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Abstract

In many relational database systems using a relational algebra-based query language, query
optimization involves the syntactic modification of queries into a “canonical form”[Dat90], and
then choosing from possibly several methods of evaluating the query. Semantic query optimiza-
tion (SQO) is the idea of semantically transforming a query using additional schema informa-
tion, such as integrity constraints. The query is passed through three different phases of logical
transformation: standardization, simplification, and amelioration. The result of this process is
a query that may, in fact, appear quite different from the original query posed by the user, but
is guaranteed to return the same results given the same database instance.

In this paper, we give a brief overview of the concepts of semantic query optimization,
and present a survey of the literature. Most of the literature involves the application of SQO
to relational systems, or to logic-based models such as Datalog[CGT89, Ull88, Ull89]. To
show how these techniques may be used with Object-Oriented Database Management Systems
(OODBMS), we attempt to apply Chakravarthy et al.’s[CGM90] idea of semantically constrained
axioms to an extension of Datalog called Complex-Prolog[GR89]. Complex-Prolog supports the
notions of object identity, classes, and inheritence.

Finally, we present a summary and give some research directions for the application of
semantic query optimization to OODBMS.
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1 Motivation for Query Optimization

A major accomplishment of Codd’s relational model[Cod90, Dat90] was the idea of logical data
independence. The conceptual schema definition does not involve any considerations of storage
structure, or access technique. The conceptual schema is, therefore, defined by information content
only. Typically, non-relational database systems such as IMS or IDMS[Dat90] do not have such a
clearly-defined separation between the internal and conceptual schemas. Out of necessity their
query languages involve navigational operators, such as the “Get Next Within Parent” function
call of IMS. Such query languages are termed procedural.

Non-procedural database query languages, such as Structured Query Language (SQL), have
been in existence since the middle 1970s[AC75]. Most of these languages were developed for use
with the relational model and are based on a combination of the relational calculus and relational
algebra[Dat90, pp. 459]. The operators of the relational algebra and calculus support the data
independence supplied by the relational model’s conceptual schema. Consequently, users may form
database requests without concern for implementation details, and may leave efficiency consider-
ations to the database management system. This means that a query optimizer is required to
translate the semantic expressiveness of the query into efficient, fundamental operations against
the actual storage structures of the relational database. In contrast, procedural queries in non-
relational environments require the user to perform the optimization. The user, not the system,
is responsible for defining what record-level operations are needed, and in what order they will be
performed.

Several advantages can be found for automated query optimization in relational systems[Dat90]:

• The query optimizer typically has access to much more information about the database system
than does the user. In particular, statistical information, such as cardinality of domains and
relations, is invaluable in finding a query processing strategy.

• Volatile databases may mean a change in strategy is desirable. With automatic query op-
timization, however, the user’s query need not be rewritten to take advantage of different
access paths.

• The automated query optimizer can be much more rigorous in deciding the optimality of any
one particular query processing strategy, than compared to a user.

• The algorithm used by the optimizer is available to all users of the database. This implies
that if the algorithm is robust, queries submitted by a novice will be executed with the same
sense of optimality as those of an expert.

Several excellent references regarding the complete framework of query optimization exist in
the literature [JK84], [Dat90, Chapter 18],[Ull89, Chapter 11], [Mai83, Chapter 11]. Conventional
query optimization involves the following steps[JK84, pp. 116]:

1. Find an internal representation into which user queries1 can be cast. This representation must
typically be richer than either the relational calculus or algebra. This results from typical
query language extensions such as scalar values and aggregate functions.

1In this context, the term “query” not only refers to retrieval operations, but also (and perhaps more importantly)
to database updates.
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2. Apply logical transformations to the query to standardize it, simplify it by eliminating redun-
dancy, and improve (ameliorate) it if possible. Standardization includes rewriting a query to
a common form. The point is that the performance of a query should not depend on how
the query was cast originally by the user[Dat90, pp. 459]. Many query languages, including
SQL, allow queries to be expressed in several alternate, though syntactically different, forms.
Amelioration will be discussed in more detail later.

3. Map the transformed query into sequences of possible lower-level operations, and calculate
the cost of executing each of these “access plans”.

4. Choose the best access plan alternative, and execute it.

In this chapter, we concentrate on Semantic Query Optimization (SQO). SQO differs from con-
ventional query optimization in the implementation of Step 2 above. With conventional query
optimizers, queries are transformed using only syntactic transformations[SO89]. Syntactic trans-
formations include algebraic manipulations and operator re-sequencing. Semantic transformations
attempt to exploit any available metadata such as the nature of domains and integrity constraints.
In most relational systems today, domain characteristics and integrity constraints are embedded in
application programs, and thus are unavailable to the database management system. SQO requires
that these constraints be stored with the database system. This scheme delivers several benefits:

• Consistency checks and data element edits, previously coded in (possibly many) application
programs, are now under the control of the DBMS. This ensures that all application programs
adhere to the same integrity constraints.

• As constraints are now enforced by the DBMS, ad-hoc updates are also subject to these
constraints.

• Integrity constraint management may be automated. Altering the constraints may require no
application changes. The DBMS could automatically determine if any tuple in the database
violates a new (or changed) constraint, and inform the database administrator (DBA) appro-
priately.

• The additional metadata may be used for semantic query optimization.

The most important algorithmic constraint in applying query transformations is to ensure that
the original query, and the ameliorated one, are semantically equivalent. Two queries are semanti-
cally equivalent if their answers are the same for all instances of the database that satisfy a specified
set of semantic rules. Note that semantic equivalence does not imply syntactic equivalence, though
the latter does imply the former. To illustrate, the following SQL queries:

SELECT *

FROM EMP

WHERE SALARY > 40K

SELECT *

FROM EMP
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WHERE SALARY > 40K AND JOB = MANAGER

are not syntactically equivalent. However, the two queries would be semantically equivalent if the
relation EMP was constrained such that all employees earning a salary greater than 40K were
employed as managers.

King[Kin84] characterized conventional query optimization as a “hunt for opportunities”. Using
available metadata as input to semantic query optimization allows “the creation of new search spaces
in which to hunt for such opportunities”.

This paper is organized as follows. In Section 2, we define the terminology used in SQO,
and survey the relevant literature. In Section 3, we define the Horn-clause based query language
Datalog[Ull88, Ull89, CGT89] and discuss in detail the proposal by Chakravarthy et al. for semantic
query optimization in relational database systems. In Section 4 we describe an extension to Datalog
called Complex-Prolog[GR89] that supports an object-oriented data model. In Section 5 we discuss
how the approach of Chakravarthy em et al. can be used with Complex-Prolog to support non-
procedural query languages for object-oriented database systems. Finally, in Section 6 we present
some conclusions and areas for further research.

2 Literature Review

In this section we survey the some of the available literature on semantic query optimization. By
far, the literature on SQO references the relational model; the ideas surrounding semantic query
optimization are discussed here in this paper. However, it is possible to apply these same ideas to
object-oriented database systems, and we attempt to show how this may be done in Section 5.

The literature covers various aspects of semantic query optimization, from a variety of perspec-
tives. These aspects include:

• the type of database system under consideration, and the types of additional semantic knowl-
edge that are exploited.

• how semantic information is maintained in the meta-database. For example, how is a redun-
dant or contradictory integrity constraint detected?

• the manner in which constraint violations are reported to the user. Integrity constraint
violations apply not only to queries. Indeed, the database system must detect, whenever an
update operation is performed, if any constraints have been violated.

• how the integration of semantic and conventional query optimization is architected. In ef-
fect, this means that as alternate queries are generated, a cost function must be applied to
determine the profitability of using that access plan.

• how semantically equivalent queries are generated.

