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Preface

The goal of this work is to introduce concurrency into the object-oriented language C++ [Str91]. To achieve
this goal a set of important programming language abstractions were adapted to C++, producing a new
dialect called µC++. These abstractions were derived from a set of design requirements and combinations of
elementary execution properties, different combinations of which categorized existing programming language
abstractions and suggested new ones. The set of important abstractions contains those needed to express
concurrency, as well as some that are not directly related to concurrency. Therefore, while the focus of this
work is on concurrency, all the abstractions produced from the elementary properties are discussed. While
we are implementing our ideas as an extension to C++, the requirements and elementary properties are
generally applicable to other object-oriented languages such as Eiffel [Mey88], Simula [Sta87] and Smalltalk
[GR83].

This manual does not discuss how to use the new constructs to build complex concurrent systems. The
manual is strictly a reference manual for µC++. A reader should have an intermediate knowledge of control
flow and concurrency issues to understand the ideas presented in this manual as well as some experience
programming in C++.

This manual contains annotations set off from the normal discussion in the following way:

2 Annotation discussion like this is quoted with quads. 2

An annotation provides rationale for design decisions or additional implementation information. Also a chap-
ter or section may end with a commentary section which contains major discussion about design alternatives
and/or implementation issues. Since this organizational structure is taken from the Ellis and Stroustrup
annotated C++ book [ES90], we hope we will not be sued for look and read violations.

Each chapter of the manual does not begin with an insightful quotation. Feel free to add your own.

Abridged Manual

This manual has an abridged form that removes the multiprocessor and UNIX I/O material. The abridged
manual is useful for introductory teaching of µC++. To generate the abridged manual change the following
line, which appears at the beginning of the source file for this manual, and reformat the manual.

\notabridgedtrue % change true to false for abridged manual and reformat
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Chapter 1

µC++ Extensions

µC++ extends the C++ programming language [Str91] in somewhat the same way that C++ extends the
C programming language. The extensions introduce new objects that augment the existing panoply of
control flow facilities and provide for concurrency. The following discussion is the rational for the particular
extensions that were chosen.

1.1 Design Requirements

The following requirements directed this work:

• All communication among the new kinds of objects must be statically type checkable. We believe that
static type checking is essential for early detection of errors and efficient code generation. (As well,
this requirement is consistent with the fact that C++ is a statically typed programming language.)

• Interaction between the different kinds of objects should be possible, and in particular, interaction
between concurrent objects, called tasks, should be possible. This allows a programmer to choose
the kind of object best suited to the particular problem without having to cope with communication
restrictions.

This is in contrast to schemes where some objects, such as tasks, can only interact indirectly through
another non-task object. For example, many programming languages that support monitors [Bri75,
MMS79, HC88] require that all communication among tasks be done indirectly through a monitor;
similarly, the Linda system [CG89] requires that all communication take place through one or possibly
a small number of tuple spaces. This increases the number of objects in the system; more objects
consume more system resources, which slows the system. As well, communication among tasks is
slowed because of additional synchronization and data transfers with the intermediate object.

• All communication between objects is performed using routine calls; data is transmitted by passing
arguments to parameters and results are returned as the value of the routine call. We believe it is
confusing to have additional forms of communication in a language, such as message passing, message
queues, or communication ports.

• Any of the new kinds of objects should have the same declaration scopes and lifetimes as existing
objects. That is, any object can be declared at program startup, during routine and block activation,
and on demand during execution, using a new operator.

• All mutual exclusion must be implicit in the programming language constructs and all synchronization
should be limited in scope. It is our experience that requiring users to build mutual exclusion out of
synchronization mechanisms, e.g. locks, often leads to incorrect programs. Further, we have noted that
reducing the scope in which synchronization can be used, by encapsulating it as part of programming
language constructs, further reduces errors in concurrent programs.
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• Both synchronous and asynchronous communication are needed. However, we believe that the best way
to support this is to provide synchronous communication as the fundamental mechanism; asynchronous
mechanisms, such as buffering or futures [Hal85], can then be built when that is appropriate. Building
synchronous communication out of asynchronous mechanisms requires a protocol for the caller to
subsequently detect completion. This is error prone because the caller may not obey the protocol
(e.g. never retrieve a result). Further, asynchronous requests require the creation of implicit queues of
outstanding requests, each of which must contain a copy of the arguments of the request. This creates
a storage management problem because different requests require different amounts of storage in the
queue. We believe asynchronous communication is too complicated a mechanism to be hidden in the
system.

• An object that is accessed concurrently must have some control over which requester it services next.
There are two distinct approaches: control can be based on the kind of request, for example, selecting
a requester from the set formed by calls to a particular entry point; or control can be based on the
identity of the requester. In the former case, it must be possible to give priorities to the sets of
requesters. This is essential for high priority requests, such as a time out or a termination request.
(This is to be differentiated from giving priority to elements within a set or execution priority.) In
the latter case, selection control is very precise as the next request must only come from the specified
requester. Currently, we see a need for only the former case because we believe that the need for the
latter case is small.

• There must be flexibility in the order that requests are completed. This means that a task can accept a
request and subsequently postpone it for an unspecified time, while continuing to accept new requests.
Without this ability, certain kinds of concurrency problems are quite difficult to implement, e.g. disk
scheduling, and the amount of concurrency is inhibited as tasks are needlessly blocked [Gen81].

We have satisfied all of these requirements in µC++.

1.2 Elementary Execution Properties

Extensions to the object concept were developed based on the following execution properties:

thread – is execution of code that occurs independently of other execution; a thread defines sequential
execution. A thread’s function is to advance execution by changing execution state. Multiple threads
provide concurrent execution. A programming language must provide constructs that permit the
creation of new threads and specify how threads are used to accomplish computation. Further, there
must be programming language constructs whose execution causes threads to block and subsequently
be made ready for execution. A thread is either blocked or running or ready. A thread is blocked
when it is waiting for some event to occur. A thread is running when it is executing on an actual
processor. A thread is ready when it is eligible for execution but not being executed.

execution-state – An execution-state is the state information needed to permit concurrent execution, even
if it is not used for concurrent execution. An execution-state is either active or inactive, depending
on whether or not it is currently being used by a thread. In practice, an execution-state consists
of the data items created by an object, including its local data, local block and routine activations,
and a current execution location, which is initialized to a starting point. The local block and routine
activations are often maintained in a contiguous stack, which constitutes the bulk of an execution-state
and is dynamic in size, and is the area where the local variables and execution location are preserved
when an execution-state is inactive. A programming language knows what constitutes an execution-
state, and therefore, execution-state is an elementary property of the semantics of a language. (An
execution-state is related to the notion of a process continuation [HD90].) When a thread transfers
from one execution-state to another, it is called a context switch.

mutual exclusion – is the mechanism that permits an action to be performed on a resource without
interruption by other actions on the resource. In a concurrent system, mutual exclusion is required to
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guarantee consistent generation of results, and cannot be trivially or efficiently implemented without
appropriate programming language constructs.

The first two properties seem to be fundamental and not expressible in terms of simpler properties; they
represent the minimum needed to perform execution. The last, while expressible in terms of simpler concepts,
can only be done by algorithms that are error-prone and inefficient, e.g. Dekker-like algorithms, and therefore
we believe that mutual exclusion must be provided as an elementary execution property.

A programming language designer could attempt to provide these 3 execution properties as basic abstrac-
tions in a programming language [BLL88], allowing users to construct higher-level constructs from them.
However, some combinations might be inappropriate or potentially dangerous. Therefore, we will examine all
combinations, analyzing which combinations make sense and are appropriate as higher-level programming
language constructs. What is interesting is that enumerating all combination of these elementary execu-
tion properties produces many existing high-level abstractions and suggests new ones that we believe merit
further examination.

The three execution properties are properties of objects. Therefore, an object may or may not have a
thread, may or may not have an execution-state, and may or may not have mutual exclusion. Different
combinations of these three properties produce different kinds of objects. If an object has mutual exclusion,
this means that execution of certain member routines are mutually exclusive of one another. Such a member
routine is called a mutex member. In the situation where an object does not have the minimum properties
required for execution, i.e. thread and execution-state, those of its user (caller) are used.

Table 1.1 shows the different abstractions possible when an object possesses different execution properties.
Case 1 is an object, such as a free routine (a routine not a member of an object) or an object with member
routines that have none of the execution properties, called a class-object. In this case, the caller’s thread and
execution-state are used to perform the execution. Since this kind of object provides no mutual exclusion
it is normally accessed only by a single thread. If such an object is accessed by several threads, explicit
locking is required, which violates a design requirement. Case 2 is like Case 1 but deals with the concurrent
access problem by implicitly ensuring mutual exclusion for the duration of each computation by a member
routine. This abstraction is a monitor [Hoa74]. Case 3 is an object that has its own execution-state but
no thread. Such an object uses its caller’s thread to advance its own execution-state and usually, but not
always, returns the thread back to the caller. This abstraction is a coroutine [Mar80]. Case 4 is like Case 3
but deals with the concurrent access problem by implicitly ensuring mutual exclusion; we have adopted the
name coroutine-monitor for it. Cases 5 and 6 are objects with a thread but no execution-state. Both cases
are rejected because the thread cannot be used to provide additional concurrency. First, the object’s thread
cannot execute on its own since it does not have an execution-state, so it cannot perform any independent
actions. Second, if the caller’s execution-state is used, assuming the caller’s thread can be blocked to ensure
mutual exclusion of the execution-state, the effect is to have two threads successively executing portions of a
single computation, which does not seem useful. Case 7 is an object that has its own thread and execution-
state. Because it has both a thread and execution-state it is capable of executing on its own; however, it
lacks mutual exclusion. Without mutual exclusion, access to the object’s data is unsafe; therefore, servicing
of requests would, in general, require explicit locking, which violates a design requirement. Further, there is
no performance advantage over case 8. For these reasons, we have rejected this case. Case 8 is like Case 7
but deals with the concurrent access problem by implicitly ensuring mutual exclusion, called a task.

object properties object’s member routine properties
no implicit implicit

thread execution-state mutual exclusion mutual exclusion

no no 1 class-object 2 monitor
no yes 3 coroutine 4 coroutine-monitor
yes no 5 (rejected) 6 (rejected)
yes yes 7 (rejected) 8 task

Table 1.1: Fundamental Abstractions
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The abstractions suggested by this categorization come from fundamental properties of execution and
not ad hoc decisions of a programming language designer. While it is possible to simplify the programming
language design by only supporting the task abstraction [SBG+90], which provides all the elementary ex-
ecution properties, this would unnecessarily complicate and make inefficient solutions to certain problems.
As will be shown, each of the non-rejected abstractions produced by this categorization has a particular
set of problems that it can solve, and therefore, each has a place in the programming language. If one of
these abstractions is not present, a programmer may be forced to contrive a solution for some problems that
violates abstraction or is inefficient.
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Chapter 2

µC++ Translator

The µC++ translator reads a program containing new extensions and transforms each extension into one or
more C++ statements, which are then compiled by an appropriate C++ compiler and linked with a concurrency
runtime library. Because µC++ is only a translator and not a compiler, some restrictions apply that would
be unnecessary if the extensions were part of the C++ programming language. Similar, but less extensive
translators have been built: MC [RH87] and Concurrent C++ [GR88].

2.1 Extending C++

Operations in µC++ are expressed explicitly, i.e. the abstractions derived from the elementary properties
are used to structure a program into a set of objects that interact, possibly concurrently, to complete a
computation. This is to be distinguished from implicit schemes such as those that attempt to discover
concurrency in an otherwise sequential program, for example, by parallelizing loops and access to data
structures. While both schemes are complementary, and hence, can appear together in a single programming
language, we believe that implicit schemes are limited in their capacity to discover concurrency, and therefore,
the explicit scheme is essential. Currently, µC++ only supports the explicit approach, but nothing in its design
precludes implicit approaches.

The abstractions in Table 1.1 are expressed in µC++ using two new type specifiers, uCoroutine and uTask,
which are extensions of the class construct, and hence, define new types. In this manual, the types defined
by the class construct and the new constructs are called class types, monitor types, coroutine types,
coroutine-monitor types and task types, respectively. The terms class-object, monitor, coroutine,
coroutine-monitor and task refer to the objects created from such types. The term object is the generic
term for any instance created from any type. All objects can be declared externally, in a block, or using the
new operator. Two new type qualifiers, uMutex and uNoMutex, are also introduced to specify the presence
or absence of mutual exclusion on the member routines of a type (see Table 2.1). The default qualification
values have been chosen based on the expected frequency of use of the new types. Several new statements
are added to the language: uSuspend, uResume, uCoDie, uAccept, uWait, uSignal and uDie. Each is used to
affect control in objects created by the new types. (The prefix “u” followed by a capital letter for the new
keywords avoids current and future conflicts with UNIX routine names, e.g. accept, wait, signal, and C++
library names, e.g. task.) Appendix A shows the grammar for the µC++ extensions.

µC++ executes on uniprocessor and multiprocessor shared-memory computers. On a uniprocessor, concur-
rency is achieved by interleaving execution to give the appearance of parallel execution. On a multiprocessor
computer, concurrency is accomplished by a combination of interleaved execution and true parallel execution.
Further, µC++ uses a single-memory model. This single memory may be the address space of a single
UNIX process or a memory shared among a set of UNIX processes. A memory is populated by routine activa-
tions, class-objects, coroutines, monitors, coroutine-monitors and concurrently executing tasks, all of which
have the same addressing scheme for accessing the memory. These entities are all light-weight because
they use the same memory, so there is a low execution cost for creating, maintaining and communicating
among them. This has its advantages as well as its disadvantages. Communicating objects do not have to
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object properties object’s member routine properties
no implicit implicit

thread execution-state mutual exclusion mutual exclusion

no no [uNoMutex]† class uMutex class
no yes [uNoMutex] uCoroutine uMutex uCoroutine
yes yes N/A [uMutex] uTask

† [ ] implies default qualification if not specified

Table 2.1: New Type Specifiers

send large data structures back and forth, but can simply pass pointers to data structures. However, this
technique does not lend itself to a distributed environment with separate address-spaces.

2 Currently, we are looking at the approaches taken by distributed shared-memory systems to
see if they provide the necessary implementation mechanisms to make the non-shared memory
case similar to the shared-memory case. 2

Commentary

µC++ tasks are not implemented as UNIX processes for two reasons. First, UNIX processes have a high
runtime cost for creation and context switching. Second, each UNIX process is allocated as a separate
address space (or perhaps several) and if the system does not allow memory sharing among address spaces,
then tasks would have to communicate using pipes and sockets. Pipes and sockets are execution time
expensive. If shared memory is available, there is still the overhead of entering the UNIX kernel, page
table creation, and management of the address space of each process. Therefore, UNIX processes are called
heavy-weight because of the high runtime cost and space overhead in creating a separate address space for
a process, and the possible restrictions on the forms of communication among them. µC++ provides access
to UNIX processes only indirectly through virtual processors (see Section 2.3.2). A user is not prohibited
from creating UNIX processes explicitly, but such processes are not administrated by the µC++ runtime
environment.

2.2 Compile Time Structure of a µC++ Program

A µC++ program is constructed exactly like a normal C++ program with one exception: the main (starting)
routine is a member of an initial task called uMain, which has the following structure (see Section 2.11):

uTask uMain {
private:
int argc;
char *argv[], *envp[];
void main();
public:
uMain( int argc, char *argv[], char *envp[] ) {
uMain::argc = argc;
uMain::argv = argv;
uMain::envp = envp;

}
};

A µC++ program must define the body for the main member routine of this initial task, as in:

7



... // normal C++ declarations and routines

void uMain::main() { // body for initial task uMain
...

}

µC++ supplies and uses the free routine main to initialize the µC++ runtime environment and creates the
first task of which routine uMain::main is a member. Member uMain::main has available as local variables the
same three arguments that are passed to the free routine main: argc, argv, and envp. To return a return-code
back to the shell that invoked the µC++ program, use the free routine uExit (see Section 2.18).

2.3 Runtime Structure of a µC++ Program

The dynamic structure of an executing µC++ program is significantly more complex than a normal C++
program. In addition to the five kinds of objects introduced by the elementary properties, µC++ has two
more runtime entities that are used to control the amount of concurrent execution.

