
Pm Numbers, Ambiguity, and Regularity ∗

Helen Cameron† Derick Wood†

Abstract

We introduce the pseudo-m-ary (Pm) number system in which
numbers are represented by sums of the form

∑

i≥0
ai(m

i+1 − 1). We
characterize the Pm representations that are produced by the greedy
algorithm and show that they form a regular set. In addition, we show
that the set of Pm representations that are the sole representations for
their corresponding numbers is also a regular set.

1 Introduction

Many number systems can be viewed as ways of representing integers based
on finite or infinite integer sequences 1 = u0 < u1 < u2 < · · · . A common
method of finding a representation of an integer in any such number system is
the greedy algorithm; see Fraenkel [Fra85]. To find the greedy representation
of an integer N , we find the largest ui that is no larger than N and then
repeatedly we set ai ←− bN/uic, N ←− N − aiui, and i ←− i − 1, until
i = 0. In some number systems, some integers may have representations
other than the one obtained via the greedy algorithm. (A number that
has more than one representation in the given number system is said to be
ambiguous; otherwise, it is unambiguous.)

There appears to be a close relationship between the properties of num-
ber systems and the properties of formal languages; see Shallit [Sha91], for
example. Two intriguing problems about this relationship are:

Problem 1.1 For which number systems are the sets of greedy representa-
tions regular?

Problem 1.2 For which number systems are the sets of unambiguous num-
bers regular?
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Figure 1: A recursive definition of the perfect binary tree of height h
(Bin(h)).

We introduce the pseudo-m-ary (Pm) number system and show that the
set of greedy representations and the set of representations of unambigu-
ous numbers in the Pm number system are regular sets. For any fixed
integer m > 1, the Pm number system is based on the sequence m1 − 1,
m2− 1,m3− 1, . . . . As we will see, when m = 2 (in the P2 number system),
every integer is representable; however, when m > 2, only multiples of m−1
are representable.

The P2 number system has been studied previously. Allouche, Betrema,
and Shallit [ABS89] characterized the set of integers that can be represented
by P2 representations using only the digits 0 and 1. Their interest in the P2
number system arose from a study of the sequence of parentheses occurring
in the recursive definition of the integers.

We have used the characterization of the greedy representations in the
P2 number system in Cameron [Cam91] and Cameron and Wood [CW91]
to establish an upper bound result for a class of binary trees. Every binary
tree can be viewed as a perfect binary tree (a binary tree whose leaves all
appear on one level; see Figure 1) with some perfect binary subtrees removed.
Each node of a perfect binary tree has two perfect binary subtrees, so each
remaining node has 0, 1, or 2 perfect binary children removed by the pruning;
see Figure 2. A perfect binary subtree contains 2h − 1 nodes, where h is
the height of the tree (the distance of the leaves from the root of the tree).
Thus, we became interested in numbers of the form

∑

i≥0 ai(2
i+1−1), where

ai = 0, 1, or 2, because they give the total size of the subtrees we have
removed by pruning. These numbers are exactly the P2 representations.

Similarly, each node of a perfect m-ary tree has m perfect m-ary sub-
trees. Pruning such a tree removes 0, 1, 2, . . . , or m perfect m-ary subtrees
from each remaining node. Again, because a perfect m-ary tree of height
h contains (mh − 1)/(m − 1) nodes, we have a relationship between the
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Figure 2: Pruning a complete binary tree.

number of nodes pruned from a perfect m-ary tree and sums of the form
∑

i≥0 ai(m
i+1−1), where ai = 0, 1, 2, . . . , or m; that is, between m-ary trees

and Pm representations.

In the following sections, all numbers discussed are assumed to be non-
negative integers, and we assume that m is some fixed integer greater than
1.

2 The Pm Number System and the Greedy Al-

gorithm

In this section, we define the Pm number system and introduce the Pm
representations obtained via the greedy algorithm.

The base m number system, for some integer m > 1, is based on the
integer sequence 1 = m0 < m1 < m2 · · · . If we wish to represent an
integer in base m, then we use the digits 0, . . . ,m − 1, and the ith digit
of a base m representation is the coefficient of mi. (The least significant
digit corresponds to index 0, and we count up from there.) We consider the
pseudo-m-ary (Pm) number system, which is based on the integer sequence
1 ≤ m1 − 1 < m2 − 1 < m3 − 1 < · · · . It uses the digits 0, . . . ,m, and the
ith digit of a Pm representation is the coefficient of mi+1 − 1.