• how is the relevant metadata for a particular query filtered from all the integrity constraints
in the metabase.
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• how to control the generation process so that only “promising” semantically equivalent queries
are considered. This typically involves the use of heuristics in the approach[Kin81, Kin84,
CGM90, SO87, SO89, Xu83]. Shekar et al. [SSD88] give an analysis of the trade-offs between
the costs of query transformation, and the cost of conventional optimization.

2.1 A Taxonomy of Query Transformations

In SQO, predicates may be added or subtracted from a query as long as the query remains seman-
tically equivalent to the original. However, a difficult problem is how to determine if a particular
semantically equivalent query is “promising”. What we mean by this is how to determine if the
transformed query may be executed more efficiently than any of the others that may be gener-
ated. A brute force approach would be to generate all possible semantically equivalent queries,
and evaluate the performance of each using the cost model of the conventional query optimizer.
Realistically, however, we must try to reduce the amount of effort required to find a “near-optimal”
transformation. This is especially true with ad-hoc queries, where the cost of optimization directly
affects the database user[SSD88].

To reduce the search space of possible query transformations, many SQO techniques rely on
heuristics. Maintaining our focus on the relational model, these transformations can be categorized
as follows:

Restriction Elimination. This heuristic attempts to eliminate strictly redundant predicates to
simplify the query. This redundancy is not determined using a syntactic transformation.
Instead, integrity constraints are used to infer the redundant predicate.

Literal Enhancement. Literal enhancement[JCV84] is another straightforward means to seman-
tically improve a query. The idea is that a query’s evaluable predicates may be made more
powerful by substituting more restrictive clauses, which may be inferred from the integrity
constraints. For example, suppose that a query includes attributes r1.a1 and r1.a2, such that
r1.a1 > 100 and r1.a2 = 4. If the integrity constraints imply that r1.a2 = 4 → r1.a1 > 400
then we can replace r1.a1 > 100 with r1.a1 > 400. Depending on how the internal structure
of the database is organized, and how the conventional query optimizer works, such a trans-
formation may prove more efficient. For example, if r1.a1 is an indexed attribute, then we
may retrieve fewer tuples with a1 > 400 than with a1 > 100. Note the savings is dependent
on the distribution of the values of a1 in relation r1.

Restriction Introduction. The idea behind this heuristic is to reduce the number of inner scans
of a join operation, assuming a nested-loop join strategy. By introducing an additional literal,
we may further restrict one or both of the relations involved in the join. This technique is
also referred to as scan reduction[Kin81, SO89].

Literal Elimination. If an integrity constraint can be used to eliminate a literal clause in the
query, we may be able to eliminate a join operation as well. To do so would imply that
the relation being dropped from the query does not contribute any attributes in the result.
This heuristic is termed join elimination by King[Kin81, Kin84], Shenoy and Ozsoyoglu[SO87,
SO89], and Xu[Xu83].
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Join Introduction. Here, the heuristic attempts to reduce the number of tuples involved overall
by introducing another relation into the query. This new relation typically contributes no
attributes to the result. However, if the new relation’s relative size is substantially smaller
than the other relation(s) involved, executing the join may be less costly than proceeding
with the original query. The technique is also called literal introduction[CGM90] since a
literal must be introduced into the query as a join attribute.

Index Introduction. Index introduction[Kin81, Kin84] tries to use an integrity constraint that
refers to both a query-restricted attribute, and another attribute in the same relation that is
indexed. If this can be achieved, the query cost can be reduced from a possible sequential
scan to a series of probes using the index. If the index is clustered then the final cost will
be further reduced. Note the linking of this heuristic to the physical implementation of the
supporting data structure. It is not clear that query transformations can be made entirely
independent from the choice of the underlying physical system.

Result by Transformations. This approach by Chakravarthy et al. [CGM90] is a hybrid of the
heuristics discussed above. The idea is as follows. The set of integrity constraints for the
database may include implication constraints, such as “Chicago ships only red parts”. A
query which asks “What color parts are shipped from Chicago?” may then be answered
solely on the knowledge contained within the constraints. In this case, no database access is
required. Another situation may involve referential integrity constraints. It may be possible
to determine that if the database contains a tuple, or set of tuples, meeting certain constraints,
then the answer to the querymust correspond to the existence, or non-existence, of a particular
tuple in the database. Although this result will have to be verified by a lookup to the actual
database, such a lookup is probably much preferable to executing the original query.

Result by Contradiction. This method is not a heuristic per se. During the query transforma-
tion stage we may arrive at a contradiction between the integrity constraints of the database
and the query predicates. This situation implies a null result, and therefore no database
access is required.

Note that the above transformations do not guarantee that the modified query will be more
optimal in the sense of execution cost. However, many authors [Kin81, SO89, CGM90, JCV84]
claim that in many cases such modifications are warranted. What is not clear is how to prove that
the addition of a particular integrity constraint will improve the efficiency of the query evaluation
process without fully costing each access path selection. Moreover, to what degree this improvement
will take is difficult to evaluate[JCV84, pp. 679].

Use of heuristics in the query amelioration process has led to the application of expert system
technology [HZ80, Kin84, Xu83]. Integrity constraints and other metadata may be treated as a
rule base, with the heuristics implemented using an expert system.

2.2 Previous Work

The idea of using additional semantic information (metadata) to aid the query optimization process
is not new. In 1975, Stonebraker[Sto75] published a series of algorithms to handle a variety of
integrity constraints which he termed assertions. The assertions are defined using an extension to
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QUEL, the relational calculus-based data sublanguage used with INGRES. Several types of integrity
constraints which may be stored in the database, including domain constraints and constraints
involving aggregates. The integrity constraints are specified using QUEL statements whose predicates
result in TRUE if the integrity constraint holds2. Stonebraker mentions the need for transaction
timing (TT) [Cod90, pp. 246-247] of integrity constraints3. Enforcing a constraint using query
modification is achieved by adding the constraint predicates to QUEL statements which update the
database. Various problems with views are discussed, such as being unable to fully realize the base
relation tuples that make up the view. Also mentioned briefly is the anomaly of updating a restricted
attribute through a view, therefore deleting that tuple from the view definition. Unfortunately, no
mention is made of how the applicable assertions are to be found for a given query, how the assertions
are maintained, or detecting if two or more assertions are contradictory. The focus of the paper is
to enforce integrity constraints, not query optimization through the use of those constraints.

Simon and Valduriez[SV84] implement constraint enforcement for updates in their SABRE sys-
tem. They separate integrity assertions that may be checked when the update is processed, and
those that must be checked when a transaction is completed. To prevent a long-running trans-
action from being fully backed-out, however, they employ the concept of integrity checkpoints.
They present a graph-based algorithm to determine where the checkpoints may be made. How-
ever, instead of using Stonebraker’s query modification technique, their method relies on the use
of temporary relations to separate tuples being updated from those that are not. This avoids a
subsequent retrieval from the database to ensure that all constraints have been met (in particular,
constraints involving aggregates).

PRISM [SK84] is a knowledge-based system that, like SABRE, supports semantic integrity specifi-
cation and enforcement. An object-oriented approach is used to treat both data and metadata in a
uniform way. Constraints are expressed in the PRISM constraint language CL, and stored in a Con-
straint Base. The Constraint Base may be thought of as “resting” on top of a conventional DBMS,
specifying semantics for the interpretation of the facts in the database. The major goal of PRISM
is to allow the specification and query of constraints in exactly the same manner as conventional
database structures.

