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1 Introduction

Storage management is an important issue in the design of any object-oriented database manage-
ment system (OODBMS). In fact, most object-oriented database management systems are com-
posed of two main subsystems, an interpreter and a storage manager. The interpreter provides the
operational semantics as seen by the user; it understands the details of the data model, enforces
object encapsulation, and executes methods. It calls the storage manager for physical data access
and manipulation. The storage manager, in turn, concerns itself “with the placement of objects
on secondary storage, movement of data between secondary storage and main memory, creation
of new objects, recovery, concurrency control, and sometimes indexing and authorization”[ZM89,
page 237].

This paper addresses four important issues in managing storage for object-oriented database man-
agement systems: object representation, updates and recovery, indexing and object referencing,
and clustering. The object representation issue deals with how an object is represented in memory
versus how it is represented on secondary storage. It also includes the representation of different
versions of objects. Updates and recovery are related issues in that how updates to objects are
handled by the system influences the recovery schemes that are available. The hierarchical nature
of object-oriented systems makes object identification vital since objects may reference one or more
other objects and OODBMSs must be able to follow these reference paths (pointer chasing) effi-
ciently. Indexing may provide more efficient access to related objects. Frequently, it may be helpful
to cluster, or group, objects physically in storage to increase system performance. Thus, clustering
is another important issue in storage management.

In discussing these four issues, six different storage management models will be examined. These
include the storage management strategies that are found in O2, LOOM, EXODUS, Postgres,
Mneme, and a distributed object manager for Smalltalk-80.

2 The O2 Object Manager

The O2 object manager has a server/worker architecture. The workstation component is single
user, memory based, while the server is multi-user, disk based. The object manager (OM) is the
software module of O2 that handles persistent and temporary complex objects, each of which has
an identity. Furthermore, objects are shared and reliable and move between workstations and the
server. The OM is used by all the upper modules of the system.

The OM is divided into four layers, each of which is responsible for implementing the various features
of OM. These layers are: (i) a layer which copes with the manipulation of O2 objects and values,
and with transactional control (involves creation/deletion of objects and structured types, retrieval
of objects by name, support for set, list, and tuple objects ), (ii) a Memory Management layer
(involves translation of object identifiers to memory addresses, handling object faults, managing
space occupied by objects in main memory), (iii) a Communication layer which takes into account
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object transfers, execution migration (from workstations to server and back), and (iv) a Storage
layer devoted to persistence, disk management, and transaction support (this feature is on the
server). The last layer is implemented by the underlying WiSS, the Wisconsin Storage System. The
WiSS runs under Unix System V but bypasses the Unix File System and does its own buffering.
[VBD89]

In O2, the distributed architecture is visible to the application programmer. The programmer may
explicitly specify the machine desired to execute a message passing expression. The unit of transfer
between the server and a workstation is an object. Each object is encoded (from disk format to
memory format or vice-versa) before each transfer and decoded at the other side. The following
process layout is adopted. On the workstation, an application and the workstation version of the
OM form one unique process. For each process running on a workstation, a mirror process runs on
the server. The mirror process contains the code to be executed in the server in case an execution
migration arises. In this case, if the selectivity ratio is high and the set to be searched is large,
running the method on the server may result in a better performance. Two other notable features of
the OM are: persistence is implemented with a simple composition-based schema in which deletions
are implicit; clustering issues are clearly separated from the schema information and specified by
the DBA in the form of a subset of a composition graph (defined later).

2.1 Object Representation

The O2 data model distinguishes between values and objects. Objects have identity and encapsulate
values and user-defined methods. Values can be set , list or tuple structured, or atomic. Each value
has a type which describes its structure. A named object or value is an object or value with a
user-defined name. These objects or values are the roots of persistence. The OM of O2 does not
distinguish between objects and values. It deals with only objects and atomic values. Structured
values are given an identifier and are managed as “standard” objects. The system supports both
the primitives for manipulating values as well as the message passing mechanism for objects. In the
OM there are primitives to distinguish oids (object identifiers) denoting objects from oids denoting
values.

Tuples. On disk , a tuple is represented as a record stored in a page. When a tuple outgrows
a disk page, it is switched to a different representation suitable for storing long records. This
representation is the Long Data Item (or LDI) format provided by WiSS. The object identifier of
the tuple is unchanged.

In main memory , tuples are represented as contiguous chunks containing the actual values. These
chunks hold pointers to the proper locations of the strings of the tuple. The strings are stored at
a different location, away from the main chunk. This way the strings may grow or shrink without
requiring the entire object to change location. In O2, a tuple may have exceptional attributes, that
is, attribute values not declared in its class. Consider the following example:

class Person type tuple (name:string, age:integer);
O2 Person x;
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∗x = tuple(name:“john”, age: 28,
my-opinion:“nice fellow”);

Here, the attribute my-opinion is the exceptional attribute for the given tuple. In the case of tuples
with exceptional attributes, the tuple object may grow in length. When such a tuple grows, a level
of indirection for the entire tuple value is generated if an in-place extension is not possible.

Lists. These may be considered as insertable arrays and are represented as ordered trees in this
system. An ordered tree is a kind of B-tree in which each internal node contains a count of the
nodes under it. The node-counts have to be kept updated at all times. This structure efficiently
stores small as well as large lists.

Sets. A set of objects is itself an object containing the object identifiers of its members. The
representation of large sets is required to be such that (i) membership tests are efficient and (ii)
scanning the elements of the set is also efficient. B-tree indices (provided by the underlying WiSS)
are used to represent large sets. It could be costly to index a small set. Hence, under a limit
size, a set is represented as a WiSS record . The value of the limit size is the maximum record size
in WiSS. Small sets are kept ordered. This ensures that binary operations (such as unions and
differences) on the sets take advantage of the ordered representation. Note that the larger sets are
automatically ordered.

Multimedia Objects. Two types of multimedia objects are implemented: unstructured text and
Bitmap. From the user point of view, they are instances of the predefined classes Text and Bitmap.
The predefined methods in these classes are display and edit. Text is represented as an atomic
object of type string and bitmaps are atomic objects of type bytes, an unstructured byte string
preceded by its length.