2.3.1 Cluster

A cluster is a collection of tasks and virtual processors (see below) that execute those tasks. The purpose
of a cluster is to control the amount of parallelism that is possible among tasks, where parallelism is
defined as execution which occurs simultaneously. This can only occur when multiple processors are present.
Concurrency is execution that, over a period of time, appears to be parallel. For example, a program
written with multiple tasks has the potential to take advantage of parallelism but it can execute on a
uniprocessor, where it may appear to execute in parallel because of the rapid speed of context switching.

A cluster uses a single-queue multi-server queueing model for scheduling its tasks on its processors. This
results in automatic load balancing of tasks on processors. Figure 2.1 illustrates the runtime structure of a
µC++ program. An executing task is illustrated by its containment in a processor. Because of appropriate
defaults for clusters, it is possible to begin writing µC++ programs after learning about coroutines or tasks.
More complex concurrency work may require the use of clusters. If several clusters exist, tasks can be
explicitly migrated from one cluster to another. No automatic load balancing among clusters is performed
by µC++.

When a µC++ program begins execution, it creates two clusters: a system cluster and a user cluster. The
system cluster contains a processor which does not execute user tasks. Instead, the system cluster catches
errors that occur on the user clusters, prints appropriate error information and shuts down µC++. A user
cluster is created to contain the user tasks; the first task created in the user cluster is uMain, which begins
executing the member routine uMain::main. Having all tasks execute on the one cluster often maximizes
utilization of processors, which minimizes execution time. However, because of limitations of the underlying
operating system or because of special hardware requirements, it is sometimes necessary to have more than
one cluster. Partitioning into clusters must be used with care as it has the potential to inhibit concurrency
when used indiscriminately. However, in some situations it will be shown that partitioning is essential. For
example, on some systems concurrent UNIX I/O operations are only possible by exploiting the clustering
mechanism.

2.3.2 Virtual Processor

A µC++ virtual processor is a “software processor” that executes threads. A virtual processor is implemented
as a UNIX process (or kernel thread) that is subsequently scheduled for execution on a hardware processor
by the underlying operating system. On a multiprocessor, UNIX processes are usually distributed across the
hardware processors and so some UNIX processes are able to execute in parallel. This, in turn, means the
tasks executing on them execute in parallel. µC++ uses virtual processors instead of hardware processors so
that programs do not actually allocate and hold hardware processors. Programs can be written to run using
a number of virtual processors and execute on a machine with a smaller number of hardware processors.
Thus, the way in which µC++ accesses the concurrency of the underlying hardware is through an intermediate
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Figure 2.1: Runtime Structure of a µC++ Program

resource, the UNIX process (or kernel thread). In this way, µC++ is kept portable across uniprocessor and
different multiprocessor hardware designs.

When a virtual processor is executing, µC++ controls scheduling of tasks on it. Thus, when UNIX sched-
ules a virtual processor for an execution time period, µC++ may further subdivide that period by executing
one or more tasks. When multiple virtual processors are used to execute tasks, the µC++ scheduling may
automatically distribute tasks among virtual processors and, thus, indirectly among hardware processors. In
this way, parallel execution occurs.

2.4 µC++ Kernel

After a µC++ program has been translated and compiled, a runtime concurrency library is linked in with the
resulting program, called the µC++ kernel. There are two versions of the µC++ kernel: the unikernel, which is
designed to use a single processor (the system, user and any other clusters are automatically combined); and
the multikernel, which is designed to use several processors. Thus, the unikernel is sensibly used on systems
with a single hardware processor or nonshared memory; the multikernel is sensibly used on systems that
have multiple hardware processors and that permit memory to be shared among UNIX processes. Table 2.2
shows the situations where each kernel can be used. The unikernel can be used in a system with multiple
hardware processors and shared memory but does not take advantage of either of these capabilities. The
multikernel can be used on a system with a single hardware processor and shared memory but performs less
efficiently than the unikernel because it uses multi-processor mutual exclusion unnecessarily.

non-shared memory shared memory
among UNIX processes among UNIX processes

single unikernel, yes unikernel, yes
processor multikernel, no multikernel, yes, but inefficient
multiple unikernel, yes unikernel, yes, but no parallelism
processors multikernel, no multikernel, yes

Table 2.2: When to Use the Unikernel and Multikernel
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The µC++ kernel provides no support for automatic growth of stack space for coroutines and tasks
because this would require compiler support. The µC++ kernel has a debugging form which performs a
number of runtime checks, one of which is to check for stack overflow whenever flow of control transfers
between coroutines and between tasks. This catches most stack overflows; however, stack overflow can still
occur if insufficient stack area is provided, which can cause an immediate error or unexplainable results.

2.5 Using the µC++ Translator

To use the concurrency extensions in a C++ program, include the file:

#include <uC++.h>

at the beginning of each source file.

2.5.1 Compiling a µC++ Program

The command u++ is used to compile µC++ program(s). This command works just like the UNIX CC
command to compile C++ programs (the actual C++ compiler used is GNU C++ [Tie90]), for example:

u++ [C++ options] yourprogram.cc [assembler and loader files]

The following additional options are available on the u++ command:

-debug The user’s program is loaded with the debug version of the unikernel or multikernel. The debug
version performs runtime checks to help during the debugging phase of a µC++ program. This slows
the execution of the program. The runtime checks should only be removed after the program is
completely debugged. This is the default.

-nodebug The user’s program is loaded with the non-debug version of the unikernel or multikernel. No
runtime checks are performed so errors usually result in abnormal program termination.

-delay When the user’s program is translated, random context switches are inserted so that during ex-
ecution there is a better simulation of parallelism. This is in addition to random context switching
due to time slicing (see Section 4.5). The extra delays help during the debugging phase of a µC++
program. This slows the execution of the program. This is the default.

-nodelay Random context switches are not inserted in a user’s program.

-inline When the user’s program is translated, as much µC++ kernel code as possible is inlined to decrease
execution time at the cost of increased compilation time, increased program size and poorer debugging
capabilities.

-noinline None of the µC++ kernel code is inlined, which reduced compilation cost and makes debugging
easier at the cost of increased execution time. This is the default.

-multi The user’s program is loaded with the multikernel.

-nomulti The user’s program is loaded with the unikernel. This is the default.

-quiet This suppresses printing of the µC++ compilation message at the beginning of a compilation.

-noquiet This prints the µC++ compilation message at the beginning of a compilation. This is the
default.

-compiler name This specifies the name of the compiler used to compile the µC++ program(s). This
allows compilers other than the default GNU C++ compiler to be used to compile a µC++ program
using u++.

The u++ command is available by including /u/usystem/software/u++/bin in your command search
path, which is usually located in the .cshrc file.
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2.5.2 Preprocessor Variables

When programs are compiled using u++, the following translator variables are available during prepro-
cessing. The translator variable U CPLUSPLUS is always available during preprocessing. If the -debug
compilation option is specified, then the translator variable U DEBUG is available during preprocessing.
If the -delay compilation option is specified, then the translator variable U DELAY is available during
preprocessing. If the -inline compilation option is specified, then the translator variable U INLINE is
available during preprocessing. If the -multi compilation option is specified, then the translator variable
U MULTI is available during preprocessing. This allows conditional compilation of programs that must

work differently in these situations. For example, to allow a normal C/C++ program to be compiled using
µC++ the following is necessary:

...
#ifdef U CPLUSPLUS
void uMain::main() {
#else
int main( int argc, char *argv[] ) {
#endif
...

}

This conditionally includes the correct definition for main if the program is compiled using u++.

2.6 Coroutine

A coroutine is an object with its own execution-state so its execution can be suspended and resumed.
Execution of a coroutine is suspended as control leaves it, only to carry on from that point when control
returns at some later time. This means that a coroutine is not restarted at the beginning on each activation
and that its local variables are preserved. Hence, a coroutine solves the class of problems associated with
finite-state machines and push-down automata, which are logically characterized by the ability to retain state
between invocations. In contrast, a free routine or member routine always executes to completion before
returning so that its local variables only persist for a particular invocation. A coroutine executes serially,
and hence there is no concurrency implied by the coroutine construct. However, the ability of a coroutine to
suspend its execution-state and later have it resumed is the precursor to true tasks but without concurrency
problems; hence, a coroutine is also useful to have in a programming language for teaching purposes because
it allows incremental development of these properties.

A coroutine type has all the properties of a class. The general form of the coroutine type is the following:

[uNoMutex] uCoroutine coroutine-name {
private:
... // these members are not visible externally
protected:
... // these members are visible to descendants
void main(); // starting member
public:
... // these members are visible externally

};

The coroutine type has one distinguished member, named main. Instead of allowing direct interaction with
main, its visibility is private or protected; therefore, a coroutine can only be activated indirectly by one of the
coroutine’s member routines. A user interacts with a coroutine indirectly through its member routines. This
allows a coroutine type to have multiple public member routines to service different kinds of requests that
are statically type checked. No arguments can be passed to main, but the same effect can be accomplished
indirectly by passing arguments to the constructor for the coroutine and storing these values in the coroutine’s
variables, which can be referenced by main.
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A coroutine can suspend its execution at any point by activating another coroutine. This can be done in
two ways. First, a coroutine can implicitly reactivate the coroutine that previously activated it. Second, a
coroutine can explicitly invoke a member of another coroutine, which causes activation of the coroutine that
it is a member of. Hence, two different styles of coroutine are possible, based on whether implicit activation
is used. A semi-coroutine always activates the member routine that activated it; a full coroutine calls
member routines in other coroutines that cause execution of that coroutine to be activated.

2 Coroutines can be simulated without using a separate execution-state, e.g. using a class,
but this is difficult and error-prone for more than a small number of activation points. All data
needed between activations must be local to the class and the coroutine structure must be written
as a series of cases, each ending by recording the next case that will be executed on re-entry.
Simulating a coroutine with a subroutine requires retaining data in variables with global scope
or automatic variables with static storage-class between invocations. However, retaining state
in these ways violates the principle of abstraction and does not generalize to multiple instances,
since there is only one copy of the storage in both cases. Simulating a coroutine with a task, which
also has an execution-state, is non-trivial because the organizational structure of a coroutine and
task are different. Further, simulating full coroutines that form a cyclic call-graph is not possible
with tasks because of a task’s mutual exclusion, which would cause deadlock. Finally, a task is
inefficient for this purpose because of the higher cost of switching both a thread and execution-
state as opposed to just an execution-state. In this implementation, the cost of communication
with a coroutine is, in general, less than half the cost of communication with a task, unless the
communication is dominated by transferring large amounts of data. 2

2.6.1 Coroutine Creation and Destruction

A coroutine is the same as a class-object with respect to creation and destruction, as in:

uCoroutine C {
void main() ...
public:
void r( ... ) ...

};
C *cp; // pointer to a C coroutine
{ // start a new block
C c, ca[3]; // local creation
cp = new C; // dynamic creation
...
c.r( ... ); // call a member routine that activates the coroutine
ca[1].r( ... ); // call a member routine that activates the coroutine
cp−>r( ... ); // call a member routine that activates the coroutine
...

} // c, ca[0], ca[1] and ca[2] are destroyed
...
delete cp; // cp’s instance is destroyed

When a coroutine is created the following occurs. The appropriate coroutine constructor and any base-
class constructors are executed in the normal order. The stack component of the coroutine’s execution-state
is then created and the starting point (activation point) is initialized to the coroutine’s main routine; however,
the main routine does not start execution until the coroutine is activated by one of its member routines.
The location of a coroutine’s variables—in the coroutine’s data area or in member routine main—depends
on whether the variables must be accessed by member routines other than main. Once main is activated, it
executes until it activates another coroutine or terminates. The coroutine’s point of last activation may be
outside of the main routine because main may have called another routine; the routine called could be local
to the coroutine or in another coroutine.

12



A coroutine terminates when its main routine terminates or when the statement uCoDie is executed.
uCoDie allows a coroutine to be terminated in a routine other than main. When a coroutine terminates, it
activates the coroutine or task that caused main to start execution. This choice was made because the start
sequence is a tree, i.e. there are no cycles. A thread can move in a cycle among a group of coroutines but
termination always proceeds back along the branches of the starting tree. This choice for termination does
impose certain requirements on the starting order of coroutines, but it is essential to ensure that cycles can
be broken at termination. An attempt to communicate with a terminated coroutine is an error.

Like a routine or class, a coroutine can access all the external variables of a C++ program and the heap
area. Also, any static member variables declared within a coroutine are shared among all instances of that
coroutine type. If a coroutine makes global references or has static variables and is instantiated by different
tasks, there is the general problem of concurrent access to these shared variables.

2.6.2 Inherited Members

Each coroutine type, if not derived from some other coroutine type, is implicitly derived from the coroutine
type uBaseCoroutine, as in:

uCoroutine coroutine-name : public uBaseCoroutine {
...

};

where the interface for the base class uBaseCoroutine is as follows:

uCoroutine uBaseCoroutine {
protected:
void uSaveFloatRegs();
public:
uBaseCoroutine();
uBaseCoroutine( int stackSize );
void uVerify();

};

The protected member routine uSaveFloatRegs causes the additional saving of the floating point registers
during a context switch for a coroutine. In most systems, e.g. UNIX, the entire state of the actual processor is
saved during a context switch because there is no way to determine if a particular object is using only a subset
of the actual processor state. All objects use the fixed-point registers, while only some use the floating-point
registers. Because there is a significant execution cost in saving and restoring the floating-point registers,
they are not saved automatically. Hence, in µC++ the fixed-point registers are always saved during a context
switch, but it may or may not be necessary to save the floating-point registers. If a coroutine or task performs
floating-point operations, it must invoke uSaveFloatRegs immediately after starting execution. From that
point on, both the fixed-point and floating-point registers are saved during a context switch.

The overloaded constructor routine uBaseCoroutine has the following forms:

uBaseCoroutine() – creates the coroutine on the current cluster with the stack size for its execution-state
specified by the current cluster’s default stack size, a machine dependent value no less than 4000
bytes.

uBaseCoroutine( int stackSize ) – creates the coroutine on the current cluster with the specified stack size
(in bytes).

A coroutine type can be designed to allow declarations to specify the size of the stack by doing the following:
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uCoroutine C {
public:
C() : uBaseCoroutine( 8192 ) {}; // default 8K stack
C( int i ) : uBaseCoroutine(i) {}; // user specified stack size
...

};

C x, y( 16384 ); // x has an 8K stack, y has a 16K stack

The member routine uVerify checks whether the current coroutine has overflowed its stack. If it has, the
program terminates. A call to uVerify might be included after each set of declarations, as in the following
example:

void main() {
... // declarations
uVerify(); // check for stack overflow
... // code

}

Thus, after a coroutine has allocated its local variables, a verification is made that the stack was large enough
to contain them. When the -debug option is used, calls to uVerify are automatically inserted at the beginning
of each block, which includes a routine body and compound statement.

The free routine:

uBaseCoroutine &uThisCoroutine();

is used to determine the identity of the current coroutine. Because it returns a reference to the base coroutine
type, uBaseCoroutine, this reference can only be used to access the public routines of type uBaseCoroutine.
For example, a free routine can check whether the allocation of its local variables has overflowed the stack
of a coroutine that called it by performing the following:

int FreeRtn( ... ) {
... // declarations
uThisCoroutine().uVerify(); // check for stack overflow
... // code

}

2.6.3 Coroutine Control and Communication

Control flow among coroutines is specified by the uResume and uSuspend statements. The uResume statement
is used only in the member routines; it always activates the coroutine in which it is specified, and consequently,
causes the caller of the member routine to become inactive. The uSuspend statement is used only within
the coroutine body, not its member routines; it causes the coroutine to become inactive, and consequently,
to activate the caller that most recently activated the coroutine. In terms of the execution properties, these
statements redirect a thread to a different execution-state. The execution-state can be that of a coroutine or
the current task, i.e. a task’s thread can execute using its execution-state, then several coroutine execution-
states, and then back to the task’s execution-state. Therefore, these statements activate and deactivate
execution-states, and do not block and make ready threads.

A semi-coroutine is characterized by the fact that it always activates its caller, as in the producer-
consumer example of Figure 2.2. Notice the explicit call from Prod’s main routine to delivery and then the
return back when delivery completes. delivery always activates its coroutine, which subsequently activates
delivery. Appendix B.1 shows a complex binary insertion sort using a semi-coroutine.