Hammer and Zdonik[HZ80] pioneered the idea of semantic query optimization. They present an
architecture for a knowledge-based solution, which they term a “Knowledge-Based Query Proces-
sor” (KBQP). Their motivation for this approach is driven by the unrealistic amount of knowledge
a database user must possess to formulate queries that can be executed efficiently. They discuss
the issue of determining which integrity constraints are applicable to a given query, conjecturing
that an exhaustive search is too expensive. An argument is made for the use of heuristics (such as
restriction introduction mentioned above) in controlling the transformation process. Their archi-
tecture makes use of multiprocessing, where each task applies a source-level transformation against
the original query. A “scoring” system decides the feasibility of a given approach. Constraints
are expressed in a modified lambda calculus. The constraint predicates are essentially domain
restrictions, as described in more detail in [Sto75, SO89].

King[Kin81, Kin84] developed the idea of SQO at the same time as Hammer and Zdonik. King’s

2Note the similarity of this approach to the specification of integrity constraints recently adopted as a draft ISO
SQL standard[ISO90].

3Transaction timing, the capability to defer integrity checking until a commit has been issued by the application,
is not currently part of the ISO SQL standard[ISO90]. For further details, see Codd[Cod90].
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system is called QUIST (Query Improvement Through Semantic Transformation). His work is the
first to give a taxonomy of heuristics for query transformation, including detection that a query is
unsatisfiable if the query predicates contradict an integrity constraint. There is significant support
for domains, including range restrictions. Constraints and queries are expressed in a form of
relational calculus. The database is composed of an extensional database (EDB) and an intensional
database (IDB), terms borrowed from work by Minker on deductive databases[GMN84]. Informally,
the EDB may be considered the “base” relations in the database, while the IDB may be considered
as views on those base relations.

Though King’s work is significant in many respects, many possibilities are cited for additional
research. Some of these are:

• Queries are presumed to refer to a “virtual relation” encompassing the entire database, with
each table joined to the other using a single join attribute.

• King uses a select-project-join (SPJ) subset of relational calculus. Since the join is predefined,
queries only allow projection and restriction operations. No mention is made of constructs
such as aggregate functions, nor the existence of NULL’s.

• Constraints may consist only of conjunctive predicates.

• King’s heuristics assume the use of indexing as the sole access mechanism besides sequential
scan. Other data structures should also be supported.

Xu[Xu83] considers semantic query optimization for relational databases assuming select-project-
join queries only. Three types of integrity constraints are supported:

Domain Rules. Domain rules place a restriction on the domain of an attribute, either with a
constant or another attribute. The restriction may be any comparison operator.

Dependency Rules. These rules imply a condition on an attribute iff the conjunction of the
conditions on other specified attributes is TRUE. All attributes must be contained within the
same relation.

Production Rules. Production rules express inter-relational constraints between two relations.
A conjunction of conditions on various attributes in either relation,

(∀r ∈ R)(∀s ∈ S)(C(r.A1) ∧ . . . ∧ C(r.An) ∧ (r.Cθs.D)
∧ C(s.B1) ∧ . . . ∧ C(s.Bm)→ C(s.B))

coupled with a join condition (r.Cθs.D) involving an attribute from each, then imply a
condition on another attribute C(s.B).

Xu discusses aspects of query unsatisfiability and the heuristics of literal elimination, join introduc-
tion, and index introduction. The goal of Xu’s method is to select the optimal single semantically
equivalent query, and pass that query to the conventional query optimizer for execution.

A “front-end” semantic query optimizer written in Prolog that performs query transformations
for a relational database is the subject of two related approaches[JCV84, Jar86]. The front-end
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approach is investigated as it could, in theory, be used with any RDBMS even though the RDBMS
does not support semantic query optimization directly. In essence the RDBMS is used only for
its conventional optimization methods. The first approach[JCV84] loosely couples an expert sys-
tem implemented in Prolog to an SQL-based relational system, using a meta-language called DBCL

(Database Call Language) as the interface. The DBCL language is manipulated in the same way as
tableaus[Ull89], and tableau simplification algorithms provide the optimization mechanism. The
types of constraints supported are:

Value bounds. This type of constraint specifies upper and lower bounds for a particular domain.

Functional dependencies. These constraints capture dependencies between two attributes in
the same relation.

Referential integrity constraints. These constraints capture existential dependencies between
the values that appear in an attribute a1 in a relation r and the “key” attribute in another
relation r2.

The second approach differs from the first in that a graph-based solution is used to perform the
optimization.

Yu and Sun[YS89] discuss an interesting approach to the dynamics of a database system. Their
approach to semantic query optimization includes dynamically inferring integrity constraints using
query results. This acquired knowledge can then be used in the optimization of later queries. In
the ubiquitous parts-suppliers example consisting of the relations P (parts), S (suppliers) and SP
(parts-supplied-by), suppose we have the following constraints:

• A domain constraint SP.Pno ⊆ P.Pno.

• A domain constraint SP.Sno ⊆ S.Sno.

• A functional dependency of part name on part color, P.Name
FD
→ P.Color.

Given two queries Q1, Q2 defined as:

Q1: SELECT P.Name

FROM P

WHERE P.Color = RED

Q2: SELECT P.Name

FROM P

WHERE P.City = CHICAGO

we find that the results of the two queries are the same, i.e. Q1 = Q2. Since the functional

dependency P.Name
FD
→ P.Color exists, we may obtain the new constraint

P.City = chicago→ P.Color = red.

Subsequent queries may then be semantically modified using the inferred integrity constraint.
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Graefe and Ward[GW89] describe another interesting approach to handling queries. When
SQL statements are embedded within application programs, predicates usually refer to program
variables. This means that compile-time SQO may lead to suboptimal results, as the values of the
variables will not be known until execution time. The optimizer will usually make assumptions
about the selectivity of these predicates in this case. Unfortunately, this means that accurate
estimates of execution parameters, such as the sizes of intermediate result relations, is impossible.
Another problem is that the access path is chosen using the state of the database at compile time,
and not when the application is run. The approach in this paper is to monitor the use of access
plans and modify them over time as a result of changes to program variables, additional database
indexes, and large changes in the cardinality of a relation. Estimates are made using a cost model by
Yao[Yao79]. The discussion is based on the relational model, but the authors suggest the methods
may be used with other data models (including object-oriented models).

IBM’s Starburst prototype RDBMS [HFLP89, HCL+90] is an extensible system which can
support additional internal processing extensions, such as query transformations. Optimization of
Hydrogen4 queries is performed using a Query Graph Model (QGM). Query rewrite is implemented
using an extensible, forward-chaining rule based approach [HP88]. The focus of the rewrite opti-
mization phase in Starburst is the optimization of subqueries and predicate migration (pushing
predicates down into lower level operations). Since the system is extensible, however, it is possible
for a database administrator to provide additional rules in the form of integrity constraints.

Typically, database systems which detect integrity constraint violation offer a rollback mecha-
nism for the transaction in error, or reject database operations which may lead to an inconsistent
state. Ceri and Widom[CW90] present an SQL-based language which defines a means of automati-
cally “repairing” a database using production rules, which are translated from the defined integrity
constraints for the database. The relationship of this type of system to SQO is that the production
rules themselves are non-procedural updates, and can also benefit from SQO using the defined
constraints. An interesting problem is that since the database being corrected is in an inconsistent
state, not all integrity constraints may be used in the semantic optimization, since they may no
longer hold.

Shenoy and Ozsoyoglu[SO87, SO89] provide a detailed study of two important types of integrity
constraints: subset constraints and implication integrity constraints. The constraints are defined
using Horn clause logic as follows:

Subset Constraints. Subset constraints represent a unary inclusion dependency between two
attributes. The integrity constraint is composed of two relational predicates and one evaluable
(comparison) predicate using either of the operators ⊂ or ⊆. As an example, the constraint

→ r2.X2 ⊆ r1.X1

means that the values of attribute X1 in relation r1 is a superset of the values of attribute
X2 in relation r2.