Persistence is defined in the O2 model as reachability from persistent root objects. This is achieved
by associating with each object a reference count. An object persists as long as this counter is
greater than 0. Persistence is user controlled : in order to make an object persistent, the user has
to make it a component of an already persistent object.

Versioning and authorization have not been addressed in the first version of O2, but have been
proposed for the next version.

2.2 Indexing and Object Referencing

Objects are uniquely identified and accessed by object identifiers (oids). The (persistent) identifiers
are “physical” identifiers, that is, reflecting the location on disk. An object is stored in a WiSS
record and the object identifier is the record’s identifier, an RID. Such identifiers may have a
performance edge over “logical” identifiers, in the sense that they may save an extra disk access for
retrieving the “object table” (which maps the logical identifiers to the physical addresses). This disk
access is a necessity in the case of logical identifiers. A major problem, though, is moving objects on
disks without changing their identifiers. The solution adopted in O2 is to use “forwarding markers”.
In this scheme, the old physical address of a “moved” object contains a pointer to its new location.
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An RID is coded in 8 bytes: a volume identifier (2 bytes), a page identifier within a volume (4
bytes), and a slot-number (2 bytes). In contrast to the persistent identifiers, the virtual memory
records are identified by TempIDs. Each TempID is made up of a virtual memory address and a
machine tag . A machine tag indicates if the virtual memory address is a workstation address or a
server address.

Both the workstation and the server maintain caches of recently accessed objects. The server has
a dual buffer management scheme: a page buffer implemented by WiSS and an object buffer pool,
the object memory . Objects in the page buffer are in the disk format. In the object memory, they
are in their memory format. The disk format is more compact. Both of the server caches are
shared among all concurrent processes. There is a Memory Management Module to: (i) translate
object identifiers into memory addresses (includes handling object faults for objects requested by
the application but not currently in memory); (ii) manage the space occupied by objects in main
memory.

On the server, an object fault implies reading a WiSS record and transferring it between the page
buffer and the server object memory. On every object fault, all the valid records on the same page
as the object in question are transferred into the object memory. This “read-ahead” strategy is
based on the fact that objects which have a strong correlation between them are clustered on the
same or nearby pages and reading an entire page will accelerate further processing. Objects are
transferred from the server to the workstations via the Communication Manager.

Both on the server and on the workstations, the memory address at which an object is stored never
changes until the object migrates to another machine or is written out to disk. While an object is
in memory, an object table maps its identifier to its true location in memory. This table is hashed
on identifier values and contains entries for resident objects only.

The policy of having physical addresses as object identifiers poses some problems for temporary
records. As such records are only in memory, they are forced to remain at the same address at
which they were stored at the time of creation. This has some problems. First, the promotion
of records from temporary to persistent storage must be delayed until the transaction commits.
Second, it does not allow use of well-known garbage-collection techniques. Records cannot be freed
from memory until commit time unless a temporary reference count scheme is built. In fact, as a
record may be referenced by the O2 variables of a method, it should exist as long as it is pointed
to by a variable, even if the reference count of the record is 0. It has been observed that typical
applications running on top of the OM create temporary records at a furious rate and that these
records never get deleted explicitly before commit. [VDD+90]

2.3 Clustering

Newly created persistent objects are given a persistent identifier when they are inserted in a file
at transaction commit. The mapping of objects to files depends on control data given by the
Database Administrator (DBA). These data describe the placement of objects: the placement trees
(also termed cluster trees). These trees express the way in which a composite object and its object
or value components will be clustered together. The main heuristic used to postulate that two
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objects will be used together frequently is their relationship through composition structure. For
example, if a class A is a child of class B in a placement tree and an object a of class A is a
component of object b of class B, the system attempts to store a as close as possible to b. Cluster
trees are traversed at commit time to determine the file into which the record is to be inserted.
Furthermore, one has the option of specifying the RID of the parent record r in the insert routine
to compel WiSS to try and store the new record in the same page as r or in a nearby page.

2.4 Updates and Recovery

When the workstation needs to update a persistent object, an explicit exclusive lock request on the
page the object resides is made. This is done with the help of the RID, which also contains the
page identifier.

In addition, all the objects which are represented by ordered trees will have their node counts
updated after every insertion or deletion.

Recovery and rollbacks are not implemented in the current version of WiSS. This feature is proposed
for the next version. Also proposed are “savepoints”, a mechanism to prevent the loss of large
amounts of work.

3 The EXODUS Storage Component

EXODUS is an extensible database management system developed at the University of Wisconsin.
This section describes the design of the object-oriented storage component of EXODUS. The main
intent of the designers of this system was to come up with a modular and modifiable system rather
than a complete database system. The EXODUS storage system is the lowest level and the only
“fixed” component of EXODUS. “Fixed” means that the storage component of EXODUS is used
in its original form by all the applications running on EXODUS; the design of upper level modules,
some of which interface with the storage system, is application-specific. Application-specific access
methods, operations, and version management layers are built using the primitives provided by the
storage system. One of the significant features of this storage system is minimal semantics, that
is, minimal information about the conceptual schema. In order to the keep the system extensible
it does not seem feasible for the storage system to have information about the conceptual schema.
On the other hand, semantics are often useful for performance reasons. The solution adopted is
to keep schema information out of the storage system, but to allow hints to be provided. These
hints can help in making decisions that influence performance in important ways. For example,
clustering hints can be passed as parameters to the object creation routine to place the new object
“near” another object. [CDRS86]

As mentioned earlier, the layer above the storage system provides the access methods for a given
EXODUS application. This layer is likely to change from one application to another. The EXODUS
storage system provides a procedural interface to this higher layer. This interface includes proce-
dures to: create/destroy file objects; open/close file objects for file scans; create/destroy storage
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objects within a file object; and begin, commit, and abort calls for transactions.