Thus, a Pm representation is either ε or a sequence of integers of the form
an · · · a0, where n ≥ 0, 1 ≤ an ≤ m, and 0 ≤ ai ≤ m, for all i, 0 ≤ i < n.
The value of the Pm representation ε is 0. The value of any other Pm
representation an · · · a0 is denoted by value(an · · · a0) and is defined to be
∑n

i=0 ai(m
i+1 − 1). If we consider all non-zero Pm representations with

exactly n + 1 digits, for some n ≥ 0, the Pm representation consisting of
a 1 digit followed by n zero digits (that is, the Pm representation 10n,
using the formal language notation 0n to mean a string of n zeros) has the
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smallest value among all non-zero Pm representations with exactly n + 1
digits. Similarly, the Pm representation consisting of n+1 digits equal to m
(the Pm representation mn+1) has the largest value among all non-zero Pm
representations with exactly n + 1 digits. Thus, the value of the non-zero
Pm representation an · · · a0 is bounded by

mn+1 − 1 ≤ value(an · · · a0) ≤ m

(

mn+2 − 1

m− 1
− n− 2

)

.

For m = 2, we will show that every nonnegative integer has at least
one Pm representation. But, if m > 2, then only some of the nonnegative
integers have Pm representations. For example, when m = 3, the integer
5 has no representation in the Pm number system. We will show that an
integer has a Pm representation if and only if the integer is a nonnegative-
integer multiple of m − 1. (Since m − 1 = 1 when m = 2, we will have
shown that each nonnegative integer has at least one representation in the
P2 number system.)

It is well-known that m − 1 divides mk − 1, for all k > 0; thus, since
value(an · · · a0) =

∑n
i=0 ai(m

i+1 − 1), value(an · · · a0) is divisible by m − 1.
Now, we show that each nonnegative-integer multiple of m − 1 is repre-
sentable in the Pm number system. We will use the greedy algorithm and a
result of Fraenkel [Fra85].

The greedy algorithm produces a representation an · · · a0 (if one is pos-
sible) in a number system 1 ≤ u0 < u1 < u2 < · · · for a positive integer N
as follows:

Find the largest index n such that un ≤ N.

i←− n
Repeat

ai ←− bN/uic
N ←− N − aiui

i←− i− 1
Until i = 0.

Note that
k
∑

i=0

aiui < uk+1, for all k, 0 ≤ k ≤ n,

because n is the largest index such that un ≤ N and because we remove as
many multiples of ui as possible from what remains of N before considering
lower-order digits in the greedy representation, for all i, 0 ≤ i ≤ n. The
following result of Fraenkel [Fra85] implies that, in certain number systems,
the greedy representation is the only representation to satisfy

k
∑

i=0

aiui < uk+1, for all k, 0 ≤ k ≤ n,
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and that every nonnegative integer has such a representation in these number
systems.

Proposition 2.1 (Fraenkel) Let 1 = u0 < u1 < u2 < · · · be any finite or
infinite sequence of integers. Any nonnegative integer N has precisely one
representation in the system S = {u0, u1, u2, . . .} of the form N =

∑n
i=0 aiui,

where the ai are nonnegative integers that satisfy

akuk + ak−1uk−1 + · · ·+ a0u0 < uk+1 (k ≥ 0).

Consider the number system Sm−1 based on the integer sequence

1 =
m− 1

m− 1
<

m2 − 1

m− 1
<

m3 − 1

m− 1
< · · · .

This system is simply the Pm number system divided by m− 1. By Propo-
sition 2.1, we see that, in Sm−1, the greedy representation an · · · a0 for a
nonnegative integer p is the only representation for p that satisfies

ak ≥ 0

and
k
∑

i=0

ai
mi+1 − 1

m− 1
<

mk+2 − 1

m− 1
,

for all k, 0 ≤ k ≤ n and that there is such a representation for every non-
negative integer. Therefore, in the Pm number system, the corresponding
greedy representation an · · · a0 for the nonnegative integer p(m − 1) is the
only representation for p(m− 1) that satisfies

ak ≥ 0

and
k
∑

i=0

ai(m
i+1 − 1) < mk+2 − 1,

for all k, 0 ≤ k ≤ n, and there is such a representation for every nonnegative-
integer multiple of (m−1). Since only nonnegative-integer multiples of m−1
have representations in the Pm number system, a nonnegative integer has
a representation in the Pm number system if and only if it is a multiple of
m− 1.

