nodes, those levels below level j contain no external
nodes, and each level above level j contains at most one external node.
Returning again to the example maximum path length binary tree in

Figure 6, note that the numbers of external nodes on each of the levels
between levels h−∆ and h follow the pattern predicted by Corollary 3.3. In
this case, h = 6 and ∆ = 4. Level 5 contains two external nodes; therefore,
levels 3 and 4 can contain at most one external node each. In fact, there are
no external nodes on level 3, and one external node on level 4.
If we consider the numbers εi of external nodes on the levels h − ∆ +

1, . . . , h − 1 as the “digits” of a number in some number system, where
εh−∆+1 is the highest order digit and εh−1 is the lowest order digit, we see
that the digits are all either 0, 1 and 2, and if a digit 2 occurs, all of the
digits in lower order positions than the 2 are 0. In fact, these sequences
of εi are representations of numbers in the pseudo-binary number system.
The pseudo-binary number system uses the digits 0, 1, and 2, and the ith

digit of a pseudo-binary representation is the coefficient of 2i+1 − 1. (The
least significant digit corresponds to index 0 and we count up from there.)
For example, the decimal value of the pseudo-binary representation 201 is
Value(201) = 2 · (23 − 1) + 0 · (22 − 1) + 1 · (21 − 1) = 15. In the pseudo-
binary number system, almost every nonnegative integer has more than one
pseudo-binary representation; for example, both of the pseudo-binary rep-
resentations 201 and 122 have decimal value 15. However, Cameron and
Wood [CW91b] show that every nonnegative integer has exactly one canon-
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ical pseudo-binary representation (defined below) and that this representa-
tion is computable.

Definition 3.2 A pseudo-binary representation an · · · a0 is canonical when
either none of its digits are 2 or some digit ak is 2 and all lower-order digits
ai, for all 0 ≤ i < k, are 0.

The canonical pseudo-binary representations match the description we need
for the sequence εh−∆+1 · · · εh−1. From the definition, 1101 and 10200 are
canonical pseudo-binary representations, but 1210 and 202 are not. Any
pseudo-binary representation that has a digit 2 and some lower order digit 1
or 2 is not canonical; all other pseudo-binary representations are canonical.
Cameron andWood [CW91b] show that the representatives produced via the
greedy algorithm in the pseudo-binary number system (which they call the
P2 number system) are exactly the canonical pseudo-binary representations.
Thus, each integer has a unique canonical pseudo-binary representation and
this representation is computable.
The sequence εh−∆+1 · · · εh−1 (ignoring leading zeroes) is a canonical

pseudo-binary representation because levels h−∆+ 1, . . . , h− 1 contain at
most two external nodes each and if one of them contains two external nodes
then the levels below it contain no external nodes. The following result gives
the value of this canonical pseudo-binary representation in terms of h, N ,
and ∆, thereby showing how we can compute the sequence when given h,
N , and ∆.

Theorem 3.4 Let π(T ) = 〈ι0, ε0〉, . . . , 〈ιh, εh〉 be the detailed profile of a
binary tree T of height h, size N , and fringe thickness ∆. Let εi ≤ 2, for
all h−∆ < i < h, and, if εj = 2, for some h−∆ < j < h, then let εi = 0,
for all j < i < h. (Note that any tree in MaxEPL(h,N,∆) satisfies these
conditions.) Then, εh−∆+1 · · · εh−1 (ignoring leading zeroes) is the canonical
pseudo-binary representation of 2h−∆ + ιh−∆ · (2∆ − 1)−N − 1.

Proof: Let T ′ be the binary tree constructed from T by replacing each
of the εj external nodes on level j with a Bin(h− j) subtree, for all j,
h−∆ < j < h. Since ht(T ) = h and the newly added subtrees reach to level
h and no farther, T ′ has height h. Tree T ′ has fringe thickness ∆ because
T does and levels 0, . . . , h−∆ are unchanged. However,

size(T ′) = size(T ) +
h−1∑

j=h−∆+1

εj · size(Bin(h− j))

= N +
∆−1∑

j=1

εh−j · (2j − 1). (1)
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By replacing all external nodes on levels h −∆ + 1, . . . , h − 1 with perfect
binary trees that reach all the way to level h, each non-empty subtree rooted
on level h−∆ has become a Bin(∆) tree. Therefore,

size(T ′) = size(Bin(h−∆) prefix) + ιh−∆ · size(Bin(∆))
= 2h−∆ − 1 + ιh−∆ · (2∆ − 1). (2)

Combining Equations 1 and 2 gives

∆−1∑

j=1

εh−j(2
j − 1) = 2h−∆ + ιh−∆ · (2∆ − 1)−N − 1.