A full coroutine is characterized by the fact that it never activates its caller; instead, it activates another
coroutine by invoking one of its member routines. Thus, full coroutines activate one another often in
a cyclic fashion, as in the producer-consumer example of Figure 2.3. Notice the uResume statements in
routines payment and delivery. The uResume in routine payment activates the execution-state associated
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with Prod::main and that execution-state continues in routine Cons::delivery. Similarly, the uResume in
routine delivery activates the execution-state associated with Cons::main and that execution-state continues
in Cons::main initially and subsequently in routine Prod::payment. This cyclic control flow and the termination
control flow is illustrated in Figure 2.4.

Producer Consumer

uCoroutine Prod {
Cons *c;
int N, status;
void main() {

int p1, p2;
// 1st resume starts here
for ( int i = 1; i <= N; i += 1 ) {

... // generate a p1 and p2
status = c−>delivery( p1, p2 );
if ( status == ... ) ...

} // for
c−>delivery( −1, 0 );

}; // main
public:
Prod( Cons *c ) { Prod::c = c; };
void start( int N ) {

Prod::N = N;
uResume; // restart Prod::main

}; // start
}; // Prod

uCoroutine Cons {
int p1, p2, status;
void main() {

// 1st resume starts here
while ( p1 >= 0 ) {

// consume p1 and p2
status = ...;
uSuspend; // restart Cons::delivery

} // while
}; // main

public:
int delivery( int p1, int p2 ) {

Cons::p1 = p1;
Cons::p2 = p2;
uResume; // restart Cons::main
return status;

}; // delivery
}; // Cons

int main() {
Cons cons; // create consumer
Prod prod( &cons ); // create producer
prod.start( 10 ); // start producer

} // main

Figure 2.2: Semi-Coroutine Producer-Consumer Solution

2.7 Mutex Types

A mutex type consists of a set of variables and a set of mutex members, which operate on the variables. A
mutex type has at least one mutex member. Objects instantiated from mutex types have the property
that mutex members are executed with mutual exclusion; that is, only one task at a time can execute a
mutex member. This task is termed the active task. Mutual exclusion is enforced by locking the mutex
object when execution of a mutex member begins and unlocking it when the active task voluntarily gives up
control of the mutex object. If another task invokes a mutex member while a mutex object is locked, the
task is blocked until the mutex type becomes unlocked.

When uMutex or uNoMutex qualifies a type specifier, as in:

uMutex class M {
private:
char w( ... );
public:
M();
˜M();
int x( ... );
float y( ... );
void z( ... );

};
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Producer Consumer

uCoroutine Prod {
Cons *c;
int N, money, status, receipt;
void main() {

int p1, p2;
// 1st resume starts here
for ( int i = 1; i <= N; i += 1 ) {

... // generate a p1 and p2
status = c−>delivery( p1, p2 );
if ( status == ... ) ...

} // for
c−>delivery( −1, 0 );

}; // main
public:
int payment( int money ) {

Prod::money = money;
... // process money
uResume; // restart prod in Cons::delivery
return receipt;

}; // payment
void start( int N, Cons *c ) {

Prod::N = N;
Prod::c = c;
uResume;

}; // start
}; // Prod

uCoroutine Cons {
Prod *p;
int p1, p2, status;
void main() {

int money, receipt;
// 1st suspend starts here
while ( p1 >= 0 ) {

// consume p1 and p2
status = ...
receipt = p−>payment( money );

} // while
}; // main

public:
Cons( Prod *p ) { Cons::p = p; };
int delivery( int p1, int p2 ) {

Cons::p1 = p1;
Cons::p2 = p2;
uResume; // restart cons in Cons::main 1st
// time and cons in Prod::payment afterwards
return status;

}; // delivery
}; // Cons

int main() {
Prod prod; // create producer
Cons cons( &prod ); // create consumer
prod.start( 10, &cons ); // start producer

} // main

Figure 2.3: Full-Coroutine Producer-Consumer Solution

it defines the default form of mutual exclusion on all public member routines, including the constructor
and destructor. Hence, public member routines x, y, z, M and ˜M of monitor type M are mutex members
executing mutually exclusively of one another. protected and private member routines are always implicitly
uNoMutex, except for main in coroutines and tasks. Because the destructor of a mutex object is executed
mutually exclusively, the termination of a block containing a mutex object or deleting a dynamically allocated
one may block if the destructor cannot be executed immediately. In µC++ a mutex member cannot call
another mutex member in the same object without the executing thread deadlocking with itself.

A mutex qualifier may be needed for protected and private member routines in mutex types, as in:

uMutex class M {
private:
uMutex char w( ... ); // explicitly qualified member routine
...

};

because another thread may need access to these member routines. For example, when a friend task calls a
protected or private member routine, these calls may need to provide mutual exclusion.

For convenience, a public member of a mutex type can be explicitly qualified with uNoMutex. These
routines are, in general, error-prone in concurrent situations because their lack of mutual exclusion permits
concurrent updating to object variables. However, there are two situations where such a non-mutex public
member are useful: first, for read-only member routines where execution speed is of critical importance; and
second, to encapsulate a sequence of calls to several mutex members to establish a protocol, which ensures
that a user cannot violate the protocol since it is part of the object’s definition.

The general structure of a mutex object is shown in Figure 2.5. The implicit and explicit data structures
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Figure 2.4: Cyclic Control Flow in Full Coroutine

associated with a mutex object are discussed in the following sections. Notice that each mutex member has
a queue associated with it on which calling tasks wait if the mutex object is locked. A no-mutex member
has no queue.

2.8 Thread Control Statements

For many purposes, the mutual exclusion that is provided automatically by mutex members is all that is
needed, e.g. an atomic counter. However, it is sometimes necessary to synchronize with tasks calling or
executing within the mutex object. For this purpose, a task in a mutex object can block until a particular
external or internal event occurs. At some point after a task has blocked, it must be reactivated by another
(active) task.

2.8.1 Implicit Scheduling

Implicit scheduling occurs when a mutex object becomes unlocked because the active task blocks or exits a
mutex member. The next task to use the mutex object is then chosen from one of a number of lists internal
to the mutex object. Figure 2.5 shows the general form of a mutex object with a set of tasks using or waiting
to use it. When a calling task finds the mutex object locked, it is added to both the “mutex member queue”
that it called and the “entry queue”; otherwise it enters the mutex object and locks it. The entry queue is
a list of all the calling tasks in chronological order, which is important for selecting a task when there is no
active task in a mutex object. When a task is blocked implicitly or is reactivated by another (active) task,
it is added to the top of the “acceptor/signalled stack”.

When a mutex object becomes unlocked, the next task to execute is selected by an internal scheduler. In
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Figure 2.5: General Mutex Object

the following thread control statements, the internal scheduler may be directed to select from a specific set
of queues; hence, there is no choice with regard to which queues are examined. In other cases, the internal
scheduler may make a choice among all the queues. When a choice is possible, the internal scheduler for
µC++ makes selections based on the results presented in [BCF] to give the user the greatest possible control
and produce efficient performance. This means the scheduler follows these selection rules:

1. Select tasks that have entered the mutex object, blocked, and now need to continue execution over
tasks that have called and are waiting on entry queues.

2. When one task reactivates a task that previously blocked in the mutex object, the restarting task
always continues execution and the reactivated task continues to wait until it is selected for execution
by rule 1.

All other tasks must wait until the mutex object is again unlocked. Therefore, when selection is done
implicitly, the next task to resume is not under direct user control.

2.8.2 External Control

A mutex object can control the kind of external request it serves next.

2.8.2.1 Accept Statement

A uAccept statement is provided to dynamically choose which mutex member executes next. This indirectly
controls which caller is accepted next, that is, the next caller to the accepted mutex member. The simple
form of the uAccept statement is as follows:

uWhen ( conditional-expression ) // optional guard
uAccept( mutex-member-name );
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with the restriction that the constructor, new and delete, and uNoMutex members are excluded from being
accepted. The first three member routines are excluded because these routines are essentially part of the
implicit memory-management runtime support. uNoMutex members are excluded because, in this imple-
mentation, they contain no code that could affect the caller or acceptor.

2 While it is possible to block the caller to and the acceptor of a uNoMutex member and then
continue both the caller and acceptor when they synchronize, we do not believe that such a
facility is particularly useful. 2

The syntax for accepting a mutex operator member, such as operator =, is as follows:

uAccept( operator = );

Currently, there is no way to accept a particular overloaded member. Instead, when an overloaded member
name appears in a uAccept statement, calls to any member with that name are accepted.

2 The rationale is that members with the same name should perform essentially the same
function, and therefore, they all should be eligible to accept a call. 2

A uWhen guard is considered true if it is omitted or its conditional-expression evaluates to non-zero.
Before the uAccept statement is executed, the guard must be true and an outstanding call to the correspond-
ing member must exist. If the guard is true and there is no outstanding call to that member, the task is
accept-blocked until a call to the appropriate member is made. If the guard is false, the program is aborted;
hence, the uWhen clause can act as an assertion of correctness in the simple case.

When a uAccept statement is executed, the acceptor is blocked and pushed on the top of the implicit
acceptor/signalled stack and the mutex object is unlocked. The internal scheduler then schedules a task from
one of the specified mutex member queues, possibly waiting until an appropriate call occurs. The accepted
member is then executed like a member routine of a conventional class by the caller’s thread. If the caller is
expecting a return value, this value is returned using the return statement in the member routine. When the
caller’s thread exits the mutex member (or waits, as will be discussed shortly), the mutex object is unlocked.
Because the internal scheduler gives priority to tasks on the acceptor/signalled stack of the mutex object
over calling tasks, the acceptor is popped from the acceptor/signalled stack and maded ready. When the
acceptor becomes active, it has exclusive access to the object. Hence, the execution order between acceptor
and caller is stack order, as for a traditional routine call.

The extended form of the uAccept statement can be used to accept one of a group of mutex members, as
in:

uWhen ( conditional-expression ) // optional guard
uAccept( mutex-member-name )

statement // optional statement
uOr uWhen ( conditional-expression ) // optional guard
uAccept( mutex-member-name )

statement // optional statement
...
...
...

uElse // optional default clause
statement

Before a uAccept clause is executed, the guard must be true and an outstanding call to the corresponding
member must exist. If there are several mutex members that can be accepted, the uAccept clause nearest the
beginning of the statement is executed. Hence, the order of the uAccepts indicates their relative priority for
selection if there are several outstanding calls. Once the accepted call has completed, the statement after the
accepting uAccept clause is executed. If there is a uElse clause and no uAccept can be executed immediately,
the uElse clause is executed instead. Hence, the uElse clause allows a conditional attempt to accept a call
without the acceptor blocking. If there is no uElse clause and the guards are all false, the program is aborted.
If some guards are true and there are no outstanding calls to these members, the task is accept-blocked until
a call to one of these members is made.
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2 Note that the syntax of the uAccept statement precludes the caller’s argument values from
being accessed in the conditional-expression of a uWhen. However, this deficiency is handled by
the ability of a task to postpone requests (see Section 2.8.3.1). 2

2 The uOr clause seems superfluous because it could be replaced by the uElse clause (or vice
versa). However, the following situation could cause significant confusion if uElse was used to
separate the uAccept clauses:

uAccept( fred ) uAccept( fred )
uElse uAccept( mary ); uElse { uAccept( mary ) };

The left example accepts a call to either member fred or mary. The right example accepts a call
to member fred if one is currently available, otherwise it accepts a call to member mary. The
syntactic difference is subtle, and yet, their execution is significantly different. We believe that a
less subtle syntactic difference between these two case, as in:

uAccept( fred ) uAccept( fred )
uOr uAccept( mary ); uElse uAccept( mary );

helps to prevent problems. 2

2.8.2.2 Accepting the Destructor

Accepting the destructor in a uAccept statement is used to terminate a mutex object when it is de-allocated.
The destructor is accepted in the same way as a mutex member, as in:

for ( ;; ) {
uAccept( ˜DiskScheduler ) { // request to terminate DiskScheduler
break;

} uOr uAccept( WorkRequest ) { // request from disk
} uOr uAccept( DiskRequest ) { // request from clients
} // uAccept

} // for
// clean up code

However, the semantics for accepting a destructor are different from accepting a normal mutex member.
When the call to the destructor occurs, the caller blocks immediately because a mutex object’s storage
cannot be deallocated if it is executing. When the destructor is accepted, the caller is blocked and pushed
onto the acceptor/signalled stack instead of the acceptor. Therefore, control restarts at the accept statement
without executing the destructor member. This allows a mutex object to clean up before it terminates. Only
when the caller to the destructor is popped off the acceptor/signalled stack by the internal scheduler will
the destructor execute. Once the destructor is accepted, it is not possible to reactivate tasks below it on the
acceptor/signalled stack. It is the programmers responsibility to ensure that the acceptor/signalled stack is
empty before accepting the destructor.

2 While a mutex object can always be setup so that the destructor does all the cleanup, this
can force variables that logically belong in member routines into the mutex object. Further, the
fact that control would not return to the uAccept statement when the destructor was accepted
seemed confusing. 2

Accepting the destructor can be used by a mutex object to know when to stop without having to accept
a special call. For example, by allocating tasks in a specific way, a server task for a number of clients could
know when the clients are finished and terminate without having to be explicitly told, as in:

{
DiskScheduler ds; // start DiskScheduler task
{
Clients(ds) c[10]; // start clients, which communicate with ds

} // wait for clients to terminate
} // implicit call to DiskScheduler’s destructor
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Commentary

In contrast to Ada [Uni83], a uAccept statement in µC++ places the code to be executed in a mutex member;
thus, it is specified separately from the uAccept statement. An Ada-style accept specifies the accept body
as part of the accept statement, requiring the accept statement to provide parameters and a routine body.
Since we have found that having more than one accept statement per member is rather rare, our approach
gives essentially the same capabilities as Ada. As well, accepting member routines also allows virtual routine
redefinition, which is not possible with accept bodies. Finally, an accept statement with parameters and a
routine body does not fit with the design of C++ because it is like a nested routine definition, and since routines
cannot be nested in C++, there is no precedent for such a facility. It is important to note that anything
that can be done in Ada-style accept statements can be done within member routines, possibly with some
additional code. If members need to communicate with the block containing the uAccept statements, it can
be done by leaving “memos” in the mutex types variables. In cases where there would be several different
Ada-style accept statements for the same entry, accept members would have to start with switching logic to
determine which case applies.

2.8.3 Internal Control

Tasks within a mutex object may need to wait and synchronize with one another during the servicing of
their request. For that purpose, mutex objects provide condition variables and the associated operations
wait and signal.

2.8.3.1 Condition Variables and the Wait and Signal Statements

The type uCondition creates a queue object on which tasks can be blocked and reactivated in first-in first-out
order, and is defined:

class uCondition {
public:
int uEmpty();

};

uCondition DiskNotIdle;

The member routine uEmpty() returns 0 if there are tasks blocked on the queue and 1 otherwise. It is not
meaningful to read or to assign to a condition variable, or copy a condition variable (e.g. pass it as a value
parameter), or use a condition variable outside of the mutex object in which it is declared.

It is common to associate with each condition variable an assertion about the state of the mutex object.
For example, in a disk-head scheduler, a condition variable might be associated with the assertion “the disk
head is idle”. Waiting on that condition variable would correspond to waiting until the condition is satisfied,
that is, until the disk head is idle. Correspondingly, the active task would reactivate tasks waiting on that
condition variable only when the disk head became idle. The association between assertions and condition
variables is implicit and not part of the language.

To join such a queue, the active task executes a uWait statement, for example,

uWait DiskNotIdle;

This causes the active task to block on condition DiskNotIdle, which unlocks the mutex object and invokes
the internal scheduler. The internal scheduler first attempts to pop a task from the acceptor/signalled stack.
If there are no tasks on the acceptor/signalled stack, the internal scheduler selects a task from the entry
queue or waits until a call occurs if there are no tasks; hence, the next task to enter is the one blocked the
longest. If the internal scheduler did not accept a call at this point, deadlock would occur.

A task is reactivated from a condition variable when another (active) task executes a uSignal statement,
for example,

uSignal DiskNotIdle;
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The effect of a uSignal statement is to remove one task from the specified condition variable and push it on
the acceptor/signalled stack. The signaller continues execution and the signalled task is scheduled by the
internal scheduler when the mutex object is unlocked. This is different from the uAccept statement, which
always blocks the acceptor; the signaller does not block.