3 The Regularity of Greedy Representations

We will show that the following regular language captures exactly the Pm
numbers that are produced by the greedy algorithm.
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Definition 3.1 Let LG be the regular language

LG = {1, . . . ,m− 1}{0, . . . ,m− 1}∗ + {1, . . . ,m− 1}{0, . . . ,m− 1}∗m0∗

+m0∗ + ε.

The regular language {1, . . . ,m − 1}{0, . . . ,m − 1}∗ + ε is the set of Pm
representations that do not have any digit equal to m. The regular language
{1, . . . ,m−1}{0, . . . ,m−1}∗m0∗+m0∗ is the set of Pm representations that
have exactly one digit equal to m and all lower-order digits are zero. Note
that if an · · · a0 is in LG, then ak · · · a0, where ak > 0, for some 0 ≤ k < n, is
also in LG. Also, if we consider the Pm representations with exactly n + 1
digits in LG, then we see that the Pm representation that consists of the
digit m followed by n zero digits has the largest value among them all; that
is, the value of the Pm representation an · · · a0 in LG is bounded from above
by

value(an · · · a0) ≤ m(mn+1 − 1).

Now, we will show that LG is the set of all Pm representations produced
by the greedy algorithm.

Theorem 3.1 The regular language LG consists of exactly the Pm represen-
tations produced by the greedy algorithm for nonnegative-integer multiples of
m−1. Hence, the set of Pm representations produced by the greedy algorithm
for nonnegative-integer multiples of m− 1 is regular.

Proof: We first show that the set of greedy representatives is a subset
of LG. In other words, the Pm representations produced by the greedy
algorithm for the number p(m− 1) is in LG, for all p ≥ 0. We use induction
on p.
Basis: For p = 0, the greedy representative of 0 is ε, which is in LG. For
p = 1, 2, . . . ,m, the Pm representation produced by the greedy algorithm
for the number p(m− 1) is p and p is in LG.
Induction hypothesis: Assume that the Pm representation produced by
the greedy algorithm for the number p′(m− 1) is in LG, for all 0 ≤ p′ < p,
for some p > m.
Induction step: Let an · · · a0 be the Pm representation produced by the
greedy algorithm for the number p(m− 1). There are two cases to consider:
either an is the only non-zero digit in the Pm representation an · · · a0 or
there is more than one non-zero digit in the Pm representation an · · · a0.

an is the only non-zero digit. Then, an · · · a0 = an0
n. Since the Pm

representation is produced by the greedy algorithm, value(an · · · a0) =
an(m

n+1− 1) < mn+2− 1. Thus, an ≤ m. But, {1, 2, . . . ,m}0∗ ⊂ LG;
therefore, if an is the only non-zero digit, then the Pm representation
an · · · a0 is in LG.
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an is not the only non-zero digit. Let k be the second largest index of a
non-zero digit in the Pm representation an · · · a0; that is, let an · · · a0 =
an0

n−k−1ak · · · a0, where ak > 0. Because an · · · a0 is a greedy repre-
sentation, ai ≥ 0 and

∑i
j=0 aj(m

j+1 − 1) < mi+2 − 1, for all i ≥ 0.
Therefore, ak · · · a0 satisfies these two conditions as well. The greedy
representation of Rk = value(ak · · · a0) must satisfy these two condi-
tions and, as we argued above, there is only one representation for Rk

that satisfies these two conditions. Therefore, ak · · · a0 is the greedy
representative for Rk. Note that Rk = value(an · · · a0)− an(m

n+1− 1)
is a smaller multiple of m − 1 than p(m − 1), since value(an · · · a0) =
p(m−1) and mn+1−1 is a positive multiple of m−1. By the induction
hypothesis, since Rk < p(m− 1), the Pm representation ak · · · a0 is in
LG. If we can show that an < m, then an · · · a0 = an0