Implication Integrity Constraints. These types of constraints define a restriction on the rela-
tive domains of two attributes, in the same or different relations. They are defined as clausal

4Hydrogen is the data sublanguage used in Starburst. Essentially SQL-like, Hydrogen corrects many of the
criticisms (such as lack of orthogonality) associated with ANSI SQL [Dat86, Chapter 14] [HFLP89].
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integrity constraints (Horn clauses with no positive literal, and one or more negative literals)
composed of conjunctions of negated predicates. The predicates may consist of evaluable
or relational predicates. The relational predicates may be either extensional or intensional.
Evaluable predicates may involve θ-comparisons ({θ ∈ {=, 6=, >,≥}}) between:

• a variable and a constant,

• two variables, or

• two variables and an offset (see Rosenkrantz and Hunt[RH80]).

Using our previous example of employees and their salaries, our implication constraint for the rule
“only managers earn more than 40K” is

Emp(sin, name, job, salary), salary > 40K → job = manager.

The paper describes in detail a constraint maintenance process to detect contradictory or redundant
constraints, using a graph-based approach. Their implementation of semantic query optimization
supports four heuristics from King’s work, restriction elimination, index introduction, scan reduc-
tion, and join elimination. A graph-based approach is employed for defining the transformation
algorithms. The significant contribution of the paper are algorithms for determining which integrity
constraints are useful to semantically optimize a particular query. Suggestions for further research
include handling constraints which may change over time (termed semantic categorization) and par-
tial optimization, a technique for avoiding complete re-optimization when constraints or database
characteristics have changed.

The final selection in our survey is the logic-based approach of Chakravarthy, Grant, and
Minker[CGM90, CM86, CFM86, CGM87, KM83, GMN84, NY78, GM81]. [CGM90] is a consolida-
tion of their previous papers, and is the principal reference used here. Their approach is a result
of their work with deductive databases, but they describe the applicability of their methods to re-
lational systems. They use a modified form of Datalog[Ull88, Ull89] as their data model; therefore
clauses must be Horn, although this restriction is lifted in the section on extensions.

In [CGM90], a database consists of three parts:

• the extensional database (EDB) made up of facts.

• the intensional database (IDB), “views” in the relational sense. IDB axioms must be non-
recursive.

• integrity constraints (ICs), which are restricted to be non-recursive and may only refer to EDB
relations. Their language for integrity constraints handles many of the types of constraints
mentioned in the above papers. We categorize these constraints in the following subsection.

A two-phased approach is defined. The first phase consists of compiling the integrity constraints
with the IDB axioms resulting in a set of semantically constrained axioms. Essentially this means
that each IDB axiom has associated with it each applicable integrity constraint. Note that in this
stage queries are not considered; since the IDB and IC components are usually stable, the compi-
lation cost may be amortized over all subsequent queries. The compilation step uses a technique
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called partial subsumption, a form of clausal unification that results in residues, portions of ICs
that remain after no further unification can take place.

The second phase is the query modification phase: processing queries and transforming them
into semantically equivalent queries using the semantically constrained axioms compiled previously.
Heuristics are used in choosing appropriate transformations. The query transformations supported
include literal elimination, restriction introduction, literal introduction, result by transformations,
and unsatisfiable conditions. Proposed extensions to the basic approach include support for non-
range-restricted ICs, disjunctive ICs, negated literals in a query, and recursive IDB rules (see
[LH88]).

2.3 Categories of Integrity Constraints

Most of the papers described above deal with subsets of the complete range of specifiable constraints.
In this subsection we categorize the supported types of integrity constraints, and cross-reference
these constraints to their definition and use in the literature. Descriptions of integrity constraints
in general, and their properties, may be found in [Ull88, Fag81, CFP82, SU82, MG90]. The papers
discussed previously support instances of inclusion and functional dependencies. The differences
among the constraint types listed here are small. However, we felt it appropriate to include a
categorization of these ICs, if only to clarify the varying terminology among the different authors.

The logic-based approach of Chakravarthy et al. is the most general, and encompasses all the
constraint types described in other papers. See Table 1 for a cross-reference of dependency types
to their sources in the literature.

2.3.1 Inclusion Dependencies

Type 1. An inclusion dependency (IND) is an integrity constraint that defines the possible values
of an attribute in one relation with the existing values in another relation. Formally, if R[a1, . . . , an]
and S[b1, . . . , bm] are relations (not necessarily distinct), if X is a sequence of k distinct members
of R, and Y is a sequence of k distinct members of S then we call

R[X] ⊆ S[Y ]

an inclusion dependency[CFP82]. Inclusion dependencies support existential quantification, and
therefore are used to support:

• referential integrity within a database system.

• ISA type hierarchies (eg. every Passenger-plane ISA Plane), a subset of general referential
constraints.

INDs correspond to referential integrity constraints in [JCV84] which are of the form

R(x4, f1, f2)← S(x1, x2, x3, x4)

where {f1, f2} are Skolem functions with the variables omitted. Subset constraints defined by
Shenoy and Ozsoyoglu[SO89] are of the same form5. A more general form is used in King[Kin81],

5The terminology used in [SO87, SO89] is confusing in that their definition of subset constraints refer to domains.
Subset constraints, however, are not merely a definition for a domain’s bounds, but include an existential qualification
in the implication.
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Type [CGM90] [SO89] [JCV84] [Xu83] [Kin81]

1. Existential Subset Referential N/A Structural
Rules Constraint ICs Constraint

2. General N/A Value Domain N/A
Horn Clauses6 Bounds Rule

3. General Implication N/A Dependency General
Horn Clauses Constraint Rule Horn Clauses

4. General Implication Functional Production General
Horn Clauses Constraint Dependency Rule Horn Clauses

5. General Implication N/A Production General
Horn Clauses Constraint Rule Horn Clauses

6. General Implication N/A N/A General
Horn Clauses Constraint Horn Clauses

Table 1: Cross-reference of Supported Constraint Types.

that includes additional evaluable predicates:

R(x4, f1, f2)← S(x1, x2, x3, x4), (x3θc)

All these different types of inclusion dependencies are supported as existential rules in [CGM90].
An IND is indicated as Type 1 in Table 1.

2.3.2 Functional Dependencies

Functional dependencies are a broad class of data dependencies that have been widely studied in
the relational database literature[CFP82]. Each of the papers described in Section 2.2 support
a subset of the constraints in this class. Formally, functional dependencies (FDs) are defined as
follows[CFP82]. If R[a1, . . . , an] is a relation and X is a sequence of distinct members of R as is Y ,
then we call the dependency

R : X → Y

a functional dependency of Y on X. That is, R satisfies the functional dependency if whenever
tuples t1, t2 ∈ R, t1[X] = t2[X], then t1[Y ] = t2[Y ]. The literature extends this definition in two
ways. Firstly, the FD may specify a non-equivalence operator θ in the implication t1[Y ] θ t2[Y ].
Secondly, the dependencies are generalized to more than one relation.

We classify the functional dependencies in Table 1 in terms of the Horn clause notation used in
[CGM90]. Both Chakravarthy et al. and King support constraint Types 2 through 6; implication
constraints defined by [SO89] do not support Type 2.

We begin with the simplest forms of allowable constraints.

6These Horn clauses are assumed to be range-restricted.
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Type 2. These ICs restrict the values that an attribute of a relation may have. They are referred
to as domain rules in [Xu83] and value bounds in [JCV84], and are of the form

(xiθa)← R(x1 . . .xj)

This type of dependency is classified by Fagin[Fag81] as a domain dependency.