2

Let us apply Theorem 3.4 to a particular example. The example maxi-
mum path length binary tree of height 6, size 43, and fringe thickness 4 in
Figure 6 has 3 internal nodes on level h−∆ = 2. Since 2h−∆+ ιh−∆ · (2∆−
1)−N − 1 = 5 and 12 is the canonical pseudo-binary number with value 5,
by Theorem 3.4, this tree has no external nodes on level 3, one external node
on level 4, and two external nodes on level 5. And, indeed, the maximum
path length binary tree in Figure 6 agrees with this pattern.

3.2 The Number of Internal Nodes on Level h −∆
Two necessary conditions for membership in MaxEPL(h,N,∆) are given in
Lemmas 3.1 and 3.2. We now prove that they are also sufficient. We do this
by examining sets of trees that have height h, fringe thickness ∆, and at
most two external nodes on each of the levels between level h−∆ and level
h, such that if level j contains two external nodes, for some h−∆ < j < h,
then level i contains no external nodes, for all j < i < h.

Definition 3.3 The set P (h,∆), where h,∆ ≥ 0, is the set of binary trees
of height h and fringe thickness ∆ that have external nodes distributed on
the levels h−∆+ 1 to h− 1 in one of the two following ways:

• Each level contains at most one external node.

• One of these levels, level j, contains two external nodes, levels h−∆+1
to j − 1 each contain at most one external node, and levels j + 1 to
h− 1 contain no external nodes.

By Lemmas 3.1 and 3.2, every binary tree inMaxEPL(h,N,∆) is in P (h,∆).
Consider how many non-empty subtrees rooted on level h −∆ are in such
a binary tree. Since ∆ > 0, it must have at least one internal node on level
h−∆. Since it has a Bin(h−∆) prefix, it must have at least one external
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node on level h −∆; thus, it can have at most 2h−∆ − 1 internal nodes on
level h−∆. Let us further subdivide the set P (h,∆) into subsets according
to the number of internal nodes rooted on level h−∆.

Definition 3.4 Let P (h,∆, r), where 0 < r < 2h−∆, be the set of all binary
trees in the set P (h,∆) with exactly r internal nodes on level h−∆.

We show that r is uniquely determined by h, w, and ∆ by examining the
sizes of the trees in P (h,∆, r), for all possible r. By finding the maximum
and minimum sizes of binary trees in P (h,∆, r), we show that the size of a
tree in P (h,∆, r) is strictly less than the size of any tree in P (h,∆, r + 1).
Thus, if a given size N is no larger than the maximum size and no smaller
than the minimum size of trees in P (h,∆, r), for some r, then a binary tree
in MaxEPL(h,N,∆) must have exactly r internal nodes on level h−∆.

Lemma 3.5 Let T be a tree in P (h,∆, r), for some h ≥ 0, some ∆ ≥ 0,
and some 0 < r < 2h−∆. Then, 2h−∆ + (r − 1) · (2∆ − 1) ≤ size(T ) ≤
2h−∆ − 1 + r · (2∆ − 1).

Proof: By Theorem 3.4, if the number of external nodes on level i of T is
εi, then the sequence εh−∆+1εh−∆+2 · · · εh−1 is the canonical pseudo-binary
representation of 2h−∆ + r · (2∆ − 1) − size(T ) − 1. Therefore, the larger
the value of εh−∆+1εh−∆+2 · · · εh−1, the smaller the size of T . Cameron and
Wood [CW91b] show that if the highest order non-zero digit in a canonical
pseudo-binary representation is the coefficient of 2n+1 − 1, then the value
of the representation is at most 2 · (2n+1 − 1). Since the highest order
non-zero digit of εh−∆+1εh−∆+2 · · · εh−1 can be at most εh−∆+1, we have
Value(εh−∆+1εh−∆+2 · · · εh−1) ≤ 2·(2∆−1−1). Therefore, we have size(T ) ≥
2h−∆ + r · (2∆ − 1)− 2 · (2∆−1 − 1)− 1 = 2h−∆ + (r − 1) · (2∆ − 1).
Consider a binary tree T ′ that has height h, fringe thickness ∆, exactly