n−k−1ak · · · a0

is in LG, too. (If an = m, then, for the Pm representation an · · · a0

to be in LG, we would need ai = 0, for 0 ≤ i < n. Since ak > 0,
we must have an < m.) Since an · · · a0 is produced by the greedy
algorithm, value(an · · · a0) < mn+2 − 1. Since an and ak may not be
the only non-zero digits in the Pm representation an · · · a0, we have
an(m

n+1 − 1) + ak(m
k+1 − 1) ≤ value(an · · · a0). If an ≥ m, then,

since ak > 0 and k ≥ 0, we have an(m
n+1 − 1) + ak(m

k+1 − 1) ≥
m(mn+1 − 1) + 1(mk+1 − 1) ≥ mn+2 − 1, a contradiction. Therefore,
an < m. Thus, if an is not the only non-zero digit, the Pm represen-
tation an · · · a0 is in LG.

Therefore, a Pm representation produced via the greedy algorithm is in LG.

Now, we show that any Pm representation in LG is produced by the
greedy algorithm for the corresponding number. We now show that every
Pm representation an · · · a0 in LG satisfies ai ≥ 0 and

∑i
j=0 aj(m

j+1 − 1) <
mi+2− 1, for all i ≥ 0, thus proving, by Proposition 2.1, that every element
of LG is a greedy representation. Let an · · · a0 be in LG. Clearly, ak ≥ 0, for
all k, 0 ≤ k ≤ n. Also, for any k, 0 ≤ k ≤ n, the Pm representation ak · · · a0

(ignoring leading zeros) is in LG. Now, the value of the Pm representation
ak · · · a0 in LG is bounded from above by value(ak · · · a0) ≤ m(mk+1 − 1).
But m(mk+1 − 1) < mk+2 − 1, so value(ak · · · a0) < mk+2 − 1, as required.
2

4 The Pm Representations of the Unambiguous

Numbers

There are many Pm representations that are not in LG; namely, all those
that have a digit equal to m and some other lower-order non-zero digit.
Since the value of a Pm representation that is not in LG is also the value
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of some Pm representation that is in LG, the numbers corresponding to
Pm representations that are not in LG are ambiguous. For example, the Pm
numberm0n−21, which is not in LG, has valuem(mn−1)+(m−1) = mn+1−1
and so does the Pm number 10n, which is in LG. Thus, the number mn+1−1
is ambiguous in the Pm number system. We prove that the set of numbers
that are unambiguous in the Pm number system is a regular set.

Definition 4.1 Let LU be the regular language

LU = {1, . . . ,m−1}+[0m+{1, . . . ,m−1}{0, . . . ,m}+m0]+{ε, 1, . . . ,m0}.

Thus, LU contains all Pm representations that fall, in lexicographic order,
between (and including) ε and m0, and LU contains all Pm representations
an · · · a0, for n ≥ 2, such that the last two digits a1a0 fall, in lexicographic
order, between (and including) 0m and m0, and 0 < ai < m, for all i,
2 ≤ i ≤ n.

Clearly, LU is a subset of LG; that is, a Pm representation in LU has at
most one digit equal to m, and, if it has a digit equal to m, then all lower-
order digits are zero. Furthermore, if an · · · a0 is in LU , for some n ≥ 2, then
an−1 · · · a0 is in LU , too.

We will show that the Pm representations in LU are exactly the Pm
representations of the unambiguous numbers. To do this, we first show that
no two Pm representations in {0, 1, . . . ,mm} have the same value and then
we bound the values of the Pm representations in LU .

Lemma 4.1 Let S2 be the set of Pm representations with one or two digits;
that is, let S2 = {ε, 1, . . . ,mm}. If x and y are in S2 and x 6= y, then
value(x) 6= value(y).

Proof: For convenience, we treat all Pm numbers in S2 as if they have two
digits, by adding leading zeros if necessary. Let a1a0 and b1b0 be in S2 and
let a1a0 6= b1b0. There are two cases to consider: either a1 6= b1, or a1 = b1

and a0 6= b0.
If a1 6= b1, then assume, without loss of generality, that a1 < b1. Consider

value(a1a0) = a1(m
2 − 1) + a0(m− 1). Since a1 < b1 and a0 ≤ m, we have

value(a1a0) ≤ (b1 − 1)(m2 − 1) + m(m − 1) = b1(m
2 − 1) − (m − 1). Since

b0 ≥ 0, we have value(a1a0) < b1(m
2 − 1) + b0(m− 1) = value(b1b0).