Type 3. To domain dependencies, we add additional comparison predicates that specify a restric-
tion on R, based on other attributes:

(xiθc)← R(x1 . . .xj), (xkθb)

The FD is still defined for a single relation. These are the dependency rules in Xu[Xu83].

Type 4. Type 4 ICs represent true functional dependencies, eg.:

(x1 = y1)← R(x1, x2, x3), R(y1, x2, y3)

Only equality, as in the formal definition[CFP82], is permitted. These constraints are termed
functional dependencies in [JCV84]. Note that the constraint applies to only a single relation.

Type 5. Type 4 constraints are extended to support θ-comparisons, although the implication is
restricted to a comparison with a constant. The IC may specify more than one relation.
Additional qualification predicates may be added to the body of the clause in the form of
θ-comparisons between attributes. For example:

(x1θf)← R(x1, x2, x3), S(y1, y2), (x3θy2)

These types of ICs are referred to as production rules by Xu[Xu83].

Type 6. Type 6 ICs are a combination of types 4 and 5. With this type of constraint, we allow a
θ-comparison of any two attributes, and θ-qualification in additional comparison predicates.
For example:

(x1θy1)← R(x1, x2, x3, x4, x5), S(y1, x2, y3), (x4θy3)

These types of constraints are supported by King[Kin81, Kin84].

3 SQO Using a Logic-Based Approach

In this section we describe the logic-based approach of Chakravarthy, Grant, and Minker[CGM90,
CM86, CFM86, CGM87, KM83, GMN84, NY78, GM81]. Our principal reference is [CGM90] which
summarizes their earlier work since 1985. Unlike other approaches, such as [SO89] which try to
dynamically determine applicable constraints, Chakravarthy et al. apply each integrity constraint
to each intensional relation in the database (the IDBs) at initialization. They call this step semantic
compilation; the output of semantic compilation is a set of semantically constrained axioms (SCAs).
After completion, queries may be semantically transformed using the SCAs during the semantic
query transformation phase. The output of this phase is an optimal, transformed query, chosen by
means of the heuristics discussed in Section 2.1.
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3.1 Definitions

The original target for the logic-based approach was deductive databases. Much of the terminology
used in [CGM90] comes from this subject area. A Prolog-like notation describes not only the
schema, but the ICs and queries as well.

A literal is an atomic formula, or its negation. A clause is a disjunction of literals, written using
an implication style as

S1, . . . , Sm ← R1, . . . , Rn.

A literal on the left (S ←) is positive. A literal on the right (← R) is negative. Multiple literals
appearing on the right of an implication imply conjunction between all the literals. Multiple literals
appearing on the left imply disjunction between the literals. The set of literals on the left are termed
the head of a clause; on the right, the body. A clause is termed Horn if at most one clause is in the
head (m = 0, 1), definite if exactly one (m = 1), and is termed disjunctive otherwise.

Clauses can be further categorized as follows:

• A goal clause has a null head.

• A unit clause is a definite clause with a null body.

• A ground unit clause is a unit clause with only constants occurring as arguments.

• A clause is considered range-restricted if every variable in the head also appears in the body
as arguments of relational predicates.

Infix operators are used to define evaluable predicates.

A database is defined as three components:

1. an extensional component describing database facts using function-free unit clauses with
no variables, termed the EDB. In [CGM90] a positional notation is used for the variables
(attributes) in a relation (both for EDB relations, and IDB relations below).

2. an intensional component (IDB) describing a set of deductive rules, or axioms, which in
the relational model sense roughly equivalent to views. The IDB is defined using a set of
non-recursive range-restricted function-free definite Horn clauses.

3. a set of integrity constraints (ICs), defined using a set of non-recursive range-restricted Horn
clauses. Skolem functions are allowed, so that referential constraints may be supported. For
example,

Empl(x3, f(x1, x2, x3), g(x1, x2, x3))← Dept(x1, x2, x3)

represents the referential constraint “each manager of a department (represented by variable
x3) must exist as an employee”. The other attributes of the employee may be any permitted
value, represented by the two Skolem functions f() and g().

A restriction of this approach is that it is assumed the database is structured, in the sense
that every relation is either purely extensional or intensional, and all ICs may only refer to EDB
relations.
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3.2 Overview

The logic-based approach splits the semantic query optimization process into two distinct phases–
the Semantic Compilation Phase and the Query Transformation Phase.

3.2.1 Semantic Compilation Phase

The semantic compilation phase consists of compiling the integrity constraints with the IDB axioms
resulting in a set of semantically constrained axioms. Several points should be noted here:

• In addition to IDB relations (defined using restrictions, projections, joins, or other relational
operators) an IDB relation is defined for each “base” relation of the EDB.

• Semantic compilation is based on the premise that the database schema, and its integrity
constraints, do not change often over time.

• It is presumed that some means is available to modify the set of EDBs, IDBs, and ICs and
ensure that the modified set of ICs is kept consistent and nonredundant. See [SO89] for a
description of their solution.

Essentially the semantic compilation phase means that each IDB axiom has associated with
it each applicable integrity constraint. Note that in this stage queries are not considered. The
compilation cost is amortized over subsequent queries.

The compilation step uses a technique called partial subsumption, a form of clausal unification
that results in residues, portions of ICs that remain after no further unification can take place.
Using the notation from [CGM90]:

• A substitution σ is a finite set of the form {t1/v1, . . . , tn/vn} where each vi is a unique variable
and ti is a term.

• If σ is a substitution and C is a clause, then Cσ is an instance of C where the variables in σ
are replaced by their respective terms.

• A clause C (an integrity constraint) subsumes a clause D if there is a substitution σ such
that Cσ is also in D. Our example below is also from [CGM90]. If we are given clauses C,D

C = R(x, b)← P (x, y), Q(y, z, b) (1)

D = R(a, b)← P (a, z), Q(z, z, b), S(a)

then C subsumes D by σ : {a/x, z/y}.

We illustrate subsumption using 1 above. The steps involved are as follows:

1. D is instantiated as a ground clause, using new constants k1, . . . , kn and a substitution, say
θ. In 1 we have θ = {k1/x}, so that

Dθ = R(a, b)← P (a, k1), Q(k1, k1, b), S(a)
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2. Dθ is negated, forming a set of literals

¬Dθ = {← R(a, b), P (a, k1)←, Q(k1, k1, b)←, S(a)←}.

3. The basic subsumption algorithm tries to determine if a substitution can be found for C using
each literal ∈ ¬Dθ. If a substitution can be found, then C subsumes D. What this really
means is that the IDB relation D is contradictory as it violates the integrity constraint C7.
If D is an EDB relation, then it must be empty.

4. Partial subsumption occurs when C cannot totally subsume D, which is usually the case.
Essentially we are left with a fragment of D that cannot be refuted using the subsumption
algorithm. In our SQO approach, C ∈ IC; so this residue of C now becomes part of the
semantically constrained axiom for D8. An axiom is semantically constrained if the residues
applicable to that axiom are associated with it.

To illustrate, suppose we have the EDB relation

Plane(model,manufacturer)

and the IC
← Plane(model,manufacturer), (model = “Boeing 747”)

which means that no 747 aircraft are in the database. Using partial subsumption, we rewrite the
IDB axiom as

Plane(model,manufacturer)← Plane(model,manufacturer)
{← model = “Boeing 747”}.

This procedure is done for each combination of ICs and IDB axioms, resulting in a set of SCAs.
As a final comment, note that functional dependencies defined in the set of ICs may allow us to

derive other ICs, and thus other residues. These additional residues may prove useful in the query
transformation phase, but would be unobtainable from the base set of ICs alone.