2 uWait and uSignal are statements rather than member routines of type uCondition because
of implementation difficulties. Each uCondition variable must be initialized with a pointer to
a unique internal lock object created implicitly as part of each mutex object. However, it is
non-trivial to locate all instantiations of uCondition variables and initialize them with the pointer
to the lock object. As well, the many different forms of initialization in C++ make this complex,
assuming all instantiations could be located. Instead, it was simpler to pass the pointer to the lock
object to implicit wait and signal members of a uCondition variable. For example, a statement
like:

uWait DiskNotIdle;

is translated into:

DiskNotIdle.uWait( lock-object );

A compiler could probably use the former approach. 2

2 The uAccept, uWait and uSignal statements can be executed by any routine of a mutex type.
Even though these statements block the current task, they can be allowed in member routines
because member routines are executed by their caller, not the task of which they are members.
This is to be contrasted to Ada where the use of a statement like a uWait in an accept body
would cause the task to deadlock. 2

2 Ultimately, we want to restart tasks blocked within a terminating mutex object—on entry
queues and condition variables—by raising an exception to notify them that their call failed. We
are currently examining how to incorporate exceptions among tasks within the proposed C++
exception model. 2

Commentary

The ability to postpone a request is an essential requirement of a programming language’s concurrency
facilities. Postponement may occur multiple times during the servicing of a request while still allowing an
object to accept new requests.

In simple cases, the uWhen construct can be used to accept only requests that can be completed without
postponement. However, when the selection criteria become complex, e.g. when the parameters of the request
are needed to do the selection or information is needed from multiple queues, it is simpler to unconditionally
accept a request and subsequently postpone it if it does not meet the selection criteria. This avoids complex
selection expressions and possibly their repeated evaluation. In addition, this allows all the programming
language constructs and data structures to be used in making the decision to postpone a request, instead of
some fixed selection mechanism provided in the programming language, as in SR [AOC+88] and Concurrent
C++ [GR88].

Regardless of the power of a selection facility, none can deal with the need to postpone a request after
it has been accepted. In a complex concurrent system, a task may have to make requests to other tasks as
part of servicing a request. Any of these further requests can indicate that the current request cannot be
completed at this time and must be postponed. Thus, we believe that it is essential that a request be able
to be postponed even after it is accepted so that the acceptor can make this decision while the request is
being serviced. Therefore, condition variables seem essential to support this facility.

2.9 Monitor

A monitor is an object with mutual exclusion and so it cannot be accessed simultaneously by multiple
tasks. A monitor provides a mechanism for indirect communication among tasks and is particularly useful
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for managing shared resources. A monitor type has all the properties of a class. The general form of the
monitor type is the following:

uMutex class monitor-name {
private:
... // these members are not visible externally
protected:
... // these members are visible to descendants
public:
... // these members are visible externally

};

The macro name uMonitor is defined to be uMutex class in uC++.h, that is:

#define uMonitor uMutex class

2.9.1 Monitor Creation and Destruction

A monitor is the same as a class-object with respect to creation.

uMutex class M {
public:
void r( ... ) ...

};
M *mp; // pointer to a M
{ // start a new block
M m, ma[3]; // local creation
mp = new M; // dynamic creation
...
m.r( ... ); // call a member routine that must be accepted
ma[1].r( ... ); // call a member routine that must be accepted
mp−>r( ... ); // call a member routine that must be accepted
...

} // wait for m, ma[0], ma[1] and ma[2] to terminate and then destroy
...
delete mp; // wait for mp’s instance to terminate and then destroy

Because a monitor is a mutex object, the execution of its destructor waits until it can gain access to the
monitor, just like the other public members of the monitor, which can delay the termination of the block
containing a monitor or the deletion of a dynamically allocated monitor.

2.9.2 Monitor Control and Communication

In µC++, the uAccept statement can be used to control which member(s) can be executed next in a monitor.
This ability makes µC++ monitors more general than conventional monitors [Hoa74] because they specify
a mutex member, while uSignal specifies only a condition variable. When possible, this gives the ability
to restrict which member can be called, instead of having to accept all calls and subsequently handling or
blocking them, as for conventional monitors. Figure 2.6 compares a traditional style monitor using explicit
condition variables to one that uses accept statements. The problem is the exchange of a value (telephone
numbers) between two kinds of tasks (girls and boys). While the new style monitor example allows removal
of all explicit condition variables, this is not always possible.

Appendixes B.2.1 and B.2.2 show solutions for a bounded buffer using a monitor.

2.10 Coroutine-Monitor

The coroutine-monitor is a coroutine with mutual exclusion and so it cannot be accessed simultaneously by
multiple tasks. A coroutine-monitor type has a combination of the properties of a coroutine and a monitor,
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Traditional Method New Method

uMonitor DatingService {
int GirlPhoneNo, BoyPhoneNo;
uCondition GirlWaiting, BoyWaiting;

public:
int Girl( int PhoneNo ) {

if ( BoyWaiting.uEmpty() ) {
uWait GirlWaiting;
GirlPhoneNo = PhoneNo;

} else {
GirlPhoneNo = PhoneNo;
uSignal BoyWaiting;

} // if
return BoyPhoneNo;

}; // Girl
int Boy( int PhoneNo ) {

if ( GirlWaiting.uEmpty() ) {
uWait BoyWaiting;
BoyPhoneNo = PhoneNo;

} else {
BoyPhoneNo = PhoneNo;
uSignal GirlWaiting;

} // if
return GirlPhoneNo;

}; // Boy
}; // DatingService

uMonitor DatingService {
int GirlPhoneNo, BoyPhoneNo;

public:
DatingService() {

GirlPhoneNo = BoyPhoneNo = −1;
}; // DatingService
int Girl( int PhoneNo ) {

GirlPhoneNo = PhoneNo;
if ( BoyPhoneNo == −1 ) {

uAccept( Boy );
} // if
int temp = BoyPhoneNo;
BoyPhoneNo = −1;
return temp;

}; // Girl
int Boy( int PhoneNo ) {

BoyPhoneNo = PhoneNo;
if ( GirlPhoneNo == −1 ) {

uAccept( Girl );
} // if
int temp = GirlPhoneNo;
GirlPhoneNo = −1;
return temp;

}; // Boy
}; // DatingService

Figure 2.6: Traditional versus New Monitor Control

and can be used where a combination of these properties are needed, such as a finite-state machine that is
used by multiple tasks. A coroutine-monitor type has all the properties of a class. The general form of the
coroutine-monitor type is the following:

uMutex uCoroutine coroutine-name {
private:
... // these members are not visible externally
protected:
... // these members are visible to descendants
void main(); // starting member
public:
... // these members are visible externally

};

Currently, we have little experience in using a coroutine-monitor, nevertheless we believe it merits further
examination.

2.10.1 Coroutine-Monitor Creation and Destruction

A coroutine-monitor is the same as a monitor with respect to creation and destruction.

2.10.2 Coroutine-Monitor Control and Communication

A coroutine-monitor can make use of uSuspend, uResume, uAccept and uCondition variables, uWait and
uSignal to move a task among execution-states and to block and restart tasks that enter it. When creating a
cyclic call-graph using a coroutine-monitor, it is the programmer’s responsibility to ensure that at least one
of the members in the cycle is a uNoMutex member or deadlock occurs because of the mutual exclusion.
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2.11 Task

A task is an object with its own thread of control and execution-state, and whose public member routines
provide mutual exclusion. A task type has all the properties of a class. The general form of the task type is
the following:

[uMutex] uTask task-name {
private:
... // these members are not visible externally
protected:
... // these members are visible to descendants
void main(); // starting member
public:
... // these members are visible externally

};

The task type has one distinguished member, named main, in which the new thread starts execution. Instead
of allowing direct interaction with main, its visibility is private or protected. A user then interacts with a
task’s main member indirectly through its member routines. This allows a task type to have multiple public
member routines to service different kinds of requests that are statically type checked. No arguments can be
passed to main, but the same effect can be accomplished indirectly by passing arguments to the constructor
for the task and storing these values in the task’s variables, which can be referenced by main.

2.11.1 Task Creation and Destruction

A task is the same as a class-object with respect to creation and destruction, as in:

uTask T {
void main() ...
public:
void r( ... ) ...

};
T *tp; // pointer to a T
{ // start a new block
T t, ta[3]; // local creation
tp = new T; // dynamic creation
...
t.r( ... ); // call a member routine that must be accepted
ta[1].r( ... ); // call a member routine that must be accepted
tp−>r( ... ); // call a member routine that must be accepted
...

} // wait for t, ta[0], ta[1] and ta[2] to terminate and then destroy
...
delete tp; // wait for tp’s instance to terminate and then destroy

When a task is created, the appropriate task constructor and any base-class constructors are executed in
the normal order by the creating thread. Then a new thread of control and execution-state are created for
the task, which are used to begin execution of the main routine visible by the inheritance scope rules from
the task type. From this point, the creating thread executes concurrently with the new task’s thread. main
executes until it blocks its thread or terminates.

A task terminates when its main routine terminates or when the statement uDie is executed. uDie allows
a task to be terminated in a routine other than main.

2 The uDie statement is not equivalent to accepting the destructor. Control does not continue
after a uDie, while it does returns to the point where the destructor is accepted. 2
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When a task terminates, so does the task’s thread of control and execution-state. A task’s destructor is
invoked by the destroying thread when the block containing the task declaration terminates or by an explicit
delete statement for a dynamically allocated task. However, the destructor must not execute before the task’s
thread terminates or the destructor is accepted because the storage for the task is released by the destructor.
Therefore, a µC++ block cannot terminate until all tasks declared in the block terminate. Deleting a task
on the heap must also wait until the task being deleted has terminated. An attempt to communicate with
a terminated task is an error.

While a task that creates another task is conceptually the parent and the created task its child, µC++
makes no implicit use of this relationship nor does it provide any facilities based on this relationship. Once
a task is declared it has no special relationship with its declarer other than what results from the normal
scope rules.

Like a coroutine, a task can access all the external variables of a C++ program and the heap area. However,
because tasks execute concurrently, there is the general problem of concurrent access to such shared variables.
Further, this problem may also arise with static member variables within a task that is instantiated multiple
times. Therefore, it is suggested that these kinds of references be used with extreme caution.

2 A coroutine is not owned by the task that creates it. It can be “passed off” to another task.
However, to ensure that only one thread is executing a coroutine at a time, the passing around
of a coroutine must involve a protocol among its users. This is the same sort of protocol that is
required when multiple tasks share a data structure. 2

2.11.2 Inherited Members

Each task type, if not derived from some other task type, is implicitly derived from the task type uBaseTask,
as in:

uTask task-name : public uBaseTask {
...

};

where the interface for the base class uBaseTask is as follows:

uTask uBaseTask : uBaseCoroutine { // inherit from coroutine base type
protected:
uCluster &uMigrate( uCluster &cluster );
public:
uBaseTask();
uBaseTask( int stackSize );
uBaseTask( uCluster &cluster );
uBaseTask( int stackSize, uCluster &cluster );
void uDelay( int times = 1 );

};

The protected member routine uSaveFloatRegs and the public member routine uVerify are inherited from
uBaseCoroutine and have the same functionality.

The protected member routine uMigrate allows a task to move itself from one cluster to another so that
it can access resources that are dedicated to that cluster’s processor(s).

from-cluster-reference = uMigrate( to-cluster-reference )

In general, most tasks execute on only one cluster.
The overloaded constructor routine uBaseTask has the following forms:

uBaseTask() – creates the task on the current cluster with the stack size for its execution-state specified
by the current cluster’s default stack size, a machine dependent value no less than 4000 bytes (same
as uBaseCoroutine()).
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uBaseTask( int stackSize ) – creates the task on the current cluster with the specified stack size (in bytes)
(same as uBaseCoroutine( int stackSize )).

uBaseTask( uCluster &cluster ) – creates the task on the specified cluster with the stack size specified by
that cluster’s default stack size, a machine dependent value no less than 4000 bytes.

uBaseTask( int stackSize, uCluster &cluster ) – creates the task on the specified cluster with the specified
stack size (in bytes).

A task type can be designed to allow declarations to specify the cluster on which creation occurs and the
size of the stack by doing the following:

uTask T {
public:
T() : uBaseTask( 8192 ) {}; // current cluster, 8K stack
T( int i ) : uBaseTask( i ) {}; // current cluster and user stack size
T( uCluster &c ) : uBaseTask( c ) {}; // user cluster
T( int i, uCluster &c) : uBaseTask(c,i) {}; // user cluster and stack size
...

};
uCluster c; // create a new cluster
T x, y( 16384 ); // x has an 8K stack, y has a 16K stack
T z( c ); // z created in cluster c with default stack size
T w( 16384, c ); // w created in cluster c and has a 16K stack

The public member routine routine uDelay gives up control of the virtual processor to another ready task
the specified number of times. For example, the routine call uDelay(5) returns control to the µC++ kernel to
schedule another task, hence immediately giving up control of the processor and ignoring the next 4 times
the task is scheduled for execution. If there are no other ready tasks, the delaying task is simply restarted
and delayed 4 times. uDelay allows a task to relinquish control when it has no current work to do or when
it wants other ready tasks to execute before it performs more work. An example of the former situation is
when a task is polling for an event, such as a hardware event. After the polling task has determined the
event has not occurred, it can relinquish control to another ready task, e.g. uDelay(1). An example of the
latter situation is when a task is creating many other tasks. The creating task may not want to create a
large number of tasks before the created tasks have a chance to begin execution. (Task creation occurs so
quickly that it is possible to create 10-100 tasks before pre-emption occurs.) If after the creation of several
tasks the creator yields control, then each created task will have an opportunity to begin execution (possibly
only one instruction before pre-emption occurs) before the next group of tasks is created. This facility is
not a mechanism to control the exact order of execution of tasks; pre-emptive scheduling and/or multiple
processors make this impossible.

The free routine:

uBaseTask &uThisTask();

is used to determine the identity of the current task. Because it returns a reference to the base task type,
uBaseTask, of the current task, this reference can only be used to access the public routines of type uBaseTask
and uBaseCoroutine. For example, a free routine can delay execution of the calling task by performing the
following:

int FreeRtn( ... ) {
... // declarations
uThisTask().uDelay(); // delay execution
... // code

}
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2.11.3 Task Control and Communication

A task can make use of uAccept and uCondition variables, uWait and uSignal to block and make ready tasks
that enter it.

Appendix B.2.3 shows a solution for a bounded buffer using a task. Appendix B.3 shows the archetypical
disk scheduler implemented as a task that must process requests in an order other than first-in first-out to
achieve efficient utilization of the disk.

Commentary

Initially, we attempted to add the new types and statements by creating a library of class definitions that
were used through inheritance and preprocessor macros. This approach has been used to provide coroutine
facilities [Sho87, Lab90] and simple parallel facilities [DG87, BLL88]. For example, the library approach
involves defining an abstract class, Task, which implements the task abstraction. New task types are created
by inheritance from Task, and tasks are instances of these types.

Task creation must be arranged so that the task body does not start execution until all of the task’s
initialization code has finished. One approach requires the task body to be placed at the end of the new
class’s constructor, with code to start a new thread in Task::Task(). One thread then continues normally,
returning from Task::Task() to complete execution of the constructors, while the other thread returns directly
to the point where the task was declared. This is accomplished in the library approach by having one thread
“diddle” with the stack to find the return address of the constructor called at the declaration. However, this
scheme prevents further inheritance; it is impossible to derive a type from a task type if the new type requires
a constructor, since the new constructor would be executed only after the parent constructor containing the
task body. It also seems impossible to write stack diddling code which causes one thread to return directly to
the declaration point if the exact number of levels of inheritance is not known. We tried to implement another
approach that did not rely on stack diddling while still allowing inheritance and found it was impossible
because a constructor cannot determine if it is the last constructor in an inheritance chain. Therefore, it is
not possible to determine when all initialization is completed so that the new thread can be started.

PRESTO solved this problem by requiring a start() member routine in class Task, which must be called
after the creation of a task. Task::Task() would set up the new thread, but start() would set it running.
However, this two-step initialization introduces a new user responsibility: to invoke start before invoking any
member routines or accessing any member variables.