r Bin(∆) subtrees rooted on level h −∆ and no other non-empty subtrees
rooted on level h − ∆. Tree T ′ is pictured in Figure 9. Since T ′ has no
external nodes on the levels h − ∆ + 1, . . . , h − 1, tree T ′ is in P (h,∆, r).
As we showed in the proof of Theorem 3.4, any tree T in P (h,∆, r) can be
transformed into a tree with the same description as T ′ (the positions of
the r Bin(∆) subtrees may be different) by replacing each external node on
level j with a Bin(h− j) subtree, for h−∆ < j < h. Thus, for any tree T
in P (h,∆, r), we have size(T ) ≤ size(T ′) = 2h−∆ − 1 + r · (2∆ − 1). 2

In fact, the lower bound of Lemma 3.5 is tight because a binary tree of
height h and fringe thickness ∆ with r−1 Bin(∆) subtrees, one Bin(1) sub-
tree, and no other non-empty subtrees rooted on level h−∆ is in P (h,∆, r)
and has size 2h−∆ + (r − 1) · (2∆ − 1); see Figure 10.
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Figure 9: A maximum size tree in P (h,∆, r).
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Figure 10: A minimum size tree in P (h,∆, r).

Corollary 3.6 Let Tr be a binary tree in P (h,∆, r) and Tr+1 be a binary
tree in P (h,∆, r + 1). Then, size(Tr) < size(Tr+1).

Proof: Applying Lemma 3.5, we have size(Tr) ≤ 2h−∆ − 1 + r · (2∆ − 1)
and 2h−∆ + r · (2∆ − 1) ≤ size(Tr+1). Therefore, size(Tr) < size(Tr+1). 2

Since the sizes of trees in P (h,∆, r) fall within a range that does not
overlap with the range of sizes in P (h,∆, r′), where r′ 6= r, we can compute
the number r of internal nodes on level h−∆ of a tree in MaxEPL(h,N,∆)
by computing the range that contains N . In fact, there is a simple formula
to compute r given h, N , and ∆, as the following result shows.

Theorem 3.7 If T is in MaxEPL(h,N,∆), then T has exactly r internal
nodes on level h−∆, where

r =

⌊

N − 2h−∆
2∆ − 1

⌋

+ 1.

Proof: If T is a maximum path length binary tree of height h, size N ,
and fringe thickness ∆, then T is in P (h,∆, r), for some 0 < r < 2h−∆ − 1.
Therefore, by Lemma 3.5,

2h−∆ + (r − 1) · (2∆ − 1) ≤ size(T ) ≤ 2h−∆ − 1 + r · (2∆ − 1).
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We can rewrite this as

r − 1 ≤ N − 2h−∆
2∆ − 1 ≤ r − 1

2∆ − 1 .

Thus, since r is an integer and ∆ ≥ 1, we have

r =

⌊

N − 2h−∆
2∆ − 1

⌋

+ 1.

Furthermore, there cannot be any other binary tree T ′ in
MaxEPL(h,N,∆) with a number r′ of internal nodes on level h − ∆ dif-
ferent from r. If there were such a T ′, then, by Corollary 3.6, either
size(T ) < size(T ′) (if r < r′) or size(T ′) < size(T ) (if r′ < r). But
size(T ) = size(T ′) = N . Thus, there can be only one choice for the number
of internal nodes on level h−∆. 2

Let us return to the previous example of a maximum path length binary
tree of height 6, size 43, and fringe thickness 4. By Theorem 3.7, to find the
number of internal nodes on level 2 of such a tree, we must find the integer
r such that 2h−∆ + (r − 1) · (2∆ − 1) ≤ 43 ≤ 2h−∆ − 1 + r · (2∆ − 1); that
is, r = b(N − 2h−∆)/(2∆ − 1)c + 1. With r = b39/15c + 1 = 3, we have
34 ≤ 43 ≤ 48. Thus, the maximum path length binary tree of height 6, size
43, and fringe thickness 4 in Figure 6 has exactly three internal nodes on
level 2.

3.3 The Description of a Tree in MaxEPL(h,N,∆)

Let us summarize what we have discovered about binary trees in
MaxEPL(h,N,∆) by giving their detailed profiles.