3.1 Object Representation

Storage Objects. The basic unit of stored data in the EXODUS storage system is the storage
object , which is an uninterpreted byte sequence of virtually unlimited size. By providing capabilities
for storing and manipulating storage objects without regard for their size, a significant amount of
generality is obtained. Storage objects can grow and shrink in size. Insertions and deletions are
allowed anywhere within the object (that is, not limited to occur at the end of an object). Storage
objects can be either small or large, although this distinction is hidden from clients of the storage
system.

Large Storage Objects. Conceptually, a large object is an uninterpreted sequence of bytes;
physically, it is represented on disk as a B+ tree index on byte position within the object and a
collection of leaf (data) blocks. The root of the tree (the large object header) contains a number
of (count, page #) pairs, one for each child of the root. The count value associated with each child
pointer gives the maximum byte number stored in the subtree rooted at that child. The count for
the rightmost child pointer is also the size of the object. An absolute byte offset within a child
translates to a relative offset within its parent node. The leaf blocks in a large storage object
contain pure data. The size of a leaf block is a parameter of the data structure and is an integral
number of contiguous disk pages. For often-updated objects, leaf blocks will probably be one page
in length to minimize the amount of I/O and byte shuffling that must be done on updates. For less
frequently updated objects, leaf blocks may be several contiguous pages long. Each internal node
of a large storage object corresponds to one disk page. The root node corresponds to at most one
disk page, or possibly just a portion of a shared page. Such a two-level tree with a leaf block size
of 1 page can support an object size range of 8KB–2MB.

File Objects. In the EXODUS storage system, file objects are collections (sets) of storage objects.
These collections are useful for grouping objects for several purposes and according to various
criteria. The EXODUS storage system provides a mechanism for sequencing through all the objects
in a file. Thus, related objects can be placed in a common file for sequential scanning purposes.
Also, objects within a given file object are placed only on the disk pages allocated to the file. The
representation of file objects in EXODUS is quite similar to the representation of large storage
objects. The issue of sorting a file object is addressed in the next section.

Versions. Versions of storage objects are supported by this storage system. Support is rather
basic—one version of each storage object is retained as the current version, and all of the preceding
versions are simply marked (in their object headers) as being old versions. Version support is
conducive to widely different applications, each with its own notion of versions. Versions of large
storage objects are maintained by copying and updating the pages that differ from version to
version. Various versions of the same object share pages that are common among them. Only
dissimilar pages are owned separately. These independently owned pages are pointed to by the
unique object headers of each version. [CDRS86]
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3.2 Indexing and Object Referencing

Small storage objects reside on a single disk page, whereas large storage objects occupy multiple
disk pages. In either case, the object identifier (OID) of a storage object is of the form (page #,

slot #). The OID of a small storage object is a pointer to the object on the disk. For a large
storage object, the OID points to a large object header . This header can reside on a page with
other large object headers and small storage objects and contains pointers to other pages involved
in the representation of the large object. All other pages (the non-header ones) in a large object
are private to the object, rather than shared with other storage objects. Pages, however, may be
shared between various versions of the same object, as explained later. When a small storage object
grows to the point where it can no longer be accommodated on a single page, the EXODUS storage
system automatically converts it to a large storage object, leaving its object header in the place of
the original small object.

The indexing scheme of large storage objects is explained above, along with their representation.

A file object is identified by its OID, a pointer to the root page of the file object. Storage and file
objects are distinguished by a bit in their object headers. Like large storage objects, file objects
are represented by an index structure similar to a B+ tree with the key for the index being the
disk page number . This helps to gather information about the pages of a file at one place. This
facilitates scanning of all the objects within a given file object in physical order for efficiency. It
also allows fast deletion of an object with a given OID from a file object. Creation of a file object
allocates the file object header.

Keeping the file objects sorted is an aid in object referencing within a given file. The storage system
has no semantic knowledge of the contents and data types of the fields for a given file object. The
EXODUS storage system thus provides a generic file object sorting routine. One of the arguments
to this sort routine is a procedure parameter for an object comparison routine; the sort utility calls
this routine to compare storage objects as it sorts the file.

3.3 Clustering

As has been mentioned above, the EXODUS storage system does not have sufficient semantics to
implement any kind of clustering on its own. However, there is a provision for providing hints to
achieve clustering. For example, when an object is created within a file object, the object creation
routine can be invoked with an optional hint of the form “place the new object near X ” (where X
is the OID of an existing object within the file). If this hint is present, the new object is inserted
on the same page as X . If there is not enough space on X’s page, then a new page near X’s page
is allocated for the newly inserted object and its page number is inserted into the file object B+
tree; the OID of the file object is recorded on the newly allocated page.
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3.4 Updates and Recovery

The EXODUS storage system supports a number of updating operations on large storage objects
and file objects. These include search, insert, append , and delete. All of these operations permit
the updating of any number of bytes at any position in an object. All take the size and starting
position of the data as input parameters. The deletion algorithm of EXODUS is different from the
traditional B+ tree deletion in that it allows bulk deletions as opposed to single record deletions.
This deletion algorithm has two phases. The first phase removes the entire range of bytes specified.
The second phase balances the B+ tree index (which was left unbalanced by the first phase).

Version Updates. All the updating routines provide a versioning option. If an application wishes
to update/create versions, it invokes these routines with the versioning option on. When a storage
object is updated with the versioning option on, the old object header (or the entire object, in the
case of a small storage object) is copied to a new location on disk as an old version of the object.
A new header is written over the old version of the object header. The OID of the old version is
returned to the updater and the OID of the new version is the OID that was originally passed to
the update routine. In order to save copying costs, the old version is placed on the same page of
the file object as the new version. If this is not possible, a nearby page is selected. For creation of
new versions of large storage objects, the updating operations of insert, append, delete, and write
are invoked with the versioning option turned on. A “smart” algorithm, for deletion of a version of
an object, exists. This algorithm ensures the safety of the object’s pages that are shared by other
versions of the same object. The EXODUS storage system provides both concurrency control and
recovery services for storage objects. Two-phase locking is used on byte ranges. An option is also
provided for “locking the entire object”.