3.2.2 Query Transformation Phase

The second phase is the query modification phase, processing queries and transforming them into
semantically equivalent queries using the semantically constrained axioms compiled previously.
Heuristics are used in choosing appropriate transformations. Examples of query transformations
are given in Section 5.

A query is specified as a goal clause. Query output variables are denoted by an asterisk (“*”)
after the variable name. For a query ← Q(x∗1, . . . , x

∗
n), an answer to Q is any tuple < a1, . . . , am >

such that Q(a1, . . . , am) is provable. For example,

← Plane(−,model∗,−,−, f light crew,−,−), (flight crew ≥ 4)

7Note that if a complete substitution θ can be found so that C subsumes D, then we end up with a null clause,
which by definition implies a contradiction.

8In order for partial subsumption to work, some trivial syntactic modifications may be necessary. These steps are
referred to as expansion and reduction in [CGM90].
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finds the model names of all planes requiring a flight crew of at least 4.

The functional components involved in query transformation are as follows:

Query/Residue Modifier. The Modifier uses all applicable SCAs (axioms that refer to relations
specified in the query) and transforms the original query into (possibly) a set of equivalent
queries9. Modification of the queries is performed using either unification, or pattern match-
ing. The residues of the SCAs may also be modified. This is because when a literal is unified
with the head of an SCA, the unifier generated is also applied to the body of the SCA. This
will instantiate the variables in the residues of the SCA with constants from the query.

Reducer. The reduction process removes redundant literals from an SCA, which may occur as a
result of the instantiation of residue variables performed by the Modifier.

Filter. The filter eliminates useless residues from the SCA for the given query. This occurs if a
literal R (an EDB relation, or an evaluable predicate) is present in a residue body, but x does
not appear in the query.

Strategiser. The Strategiser prioritizes the residues that may be used by the Generator (de-
scribed below). The criteria used for priority determination could be defined by a Database
Administrator (DBA), eg. it may be known that the conventional query optimizer that will
generate the algebraic access plan may make very efficient use of clustered indexes, whereas its
join optimization algorithms may be poor. As previously noted with the Index Introduction
heuristic, it is difficult to separate query transformation issues from DBMS implementation
characteristics.

Generator. This function uses the heuristics literal elimination, restriction introduction, literal
introduction, result by transformations, and unsatisfiable conditions to include or exclude
literals which result in a semantically transformed query that (hopefully) can be executed
more optimally. The transformed query is then passed to the conventional query optimizer
for access plan evaluation, and query execution.

3.2.3 Residue Categories and Query Processing

Residues resulting from semantic compilation are of four types:

1. a null clause,

2. a goal clause,

3. a unit clause,

4. a Horn clause.

During query transformation (the Generator function), we may come across each of these types of
residues.

9If the transformation results in more than one query, then the answer set of the original query is equal to the
union of the answer sets for the generated, semantically equivalent queries.
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If a null clause is obtained at any stage, then we have a contradiction, as described above. If it
occurs for an IDB relation, then there are no tuples in the view. If it occurs for an EDB relation,
then the database is inconsistent.

If a goal clause results, it can be modified to a unit clause by negation (if we have the goal
clause ← (z < 200), we may modify it to be an equivalent unit clause (z ≥ 200)←).

Unit clauses are database assertions. They can be used for literal elimination, if another clause
can be resolved using the assertion, and hence eliminate a join. Other possibilities for their use are
join introduction, literal enhancement, and literal introduction. For literal elimination, we must
ensure that eliminating a join does not eliminate any output variables for the query.

Horn clauses contain a non-empty head, and a non-empty body. Horn clause residues can be
used in two situations:

• The residue body subsumes the query. If C is the head of the residue and θ was the sub-
stitution, then Cθ must be true for the query, and can be used as an assertion like a unit
clause.

• The residue can be used to limit a search in evaluating the query (this corresponds to the
heuristic “Result by Transformations”). In particular, functional dependencies of the form
R : x→ y for relation R(x, y, z) yields a semantically constrained axiom of the form

R(x, y, z)← R(x, y, z){y = y′ ← R(x, y′, z′)}.

The query ← R(a, y∗, z) would then be interpreted as saying that a second y′ value must be
identical to any y value already in the result set; meaning that the output of the query has
at most one result tuple. We would still have to access the database, however, to ensure that
the tuple {a, y, z} ∈ R. An existential quantification would be needed to remove the lookup
requirement.

4 Complex-Prolog

The relational model has dominated the database area well over a decade. However, the semantic
simplicity of the relational model has motivated researchers to look for semantically rich object-
oriented data models. Moreover, deductive languages based on first-order logic are being suggested
as a more expressive alternative to relational languages. Datalog[Ull88, Ull89] is a well-known
deductive logic language.

Researchers have recently attempted to combine object-oriented data models with logic pro-
gramming. Recent proposals in this direction include [KL89, Mai86]. Though the resulting
proposals are promising, they lack efficient implementation strategies. There have been enor-
mous efforts to make non-procedural relational languages, such as SQL[AC75], and logic lan-
guages such as Datalog, efficient through query optimization. As discussed previously, attempts
have been made to exploit additional semantic information about the database schema for query
optimization[Kin81, Kin84, CGM90, JCV84, Xu83, SO89]. This form of query optimization is
termed semantic query optimization.
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In this section we describe an existing complex-object logic language called Complex-Prolog
[GR89], with some minor modifications. These modifications allow the addition of integrity con-
straints (ICs) to the language. With the addition of ICs, we can apply the techniques of se-
mantic query optimization to the language using the logic-based approach from Chakravarthy et
al.[CGM90].

Complex-Prolog combines object-oriented semantics (generalization, inheritance, and complex
objects) with logic. The relational data model with Datalog is used as the underlying formalism to
implement a program in this logic. The resulting system has the richness of object-oriented models
and the efficiency of a relational database system.

4.1 Complex-Prolog Definitions

The alphabet U of Complex-Prolog consists of the following sets:

I - the set of countably infinite integers.

W - the set of infinite character strings.

N - the set of object identifiers, including nil.

C - the set of class (extensional) predicate symbols, characterized by arity.

P - the set of intensional predicates, characterized by arity and argument types.

D - the set of comparison predicates, such as =, < etc.

R - the set of record symbols, characterized by arity.

A - the set of attribute names, including the special name self.

V - the set of variables.

The set F of function symbols is defined as {C ∪R}.

4.2 Schema

The set N is divided into non-disjoint subsets according to their class affiliation; so each class
symbol c in C has a set ext(c) of objects belonging to c. This set is known as the extension of c.
Members of ext(c) are known as instances.

A (ground) term is an element of I, W, N, or a function application. If f is a function symbol
and t1, .., tn are (ground) terms, then f(t1, .., tn) is a (ground) term.

A type is a set X ∪ {nil}, where X is a subset of all terms. Since nil is a member of all types,
we will characterize types by members of the set X.

Types in Complex-Prolog are defined as follows:

1. The set I of integers is a type.

2. All character strings w ∈W of size n, where n is a natural number, constitute a type denoted
by char[n].
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3. Any subrange of I is a type.

4. Any class c ∈ C is a type. Members of c are given by ext(c).

5. If t1, .., tn are types and f ∈ R, f(t1, .., tn) is a (record) type. Members of this set are all
terms of the form f(v1, .., vn), where v1, .., vn are members of types t1, .., tn, respectively.

An attribute a is a pair < s, t >, where s ∈ A and t is a type. In general we refer to an attribute
by its name.

An attribute is syntactically represented in one of the following ways:

• s : t, where s ∈ A and t is a type specified by the first three categories. Such an attribute is
called an atomic attribute.

• s : t, where s ∈ A and t ∈ C . Such attributes are called reference attributes.