Theorem 3.8 Let π(T ) = 〈ι0, ε0〉, . . . , 〈ιh, εh〉 be the detailed profile of a
binary tree T in MaxEPL(h,N,∆). Then,

• ιi = 2
i and εi = 0, for all 0 ≤ i < h−∆;

• ιh−∆ = r and εh−∆ = 2
h−∆− r, where r = b(N −2h−∆)/(2∆−1)c+1;

• εh−∆+1εh−∆+2 · · · εh−1 (ignoring leading zeros) is the canonical pseudo-
binary representation of 2h−∆ + r · (2∆ − 1)−N − 1;

• ιi, for all h−∆ < i < h, can be found by using 2 · ιi−1 = ιi + εi, once
ιh−∆ and εi are known; and

• ιh = 0 and εh = N + 1− (2h−∆ − r)−∑∆−1
i=1 εh−∆+i.
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Proof: The first condition follows immediately since T has height h and
fringe thickness ∆. The second condition, that T has r internal nodes on
level h−∆, follows directly from Theorem 3.7. The third condition follows
from Theorem 3.4. Since these first three items give the number of external
nodes on the levels 0, . . . , h − 1, any remaining external nodes appear on
level h. Thus, εh = (N + 1)− (2h−∆ − r)−∑∆−1

i=1 εh−∆+i. Of course, since
T has height h, ιh = 0. Finally, the fourth condition follows from the fourth
condition of Theorem 2.1. 2

Returning to the previous example, suppose we are asked to characterize
a maximum path length binary tree of height h = 6, size N = 43, and fringe
thickness ∆ = 4. We previously found that such a tree must have three non-
empty subtrees rooted on level 2, and that there are no external nodes on
level 3, exactly one external node on level 4, and exactly two external nodes
on level 5 of such a tree. By Theorem 3.8, we can find ιj , for all 2 < j < 6,
using the formula ιj = 2 · ιj−1 − εj . Thus, there are 2 · 3 − 0 = 6 internal
nodes on level 3, 2 · 6− 1 = 11 internal nodes on level 4, and 2 · 11− 2 = 20
internal nodes on level 5. Also, there are 44− (22− 3)− 1− 2 = 40 external
nodes on level 6. Thus, the detailed profile of the maximum path length
binary tree is 〈1, 0〉〈2, 0〉〈3, 1〉〈6, 0〉〈11, 1〉〈20, 2〉〈0, 40〉. If we put all external
nodes on levels 3, 4, and 5 in one of the subtrees rooted on level 2, we obtain
a binary tree such as the one in Figure 6.

Theorem 3.9 Let T be a binary tree of height h, size N , and fringe thick-
ness ∆. Then,

EPL(T ) ≤ (N + 1) · h−∆ · (2h−∆ − r)−
∆−1∑

i=1

(∆− i) · εh−∆+i,

where

• r = b(N − 2h−∆)/(2∆ − 1)c+ 1, and

• εh−∆+1εh−∆+2 · · · εh−1 (ignoring leading zeros) is the canonical pseudo-
binary representation of 2h−∆ + r · (2∆ − 1)−N − 1.

Proof: By Theorem 3.8, a binary tree T ′ inMaxEPL(h,N,∆) has 2h−∆−r
external nodes on level h − ∆, where r = b(N − 2h−∆)/(2∆ − 1)c + 1,
since it has height h, fringe thickness ∆, and r internal nodes on level h −
∆. It also has εh−∆+i external nodes on level h − ∆ + i, for 0 < i < ∆,
where εh−∆+1εh−∆+2 · · · εh−1 is the canonical pseudo-binary representation
of 2h−∆+r·(2∆−1)−N−1. The remaining N+1−(2h−∆−r)−∑∆−1

i=1 εh−∆+i
external nodes appear on level h. Since EPL(T ′) =

∑h
i=0 i · εi, the EPL of
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the binary tree T ′ is given by

EPL(T ′) = (h−∆) · (2h−∆ − r) +
∆−1∑

i=1

(h−∆+ i) · εh−∆+i

+ h · (N + 1− (2h−∆ − r)−
∆−1∑

i=1

εh−∆+i)

= (N + 1) · h−∆ · (2h−∆ − r)−
∆−1∑

i=1

(∆− i) · εh−∆+i.