A similar two-thread problem occurs during deletion when the destructors are called. The destructor of
a task can be invoked while the task body is executing, but clean-up code must not execute until the task
body has terminated. Therefore, the code needed to wait for a thread’s termination cannot simply be placed
in Task::~Task(), because it would be executed after all the derived class destructors have executed. Task
designers could be required to put the termination code in the new task type’s destructor, but that would
prevent further inheritance. Task could provide a finish() routine, analogous to start(), which must be called
before task deletion, but that is error-prone because a user may fail to call finish appropriately, for example,
before the end of a block containing a local task.

Communication among tasks also presents difficulties. In library-based schemes, it is often done via
message queues. However, a single queue per task is inadequate; the queue’s message type inevitably
becomes a union of several “real” message types, and static type checking is compromised. (One could use
inheritance from a Message class, instead of a union, but the task would still have to perform type tests on
messages before accessing them.) If multiple queues are used, some analogue of the Ada select statement is
needed to allow a task to block on more than one queue. There is also no way to statically state that a queue
is owned by one task; this facility is necessary to preclude multiple tasks from selecting from potentially
overlapping sets of queues. This would be expensive since the addition or removal of a message to/from a
queue would have to be an atomic operation across all queues. Finally, message queues are best defined as
generic data structures, but C++ does not yet support generics.

If the more natural routine-call mechanism is to be used for communication among tasks, each public
member routine would have to have special code at the start and possibly at the exits of each public member,
which the programmer would have to provide. Other object-oriented programming languages that support
inheritance of routines, such as LOGLAN’88 [CKL+88] and Beta [KMMPN87] or wrapper routines, as in
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GNU C++ [Tie88], might be able to provide automatically any special member code. Further, we could not
find any convenient way to provide an Ada-like select statement without extending the language.

In the end, we found the library approach to be unsatisfactory. We decided that language extensions
would better suit our goals by providing more flexible and consistent primitives, and static checking. It is
also likely that language extensions could provide greater efficiency than a set of library routines.

2.12 Inheritance

C++ provides two forms of inheritance: “private” inheritance, which provides code reuse, and “public”
inheritance, which provides reuse and subtyping (a promise of behavioural compatibility). (These terms
must not be confused with C++ visibility terms with the same names.)

In C++ there is only one kind of type specifier, class; class definitions can inherit from one another using
both single and multiple inheritance. In µC++ there are three kinds of types, class, coroutine, and task, so
the situation is more complex. The trivial case of single inheritance among homogeneous type specifiers, i.e.
a class or coroutine or task type inherits from another class or coroutine or task, respectively, is supported
in µC++. Further, multiple inheritance among classes is allowed as long as at most one of the base classes
is a mutex class. Multiple inheritance is not allowed among coroutines or tasks. While there are some
implementation difficulties with this multiple inheritance, the main reason is that it cannot be implemented
efficiently. When coroutines and tasks inherit from other such types, each entity in the hierarchy may specify
a main member; the main member specified in the last derived class of the hierarchy is the one that is started
when a new instance is created. Clearly, there must be at least one main member specified in the hierarchy.
For a task or a monitor type, new member routines that are defined by the derived class can be accepted by
statements in a new main routine or in redefined virtual routines.

Inheritance among heterogeneous type specifiers is not supported. While there are some implementation
difficulties with certain combinations and potential problems with non-virtual routines, the main reason is
a fundamental one. Types are written as a class or a coroutine or a task possibly with mutual exclusion,
and we do not believe that the coding styles used in each can be arbitrarily mixed. For example, an object
produced by a task that inherits from a class can be passed to a routine expecting instances of the class
and the routine might call one of the object’s member routines that inadvertently blocks the current thread
indefinitely. While this could happen in general, we believe there is a significantly greater chance if users
casually combine types of different kinds.

Having mutex classes inherit from non-mutex classes is useful to generate concurrent usable types from
existing non-concurrent types, for example, to define a queue that is derived from a simple queue and that
can be accessed concurrently. However, there is a fundamental problem with non-virtual members in C++.
To change a simple queue to a shared queue, for example, would require a monitor to inherit from the class
Queue and to redefine all of the class’s member routines so that the correct mutual exclusion occurred when
they are invoked. However, non-virtual routines in the Queue class might be called instead because non-
virtual routines are statically bound. Consider, this attempt to create a sharable queue from a non-sharable
queue:

class Queue {
public:
void insert( ... ) ...
virtual void remove( ... ) ...

};
uMutex class MutexQueue : public Queue {
virtual void insert( ... ) ...
virtual void remove( ... ) ...

};
Queue *qp = new MutexQueue; // subtyping allows assignment
qp−>insert( ... ); // call to a non−virtual member routine, statically bound
qp−>remove( ... ); // call to a virtual member routine, dynamically bound

Routine Queue::insert does not provide mutual exclusion because it is a member of the class, while routines
MutexQueue::insert and MutexQueue::remove do provide mutual exclusion. Because the pointer variable qp
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is of type Queue, the call qp->insert calls Queue::insert even though insert was redefined in MutexQueue; so no
mutual exclusion occurs. In contrast, the call to remove is dynamically bound, so the redefined routine in the
monitor is invoked and appropriate synchronization occurs. The unexpected lack of mutual exclusion would
cause many errors. In object-oriented programming languages that have only virtual member routines, this
is not a problem. The problem does not occur with private inheritance because no subtype relationship is
created and hence the assignment to qp would be invalid.

2.13 Counting Semaphore

A semaphore is a low-level mechanism for synchronizing the execution of tasks. In general, explicit locks,
such as semaphores, are unnecessary to build highly concurrent systems. Nevertheless, a semaphore is
provided for teaching purposes and for building special experiments. The semaphores implemented in µC++
are counting semaphores as described by Dijkstra [Dij68]. A counting semaphore has two parts: a counter
and a list of waiting tasks. Both the counter and the list of waiting tasks is managed by the µC++ kernel.

The class uSemaphore defines a semaphore:

class uSemaphore {
public:
uSemaphore();
uSemaphore( int value );
˜uSemaphore();
void uP();
void uV();
void uV( int times );
int uEmpty();

};

uSemaphore x, y(1), *z;
z = new uSemaphore(4);

This creates three variables that are semaphores and initializes them to the value 0, 1, and 4, respectively.
The overloaded constructor routine uSemaphore has the following forms:

uSemaphore() – this form assumes an initial value of 0 for the semaphore counter.

uSemaphore( int value) – this form specifies an initialization value for the semaphore counter. Appropriate
count values are values ≥ 0.

The destructor routine ~uSemaphore generates an error if there are any tasks blocked on a semaphore
that is being destroyed.

The member routines uP and uV are used to perform the classical counting semaphore operations. uP
decrements the semaphore counter if the value of the semaphore counter is greater than zero and continues;
if the semaphore counter is equal to zero, the calling task blocks. The overloaded routine uV wakes up the
task blocked for the longest time if there are tasks blocked on the semaphore and increments the semaphore
counter. If uV is passed a positive integer value, the semaphore is uVed that many times.

The member routine uEmpty() returns 0 if there are threads blocked on the semaphore and 1 otherwise.
It is not meaningful to read or to assign to a semaphore variable, or copy a semaphore variable (e.g. pass

it as a value parameter).
Appendix B.2.4 shows solution for a bounded buffer.

2 wait and signal operations on conditions are very similar to P and V operations on counting
semaphores. The wait statement can block a task’s execution while a signal statement can cause
resumption of another task. There are, however, differences between them. The P operation does
not necessarily block a task, since the semaphore counter may be greater than zero. The wait
statement, however, always blocks a task. The signal statement can make ready a blocked task
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on a condition just as a V operation makes ready a blocked task on a semaphore. The difference
is that a V operation always increments the semaphore counter; thereby affecting a subsequent P
operation. A signal statement on an empty condition does not affect a subsequent wait statement.
Another difference is that multiple tasks blocked on a semaphore can resume execution without
delay if enough V operations are performed. In the mutex type case, multiple signal statements
do unblocked multiple tasks, but only one of the these tasks will be able to execute because of
the mutual exclusion property of the mutex type. 2

2.14 Owner Lock

An owner lock is a low-level mechanism for synchronizing the execution of tasks. In general, explicit locks,
such as owner locks, are unnecessary to build highly concurrent systems. Nevertheless, an owner lock is
provided for teaching purposes and for building special experiments. An owner lock is owned by the task
that acquires it; all other tasks wanting the lock wait until the owner releases it. The owner of an owner
lock can acquire the lock multiple times, but a matching number of releases must occur or the lock remains
in the owners possession and other task cannot acquire it.

The monitor uOwner defines an owner lock:

uMonitor uOwner {
public:
uOwner();
void uAcquire();
void uRelease();

};

uOwner x, y, *z;
z = new uOwner();

This creates three variables that are owner locks.
The member routines uAcquire and uRelease are used to atomically acquire and release the owner lock,

respectively. uAcquire acquires the lock if it is not currently owned, otherwise the calling task waits until
the lock is released by the current owner. uRelease releases the lock.

It is not meaningful to read or to assign to a lock variable, or copy a lock variable (e.g. pass it as a value
parameter).

2.15 Barrier

future work

2.16 Spin Lock

A spin lock is a low-level mechanism for synchronizing the execution of tasks. In general, explicit locks,
such as spin locks, are unnecessary to build highly concurrent systems. Nevertheless, a spin lock is provided
for teaching purposes and for building special experiments. A spin lock is either open or closed and tasks
compete to acquire the lock after is has been released. Unlike a binary semaphore, which blocks tasks that
cannot continue execution immediately, a spin lock allows the task to loop attempting to acquire the lock
(busy wait). Spin locks do not ensure that tasks competing to acquire it are served in any particular order;
in theory, starvation can occur, in practice, it is not a problem.

The class uLock defines a semaphore:
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enum uLockValue { uLockOpen, uLockClose };

class uLock {
public:
uLock();
uLock( uLockValue value );
void uAcquire();
uLock uTryAcquire();
void uRelease();

};

uLock x, y( uLockOpen ), *z;
z = new uLock( uLockClose );

This creates three variables that are locks and initializes them to the value uLockOpen, uLockOpen, and
uLockClose, respectively.

The overloaded constructor routine uLock has the following forms:

uLock() – this form assumes an initial value of uLockOpen for the lock.

uLock( uLockValue value) – this form specifies an initialization value for the lock. Appropriate values are
uLockOpen and uLockClose from the enumerated type uLockValue.

The member routines uAcquire and uRelease are used to atomically acquire and release the lock, respec-
tively. uAcquire acquires the lock if it is open, otherwise the calling task spins waiting. uRelease releases the
lock, which allows any waiting tasks to race to acquire the lock.

The member routine uTryAcquire makes one attempt to try to acquire the lock, i.e. it does not spin
waiting. uTryAcquire always returns the previous value of the lock. If the value uLockOpen is returned, then
uTryAcquire acquired the lock, locking it in the process. If the value uLockClose is returned, then uTryAcquire
did not acquire the lock.

It is not meaningful to read or to assign to a lock variable, or copy a lock variable (e.g. pass it as a value
parameter).

2.17 Memory Management

All data that µC++ manipulates must reside in memory that is accessible by all UNIX processes started by
µC++. In the unikernel case, there is a single address space accessed by the process that owns it. In the
multikernel case, several address-spaces exist, one for each UNIX process. These address-spaces have private
memory accessible only by a single process and shared memory that is accessible by all the UNIX processes.
In µC++, all user data is located in the shared memory of the UNIX processes.

In order to make memory management operations portable across both versions of µC++ and make
memory sharable, the memory management routines new and delete are redefined to allocate and free memory
correctly for each version of µC++. These routines provide identical functionality to the C++ routines new
and delete. Further, the µC++ versions of these memory management routines provide mutual exclusion on
calls to them.

If direct access is required to the system routines malloc and free, they can be accessed through the cover
routines uMalloc and uFree, for example:

struct fred *fp = uMalloc( sizeof(fred) );
...
uFree( fp );

These routines ensure memory is sharable and calls to them are mutually exclusive.

32



2.18 Program Termination

To terminate a program with a status code to the invoking shell other than returning from uMain::main, call
the free routine uExit:

void uExit( int status );

This routine is the same the UNIX routine exit, except that it works correctly in both unikernel and multi-
kernel.

2 When the routine uMain::main terminates, the current rule is that all other tasks are auto-
matically terminated. It is not possible to start tasks that continue to execute after uMain::main
terminates. Therefore, uMain::main must only terminate when the entire application program
has completed. This rule was chosen because we found that managing multiple UNIX processes
running independently of uMain::main required too much knowledge from novice users. However,
there is nothing in the design of µC++ that precludes supporting this feature at some future time.
2

2.19 Exception Handling Facilities

future work

2.20 Errors

Errors in µC++ are divided into the following categories:

• Normally, errors should be handled by raising exceptions, however if a catastrophic error is detected,
execution must be aborted. The mandatory way to stop all execution and print an error message while
running within µC++ is to call the free routine uAbort. The UNIX routine abort is designed for a single
process program and does not work as expected in the multikernel.

The routine uAbort prints a user specified string, which is presumably a message describing the error,
and then prints the name of the currently executing task type, possibly naming the type of the currently
executing coroutine if the task’s thread is not executing on its own execution-state at the time of the
call.

void uAbort( char *format, ... )

format is a format string containing text to be printed and format codes which describe how to
print the following variable number of arguments.

arguments ... is a list of arguments to be formatted and printed on standard output. The number
of elements in this list must match with the number of format codes.

• A user task executes some code that causes the virtual processor to fault. The death of the UNIX
process will be caught by a task executing on the parent process of the terminating process. In general,
this is a task in the system cluster, which calls routine uAbort. For example, if a task tries to divide
by zero or access memory out of the address space currently available to the application, these errors
will be trapped. In such situations, the UNIX signal number of the terminating process is displayed in
the error message. Hence, when µC++ displays a message saying that a UNIX process died, the cause
of that UNIX process’s death can be determined. The list of UNIX errors that may be reported as the
result of processor death may be looked up in /usr/include/signal.h.
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2.21 Symbolic Debugging

The symbolic debugging tools (e.g. dbx, gdb) do not work perfectly with µC++. This is because each coroutine
and task has its own stack, and the debugger does not know that there are multiple stacks. When a program
terminates with an error, only the stack of the coroutine or task in execution at the time of the error will
be understood by the debugger. Further, in the multiprocessor case, there are multiple UNIX processes
that are not necessarily handled well by all debuggers. Nevertheless, it is possible to use many debuggers
on programs compiled with the unikernel. At the very least, it is usually possible to examine some of the
variables, externals and ones local to the current coroutine or task, and to discover the statement where the
error occurred. The gdb debugger works well in uniprocessor form, but time-slicing must be turned off if
breakpoints are to be used.

2.22 Monitoring Execution

When executing a multiprocessor µC++ program, it is possible to monitor its execution at a very high
level using the UNIX ps command. The following is an example of the output from ps for a program that
has a computational cluster with 4 virtual processors and 3 open files. The user cluster is used for the
computational cluster, which sets the number of processors and then opens 3 files. During execution of
this program, called a.out, the following output fragment might appear from ps (the right hand column is
annotation information for the explanation and not part of the output from ps):

13166 p1 S 0:00 a.out virtual processor for system cluster
13167 p1 R 0:07 a.out virtual processor for user cluster
13168 p1 R 0:07 a.out ”
13169 p1 R 0:07 a.out ”
13170 p1 R 0:08 a.out ”
13171 p1 D 0:02 a.out virtual processor for open file 1
13173 p1 D 0:01 a.out virtual processor for open file 2
13174 p1 D 0:00 a.out virtual processor for open file 3

The lowest numbered process (13166) (unless the process numbers wrap around to zero) is always the virtual
processor for the system cluster. This virtual processor has an execution time of 0:00, which indicates that
there has been less than 1 second of activity on the system cluster. If a program is not performing input
or output from/to uCin or uCout or uCerr, then the system cluster will have little activity (i.e. just a small
amount of polling, hence the process status will be S which means sleeping for less than about 20 seconds).
The next 4 UNIX processes (13167-70) are the virtual processors for the computational cluster (user cluster).
As long as there is work for the virtual processors and they are not interrupted frequently by the operating
system, they will execute at approximately the same rate. Here there are 3 virtual processors that have
executed for at least 7 seconds and one that is slightly ahead at 8 seconds. These processes have status
R, which means a runnable process. The last 3 UNIX processes (13171,13173-4) are for the 3 open files –
one cluster with a virtual processor for each open file. The execution times for the 3 files varies with the
amount of I/O activity to the file. In this case, file 1 has the most activity (0:02 seconds), then file 2 (0:01
seconds) and finally file 3 (less than 0:01 second). These processes have status D, which means they are in
a disk wait. Using this mechanism it is possible to monitor the execution of a program to ensure that it is
making progress. If all the computational virtual processors have status S or I (sleeping longer than about
20 seconds), then the system may be deadlocked (however, they might also be blocked waiting for a terminal
I/O operation to complete).