For recovery, small storage objects are handled using before/after image logging and in-place up-
dating at the object level. Recovery of large objects is handled using a combination of shadows and
logging ; updated internal pages and leaf blocks are shadowed up to the root level, with updates
being installed atomically by overwriting the old object header with the new header. Prior to the
installation of update at the root level, the other updated pages are forced to the disk. The name
and parameters of the operation that caused the update are logged, with the log sequence number
of the log record for the update being placed on the root page of the object. This ensures that
operations on large storage objects can be undone or redone as necessary in an idempotent manner.
For versioned objects, the same recovery scheme is used. In this case, however, the before-image
of the updated large object header is first copied elsewhere, to be maintained as the version before
the updates.

4 LOOM—Large Object Oriented Memory for Smalltalk-80 Sys-

tems

LOOM is different from the other systems described in this paper in the sense that it is not really an
object storage manager . It is a virtual memory system designed and implemented for Smalltalk-80
systems. It does not have any notion of the “semantics” of the objects stored. It does not support
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operations like updates, versioning, recovery, or concurrency control. It may be viewed simply as a
memory system storing objects on primary and secondary memory.

The most important feature of LOOM is that it provides virtual addresses that are much wider
than either the word size or the memory size of the computer on which it runs. It is a single-user,
virtual memory system that operates without assistance from the programmer.

LOOM is currently intended for use over a local area network. The design, however, can be extended
to many users and many machines.

The major issues in the LOOM design and implementation are:

• representation of resident and secondary memory objects;

• translation between representations;

• identification of times when the translations must occur.

4.1 Object Representation

There are two different name spaces in LOOM: one for main memory and the other for secondary
memory. The same object is identified by names from different spaces when it resides in different
parts of the system. The identifier of an object is called an Oop, which stands for “object pointer”.
Main memory has a resident object table (ROT , or sometimes called an OT ), which contains the
actual main memory address of each resident object.

In main memory , each object has a short (16 bit) Oop as its identifier. This short Oop is an index
into the ROT, so that an object’s starting address can be determined from its Oop with a single
addition and memory reference. The ROT entry also has reference-count bits. The body of each
object contains a word for the length of the body, a pointer to the object’s class, and the object’s
fields. Each field is either a pointer to another object or a collection of “bits”. In the following
discussion, only pointer fields are dealt with. Each field (as well as the class pointer) that refers
to another resident object contains the short Oop of that object. Fields that refer to non-resident
objects (objects on secondary storage) contain a short Oop of one of two types, a leaf or a lambda
(described later).

In addition to these fields, resident objects in a LOOM system have three extra words. Two of
these words contain the long (secondary memory) Oop of that object. The third word, known as
the delta word, contains a delta reference-count (described later under object referencing). The
short Oop is the result of a hash function applied to that object’s long Oop.

In secondary storage, object representation has some different features than in main memory.
Secondary memory is addressed as a linear space of 32-bit words. Objects start with a header word
that contains 16 bits of length and some status bits. Each pointer field in the object is 32 bits
wide. Non-pointer fields (such as bytes in Strings) are packed, with 4 bytes in each 32-bit word.
The long Oops in pointer fields are 31-bit disk pointers, addressing as many objects as will fit into
231 disk words (32-bit words). Fields of objects on secondary storage always refer to objects in
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secondary storage and do not change when the object to which they point is currently cached in
main memory. No information about primary memory is ever stored in the secondary memory.
[KK90]

When an object is brought into main memory, its fields must be translated from the long form to
short form. The object is assigned an appropriate short Oop (one to which its long Oop hashes), a
block of memory is reserved for it, and all of its fields are translated from long Oops to short Oops.

Leaves. Leaves are pseudo-objects that represent an object on secondary storage. They have a
short Oop hashed by that object’s long Oop and ROT entry, but their image in memory only
contains a length word, disk address words, and the delta word. Their image contains no class
word or fields. Leaves, therefore, take only up to 4 words of memory, whereas an average object
(object in its expanded form) takes up 13. Leaves are created without looking at that object’s
image on secondary storage. This is very important, since a major cost in virtual memories is the
number of disk accesses. The short Oop of the leaf may be treated as if it were the short Oop of
the object; it may be stored into fields of other objects, without ever needing the actual contents
of that object. Its reference-count can be incremented and decremented just like a fully expanded
object’s reference count.

An object will be in the main memory: (i) in its entirety; (ii) as a leaf . If none of the above is
true, then the object will be on disk.

Lambdas. Lambdas are the second way to represent fields of resident objects that refer to objects
on secondary storage. This representation reduces the number of leaves in the system at any given
time. A lambda is a “slot holder” for a pointer to an object which has not been assigned a short
Oop. It is a pseudo-Oop, a reserved short Oop (the Oop 0) which is not the name of any resident
object. Unlike leaves, lambdas do not take up separate ROT entries for themselves. Instead,
they are all mapped to the single pseudo-ROT entry at 0. Any object that refers to the field
represented by a lambda, accesses the 0th entry of the ROT table. This signals to LOOM to go
back to the secondary storage image of the object containing this field. There it finds the long
Oop of the field. The field is fetched into main memory as a leaf or as a full resident object. The
most significant feature of lambdas is that they do not utilize main memory storage. This saving
can prove important at times. Putting lambdas into fields of objects, which are not likely to be
referenced during these objects’ typical stay in memory, saves both space and time needed to create
and destroy many leaves. There is, however, an added cost of one disk access for fetching a lambda
field.

The choice of strategy (to decide between making the fields of an object leaves or lambdas when
the object is brought in the main memory) can strongly affect the performance of a LOOM system.
Creating a leaf takes more time, uses more main memory, and creates a ROT entry, but does not
cause any extra disk accesses. A lambda is easy to create but causes an extra disk access if the field
it occupies happens to be referenced. It is suggested to rely on history to make the decision: if a
field was a lambda when the object was written to the disk once, it is likely to remain unreferenced
during its next trip into main memory. Hence, a lambda must be created for this field when the
object is brought into main memory another time. Each pointer field of the disk contains a hint,
the noLambda bit, and the object faulting code follows the advice of the hint (explained further
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under Indexing and Object Referencing below).