Finally, the EPL of any binary tree T of height h, sizeN , and fringe thickness
∆ is at most as large as the EPL of a binary tree T ′ in MaxEPL(h,N,∆).
2

For example, consider a binary tree T of height 6, size 43, and fringe
thickness 4. A maximum path length binary tree T ′ of height 6, size 43,
and fringe thickness 4 has, as we have seen, three internal nodes on level 2,
no external nodes on level 3, one external node on level 4, and two external
nodes on level 5. Thus, by the above theorem, the external path length of
T is bounded from above by

EPL(T ) ≤ EPL(T ′)

= 44 · (2 + 4)− 4 · (22 − 3)− ((4− 1) · 0
+ (4− 2) · 1 + (4− 3) · 2)

= 256.

4 Path Length, Size, and Fringe Thickness

Now that we have characterized the maximum path length binary trees
of a given height, size, and fringe thickness, we use this characterization
to compute the height that gives the maximum path length. Because the
numbers of external nodes on some levels of the maximum path length binary
tree of a given height, size, and fringe thickness are given by the pseudo-
binary representation of a number that is a function of the height as well as
the size and fringe thickness, computing the height that gives the maximum
path length is not immediate. Although we cannot give a formula for the
height that gives the maximum path length, we can compute it. Given a
size and a fringe thickness, we compute the maximum path length for each
height using Theorem 3.9 and then choose the height that gives the largest
path length. We examine only the heights for which there exist binary trees
of the given size and fringe thickness.
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Given a size N and a fringe thickness ∆, what is the minimum height
that a binary tree can have and what is the maximum height? For ∆ = 0
and ∆ = 1, there is exactly one choice of height. If ∆ = 0, the size must
be N = 2h − 1, for some h ≥ 0, and the tree is a Bin(h) tree. If ∆ = 1,
then the height of the tree must be dlog2(N + 1)e, and level blog2(N + 1)c
contains (N +1)− 2blog2(N+1)c internal nodes. Assume in what follows that
∆ > 1 and that size > ∆ (we must have enough nodes for a Snake(∆ + 1)
tree to obtain fringe thickness ∆).
We characterize the combinations of height, size, and fringe thickness for

which binary trees exist.

Theorem 4.1 Let h and ∆ be nonnegative integers such that ∆ < h and
let N be a nonnegative integer. Then, there is a binary tree of height h, size
N , and fringe thickness ∆ if and only if

2h−∆ +∆− 1 ≤ N ≤ (2h−∆ − 1) · 2∆.

Proof: Only if: Assume that there is a binary tree T of height h, size
N , and fringe thickness ∆. Clearly, a binary tree of height h and fringe
thickness ∆ must have a Bin(h−∆) prefix and at least one path leading
from level h−∆ to level h. Thus, a minimum size binary tree of height h and
fringe thickness ∆ consists entirely of a Bin(h−∆) prefix and a Snake(∆)
rooted on level h−∆; see Figure 11. Since the size of T must be at least the
minimum size for a binary tree of height h and fringe thickness ∆, we have
2h−∆ + ∆ − 1 ≤ N . Consider a maximum size tree of height h and fringe
thickness ∆. It must have at least one external node on level h − ∆ and,
therefore, no more than 2h−∆ − 1 internal nodes on level h−∆. We show,
by contradiction, that the maximum size tree must have exactly 2h−∆ − 1
internal nodes on level h − ∆. If the maximum size tree has fewer than
2h−∆ − 1 internal nodes on level h −∆, we can replace one of the external
nodes on level h−∆ with a Bin(∆) subtree, thereby creating another binary
tree of larger size than the maximum size tree, but with the same height
and fringe thickness. Thus, the maximum size tree of height h and fringe
thickness ∆ has exactly 2h−∆ − 1 internal nodes on level h −∆. We show
that each of these internal nodes must be the root of a Bin(∆) subtree in
a similar manner. Since the height of the maximum size tree is h, if one of
these internal nodes is not the root a Bin(∆) subtree, it must be the root of
some other subtree of height at most ∆. Then, we can replace the subtree by
a Bin(∆) subtree (which has the largest size among all binary trees of height
at most ∆), creating another binary tree of height h and fringe thickness ∆
with larger size than the maximum size tree. Thus, each of the 2h−∆ − 1
internal nodes on level h−∆ of a maximum size tree of height h and fringe
thickness ∆ is the root of a Bin(∆) subtree. An example of a maximum
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Figure 11: A minimum size tree of height h and fringe thickness ∆.