• s : f(a1, .., an), where f ∈ R, s ∈ A and a1, .., an are attributes. These are called record
attributes.

A class description is a triple < c, pc, ac >, denoted by cd(c), where c ∈ C, pc is a (possibly null)
list of ci ∈ C, and ac is a list of attributes. The first attribute ac is always self:c. We refer to class
description by its class name, if there is no ambiguity.

The list pc is known as the parent classes of c, and indicates that a member of ext(c) is also in
ext(d), and attributes of d are added to ac, for each d ∈ pc. This concept is known as generalization
and c is said to inherit the attributes of each class in pc.

A schema is a set S of class descriptions. Multiple inheritance is allowed in S, subject to the
usual restrictions that a class may not inherit the same attributes twice, and that attribute names
are unique.

Let ancestors(c) denote the (ordered) list of all r in S such that r ∈ pc. This exact order has
no bearing on our discussion, but all classes in the schema should have ancestors ordered in some
manner that is permanent.

The closure of a class c, closure(c), is a list of attributes as defined below:

• <ac> if ancestors(c) is empty.

• <ac,closure(p1), .., closure(pn) >
10, where p1, .., pn ∈ ancestors(c) in the same order.

The arity of a class symbol c in a class scheme S is the number of attributes in closure(c).
Given a class description c, with

closure(c) =< a1, .., an > where ∀ai : ai =< si, ti >

a (simple) instance of c is a ground term c(s1 : v1, .., sn : vn)
11 such that ∀vi : 1 ≤ i ≤ n, vi ∈ ti.

The term v1 is called the object identifier of the instance and cannot be nil. The above instance of
c is often denoted by

c(s1 : v1.., sp : vp, Tr1 , .., Trk
)12

10Here, we use a flattened list rather than a nested list.
11Conflicts with duplicate attribute names closure(c) are resolved by the order of the attributes. We can represent

this instance in positional notation as c(v1, .., vn).
12Positional notation can be used here as well.
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where v1, .., vk are the terms corresponding to ac, and Tr1 , .., Trk
are tuples of terms such that

r1(Tr1), .., rk(Trk
) are instances of r1, .., rk, respectively, for every ri ∈ ancestors(c).

Example 4.1 Consider the class Airport described below:

Airport(name : char[25], address : Address(city : char[25],
country : char[25]), alternative : Airport).

Here, attribute address is of the record type Address(city : char[25], country : char[25]), Address
being the record symbol; name is a of string of 25 characters.

The attribute alternative is a referential attribute whose value must be in ext(Airport). An
instance of Airport, written in non-positional notation, is

Airport(self : o1, name : “Pearson”,
address : Address(city : “Toronto”, country : “Canada”),
alternative : o2).

We can define a subclass of Airport, Civilian airport:

Civilian airport(earliest time : int, latest time : int) isa Airport.

The closure of Civilian airport, written closure(Civilian airport) is

< self : Airport, earliest time : int, latest time : int, name : char[25],
address : Address(city : char[25], country : char[25]),
alternative : Airport > .

We have not taken advantage of the complex structure of objects; for example, we have no way
to represent the name of the alternative Airport (with object identifier o2) in the Airport instance
o1 above. We define extended types and instances of a class to describe the substructure of an
instance.

Given a schema S and an attribute a =< s, t > in S, the extended type e of a is defined as
follows:

1. If a is either an atomic or self attribute, e = t.

2. If a is a reference attribute of the form s : c, where c is a class description in S with closure
< a1, .., an >, then e = t ∪ e, where e is the type13 c < e1, .., en > such that ∀i, 1 ≤ i ≤ n, ei
is the extended type of ai.

3. If a is a record attribute of the form s : f(a1, .., an), then e = f(e1, .., en), such that ∀i, 1 ≤
i ≤ n, ei is the extended type of ai.

13Notice that t is the type defined by ext(c), the extension of class c ∈ C.
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The second case warrants careful examination. If a class description contains a reference at-
tribute with that class name as its type, the extended type of that attribute will have countably
infinite members. This is required since any degree of extension of the object represented by such
an attribute is valid. We are safe as long as we do not try to evaluate these infinite values.

An extended instance of a class c, with closure < a1, .., an > is a term c(s1 : v1, .., sn : vn) such
that ∀i, 1 ≤ i ≤ n, vi belongs to the extended type ei of ai. Every simple instance of c is also its
extended instance but the converse is not always true.

Example 4.2 An extended instance of Airport is:

Airport(self : o1, name : “Regina International Airport”,
address : Address(city : “Regina”, country : “Canada”),
alternative : Airport(self : o2, name : “CFB Moose Jaw”,

address : Address(city : “Moose Jaw”,
country : “Canada”),
alternative : o1))

4.3 Language

In preparation for converting Complex-Prolog to Datalog, we can re-categorize the alphabet U of
the Complex-Prolog language as follows14:

1. the set of constants, N, I, and W.

2. the set of function symbols, F .

3. the set of predicate symbols consisting of

• class symbols C appearing in schema S. These symbols are called class or extensional
predicates.

• comparison predicates D, including operators such as <,=, 6=.

• the set of intensional predicates, P.

4. the set of variables, V, the symbol ’-’ being used to denote an anonymous variable.

5. the set of Boolean operators and constants ({←,∨,¬,∧, TRUE,FALSE}).

A term is defined as a

• constant, or

• variable, or

• record application f(s1 : v1, .., sn : vn), where f ∈ R (such a term is called a record term), or

• class application g(s1 : v1, .., sn : vn), where g ∈ C . These terms are called class terms.

14Note that these sets were introduced in Subsection 4.1.
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A ground term is a term without variables.
Given terms t1, .., tn, we define a predicate of Complex-Prolog as follows:

• If p is a class symbol and p(s1 : t1, .., sn : tn) unifies with a simple instance, p(name1 :
t1, .., namen : tn) is called a simple class predicate. If p(name1 : v1, .., namen : vn) unifies
with an extended instance, it is called an extended class predicate.

• If p is an intensional predicate symbol, p(t1, .., tn) is called an intensional predicate.

• If p is a comparison predicate symbol, p(ti, tj) is called a comparison predicate.

A predicate is a simple (or extended) class, intensional, or comparison predicate.

Example 4.3 The following are class predicates associated with Example 4.1:

Airport(self : x, name : y)

Civilian airport(self : x, name : y, earliest time : p, latest time : q)

From the definition of class predicate, we can also say:

• The arity of a class predicate is the size of its closure.

• Class predicates are typed. The type an argument of a class predicate is the type of corre-
sponding attribute in the class description.

We require that intensional predicates be typed. This means that every intensional predicate has
a unique parity, and its arguments are typed. The type of intensional predicates can be explicitly
specified or implicitly derived from the logic program. We assume that intensional predicate types
are implicitly defined in the program.

A rule is a Boolean formula of the form

H ← B1, .., Bn

where H (head) is a class or intensional predicate, and Bi (body predicate) is any predicate. Body
predicates can be positive or negative (which means the rule can be non-Horn). A rule with empty
body is called a fact and a rule without a head is called a query. The head predicate of a rule r
is said to be defined by r. Only (simple) class predicates are defined through facts. Thus simple
instances of classes will be specified as facts. Intensional predicates are defined by rules that are
not facts.

Consider a rule r in the language. We say that a variable x appearing in r is limited if it appears
in

• a non-negated non-comparison predicate in the body of r, or

• an equality predicate whose second argument is either a constant or a limited variable.