4.2 Indexing and Object Referencing

If an object is in main memory in its entirety, then it can simply be referred to by the short Oop of
the object. When a field (which in turn may be another object) represented by a leaf is needed, the
entire object with its fields has to be brought into main memory. Since the leaf contains the disk
Oop, the body is easy to find. After the body is translated into main memory form, its memory
address replaces the leaf’s ROT entry and the leaf is discarded. Short Oop references to the object
(that is, the references by which the other objects may refer to this object) remain the same when
the leaf is replaced by the entire object. Since a leaf can be substituted for an object and vice versa
with no effect on pointers to the object, LOOM is always free to make more room in main memory
by turning resident objects into leaves.

If a lambda represents one of the fields of an object, then LOOM must go back to the object’s image
on secondary storage, look in that field for a long pointer, and create a leaf or resident object. This
is done in order to discover the actual value of that field.

When a field of an object being brought into main memory has the noLambda bit set and that
field refers to a non-resident object, then a leaf is created. Thus the noLambda bit may be used to
decide between representing any field of an object as a leaf or a lambda when the object is brought
into main memory. A leaf is also created when a field of a resident object containing a lambda is
accessed. When the interpreter needs to access a field in a leaf, the leaf is expanded into a resident
object and its fields are translated from long form to short form. This is called an object fault .
The reverse operation of contracting a leaf can be done at any time. The final part of an object’s
journey into primary memory consists of destroying the leaf and reusing its short Oop and memory
space. This can be done only when there are no longer any fields in any resident objects pointing
to the leaf.

Lambdas may be resolved into leaves and leaves may be expanded into full objects before they are
needed. This operation is called prefetch.

Reference counting is used by LOOM for “garbage” identification. LOOM keeps a separate count
of references for the short and long Oops of every object. This is essential because any object
may be only on disk, entirely in memory, or in leaf form in memory. There are three possible
sources of reference-count changes. One pointer may be stored over another, a long pointer can be
converted to a short pointer, and a short pointer may be converted to a long pointer. The Smalltalk
interpreter can keep track of the short Oops. However, whenever a leaf is expanded into complete
object or an object is shrunk into a leaf, there arises the need to update the reference-count of
the long Oop of that object. The long Oop reference-count is stored on disk with the main body
of the object. Hence, updating it would mean a disk-access. In order to reduce the disk access
cost for every change in the long Oop count, LOOM keeps a “delta” or running change in the long
Oop reference count for each object in main memory. The true long pointer reference count of any
object is the count found on the disk in the object’s header plus the count found in the delta part
of the object’s delta word in main memory. Every time a leaf is expanded, the delta of its long
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count is decremented. This is due to the fact that the object is now in main memory and will be
directly referred to by its short Oop (the reference-count of which is simultaneously incremented).
The delta count is incremented when an object is translated into a leaf. At any given time, the
long Oop reference-count of an object is the sum of its delta count and long Oop reference-count
on the disk.

The short Oop reference-count of all objects in the memory are stored in the ROT (resident object
table) along with their short Oops. This helps to detect when the last short pointer to any object
disappears (that is, when the short Oop count of the object goes to zero) so that the short pointer
may be reused. Both these reference counts also detect the situation of “no reference” to an object.

4.3 Clustering

There are no clustering facilities in LOOM.

4.4 Updates and Recovery

There are no updating and recovery facilities in LOOM.

5 The Postgres Storage Manager

The Postgres data base system was constructed at the University of California at Berkeley and was
designed by the same team that designed Ingres. The design of the storage manager for Postgres
was guided by three goals:

• To provide transaction management without the necessity of writing a large amount of spe-
cialized crash recovery code.

• To accommodate the historical state of the data base on a write-once-read-many optical disk
in addition to the current state on an ordinary magnetic disk.

• To take advantage of specialized hardware. [Sto90]

The Postgres storage manager is a no-overwrite storage manager. This provides two useful features.
First, the time to abort a transaction can be very short because there is no need to process the
log in order to undo the effects of the updates; the previous records are readily available in the
database. In case of a system crash, little time is needed to recover the database to a previously
consistent state since no rollback is necessary. Second, it is very convenient for the user who wishes
to reference history records since these records are stored in the database.

However, the no-overwrite policy is not problem-free. The migration of history data from magnetic
disk holding the current records to the archive where historical records remain is unstable under
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heavy load. This is because the backup is run by an asynchronous daemon and, when there are
many processes to run, the daemon may not get hold of the CPU. Therefore, the size of the magnetic
disk database increases and performance degrades. [Sto90]

5.1 Object Representation

Postgres views a relation as an object. When it is created, Postgres allocates a file to hold the
records for the object. However, there is no way to determine the size of the objects or the records.
Therefore, for those records which cross disk block boundaries, Postgres allocates continuation
records and chains them together using a linked list.

When an object is read into main memory, Postgres reads the pages of the object in a pre-determined
order. Each page contains a pointer to the next and the previous logical page. [Sto90]

¿From time to time, an asynchronous daemon, the vacuum cleaner , sweeps records which are no
longer valid to the archive system and reclaims the space occupied by such records. It generally
sweeps a chain of several records to the archive at one time for efficiency reasons. [Sto90]

5.2 Updates and Recovery

The updating and recovery techniques are implemented in such a way so that less disk space is
required and recovery after a system crash is easier.

The original value of a record is stored uncompressed and called the anchor point . An updated
record is differenced against the anchor point and only the actual changes are stored. A forward
pointer to the record is altered on the anchor pointer to point to the updated record (called the
delta record). A delta record can only be accessed by obtaining its corresponding anchor point and
chaining forward. Successive updates generate a one-way linked list of delta records off an initial
anchor point. [Sto90]

For recovery, minimal (or no) rollback is needed because of the updating technique. The pointers
to the records are merely moved to the end of the linked list. Therefore, less time is required.