#
#
#
#
#
##

c
c

c
c

c
cc

Bin(h−∆)

¥
¥
¥
¥
¥¥D
D
D
D
DD

q q q
¥
¥
¥
¥
¥¥D
D
D
D
DD

2h−∆ − 1 Bin(∆) subtrees
︸ ︷︷ ︸

Figure 12: A maximum size tree of height h and fringe thickness ∆.

size tree of height h and fringe thickness ∆ is given in Figure 12. Since the
size of T can be at most the maximum size for a binary tree of height h and
fringe thickness ∆, we have 2h−∆ +∆− 1 ≤ N ≤ (2h−∆ − 1) · 2∆.
If: Assume that 2h−∆ + ∆ − 1 ≤ N ≤ (2h−∆ − 1) · 2∆. We construct a
binary tree of height h, size N , and fringe thickness ∆ by starting with a
maximum size binary tree T of height h and fringe thickness ∆ and then
removing nodes until we have size N , being careful to maintain the correct
height and fringe thickness. Since 2h−∆ +∆− 1 ≤ N , we will have enough
nodes remaining, after we have pruned the tree, to have a Bin(h−∆) prefix
and at least one path leading from level h − ∆ to level h, that is, for the
tree to have height h and fringe thickness ∆. To decide which nodes can
be removed and which must not be removed, we choose a path P in the
maximum size tree T leading from level h − ∆ to level h. We mark the
internal nodes on P and all nodes in the Bin(h−∆) prefix (that is, all
nodes on levels 0, . . . , h−∆−1) as “unremovable” (ensuring that we always
have height h and fringe thickness ∆) and we mark all other internal nodes
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as “removable.” Then, we perform the following deletion (2h−∆−1) ·2∆−N
times: find a removable node with two external children and replace it by
an external node. Clearly, if we can find such a node and replace it by
an external node, then the resulting tree is a binary tree of height h and
fringe thickness ∆ and the size is reduced by one. We now show that if we
have a binary tree of height h and fringe thickness ∆ with size larger than
2h−∆+∆− 1 whose nodes are marked in the manner described above, then
we can find a removable node with two external children. Since all removable
nodes are on levels h−∆, . . . , h−1 and the only unremovable nodes on levels
h−∆, . . . , h− 1 are on path P , all internal descendants of removable nodes
are removable. Thus, if we choose any removable node v, then the last level
of internal nodes of the subtree rooted at v consists of removable nodes with
two external children. Thus, we can perform the deletion operation until
we have pruned the maximum size tree down to size N while maintaining
height h and fringe thickness ∆. That is, given integers h ≥ 0, N > 0, and
∆ ≥ 0 such that 2h−∆+∆− 1 ≤ N ≤ (2h−∆− 1) · 2∆, there is a binary tree
of height h, size N , and fringe thickness ∆. 2

We can use the relation 2h−∆+∆−1 ≤ N ≤ (2h−∆−1) ·2∆ to compute
bounds on the height. The lower bound dlog2(N + 2∆)e ≤ h follows from
N ≤ (2h−∆−1) ·2∆ and the upper bound h ≤ ∆+blog2(N−∆+1)c follows
from 2h−∆ +∆− 1 ≤ N .

5 Concluding Remarks

We characterized the maximum path length binary trees of a given height,
size, and fringe thickness. In Klein and Wood [KW89], the two binary
trees shown in Figures 13 and 14 are used to show that the upper bound
on the EPL of a binary tree of size N and fringe thickness ∆ is tight if
∆ <

√
N + 1 and quite sharp if

√
N + 1 ≤ ∆. Using the characterization,

we see that these two binary trees have the maximum path length for their
heights, sizes, and fringe thicknesses since they have at most one external
node on each of the levels between the minheight and the height of the trees.
However, it is not known whether these trees have the maximum path for
their sizes and fringe thicknesses. The characterization of the binary trees
with maximum path length for a given size and fringe thickness remains
open. An area for further research is to extend these results to multiway
trees. Another problem is to characterize the minimum path length binary
trees for a given size N and fringe thickness ∆. De Santis and Persiano
[DP91] have characterized the minimum path length binary trees whose
fringe thicknesses satisfy ∆ ≤ (N + 1)/2. In [CW91a], Cameron and Wood
show that, given a height as well as a size and fringe thickness without any
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Figure 13: The tree T1(r, k,∆) of Klein and Wood.

restrictions, the minimum path length binary trees can be characterized.
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