2.23 Pre-emptive Scheduling and Critical Sections

In general, the µC++ kernel and UNIX library routines are not reentrant. For example, many random
number generators maintain an internal state between successive calls and there is no mutual exclusion on
this internal state. Therefore, one task that is executing the random number generator can be pre-empted
and the generator state can be modified by another task. This can result in problems with the generated
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random values or errors. One solution is to supply cover routines for each UNIX function, which guarantees
mutual exclusion on calls. In general, this is not practical as too many cover routines have to be created.

Part of this problem can be handled by only allowing pre-emption only in user code. When a pre-emption
occurs, the handler for the interrupt checks if the interrupt location is within user code. If it is not, the
interrupt handler resets the timer and returns without rescheduling another task. If the current interrupt
point is in user code, the handler causes a context switch to another task.

Determining whether an address is in user code is done by relying on the loader to place programs in
memory in a particular order. µC++ programs are compiled using a program that invokes the C compiler
and includes all necessary include files and libraries. The program also brackets all user modules between
two precompiled routines, uBeginUserCode and uEndUserCode, which contain no code. We then rely on
the loader to load all object code in the order specified in the compile command. This results in all user
code lying between the address of routines uBeginUserCode and uEndUserCode. The pre-emption interrupt
handler simply checks if the interrupt address is between the address of uBeginUserCode and uEndUserCode
to determine if the interrupt occurred in user code.

Unfortunately, this does not work when µC++ kernel routines are inlined into user code to reduce execution
cost. This is handled by setting and resetting a critical section flag on entry and exit to inlined µC++ routines.
This flag is tested by the pre-emption interrupt handler to determine if the interrupt occurred in user code.

To ensure maximum parallelism, it is desirable that a task not execute an operation that will cause the
processor it is executing on to block. It is also essential that all processors in a cluster be interchangeable,
since task execution may be performed by any of the processors of a cluster. When tasks or processors
cannot satisfy these conditions, it is essential that they be grouped into appropriate clusters in order to
avoid adversely affecting other tasks or guarantee correct execution. Each of these points will be examined.

There are two forms of blocking that can occur in µC++:

heavy blocking which is done by UNIX on a virtual processor as a result of certain system requests (e.g.
I/O operations).

light blocking which is done by the µC++ kernel on a task as a result of certain µC++ operations (e.g.
uAccept, uWait and calls to a mutex routine).

The problem is that heavy blocking removes a virtual processor from use until the operation is completed; for
each virtual processor that blocks, the potential for parallelism decreases on that cluster. In those situations
where maintaining a constant number of virtual processors for computation is desirable, tasks should block
lightly rather than heavily. This can be accomplished by keeping the number of tasks that block heavily to
a minimum and also relegated to a separate cluster. This can be accomplished in two ways. First, tasks
that would otherwise block heavily instead make requests to a task on a separate cluster which then blocks
heavily. Second, tasks migrate to the separate cluster and perform the operation that blocks heavily. This
maintains a constant number of virtual processors for concurrent computation in a computational cluster,
such as the user cluster.

On some multiprocessor computers not all hardware processors are equal. For example, not all of the
hardware processors may have the same floating-point units; some units may be faster than others. Therefore,
it may be necessary to create a cluster whose processors are attached to these specific hardware processors.
(The mechanism for attaching virtual processors to hardware processors is operating system specific and not
part of µC++. For example, the Dynix operating system from Sequent provides a routine tmp affinity to lock
a UNIX process on a processor.) All tasks that need to perform high-speed floating-point operations can be
created/placed on this cluster. This still allows tasks that do only fixed-point calculations to continue on
another cluster, potentially increasing parallelism, but not interfering with the floating-point calculations.

2.24 Implementation Problems

The following restrictions are an artifact of this implementation. In some cases the restriction results from
the fact that µC++ is only a translator and not a compiler. In all other cases, the restrictions exists simply
because time limitations on this project have prevent it from being implemented.
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• Some runtime member routines are publicly visible when they should not be; therefore, µC++ programs
should not contain variable names that start with a “u” followed by a capital letter. This is an artifact
of µC++ being a translator because default arguments are added to the constructors of the coroutine
and task types.

• A task cannot be declared in the external area because the µC++ kernel may not have started execution
before the first task is initialized. This will be fixed if we can figure out how to control the order that
constructors for external objects are executed.

• µC++ allows at most 32 mutex members because a 32 bit mask is used to test for accepted member
routines.

We do not believe this will cause practical problems in most programs. Further, this approach does not
extend to support multiple inheritance. As is being discovered, multiple inheritance is not as useful a
mechanism as it initially seemed [Car90], nor do we believe that the performance degradation required
to support multiple inheritance is acceptable.

• When defining a derived type from a base type that is a task or coroutine and the base type has default
parameters in its constructor, the default arguments must be explicitly specified if the base constructor
is an initializer in the definition of the constructor of the derived type, for example:

uCoroutine Base {
public:
Base( int i, float f = 3.0, char c = ’c’ );

};

uCoroutine Derived : public Base {
public:
Derived( int i ) : Base( i, 3.0, ’c’ ); // values 3.0 and ’c’ must be specified

};

All other uses of the constructor for Base are not required to specify the default values. This is an
artifact of µC++ being a translator.

• There is no discrimination mechanism in the uAccept statement to differentiate among overloaded
mutex member routines. When time permits, a scheme that uses a formal declarer in the uAccept
statement to disambiguate overloaded member routines will be implemented, for example:

uAccept( mem(int) )
uOr uAccept( mem(float) );

Here, the overloaded member routines mem are disambiguated by the type of their parameters.
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Chapter 3

Input/Output

3.1 µC++ I/O Library

The standard C++ stream objects cin, cout and cerr have derived objects uCin, uCout and uCerr, respectively.
These µC++ objects behave identically to the C++ stream objects, except that each I/O operation is performed
mutually exclusively. This ensures that characters being generated by the insertion operator (<<) and/or
the extraction operator >> executed by different tasks are not interspersed. Hence, each execution of the
operations << and >> is atomic.

However, this does not prevent the results of the insertion and extraction operators from being inter-
spersed. For example, if two tasks execute the following:

task1
uCout << "abc " << "def ";

task2
uCout << "uvw " << "xyz ";

some of the different outputs that could appear are:

abc def uvw xyz
abc uvw def xyz
abc uvw xyz def
uvw abc def xyz
uvw abc xyz def

To ensure that I/O output is not interspersed, an explicit lock and unlock must be specified across the I/O
sequence using the stream operations uAcquire and uRelease, as in:

task1
uCout << uAcquire << "abc " << "def " << uRelease;

task2
uCout << uAcquire << "uvw " << "xyz " << uRelease;

which can then produce only two different outputs:

abc def uvw xyz
uvw xyz abc def

Once a task has acquired the I/O lock for a stream, it owns the stream until it unlocks it. Therefore, multiple
calls can be performed atomically, as in:
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uCout << uAcquire; // acquire the lock for stream uCout
uCout << "abc";
uCout << "def";
uCout << uRelease; // release the lock for stream uCout

Warning: Deadlock can occur if routines are called in an I/O sequence that might block as in:

uCout << uAcquire << "data:" << Monitor.rtn(...) << "\n" << uRelease;

The problem occurs if the task executing the sequence blocks in the monitor because it is holding the I/O
lock for stream uCout. Any other task that attempts to write on uCout will block until the task holding the
lock is unblocked and releases it. This can lead to deadlock if the task that is going to unblock the task with
uCout lock, first writes to uCout. One simple precaution is to factor the call to the monitor routine out of
the I/O sequence, as in:

int data = Monitor.rtn(...);
uCout << uAcquire << "data:" << data << "\n" << uRelease;

3.1.1 uIStream and uOStream I/O

The classes uIStream and uOStream are the same as the C++ classes istream and ostream, with the following
exceptions:

• All of the member routines have the mutual exclusion property based on the task that currently controls
the stream lock.

• Additional routines are defined for controlling mutual exclusion of the stream across a sequence of
operations:

uIStream &uAcquire( uIStream & );
uIStream &uRelease( uIStream & );
uOStream &uAcquire( uOStream & );
uOStream &uRelease( uOStream & );

• The stream member routine:

uOStream &form( const char* fmt, ... );

is not available for uOStream because there is no way to pass the cover routine’s ellipse argument to
the corresponding base class routine’s ellipse parameter.

3.2 Interaction with the UNIX File System

As explained in Section 2.23, it is desirable to avoid heavy blocking of virtual processors. UNIX I/O
operations can be made to be nonblocking, but this requires special action as the I/O operations do not
restart automatically when the operation completes. Instead, it is necessary to perform polling for I/O
completions and possibly blocking of the UNIX process if all tasks are directly or indirectly blocked waiting
for I/O operations to complete. To simplify the complexity of performing nonblocking I/O operations, µC++
supplies a library of I/O routines that perform the nonblocking operations and polling (detailed below). The
I/O cover routines have essentially the same syntax as the normal C++ or UNIX I/O routines; however,
instead of a UNIX file descriptor being passed around to identify a file or socket, a µC++ file descriptor is
used.
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3.2.1 Unikernel File Operations

To retain concurrency in the unikernel during I/O operations, the µC++ I/O routines check the ready queue
before performing their corresponding UNIX I/O operation. If there are no tasks waiting to execute, then
the single virtual processor is blocked because all tasks in the system must be directly or indirectly waiting
for an I/O operation to complete. If there are tasks to execute, a nonblocking I/O operation is performed.
The task performing the I/O operation then loops polling for completion of the I/O operation and yielding
control of the processor if the operation has not completed. This allows other tasks to progress with a slight
degradation in performance due to the polling task(s).

3.2.2 Multikernel File Operations

In the multikernel, not only is there the blocking I/O problem, but some UNIX systems associate the internal
information needed to access a file (i.e. a file descriptor) with a virtual processor (i.e. UNIX process) in a
non-shared way. This means that if a task opens a file on one virtual processor it will not be able to read
or write the file if the task is scheduled for execution on another virtual processor. Both problems can be
solved by creating a separate cluster that has a single virtual processor containing the file descriptor. Any
task that wants to access the file migrates to the I/O cluster to perform the operation. In this manner, a
task performing an I/O operation can access the private UNIX file descriptor.

In detail, a cluster with one processor is automatically created when a file is opened. Hence, each open
file has a corresponding UNIX process. The exception to this rule is the standard I/O files, called uCin,
uCout and uCerr in µC++, which are all open implicitly on the system cluster. A user task then performs
I/O operations by executing the equivalent µC++ cover routine, which migrates the task to the cluster
containing the file descriptor and performs the appropriate operation. When the user task closes the file, the
cluster and all of its resources are released. To ensure that multiple tasks are not performing I/O operations
simultaneously on the same file descriptor, each µC++ file descriptor has a semaphore that provides mutual
exclusion of I/O operations. Figure 3.1 illustrates the runtime structures created for accessing a file (UNIX
resources are illustrated with an oval). Depending on the kind of I/O, there may be one or several tasks on
the I/O cluster.
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Figure 3.1: UNIX File I/O Cluster

Notice that mutual exclusion only occurs per file descriptor. If a file is opened multiple times, each
opening creates a new and independent cluster, processor and file descriptor. Access to these file descriptors
on different clusters are not serialized. This is not a problem if all tasks are reading the file, but will not
work, in general, if some tasks read and some write to the same file.

2 Unfortunately, UNIX does not provide adequate facilities to ensure that signals sent to wake
up sleeping UNIX processes are always delivered. There is a window between sending a signal
and blocking using a UNIX select operation that cannot be closed. Therefore, each I/O cluster
polls once a second for the rare event that a signal sent to wake it up was missed. 2
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3.3 UNIX I/O Library

future work
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Chapter 4

µC++ Kernel

The µC++ kernel is a library of classes and routines that provide low-level light-weight concurrency support
on uniprocessor and multiprocessor computers running the UNIX1 operating system. The µC++ kernel does
not call the UNIX kernel to perform a context switch or to schedule tasks, and uses shared memory for
communication. As a result, performance for execution of and communication among large numbers of tasks
is significantly increased over UNIX processes. The maximum number of tasks that can exist is restricted
only by the amount of memory available in a program. The minimum stack size for an execution-state is
machine dependent, but is as small as 256 bytes. The storage management of all µC++ objects, the scheduling
of tasks on virtual processors, and the pre-emptive round-robin scheduling to interleave task execution is
performed by the µC++ kernel.

4.1 Cluster

A cluster is a collection of µC++ tasks and processors; it provides a runtime environment for the task’s
execution. This environment contains a number of variables that can be modified to affect how coroutines,
tasks and processors behave in a cluster. Each cluster has a number of environment variables that may
be used implicitly when creating an execution-state on that cluster and by processors associated with that
cluster (see Figure 4.1):

stack size is the default stack size, in bytes, used when coroutines or tasks are created on a cluster.

number of processors is the number of processors currently allocated on a cluster.

time slice duration is the longest time, in milliseconds, a task on this cluster can hold a processor before
a switch to another task is attempted.

spin duration is the longest time, in microseconds, that an idle processor on the cluster spins waiting for
a task to become ready before it goes to sleep.

Each of these variables is either explicitly set or implicitly assigned a system-wide machine-dependent default
value when the cluster is created. The mechanisms to read and reset the values are detailed below.

1UNIX is a registered trademark of AT&T Bell Laboratories
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stack size4000

number of processors1

time slice duration200

spin duration10000

Figure 4.1: Cluster Variables

class uCluster {
public:
uCluster();
uCluster( int processors );
uCluster( int processors, int timeSlice );
uCluster( int processors, int timeSlice, int stackSize, int spinTime );
void uSetStackSize( int stackSize );
int uGetStackSize();
void uSetProcessors( int processors );
int uGetProcessors();
void uSetTimeSlice( int milliseconds );
int uGetTimeSlice();
void uSetSpin( int microseconds );
int uGetSpin();

};

uCluster clus(3, 0) // cluster with 3 processors, 0 time slice duration

The overloaded constructor routine uCluster has the following forms:

uCluster() – this form assumes the machine-dependent default values for all cluster variables.

uCluster( int processors ) – this form uses the user specified number of processors and the machine-
dependent default values for the other cluster variables.

uCluster( int processors, int timeSlice ) – this form uses the user specified number of processors and time-
slice duration, and the machine-dependent default values for the other cluster variables.

uCluster( int stackSize, int processors, int timeSlice, int spinTime ) – this form uses the user specified de-
fault stack size, number of processors, time-slice duration, and processor-spin duration.

As stated, there are two versions of the µC++ kernel: the unikernel, which is designed to use a single
processor (the system, user and any other clusters are automatically combined); and the multikernel, which is
designed to use several processors. While the interfaces to the unikernel and multikernel are identical, there
are several differences between them, which all result from the unikernel having only one virtual processor. In
particular, the semantics of the cluster are different for each kernel. In the unikernel, operations to increase
or decrease the number of virtual processors are ignored. Further, while a new cluster instance is created,
it refers to the initial cluster; hence, the system and user clusters are combined into a single cluster. The
uniform interface allows almost all concurrent applications to be designed and tested on the unikernel, and
then run on the multikernel after re-linking.

4.2 Cluster Creation and Destruction

A cluster object contains the values of the cluster environment variables and a list of processors that are
associated with the cluster. A number of routines are available to modify a cluster’s environment variables,
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and to add and remove processors. A cluster can be used in operations like task creation to specify the
cluster on which the task is to be created. The only requirement on cluster creation is that a cluster must
have at least one processor. The maximum number of clusters that can be created is indirectly limited by
the number of UNIX processes a UNIX user can create, as the sum of the virtual processors on all clusters
cannot exceed this limit.

When a cluster terminates, all its processors are freed. It is the user’s responsibility to ensure that no
tasks are executing on a cluster when it terminates; therefore, a cluster can only be destroyed by a task on
another cluster. If tasks are executing on a cluster when it is destroyed, they block and are inaccessible.