The vacuum cleaner concatenates the anchor point and a collection of delta records and writes the
resulting block to the archive as a single variable length record. It does the vacuuming in three
phases. First, it writes an archive record and its associated index records to the archive media.
Then, it writes a new anchor point in the current data base. Finally, it releases the space occupied
by the old anchor point and its delta records back to the disk media. [Sto90] Due to this three-step
procedure, “vacuuming” should be done infrequently. This will also cut down on the number of
anchor points that occur in the archive, saving space.
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5.3 Indexing and Object Referencing

Records can be referenced by a sequential scan of an object. After reading the object into main
memory, Postgres can scan a relation by following the forward linked list. On each page, there is a
line table containing pointers to the starting byte of each anchor point record on that page. Once
an anchor point is located, the record that the user wishes to reference can be reconstructed by
following the pointer and decompressing the data fields.

An arbitrary number of secondary indexes can be constructed for any base relation. Each index
is maintained by an access method and provides keyed access on a field or a collection of fields.
Each access method must provide all the procedures for the Postgres-defined abstraction for access
methods. The Postgres run-time system will call the various routines of the appropriate access
method when needed during query processing. [Sto90]

When a record is inserted, an anchor point is constructed for the record along with index entries
for each secondary index. Each index record contains a key and a pointer to an entry in the line
table on the page where the indexed record resides.

When an existing record is updated, a delta record is constructed and chained onto the appropriate
anchor record. If no indexed field has been modified, then no maintenance of secondary indexes is
required. If an indexed field has changed, an entry is added to the appropriate index containing
the new key and a pointer to the anchor record. There are no direct pointers that point to delta
records in secondary indexes. [Sto90]

When it is running, the vacuum daemon inserts secondary index records for any indexes defined on
the archive relation. An index record is generated for the anchor point on each archive secondary
index. Moreover, an index record must be constructed for each delta record in which a secondary
key has been changed.

5.4 Clustering

If a user wishes the records in a relation to be approximately clustered on the value of a designated
field, Postgres will attempt to do so by creating a clustered secondary index. [Sto90]

6 Mneme: Persistent Data Management

Mneme (NEE-mee, the Greek word for memory) is a persistent store that has been developed
as part of a long term study into integrating object-oriented programming languages and object-
oriented databases. Mneme is intended to be a tool that can be used with more than one language
and that will take advantage of existing storage managers and network servers. It also is to allow
study of the performance problems related to accessing and manipulating small objects on demand.

Mneme provides three interfaces: the client interface, the storage manager interface, and the policy
interface. The client interface is made up of a number of routines which may be invoked by
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programming languages such as Smalltalk, Trellis/Owl, C++, or Ada. This interface provides a
simple and efficient abstraction of objects and allows Mneme to reliably provide persistent, shared
objects to the client. Mneme objects are defined without a type system or code execution model in
order to keep them general enough so that any language may access them. The storage manager
interface provides the actual persistent storage and sharing of data. The basic requirements for
a storage manager to be used in conjunction with Mneme are that it stores and retrieves data in
segments (sequences of bytes) and that it provides some concurrency control and recovery features.
The policy interface provides access to policy modules. Objects are grouped into pools, with each
pool having an associated policy module (described later). These modules, which may be customized
by the user, indicate how the pools of objects are to be managed. [MS88]

6.1 Object Representation

Mneme objects are made up of three main components: an array of slots, an array of bytes, and
a set of attribute bits. Each slot is the size of a pointer (typically 32 bits) and may contain one
of three types of values: it may hold a reference to another object, it may be empty (a 0 value),
or it may hold an immediate value. “Immediate values are a concession to heap based languages
that allow integers and other non-pointer data within slots” [MS88, page 9]. Each byte is a simple
uninterpreted 8-bit quantity. Attribute bits are used to mark objects as having properties such as
read-only.

An object is presented to the client via its client identifier (CID). Within Mneme, however, an
object is known by its persistent identifier (PID). Thus, some conversion is required between CIDs
and PIDs. This is discussed below.

6.2 Updates and Recovery

A transaction is the atomic unit of recovery within Mneme. The three basic update and recovery
concepts used by Mneme are volatile objects, object logs, and event notification. “A volatile object
is accessible to other clients and may be changed whenever the client does not have a handle on it,
regardless of transactions” [MS88, page 12]. Uncommitted changes by one client may be seen by
others, with handles (discussed later) providing mutual exclusion on volatile objects. Object logs
are provided to support the use of volatile objects and are used to record past or intended changes to
an object. When a transaction commits or aborts, Mneme can complete or undo its manipulations
of these objects. Event notification is implemented so that clients waiting for resources (such as a
handle being held on an object) may be notified of availability. This eliminates the need for busy
waiting or polling.

6.3 Indexing and Object Referencing

Each object is accessible to the client via a client identifier (CID) allowing an application to
reference up to 230 objects at a time. The reference value stored within the slot of a Mneme object



86 Dueck, Jiang, and Sawhney

is called a persistent identifier (PID) and is not the exact CID value seen by the client. This is
due to the fact that the overall object space is not bounded (at least not conceptually), preventing
objects from being assigned a short unique identifier. Since the internal identifier for an object
differs from the client view, some conversion must be made between CIDs and PIDs. This is done
by segmenting the CID address space into contiguous non-overlapping chunks and assigning each
file (the main unit of modularity within Mneme) one of these chunks. Each chunk is described by
the first CID in the chunk, called the base, and the number of CIDs in the chunk. To convert a
PID to a CID, the base of the file is added to the PID. A similar conversion is done from CID to
PID: determine the corresponding file (a table search) and then subtract the file’s base from the
CID.

To ensure that CID to PID conversion is not done more than once for a given object, a handle,
which stores a more time-efficient run-time representation of the object than a CID, is created.
This handle is requested by supplying Mneme with the appropriate CID and has the side benefit
of providing logically exclusive access (that is, locking) to that object.

Objects within the same file can refer to each other simply by using the corresponding PIDs. In
order to begin tracing all the paths of object references within a file, the file is opened and the file’s
root object (which may be defined and changed by the client) is identified. Any object within the
file can then be referenced via the root by following the appropriate path from the root. Thus, the
notion of a root object and the objects that may be referenced from it corresponds to that of the
root directory and its sub-directories in a file system.