If a1 = b1 and a0 6= b0, assume, without loss of generality, that a0 < b0.
Then, value(a1a0) ≤ b1(m

2 − 1) + (b0 − 1)(m − 1). Since 0 ≤ a0 < b0 and
m > 1, we have value(a1a0) < b1(m

2 − 1) + b0(m− 1) = value(b1b0).
In both cases, value(a1a0) 6= value(b1b0). 2

Note that this result does not establish the unambiguity of the numbers
with representations in S2 because it does not consider Pm representations
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with more than two digits. Indeed, the numbers corresponding to some
two digit Pm representations are ambiguous. For example, the number
m(m2− 1)+m− 1 is represented in the Pm number system by m1 and 100.

Lemma 4.2 Let an · · · a0 be in LU . If n < 2, then

0 ≤ value(an · · · a0) ≤ m(m2 − 1).

Otherwise,

mn+2 − 1

m− 1
− 2m− n ≤ value(an · · · a0) ≤ mn+2 − 1− n(m− 1).

Proof: The set of Pm representations with zero, one, or two digits is
LU (2) = {ε, 1, . . . ,m0} and this set consists of all Pm representations that
fall, in lexicographic order, between (and including) ε andm0. By Lemma 4.1,
no two of these representations have the same value. If we list the elements of
LU (2) in lexicographic order, their values are strictly increasing. To see this,
consider the Pm representation that comes after a1a0 (we add leading zeros
as necessary to obtain two digits). If a0 < m, then the next representation
is a1(a0 + 1) and

value(a1a0) = a1(m
2 − 1) + a0(m− 1)

< a1(m
2 − 1) + (a0 + 1)(m− 1)

= value(a1(a0 + 1)).

If a0 = m, then the next number is (a1 + 1)0 and

value(a1a0) = a1(m
2 − 1) +m(m− 1)

< a1(m
2 − 1) + (m+ 1)(m− 1)

= (a1 + 1)(m2 − 1)

= value((a1 + 1)0).

Therefore, if a1a0 ∈ LU , then

value(ε) = 0 ≤ value(a1a0) ≤ m(m2 − 1) = value(m0).

If an · · · a0 ∈ LU and n ≥ 2, then, by similar arguments about the last
two digits of this number,

value(an · · · a20m) ≤ value(an · · · a0) ≤ value(an · · · a2m0).

If some ai > 1, where 2 ≤ i ≤ n, then we can subtract 1 from ai to
create a Pm representation in LU with smaller value than value(an · · · a0).
Thus, value(1n−10m) ≤ value(an · · · a0), where 1n−1 represents a string of
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n − 1 ones. Similarly, if some ai < m − 1, where 2 ≤ i ≤ n, then we can
add 1 to ai to create another Pm representation in LU with greater value
than value(an · · · a0). Thus, value(an · · · a0) ≤ value((m− 1)n−1m0), where
(m− 1)n−1 represents a string of m− 1’s of length n− 1. 2

Theorem 4.3 A number is unambiguous in the Pm number system if and
only if it has a representation in LU . Hence, the set of Pm representations
of unambiguous numbers is regular.

Proof: We split the proof into two parts.
Claim 1: Each Pm representation in LU is the only Pm representation with
its value.

Clearly, ε is the only Pm representation for 0. Consider the Pm repre-
sentations an · · · a0 in LU with positive values. The proof is by induction on
n.
Basis: The set LU (2) = {1, . . . ,m0} contains the only Pm representations
in LU , for n = 0 and n = 1. Any Pm representation with three or more digits
has value at least value(100) = m3−1. The values of the Pm representations
m1,m2, . . . ,mm (the only Pm representations with at most two digits that
are not in LU (2)) are at least value(m1) = m3−1. By Lemma 4.2, the value
of a Pm representation in LU (2) is at most m(m2 − 1) < m3 − 1, for all
m > 1. By Lemma 4.1, no two of the Pm representations in LU (2) have the
same value. Therefore, each representation in LU (2) is unambiguous.
Induction hypothesis: Assume that each Pm representation ak · · · a0 in
LU is the only Pm representation for value(ak · · · a0), for all k < n, for some
n > 1.
Induction step: Let an · · · a0 be a Pm representation in LU . Assume that
there exists some other Pm representation bk · · · b0 (not necessarily in LU or
LG) with the same value. There are three possibilities: either k > n, k < n,
or k = n.

k > n. We show that value(an · · · a0) < value(bk · · · b0); that is, we cannot
have a Pm representation bk · · · b0 with the same value as an · · · a0.