The free routine:

uCluster &uThisCluster();

is used to determine the identity of the current cluster a task resides on.

4.3 Default Stack Size

The member routine uSetStackSize is used to set the default stack size value for the stack portion of each
execution-state allocated on a cluster. The new stack size is specified in bytes. For example, the call
clus.uSetStackSize(8000) sets the default stack size to 8000 bytes.

The member routine uGetStackSize is used to read the value of the default stack size for a cluster. For
example, the call i = clus.uGetStackSize() sets i to the value 8000.

4.4 Processors on a Cluster

The member routine uSetProcessors creates or destroys processors as needed to have the specified number
of processors on the current cluster in the multikernel. This routine does nothing in the unikernel. For
example, the call clus.uSetProcessors(5) will increase or decrease the number of processors on a cluster to 5.

The member routine uGetProcessors is used to read the current number of processors on a cluster. For
example, the call i = clus.uGetProcessors() sets i to the value 5.

The following are points to consider when deciding how may processors to create for a cluster. First,
there is no advantage in creating significantly more processors than the average number of simultaneously
active tasks on the cluster. For example, if on average three tasks are eligible for simultaneous execution,
then creating significantly more than three processors will not achieve any execution speed up and wastes
resources. Second, the processors of a cluster are really virtual processors for the hardware processors, and
there is usually a performance penalty in creating more virtual processors than hardware processors. Having
more virtual processors than hardware processors can result in extra context switching of the heavy-weight
UNIX processes used to implement a virtual processor, which is runtime expensive. This same problem can
occur among clusters. If a computational problem is broken into multiple clusters and the total number of
virtual processors exceeds the number of hardware processors, extra context switching of the UNIX processes
will occur. However, multiple clusters must be used to handle blocking or non-interchangeable hardware
processor problems. For example, the virtual processors associated with I/O clusters spend most of their
time blocked and do not interfere with processors on computational clusters. Finally, a µC++ program usually
shares the hardware processors with other user programs. Therefore, the overall UNIX system load will affect
how many processors should be allocated to avoid unnecessary context switching of UNIX processes.

2 Changing the number of processors is expensive, since a request is made to UNIX to allocate
or deallocate UNIX processes or kernel threads. This operation often takes at least an order of
magnitude more time than task creation. Further, there is often a small maximum number of
UNIX processes (e.g. 20–40) that can be created by a UNIX user. Therefore, processors should
be created judiciously, normally at the beginning of a program. 2

4.5 Implicit Task Scheduling

Pre-emptive scheduling is enabled by default on both unikernel and multikernel. Each processor is periodi-
cally interrupted in order to schedule another task to be executed. Note that interrupts are not associated
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with a task but with a processor; hence, a task does not receive a time slice and it may be interrupted
immediately after starting execution because the processor’s time slice ended and another task is scheduled.
A task is pre-empted at a non-deterministic location in its execution when the processor’s time-slice expires.
All processors on a cluster have the same time slice but the interrupts are not synchronized. The default
processor time-slice is machine dependent but is approximately 0.1 seconds on most machines. The effect of
this pre-emptive scheduling is to simulate parallelism. This simulation is usually accurate enough to detect
most situations on a uniprocessor where a program may depend on the order or the speed of execution of
tasks.

The member routine uSetTimeSlice is used to set the default time slice for each processor on the current
cluster. The new time duration between interrupts is specified in milliseconds. For example, the call
clus.uSetTimeSlice(50) sets the default time slice to 0.05 seconds for each processor on this cluster. To turn
pre-emption off, call clus.uSetTimeSlice(0).

2 On many machines the minimum time slice may be 10 milliseconds (0.01 of a second). Setting
the duration to an amount less than this simply sets the interrupt time interval to this minimum
value. 2

2 The overhead of pre-emptive scheduling depends on the frequency of the interrupts. Further,
because interrupts involve entering the UNIX kernel, they are relatively expensive if they occur
frequently. We have found that an interrupt interval of 0.05 to 0.1 seconds gives adequate
concurrency and increases execution cost by less than 1% for most programs. 2

The member routine uGetTimeSlice is used to read the current default time slice for a cluster. For
example, the call i = clus.uGetTimeSlice() sets i to the value 50.

4.6 Idle Virtual Processors

When there are no ready tasks for a processor to execute, the idle processor has to spin in a loop or sleep
or both. In the µC++ kernel, an idle processor spins for a user specified amount of time before it sleeps.
During the spinning, the processor is constantly checking for ready tasks, which would be made ready by
other processors. An idle processor is ultimately put to sleep so that machine resources are not wasted.
The reason that the idle processor spins is because the sleep/wakeup time can be large in comparison to the
execution of tasks in a particular application. If an idle processor goes to sleep immediately upon finding no
ready tasks, then the next executable task will have to wait for completion of a UNIX system call to restart
the processor. If the idle processor spins for a short period of time any task that becomes ready during the
spin duration will be processed immediately. Selecting a spin time is application dependent and it can have
a significant affect on performance.

The member routine uSetSpin is used to set the default spin-duration for each processor on the current
cluster. The new spin duration is specified in microseconds. For example, the call clus.uSetSpin(50000)
sets the default spin-duration to 0.05 seconds for each processor on this cluster. To turn spinning off, call
clus.uSetSpin(0).

The member routine uGetSpin is used to read the current default spin-duration for a cluster. For example,
the call i = clus.uGetSpin() sets i to the value 50000.

2 The precision of the spin time is machine dependent and varies from 1 to 50 microseconds.
2

Commentary

Other concurrency systems [Che82, Gen85, Sun88, Enc88] provide a priority mechanism to control scheduling
of tasks. When a task is created it is assigned an arbitrary priority that affects its scheduling during
execution. Priorities permit one task to have execution precedence over another. This mechanism cannot be
implemented by clusters; however, there are many situations where priorities are used not to define execution
precedence but to partition tasks into groups that execute together. We believe that a cluster is a more
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general mechanism to accomplish this. First, priorities do not scale when used to partition tasks into groups,
as combining concurrent tasks from libraries can results in conflicting use of priority levels. Priorities only
work when tasks using them are segregated into independent groups, which we claim are clusters. Secondly,
clusters handle problems that priorities cannot, like blocking I/O and heterogeneous hardware processors.

Within a group, priorities are often used to ensure real-time deadlines for certain operations by making
those operations have the highest priority. It is our experience that a simple two level priority scheme can
handle virtually all of these situations. We will be adding a two level priority scheme to µC++.
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Chapter 5

Miscellaneous

5.1 Installation Requirements

µC++ runs on the following processors: M68000 series, NS32000 series, VAX, MIPS, Intel 386, Sparc, and
the following UNIX operating systems:

• BSD 4.{2,3}

• UNIX System V that has BSD system calls setitimer and a sigcontext passed to signal handlers which
contains the location of the interrupted program

• Apollo SR10 BSD

• Sun OS 4.x

• Tahoe BSD 4.3

• Ultrix 3.x/4.x

• DYNIX

• Umax 4.3

• IRIX 3.3

The unikernel runs on the following vendor’s computers: DEC, Apollo, Sun, MIPS, Sequent and SGI. The
multikernel runs on the following vendor’s computers: Sequent Symmetry and Balance, Encore Multimax
and SGI.

µC++ requires at least GNU C++ 1.37.1 [Tie90]. This compiler can be obtained free of charge. µC++
will NOT compile using other compilers due to the inline assembler statements that appear in the machine
dependent files. The Sequent and Encore versions are setup so that GNU C++ always uses the vendors
assembler because the GNU assembler does not handle the assembler directives generated from GNU C++
when the -fshared-data flag is used. This allows the uSystem to function even when GNU C++ is installed
using the GNU assembler.

5.2 Reporting Problems

If you have problems or questions or suggestions, you can send e-mail to usystem@maytag.waterloo.edu or
usystem@maytag.uwaterloo.ca or mail to:

µSystem Project
c/o Peter A. Buhr
Dept. of Computer Science
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University of Waterloo
Waterloo, Ontario
N2L 3G1
CANADA

5.3 Contributors

While many people have made numerous suggestions, the following people were instrumental in turning this
project from an idea into reality. The original design work, Version 1.0, was done by Peter Buhr, Glen
Ditchfield and Bob Zarnke [BDZ89], with additional help from Jan Pachl on the train to Wengen. Brian
Younger built Version 1.0 by modifying the AT&T 1.2.1 C++ compiler [You91]. Version 2.0 was done by
Peter Buhr, Glen Ditchfield, Rick Stroobosscher and Bob Zarnke [BDS+91]. Version 3.0 was done by Peter
Buhr, Rick Stroobosscher and Bob Zarnke. Rick Stroobosscher built both Version 2.0 and 3.0 of the µC++
translator, while Peter Buhr wrote the documentation and did sundry coding. As always, Bob Zarnke made
sure it was all done correctly.

The indirect contributers are Richard Stallman for providing emacs so that we could accomplish useful
work in UNIX and Michael D. Tiemann for building GNU C++.
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Appendix A

µC++ Grammar

The grammar for µC++ is an extension of the grammar for C++ given in [ES90, Chapter 17]. The ellipsis in
the following rules represent the productions elided from the C++ grammar.

type-specifier:
. . .
uMutex

uNoMutex

class-key:
. . .
uCoroutine

uTask

statement:
. . .
uDie ;

uCoDie ;

uWait expression ;

uSignal expression ;

uSuspend ;

uResume ;

accept-statement ;
accept-statement:

when-clauseopt uAccept ( dname ) statement
when-clauseopt uAccept ( dname ) statement uOr accept-statement
when-clauseopt uAccept ( dname ) statement uElse statement

when-clause:
uWhen ( expression )
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Appendix B

Example Programs

B.1 Coroutine Binary Insertion Sort

The coroutine BinarySort inputs positive integer values to be sorted and sorts them using the binary insertion
sort method. For each integer in the set to be sorted, BinarySort is restarted with the integer as the argument.
The end of the set of integers to be sorted is signalled with the value -1. When the coroutine receives a
value of -1, it stops sorting and prepares to return the sorted integers one at a time. To retrieve the sorted
integers, BinarySort is restarted once for each integer in the sorted set. Each restart returns as its result
the next integer of the sorted set. The last value returned by BinarySort is -1, which denotes the end of the
sorted set, and then BinarySort terminates.

If the set of integers contains more than one value, BinarySort sorts them by creating two more instances of
BinarySort, and having each of them sort some of the integers. Each of the two new coroutines may eventually
have to create two more coroutines in turn. The result is a binary tree of coroutines. No error checks are
made to ensure that member routine output is not called during the sorting phase and that member routine
input is not called during the output phase.

// −*− Mode: C++ −*−
//
// uC++ Version 3.1, Copyright (C) Peter A. Buhr 1990
//
// BinaryInsertSort.cc −− Binary Insertion Sort, semi−coroutines
//
// Author : Peter A. Buhr
// Created On : Thu Aug 2 11:53:37 1990
// Last Modified By : Peter A. Buhr
// Last Modified On : Fri Oct 18 07:58:48 1991
// Update Count : 23
//

#include <uC++.h>
#include <uStream.h>

uCoroutine BinarySort {
private:
int in, out;
void main();

public:
void input( int );
int output();

}; // BinarySort

void BinarySort::main() {
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int pivot;

pivot = in; // first value is the pivot value
if ( pivot == −1 ) { // no data values

uSuspend; // acknowledge end of input
out = −1;
return; // terminate output

} // if

BinarySort less, greater; // create siblings

for ( ;; ) {
uSuspend; // get more input

if ( in == −1 ) break;
if ( in <= pivot ) { // direct value along appropriate branch

less.input( in );
} else {

greater.input( in );
} // if

} // for

less.input( −1 ); // terminate input
greater.input( −1 ); // terminate input
uSuspend; // acknowledge end of input

// return sorted values

for ( ;; ) {
out = less.output(); // retrieve the smaller values

if ( out == −1 ) break; // no more smaller values ?
uSuspend; // return smaller values

} // for

out = pivot;
uSuspend; // return the pivot

for ( ;; ) {
out = greater.output(); // retrieve the larger values

if ( out == −1 ) break; // no more larger values ?
uSuspend; // return larger values

} // for

out = −1;
return; // terminate output

} // BinarySort::main

void BinarySort::input( int val ) {
in = val;
uResume;

} // BinarySort::input

int BinarySort::output() {
uResume;
return out;

} // BinarySort::output

void uMain::main() {
const int NoOfValues = 20;
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BinarySort bs;
int value;
int i;

// sort values

uCout << "unsorted values...\n";
for ( i = 1; i <= NoOfValues; i += 1 ) {

value = random() % 100;
uCout << value << " ";
bs.input( value );

} /* for */
uCout << "\n";
bs.input( −1 );

// retrieve sorted values

uCout << "sorted values...\n";
for ( ;; ) {

value = bs.output(); // retrieve values
if ( value == −1 ) break; // no more values ?

uCout << value << " "; // print values
} // for
uCout << "\n";

} // uMain::main

// Local Variables: //
// compile−command: ”u++ BinaryInsertionSort.cc” //
// End: //

B.2 Bounded Buffer

Two processes communicate through a unidirectional queue of finite length. Semaphores are used to ensure
that should the queue fill, the producer waits until some free queue element appears, and if the queue is
empty, the consumer waits until an element appears. Also, a lock is used to ensure mutually exclusive access
to the front and back of the queue for removals and insertions.

B.2.1 Using Monitor Accept

// −*− Mode: C++ −*−
//
// uC++ Version 3.1, Copyright (C) Peter A. Buhr 1990
//
// MonAcceptBB.cc −− Bounded buffer problem using a monitor and uAccept
//
// Author : Peter A. Buhr
// Created On : Thu Aug 2 11:35:05 1990
// Last Modified By : Peter A. Buhr
// Last Modified On : Wed Oct 23 13:38:40 1991
// Update Count : 49
//

#include <uC++.h>
#include <uStream.h>

uMonitor BoundedBuffer {
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const int size; // number of buffer elements
int front, back; // position of front and back of queue
int count; // number of used elements in the queue
int *Elements;

public:
BoundedBuffer( const int size = 10 ) : size( size ) {

front = back = count = 0;
Elements = new int[size];

} // BoundedBuffer::BoundedBuffer

˜BoundedBuffer() {
delete [size] Elements;

} // BoundedBuffer::BoundedBuffer

void insert( int );
int remove();

}; // BoundedBuffer

inline void BoundedBuffer::insert( int elem ) {
if ( count == size ) { // buffer full ?

uAccept( remove ); // only allow removals
} // if

Elements[back] = elem;
back = ( back + 1 ) % size;
count += 1;

}; // BoundedBuffer::insert

inline int BoundedBuffer::remove() {
int elem;

if ( count == 0 ) { // buffer empty ?
uAccept( insert ); // only allow insertions

} // if

elem = Elements[front];
front = ( front + 1 ) % size;
count −= 1;

return( elem );
}; // BoundedBuffer::remove

#include "ProdConsDriver.ii"

// Local Variables: //
// compile−command: ”u++ MonAcceptBB.cc” //
// End: //

B.2.2 Using Monitor Condition

// −*− Mode: C++ −*−
//
// uC++ Version 3.1, Copyright (C) Peter A. Buhr 1990
//
// MonConditionBB.cc −− Bounded buffer problem using a monitor and condition variables
//
// Author : Peter A. Buhr
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// Created On : Thu Aug 2 11:35:05 1990
// Last Modified By : Peter A. Buhr
// Last Modified On : Wed Oct 23 13:38:29 1991
// Update Count : 31
//

#include <uC++.h>
#include <uStream.h>

uMonitor BoundedBuffer {
const int size; // number of buffer elements
int front, back; // position of front and back of queue
int count; // number of used elements in the queue
int *Elements;
uCondition BufFull, BufEmpty;

public:
BoundedBuffer( const int size = 10 ) : size( size ) {

front = back = count = 0;
Elements = new int[size];

} // BoundedBuffer::BoundedBuffer

˜BoundedBuffer() {
delete [size] Elements;

} // BoundedBuffer::BoundedBuffer

void insert( int elem ) {
if ( count == size ) {

uWait BufFull;
} // if

Elements[back] = elem;
back = ( back + 1 ) % size;
count += 1;

uSignal BufEmpty;
}; // BoundedBuffer::insert

int remove() {
int elem;

if ( count == 0 ) {
uWait BufEmpty;