When an object refers to an object in a different file, a cross-file reference is used. This is im-
plemented by having the object reference a forwarder , a special object in the current file. The
forwarder contains the necessary information to identify the desired file and object within that file.

To aid in the handling of object faults (when objects are not found in main memory, they must
be retrieved from secondary storage), Mneme partitions the space of PIDs within a file into units
of 1024 PID values called logical segments. All objects that have PIDs with the same high-order
bits belong to the same logical segment. The segments transferred between Mneme’s buffer cache
and the storage managers are called physical segments. “Every physical segment has some set
of logical segments assigned to it, and a logical segment is associated with exactly one physical
segment”[MS88, page 14]. A logical segment table is used to indicate which physical segment
contains the logical segment, and, if the physical segment is memory resident, where the logical
segment may be found within the physical segment. A null pointer in this table indicates a non-
resident physical segment and results in a segment fetch upon access.

There are no explicit indexing techniques for Mneme.

6.4 Clustering

The unit of data modularity within Mneme is the file. A file contains a collection of objects, with
each object in the file having a unique PID. Objects within the same file can refer to each other
simply by using the corresponding PIDs. Files may be further subdivided into one or more pools, or
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collections, of objects. The objects in each pool are managed with the same storage allocation and
object management strategies, permitting the most effective strategy for a given client application.
For example, if an application has a small number of frequently updated objects and a large number
of objects that are changed infrequently, a different strategy could be used for each collection of
objects.

7 Distributed Object Manager for Smalltalk-80

The purpose of the distributed object manager project in [Dec89] was to design a distributed object
manager to replace the original object manager of the Smalltalk-80 system. This would allow users
of several Smalltalk-80 systems to share objects, perform remote execution on objects, or to store
objects in a centralized repository.

To accommodate this distribution concept, the object manager has been removed from the byte-
code interpreter of the original Smalltalk-80 system, becoming its own entity within the system
and distributed over several nodes of a local area network. The network manager at each node is
the controlling process, executing remote accesses on remote objects, handling local access requests
from other network managers, and controlling local processes. Main memory management activities
such as relocation, swapping, free space management, and garbage collection are performed by the
main memory manager while the secondary memory manager manages secondary storage, including
the Smalltalk object descriptor table and the object space.

7.1 Object Representation

All objects residing in secondary storage have an entry in the object descriptor table. This entry,
called a descriptor, describes the object by containing such information as the object size, object
class pointer, internal and external reference counts, object location pointer (in persistent memory),
and a set of flags. Included in these flags are a garbage collection indicator and a proxy flag
indicating whether or not this object is a proxy object (proxy objects are discussed later).

When an access fault is encountered by the main memory manager, objects are automatically loaded
into main memory. This occurs in a manner similar to segment moves in a typical segmented virtual
memory. A mapping structure within main memory, taking the form of a hash table, is used to
determine whether or not an object is resident and, if it is, the address of its object entry. An
object entry is used to describe each object in main memory and includes pointers to the object
descriptor (which is composed of the same fields as in secondary storage) and to the value block.
This entry also contains state information for the descriptor and value block (present, absent, or
being loaded) and whether either has been modified [Dec89].
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7.2 Updates and Recovery

The described distributed object manager has no explicit update and recovery policies. Replication
of objects is not considered, even though this would appear natural in a distributed environment.
Garbage collection is performed via a local and distributed reclamation scheme in which objects are
marked reachable and checked periodically for zero local and remote internal and external reference
counts (described below).

7.3 Indexing and Object Referencing

Naming provides a mechanism for referencing objects without concern for their physical location,
including actual site of reference. Although transparent to the user, access to objects within this
distributed system is either local or remote. When remote, object access may be handled either
by performing an effective remote access with no need for object migration or by executing a local
access and forcing object migration. This decision depends on communication load, object size,
and application requests and is not explicitly handled by the object manager. [Dec89]

The first scenario (remote access with no migration) is addressed by a particular type of object,
called a proxy object, which locally represents a remote object. The proxy belongs to the private
data of the object manager and contains two fields: “the resident site of the remote object and the
virtual pointer to the object in the resident site”[Dec89, page 492].

The second way to handle a remote access is to transform the access into a local access and migrate
the desired object to the local site. This involves creating a proxy object on the remote, or source,
site and replacing the proxy object on the destination site (if it exists) with the real object. Local
and remote reference counts must be updated in order for correct processing to occur. All proxy
objects which point to the original site must be updated, but this is deferred until actual remote
access is attempted with the proxy objects.

When an object references a local, or real, object, no special processing needs to occur. The result
pointer (that is, a pointer to the object being referenced) is set to the local address of the real
object and processing continues. Similarly, if an object references a proxy object, the result pointer
is set to the local address of the proxy object. However, if a proxy object references another object,
the problem of how to represent the result pointer arises. Three different cases are possible. First,
the proxy object may reference a real object on the same site as the proxy object. In this case, the
result pointer is simply set to the address of the local real object. Second, the proxy object may be
referencing a real object on the site to which the proxy object is already pointing. Another proxy
object must be created on the local site, with the result pointer being set to this local address (the
result pointer must always be local). The third case is when the proxy object references a real
object on a third site (via a proxy object on a remote second site). Here, a proxy object must be
created on the local site having the same information as the proxy object on the second site. The
result pointer then is set to point to this newly created object.

Similar situations (such as those encountered setting result pointers in remote references) occur
when sites are dynamically disconnected. The disconnecting site may currently support objects,
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owned by other sites, which must be sent back to their owners in order to ensure a graceful
disconnection1. Secondly, objects owned by the disconnecting site may currently reside on other
sites. The objects in question could be sent back to the owner before it disconnects. However, this
reduces the sharability of objects. Also, if an object migrates when the owning site is disconnected,
the owning site is not informed. Thus, when a site is reconnected, its proxy objects must be updated
to reflect the current state of the network.

There are no explicit indexing techniques for this distributed object manager.