Clearly, we have value(bk · · · b0) ≥ value(10k) = mk+1 − 1. Since
an · · · a0 ∈ LU , by Lemma 4.2, value(an · · · a0) ≤ mn+2−1−n(m−1).
But, mn+2 − 1− n(m− 1) < mn+2 − 1, since m > 1 and n ≥ 2. Since
k > n, value(an · · · a0) < mn+2 − 1 ≤ mk+1 − 1 ≤ value(bk · · · b0), a
contradiction.

k < n. We show that the difference value(bk · · · b0) − value(an−1 · · · a0) is
different from value(an · · · a0) − value(an−1 · · · a0) = an(m

n+1 − 1).
Thus, the Pm representations an · · · a0 and bk · · · b0 cannot have the
same value, a contradiction.
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Consider the difference value(bk · · · b0)−value(an−1 · · · a0). This differ-
ence should be an(m

n+1 − 1), since value(bk · · · b0) = value(an · · · a0).
Now,

value(bk · · · b0) ≤ m

(

mk+2 − 1

m− 1
− k − 2

)

≤ m

(

mn+1 − 1

m− 1
− n− 1

)

.

Furthermore, since an−1 · · · a0 ∈ LU , by Lemma 4.2,

mn+1 − 1

m− 1
− 2m− n+ 1 ≤ value(an−1 · · · a0).

Therefore,

value(bk · · · b0)− value(an−1 · · · a0)

≤ m

(

mn+1 − 1

m− 1
− n− 1

)

−

(

mn+1 − 1

m− 1
− 2m− n+ 1

)

= mn+1 − 1− (m− 1)(n− 1)

< mn+1 − 1,

since m > 1 and n ≥ 2. Thus, value(bk · · · b0) − value(an−1 · · · a0) 6=
an(m

n+1 − 1), a contradiction.

k = n. We know that an · · · a0 is in LU ⊆ LG; that is, an · · · a0 is produced
by the greedy algorithm when it is given value(an · · · a0). Therefore,
an = bvalue(an · · · a0)/(m

n+1 − 1)c. But this implies that bn cannot
be larger than an; that is, bn ≤ an.

Suppose bn = an. Then, bn−1 · · · b0 is not equal to an−1 · · · a0 and
value(bn−1 · · · b0) = value(an−1 · · · a0). Now, an−1 · · · a0 is in LU and,
by the induction hypothesis, it is the only Pm representation for
value(an−1 · · · a0). Therefore, we must have bn−1 · · · b0 = an−1 · · · a0, a
contradiction.

Now, if bn < an, then the Pm representations bn−1 · · · b0 and
(an−bn)an−1 · · · a0 are two different Pm representations with the same
value. Since an− bn > 0 and an · · · a0 is in LU , the Pm representation
(an − bn)an−1 · · · a0 is also in LU . We have already shown above that
we cannot have some Pm representation (an − bn)an · · · a0 in LU and
some other Pm representation bn−1 · · · b0 such that value(an · · · a0) =
value(bk · · · b0). Thus, this case is not possible either.

Each possibility leads to a contradiction; therefore, our assumption that
there exists some other Pm representation bk · · · b0 that has the same value
as an · · · a0 ∈ LU must be false. Thus, each Pm representation in LU is the
only Pm representation with the corresponding value.
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Claim 2: Each number that does not have a representation in LU is am-
biguous.

Suppose the Pm representation an · · · a0 is not in LU . We construct
another Pm representation for value(an · · · a0) to show that value(an · · · a0)
is ambiguous. There are two cases to consider: either an · · · a0 is in LG or
an · · · a0 is not in LG.

If an · · · a0 is not in LG, then, by Theorem 3.1, there exists some Pm
representation bk · · · b0 in LG such that value(bk · · · b0) = value(an · · · a0).
Thus, value(an · · · a0) is ambiguous.

Otherwise, an · · · a0 is in LG and we use the equality

mk+1 − 1 = m(mk − 1) + (m− 1)

to build another Pm representation with the same value as an · · · a0. There
are two subcases to consider: either there are digits aj−1 = 0 and aj > 0,
for some j, 2 < j ≤ n, or there are not.