} // if

elem = Elements[front];
front = ( front + 1 ) % size;
count −= 1;

uSignal BufFull;
return(elem);

}; // BoundedBuffer::remove
}; // BoundedBuffer

#include "ProdConsDriver.ii"

// Local Variables: //
// compile−command: ”u++ MonConditionBB.cc” //
// End: //
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B.2.3 Using Task

// −*− Mode: C++ −*−
//
// uC++ Version 3.1, Copyright (C) Peter A. Buhr 1990
//
// TaskBBAccept.cc −− Bounded buffer problem using a task and uAccept
//
// Author : Peter A. Buhr
// Created On : Sun Sep 15 20:24:44 1991
// Last Modified By : Peter A. Buhr
// Last Modified On : Wed Oct 23 13:38:18 1991
// Update Count : 29
//

#include <uC++.h>
#include <uStream.h>

uTask BoundedBuffer {
const int size; // number of buffer elements
int front, back; // position of front and back of queue
int count; // number of used elements in the queue
int *Elements;
void main();

public:
BoundedBuffer( const int size = 10 ) : size( size ) {

front = back = count = 0;
Elements = new int[size];

} // BoundedBuffer::BoundedBuffer

˜BoundedBuffer() {
delete [size] Elements;

} // BoundedBuffer::BoundedBuffer

void insert( int elem ) {
Elements[back] = elem;

}; // BoundedBuffer::insert

int remove() {
return Elements[front];

}; // BoundedBuffer::remove
}; // BoundedBuffer

void BoundedBuffer::main() {
for ( ;; ) {

uAccept( ˜BoundedBuffer ) {
break;

} uOr uWhen ( count != size ) uAccept( insert ) {
back = ( back + 1 ) % size;
count += 1;

} uOr uWhen ( count != 0 ) uAccept( remove ) {
front = ( front + 1 ) % size;
count −= 1;

} // uAccept
} // for // missing } causes assertion error

} // BoundedBuffer::main
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#include "ProdConsDriver.ii"

// Local Variables: //
// compile−command: ”u++ TaskAcceptBB.cc” //
// End: //

B.2.4 Using P/V

// −*− Mode: C++ −*−
//
// uC++ Version 3.1, Copyright (C) Peter A. Buhr 1990
//
// SemaphoreBB.cc −− Bounded Buffer using P and V
//
// Author : Peter A. Buhr
// Created On : Thu Aug 15 16:42:42 1991
// Last Modified By : Peter A. Buhr
// Last Modified On : Wed Oct 23 13:38:07 1991
// Update Count : 24
//

#include <uC++.h>
#include <uStream.h>

class BoundedBuffer {
const int size; // number of buffer elements
int front, back; // position of front and back of queue
uSemaphore full, empty; // synchronize for full and empty BoundedBuffer
uSemaphore ilock, rlock; // insertion and removal locks
int *Elements;

public:
BoundedBuffer( const int size = 10 ) : size( size ), full( 0 ), empty( size ), ilock( 1 ), rlock( 1 ) {

front = back = 0;
Elements = new int[size];

} // BoundedBuffer::BoundedBuffer

˜BoundedBuffer() {
delete [size] Elements;

} // BoundedBuffer::BoundedBuffer

void insert( int elem ) {
empty.uP(); // wait if queue is full

ilock.uP(); // serialize insertion
Elements[back] = elem;
back = ( back + 1 ) % size;
ilock.uV();

full.uV(); // signal a full queue space
} // BoundedBuffer::insert

int remove() {
int elem;

full.uP(); // wait if queue is empty

rlock.uP(); // serialize removal
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elem = Elements[front];
front = ( front + 1 ) % size;
rlock.uV();

empty.uV(); // signal empty queue space
return( elem );

} // BoundedBuffer::remove
}; // BoundedBuffer

#include "ProdConsDriver.ii"

// Local Variables: //
// compile−command: ”u++ SemaphoreBB.cc” //
// End: //

B.3 Disk Scheduler

The following example illustrates a fully implemented disk scheduler. The disk scheduling algorithm is the
elevator algorithm, which services all the requests in one direction and then reverses direction. A linked list
is used to store incoming requests while the disk is busy servicing a particular request. The nodes of the list
are stored on the stack of the calling processes so that suspending a request does not consume resources.
The list is maintained in sorted order by track number and there is a pointer which scans backward and
forward through the list. New requests can be added both before and after the scan pointer while the disk is
busy. If new requests are added before the scan pointer in the direction of travel, they are serviced on that
scan.

The disk calls the scheduler to get the next request that it services. This call does two things: it passes
to the scheduler the status of the just completed disk request, which is then returned from scheduler to disk
user, and it returns the information for the next disk operation. When a user’s request is accepted, the
parameter values from the request are copied into a list node, which is linked in sorted order into the list
of pending requests. The disk removes work from the list of requests and stores the current request it is
performing in CurrentRequest. When the disk has completed a request, the request’s status is placed in the
CurrentRequest node and the user corresponding to this request is reactivated.

// −*− Mode: C++ −*−
//
// uC++ Version 3.1, Copyright (C) Peter A. Buhr 1991
//
// LOOK.cc −− Look Disk Scheduling Algorithm
//
// The LOOK disk scheduling algorithm causes the disk arm to sweep
// bidirectionally across the disk surface until there are no more
// requests in that particular direction, servicing all requests in
// its path.
//
// Author : Peter A. Buhr
// Created On : Thu Aug 29 21:46:11 1991
// Last Modified By : Peter A. Buhr
// Last Modified On : Mon Oct 28 22:06:59 1991
// Update Count : 71
//

#include <uC++.h>
#include <uStream.h>

enum boolean { FALSE, TRUE };
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typedef char Buffer[50]; // dummy data buffer

const int NoOfCylinders = 100;
enum IOStatus { IO COMPLETE, IO ERROR };

class IORequest {
public:
int track;
int sector;
Buffer *bufadr;

}; // IORequest

#include "/u/usystem/software/collection/inc/Sequence.h"

class WaitingRequest : public Sequable { // element for a waiting request list
public:
uCondition block;
IOStatus status;
IORequest req;
WaitingRequest( IORequest req ) { WaitingRequest::req = req; }

}; // WaitingRequest

DECLARE Sequence<WaitingRequest>; // generic doubly linked list
IMPLEMENT Sequence<WaitingRequest>;

class Elevator : public Sequence<WaitingRequest> {
boolean Direction;
WaitingRequest *Current;

public:
Elevator() {

Direction = TRUE;
};
void insert( WaitingRequest *np ) {

for ( WaitingRequest *lp = head(); // insert in ascending order by track number
lp != 0 && lp−>req.track < np−>req.track;
lp = succ( lp ) );

if ( isEmpty() ) Current = np; // 1st client, so set Current
Sequence<WaitingRequest>::insert( np, lp );

};
WaitingRequest *remove() {

WaitingRequest *temp = Current; // advance to next waiting client
Current = Direction ? succ( Current ) : pred( Current );
Sequence<WaitingRequest>::remove( temp ); // remove request

if ( Current == 0 ) { // reverse direction ?
uCout << "Turning\n";
Direction = !Direction;
Current = Direction ? head() : tail();

} // if
return( temp );

};
}; // Elevator

uTask DiskScheduler {
Elevator PendingClients; // ordered list of client requests
uCondition DiskWaiting; // disk waits here if no work
WaitingRequest *CurrentRequest; // request being serviced by disk
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void main();
public:
IORequest WorkRequest( IOStatus );
IOStatus DiskRequest( IORequest & );

}; // DiskScheduler

uTask Disk {
DiskScheduler *scheduler;
void main();

public:
Disk( DiskScheduler &scheduler ) {

Disk::scheduler = &scheduler;
}; // Disk

}; // Disk

uTask DiskClient {
DiskScheduler *scheduler;
void main();

public:
DiskClient( DiskScheduler &scheduler ) {

DiskClient::scheduler = &scheduler;
}; // DiskClient

}; // DiskClient

void Disk::main() {
IOStatus status;
IORequest work;

status = IO COMPLETE;
for ( ;; ) {

work = scheduler−>WorkRequest( status );
if ( work.track == −1 ) break;

uCout << "Disk main, track:" << work.track << "\n";
uDelay( 1 ); // pretend to perform an I/O operation
status = IO COMPLETE;

} // for
} // Disk::main

void DiskScheduler::main() {
Disk disk( *this ); // start the disk

CurrentRequest = NULL; // no current request at start
for ( ;; ) {

uAccept( ˜DiskScheduler ) { // request from system
break;

} uOr uAccept( WorkRequest ) { // request from disk
} uOr uAccept( DiskRequest ) { // request from clients
} // uAccept

} // for

// two alternatives for terminating scheduling server
#if 1

for ( ; !PendingClients.isEmpty(); ) { // service pending disk requests
uAccept( WorkRequest );

} // for
#else
{ // wake clients and report failure

WaitingRequest *client;
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for ( SeqGen(WaitingRequest) gen(PendingClients); gen >> client; ) {
PendingClients.remove(); // remove each client from the list
client−>status = IO ERROR; // set failure status
uSignal client−>block; // restart client

} // for
}

#endif
// pending client list is now empty
{ // stop disk

IORequest req;
req.track = −1; // terminate the disk request

WaitingRequest np( req ); // preallocate waiting list element

PendingClients.insert( &np ); // insert disk terminate request on list
if ( !DiskWaiting.uEmpty() ) { // disk free ?

uSignal DiskWaiting; // wake up disk to deal with termination request
} else {

uAccept( WorkRequest ); // wait for current disk operation to complete
} // if

}
} // DiskScheduler::main

IOStatus DiskScheduler::DiskRequest( IORequest &req ) {
WaitingRequest np( req ); // preallocate waiting list element

PendingClients.insert( &np ); // insert in ascending order by track number
if ( !DiskWaiting.uEmpty() ) { // disk free ?

uSignal DiskWaiting; // reactivate disk
} // if

uWait np.block; // wait until request is serviced

return( np.status ); // return status of disk request
} // DiskScheduler::DiskRequest

IORequest DiskScheduler::WorkRequest( IOStatus status ) {
if ( CurrentRequest != NULL ) { // client waiting for request to complete ?

CurrentRequest−>status = status; // set request status
uSignal CurrentRequest−>block; // reactivate waiting client

} // if

if ( PendingClients.isEmpty() ) { // any clients waiting ?
uWait DiskWaiting; // wait for client to arrive

} // if

CurrentRequest = PendingClients.remove(); // remove next client’s request
return( CurrentRequest−>req ); // return work for disk

} // DiskScheduler::WorkRequest

void DiskClient::main() {
IOStatus status;
IORequest req;

req.track = random() % NoOfCylinders;
req.sector = 0;
req.bufadr = 0;
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uDelay( random() % 50 ); // delay a random period before making request
uCout << "enter DiskClient main seeking:" << req.track << "\n";
status = scheduler−>DiskRequest( req );
uCout << "enter DiskClient main seeked to:" << req.track << "\n";

} // DiskClient::main

void uMain::main() {
const int NoOfTests = 20;
DiskScheduler scheduler; // start the disk scheduler
DiskClient *p[NoOfTests];
int i;

srandom( getpid() ); // initialize random number generator

for ( i = 0; i < NoOfTests; i += 1 ) {
p[i] = new DiskClient( scheduler ); // start the clients

} // for

for ( i = 0; i < NoOfTests; i += 1 ) {
delete p[i]; // wait for clients to complete

} // for

uCout << "successful execution\n";
} // uMain::main

// Local Variables: //
// compile−command: ”u++ −I/software/g++/lib/g++−include/ −cpp /u3/local/COOL/ice/bin/cpp LOOK.cc” //
// End: //

60



Bibliography

[AOC+88] Gregory R. Andrews, Ronald A. Olsson, Michael Coffin, Irving Elshoff, Kelvin Nilsen, Titus
Purdin, and Gregg Townsend. An Overview of the SR Language and Implementation. ACM
Transactions on Programming Languages and Systems, 10(1):51–86, January 1988.

[BCF] Peter A. Buhr, Michael H. Coffin, and Michel Fortier. Monitor Classification and the Priority
Nonblocking Monitor. submitted to ACM Trans. on Prog. Lang. & Sys.

[BDS+91] P. A. Buhr, Glen Ditchfield, R. A. Stroobosscher, B. M. Younger, and C. R. Zarnke. µC++:
Concurrency in the Object-Oriented Language C++. Software–Practice and Experience, 1991.
to appear.

[BDZ89] P. A. Buhr, Glen Ditchfield, and C. R. Zarnke. Adding Concurrency to a Statically Type-
Safe Object-Oriented Programming Language. SIGPLAN Notices, 24(4):18–21, April 1989.
Proceedings of the ACM SIGPLAN Workshop on Object-Based Concurrent Programming,
Sept. 26–27, 1988, San Diego, California, U.S.A.

[BLL88] B. N. Bershad, E. D. Lazowska, and H. M. Levy. PRESTO: A System for Object-oriented
Parallel Programming. Software–Practice and Experience, 18(8):713–732, August 1988.

[Bri75] Per Brinch Hansen. The Programming Language Concurrent Pascal. IEEE Transactions on
Software Engineering, 2:199–206, June 1975.

[Car90] T. A. Cargill. Does C++ Really Need Multiple Inheritance? In USENIX C++ Conference
Proceedings, pages 315–323, San Francisco, California, U.S.A, April 1990. USENIX Association.

[CG89] Nicholas Carriero and David Gelernter. Linda in Context. Communications of the ACM,
32(4):444–458, April 1989.

[Che82] D. R. Cheriton. The Thoth System: Multi-Process Structuring and Portability. American
Elsevier, 1982.

[CKL+88] Boleslaw Ciesielski, Antoni Kreczmar, Marek Lao, Andrzej Litwiniuk, Teresa Przytycka, An-
drzej Salwicki, Jolanta Warpechowska, Marek Warpechowski, Andrzej Szalas, and Danuta
Szczepanska-Wasersztrum. Report on the Programming Language LOGLAN’88. Technical re-
port, Institute of Informatics, University of Warsaw, Pkin 8th Floor, 00-901 Warsaw, Poland,
December 1988.

[DG87] Thomas W. Doeppner and Alan J. Gebele. C++ on a Parallel Machine. In Proceedings and
Additional Papers C++ Workshop, pages 94–107, Santa Fe, New Mexico, U.S.A, November
1987. USENIX Association.

[Dij68] E. W. Dijkstra. The Structure of the “THE”–Multiprogramming System. Communications of
the ACM, 11(5):341–346, May 1968.

[Enc88] Encore Computer Corporation. Encore Parallel Thread Manual, 724-06210, May 1988.

61



[ES90] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison
Wesley, first edition, 1990.

[Gen81] W. Morven Gentleman. Message Passing between Sequential Processes: the Reply Primitive
and the Administrator Concept. Software–Practice and Experience, 11(5):435–466, May 1981.

[Gen85] W. Morven Gentleman. Using the Harmony Operating System. Technical Report 24685,
National Research Council of Canada, Ottawa, Canada, May 1985.

[GR83] A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation. Addison-
Wesley, 1983.

[GR88] N. H. Gehani and W. D. Roome. Concurrent C++: Concurrent Programming with Class(es).
Software–Practice and Experience, 18(12):1157–1177, December 1988.

[Hal85] Robert H. Halstead, Jr. Multilisp: A Language for Concurrent Symbolic Programming. ACM
Transactions on Programming Languages and Systems, 7(4):501–538, October 1985.

[HC88] R. C. Holt and J. R. Cordy. The Turing Programming Language. Communications of the
ACM, 31(12):1410–1423, December 1988.

[HD90] Robert Hieb and R. Kent Dybvig. Continuations and Concurrency. SIGPLAN Notices,
25(3):128–136, March 1990. Proceedings of the Second ACM SIGPLAN Symposium on Prin-
ciples & Practise of Parallel Programming, March. 14–16, 1990, Seattle, Washington, U.S.A.

[Hoa74] C. A. R. Hoare. Monitors: An Operating System Structuring Concept. Communications of
the ACM, 17(10):549–557, October 1974.

[KMMPN87] Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard.
The BETA Programming Language. In Bruce Shriver and Peter Wegner, editors, Research
Directions in Object-Oriented Programming, Computer Systems Series, pages 7–48. MIT Press,
1987.
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