7.4 Clustering

There are no clustering features described for the distributed object manager for Smalltalk-80
systems.

8 Comparison

Four issues related to storage management in object-oriented data base management systems have
been discussed. These issues have been presented with references to O2, EXODUS, LOOM, Post-
gres, Mneme, and a distributed object manager for Smalltalk-80. Each system emphasizes different
aspects of these four issues. Now, a comparison between the different storage managers for these
OODBMS will be made.

All storage managers but Postgres view a tuple as an object with objects being able to reference
other objects. Postgres, however, views a relation as an object. All but EXODUS understand what
an object is. EXODUS views the objects as uninterpreted byte sequences. EXODUS represents a
large object on disk as a B+tree index on byte position within the object and a collection of leaf
blocks.

Mneme understands what an object is, and how it is internally structured. The distributed object
manager for Smalltalk-80 knows the internal structure of the object and its location in memory. It
handles “object faulting” in the same manner as virtual memory handles a page fault. O2 has a
very good understanding of objects. They are grouped into tuples, lists, and sets.

The LOOM storage manager understands the internal structure of objects as well as something
about object classes. It swizzles disk references into short object identifiers, which are then mapped
through a resident object table when dereferenced. For memory references, it converts a memory
object into a leaf , which contains only a small amount of the state of the object (enough to allow it
to be expanded later). For non-memory resident object, it uses a special lambda value to indicate
the reference.

The Postgres storage manager has semantic knowledge about objects and stores them accordingly
(that is, it tries to store the tuples contiguously). When the object is too long to be stored in a

1No satisfactory solution has been thought of to handle traumatic disconnections such as software and hardware

failure.
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page, it splits the object up by tuples and chains them together.

The storage managers use different update and recovery techniques. Mneme puts a handle on an
uncommitted object to enforce mutual. It notifies the waiting clients of the availability of the object
using event notification. It recovers the objects by using the object logs after a crash.

The distributed object manager for Smalltalk-80 has no explicit update and recovery policies.
LOOM does not support these two policies either, since it is only a virtual memory system with
no managerial capabilities.

The O2 object manager uses an exclusive lock when updating an object, but recovery is not im-
plemented. The EXODUS storage system uses two-phase locking on byte ranges when updating
objects. It also provides an option for locking an entire object. It uses before/after image logging
and in-place updating at the object level for small object recovery. For large object recovery, it
uses a combination of shadows and logging.

The storage manager for Postgres does not store entire updated objects. Instead, it stores them as
deltas (differences) from previous versions, and reconstructs them when they are referenced later.

The storage managers use different object referencing techniques. Mneme accesses the client via
a client identifier (CID), whereas when an object references another object, a persistent identifier
(PID) is used. A PID can be converted to a CID, and vice versa.

O2, EXODUS, and LOOM also use identifiers to reference objects. O2 identifies persistent objects
by their object identifiers (OIDs), which are the physical address of objects on disk. In memory, a
persistent object is referenced through the record’s identifier (RID). The temporary records that
exist in virtual memory are referenced through a TempID (which is made up of a virtual memory
address and a machine tag). However, a major problem is moving objects on disks or memory
without changing their identifiers.

EXODUS identifies both storage and file objects by their object identifiers (OIDs). The OID for
small objects is a pointer to the object on disk. For large objects, it contains pointers to other
pages which store the object.

LOOM identifies an object by its object pointer (Oop). Oop is an index into the resident object
table (ROT), which contains the actual main memory address of each resident object.

The distributed object manager for Smalltalk-80 references objects by their names, without concern
as to their physical location. A proxy object is used to represent a remote object locally.

The storage manager for Postgres references records by scanning the relation sequentially. If an
updated version of the record is referenced, it is reconstructed by merging the original copy of the
record with the delta version of the record. Any number of secondary indexes can be constructed
for any base relation.

Since many objects can be referenced from many places, not every object can be clustered with
the objects it references. Therefore, some of the storage managers for OODBMS do not provide
clustering. For example, the distributed object manager for Smalltalk-80 has no advanced clustering
features besides what is provided in a centralized Smalltalk-80 system. LOOM does not have to
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consider any clustering issues since it is a virtual memory system.

The storage managers for EXODUS and Postgres do not provide any clustering on their own, unless
the user instructs them to try to put the records together. This allows users to decide which sets
of records should be clustered together, giving them more control.

Mneme and O2 provide clustering. Mneme divides files into one or more pools of objects. The ob-
jects in each pool are managed with the same storage allocation and object management strategies.
O2 clusters a composite object and its object or value components using cluster trees.

The above six storage managers are of the interpreter-storage manager architecture. But this
architecture is not the only one that has been proposed to support persistent objects. Persistent
memory can be another kind of storage architecture for OODBMS. In this point of view, an object
persists independently of its type or the storage medium on which it resides, so long as it cannot be
garbage collected. This extends the concept of automatically managed, garbage collected virtual
memory to a storage architecture that also includes database objects. In this structure, all processes
and objects share a single virtual address space. Therefore, it is possible to share objects via
pointers. The structure also provides a recovery scheme which itself is at the virtual memory level.
It is based on timestamp and sibling page techniques and has low space and time overheads. It
eliminates the distinction between transient and persistent objects. This architecture has not be
implemented by any existing systems. [Tha86]

9 Conclusion

This paper has addressed the issue of storage management for object-oriented database manage-
ment systems. Four important areas in object storage management have been examined: object
representation, updates and recovery, indexing and object referencing, and clustering. Six different
object storage models (O2, LOOM, EXODUS, Postgres, Mneme, and a distributed object manager
for Smalltalk-80) were examined to determine how they addressed these four areas. The techniques
employed by these models were then compared and contrasted.

Future research into the area of storage management for OODBMSs is, and should continue to be,
focussed on the topics of indexing and clustering. These two topics are related in that indexing is
the basis for clustering objects. Proper indexing techniques, which will aid in the decision of how to
cluster related objects, have yet to be developed. Clustering and storage polices to handle growth
(the addition of new objects) in the database also need to be researched. Persistent memory has
been studied but needs to be implemented.
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