Two such digits, aj−1 and aj, exist. If a0 = m, then, by the definition
of LG, since a0 is non-zero, a1 cannot be m. Consider the Pm repre-
sentation bn · · · b0, where

bj = aj − 1,

bj−1 = aj−1 +m = m,

b1 = a1 + 1,

b0 = 0, and

bi = ai, otherwise.

Since j > 2, we have not defined digit b1 twice, so,

value(bn · · · b0) = value(an · · · a0)− (mj+1 − 1)

+m(mj − 1) +m2 − 1−m(m− 1)

= value(an · · · a0).

If a0 < m, consider the Pm representation bn · · · b0, where

bj = aj − 1,

bj−1 = aj−1 +m = m,

b0 = a0 + 1, and

bi = ai, otherwise.

We have

value(bn · · · b0) = value(an · · · a0)− (mj+1 − 1)

+m(mj − 1) +m− 1

= value(an · · · a0).
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Thus, value(an · · · a0) is ambiguous.

Two such digits, aj−1 and aj, do not exist. Then, either n ≤ 2, or n >
2 and aj > 0, for all j, 2 ≤ j ≤ n.

Let us first consider n ≤ 2. (We add leading zeros as required to
make all representations under consideration exactly three digits long.)
Since a2a1a0 is in LG, if any digit is m, then all lower-order digits are
zero. Since a2a1a0 is not in LU , either a2 = m or 0 < a2 < m and a1a0

is in {00, 01, . . . , 0(m − 1),m1,m2, . . . ,mm} or a2 = 0 and a1a0 is in
{m1,m2, . . . ,mm}. Combining these two restrictions, we see that if
n ≤ 2, then a2a1a0 is in {m00}+{1, 2, . . . ,m−1}{00, 01, . . . , 0(m−1)}.
Since a2 > 0, a1 = 0, and a0 < m in each case, the representation
(a2 − 1)m(a0 + 1) is a valid Pm representation and

value((a2 − 1)m(a0 + 1)) = value(a2a1a0)− (m3 − 1)

+m(m2 − 1) +m− 1

= value(a2a1a0).

Now let us consider n > 2 and aj > 0, for all j, 2 ≤ j ≤ n. Since
an · · · a0 is in LG, if any digit is in m, then all lower-order digits are
zero. Thus, since aj > 0, for all 2 ≤ j ≤ n, we have aj 6= m, for
all j, 2 < j ≤ n. Since an · · · a0 is not in LU , either a2 = m (in
which case a1a0 = 00, since an · · · a0 is in LG), or 0 < a2 < m and
a1a0 6∈ [0m + {1, . . . ,m − 1}{0, . . . ,m} + m0] (in which case a1a0 ∈
{00, 01, . . . , 0(m− 1)}, since an · · · a0 is in LG). Since a2 > 0, a1 = 0,
and a0 < m in each case, the representation an · · · a3(a2− 1)m(a1 +1)
is a valid Pm representation and

value(an · · · a3(a2 − 1)m(a1 + 1)) = value(an · · · a0)− (m3 − 1)

+m(m2 − 1) +m− 1

= value(an · · · a0).

Thus, once again value(an · · · a0) is ambiguous.

Therefore, each number that does not have a Pm representation in LU

is ambiguous. 2

5 Conclusion

We have characterized the set of Pm representations that are constructed
by the greedy algorithm and the set of numbers that are unambiguous in
the Pm number system and shown that these are regular sets.
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One question that we have not answered is whether we need all the digits
0, 1, . . . ,m. For instance, if we are not allowed to use the digit m, would some
integer that had a Pm representation no longer have any Pm representation?
We see that LU uses all the digits from {0, 1, . . . ,m} and each number with
a representation in LU has only one Pm representation. Thus, we need all
the digits 0, 1, . . . ,m, if all nonnegative integers of the form p(m− 1) are to
be represented. This observation leaves an open problem: Characterize the
integers that have Pm representations if the digit set is restricted to some
subset of {0, 1, . . . ,m}.

As noted in the introduction, another more general problem that remains
is: Characterize the number systems for which the set of greedy representa-
tions and the set of representations of unambiguous numbers are regular.
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