A rule r is safe if every variable occurring in r is limited.
A logic program is a set of rules. A logic program is safe iff its rules are safe. Henceforth we

consider only safe programs.
We assume that a logic program is stratifiable, and we may use stratification to specify the

semantics of a Complex-Prolog program.
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4.4 Databases, Semantics, and Queries

A Complex-Prolog database is a tuple < S,L >, where S is a schema and L is a logic program (set
of rules). A database is consistent iff

1. each instance15of a class in S has the same value for every self attribute in its closure and no
two distinct instances of the same class have the same value for the self attributes (object
identity).

2. for each object identifier o 6= nil occurring in an instance of a class c ∈ S , there is an instance16

in some class of S with o as its identifier (termed a key dependency [Fag81]).

Since only simple instances of classes can be specified as facts, we need to define a way to satisfy
extended class predicates. Let P be an extended class predicate and let q(a1 : y1, .., am : ym) be
the first class term occurring in P . We define the hidden rule of P as follows:

P ← P , q(a1 : y1, .., am : ym),

where P is obtained from P by replacing the class term q(a1 : y1, .., a1 : ym) by y1.

Example 4.4 Let p(a1 : x, a2 : q(y, z)) be an extended class predicate. The corresponding hidden
rule is

p(a1 : x, a2 : q(b1 : y, b2 : z))← p(a1 : x, a2 : y), q(b1 : y, b2 : z)

The overall definition σ of a database is the union of its program and hidden rules for extended
predicates of all classes.

The semantics of a Complex-Prolog program is similar to that of typical logic programs. In
particular, the set of all terms involving R, C, I and W is the Herbrand universe for any Complex-
Prolog logic program. The comparison predicates are assumed to be defined by a possibly infinite
set of facts. Similarly, it is assumed that the types of constants are specified through a possibly
infinite set of facts. Since a program is assumed to be stratified, the overall definition σ of a
program is also stratified and the minimal model can be computed through a fixpoint operation
that computes facts for each strata, starting from the bottom. The set of facts inferred from the
database are those in the minimal model.

Let Q be a query with free variables x1, .., xn. The answer to Q is the set of tuples of terms
< v1, .., vn > such that, when we substitute vi for xi, 1 ≤ i ≤ n, all the predicates in Q are inferred
from the overall definition of the database.

Example 4.5 The following query retrieves the airports in Canada:

← Airport(self : x, name : y∗, address : Address(country : “Canada”))

15Recall that instances are specified as facts in the logic program.
16Only a referential attribute value can be an identifier. The class of each referential attribute must have an

instance to account for this.



Semantic Query Optimization in OODBMS 119

4.5 Integrity Constraints

An integrity constraint (IC) is an assertion about the database. ICs do not affect the semantics of
a database and hence we decided to treat them separately.

Integrity constraints are defined using a Horn-clause rule of the form:

H ← B1, .., Bn

where H,B1, .., Bn are class, intensional, or comparison predicates. Because of the difficulties
involved with recursive predicates, we permit only non-recursive intensional predicates in ICs. But
non-recursive intensional predicates can be replaced by equivalent class and comparison predicates,
leaving ICs with class and comparison predicates. Henceforth we consider ICs that do not contain
intensional predicates, the same restriction imposed for Datalog ICs in [CGM90].

An IC of the form above asserts that H is true whenever B1, .., Bn are true. Similar to rules
in Complex-Prolog programs, IC variables are also universally quantified. Furthermore, IC rules
must be safe (every variable must be limited).

Example 4.6 The integrity constraint that no flights may arrive or depart from Pearson Airport
after 2300 hrs. is expressed by:

(y ≤ 2300)← Civilian airport(self : −, name : x, latest time : y),
(x = “Pearson”)

Example 4.7 If the village of St. Jacobs has no Airport, we may say:

← Airport(self : x, address : Address(city : “St. Jacobs”))

We allow existential quantification of variables in the head of an IC. If a variable occurs only
in the head, it is implicitly assumed to be existentially quantified17.

Example 4.8 Consider the IC:

P (attr1 : x, attr2 : y)← R(attr3 : x, attr4 : z), (x = 300)

The variable y in the IC is existentially quantified and y = f(x, z), where f is some Skolem
function.

Since we use non-positional notation, existentially quantified variables and corresponding at-
tributes can be left out of integrity constraints. So we may write the above rule as:

P (attr1 : x)← R(attr3 : x, attr4 : z), (x = 300)

Example 4.9 Consider the IC asserting that every Airport has an alternative Airport near-by:

Airport(self : x)← Airport(self : −, alternative : x)

This is an example of asserting referential integrity. Notice that the ’missing’ attributes of Airport
in the head of the IC are indeed existentially quantified variables (Skolem function applications).

17Note that otherwise the IC is no longer safe.
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4.6 Translation of a Complex-Prolog Database to a Relational Database using

Datalog

We now describe the translation of a Complex-Prolog database to a relational Datalog program.

4.6.1 Translation of a Complex-Prolog Schema

Let c be a class in the schema S with

closure(c) =< a1.., aq, closure(r1), .., closure(rk) >

and let
I = c(a1 : v1, .., aq : vq, Tr1 , .., Trk

)

be a simple instance in the database. Assume that there exists a mapping M to convert object
identifiers into integers. The flattening function µ that transforms the terms (v1, .., vn) into atomic
values is defined by:

• µ(vi) = M(vi) if vi is an object identifier.

• µ(vi) = vi if vi is a constant or variable.

• µ(vi) =< b1 : µ(c1), .., bm : µ(cm) > if vi = g(b1 : c1, .., bm : cm) is a record term.

The tuple t associated with I is given by:

t =< a1 : µ(vi), .., aq : µ(vq) >

where the inherited attributes and their values have been left out.
The relation R associated with the class c is the set of tuples corresponding to the instances of

ext(c) in the database. In fact, a relation will just contain the ’facts’ 18 in the Datalog program for
the corresponding class. The definition of this relation is constructed by applying a new flattening
function α to the non-inherited attributes (a1, .., aq) of the class c. This function is defined as
follows:

• α(ai) = si : int if ai is either a reference or a subrange attribute with name si.

• α(ai) = ai if ai is a string or an integer attribute.

• α(ai) =< v(ci), .., v(cn) > if ai =< si, g(c1, .., cn) > is a record attribute.

The relation R corresponding to c is c(v(a1), .., v(aq)).
The underlying relational database is the set of relations corresponding to the classes in the

schema. The facts of the Datalog program become tuples in the relations of their corresponding
classes.

Example 4.10 The relational schema corresponding to the Airport class of Example 4.1 is:

Airport(self : int, name : char[25], city : char[25], country : char[25],
alternative : int)

18How to generate those Datalog facts for a class is explained later.
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4.6.2 Complex-Prolog Rules to Datalog Rules

A Datalog predicate is either a database (extensional) predicate, if it corresponds to a stored
relation (facts), or a derived (intensional) predicate, if it is defined by rules. A predicate may also
be a comparison predicate. No function symbols are allowed. A Datalog rule is of the form

A← L1, .., Ln

where L1, L2, ..Ln are literals. A is a class predicate if the body is empty (a fact) and a derived
predicate otherwise. All facts are ground. Since the arity of Datalog extensional predicates is small,
positional notation is used.

We now describe how Complex-Prolog rules and facts can be translated to Datalog rules.
Let P = p(s1 : v1, s2 : v2, .., sn : vn) be a simple predicate of arity n. Let the equivalent

positional form of P be p(v1, .., vn). Assume that

closure(p) =< a1, .., aq, closure(r1), .., closure(rk) > .

The isa rule for P is defined as:

P (X,Y1, .., Yk)← p(X), r1(Y1), .., rk(Yk), y11
= x1, .., yk1

= x1

where X is a list of p’s own attribute arguments, Y1, .., Yk are the attribute arguments of r1, .., rk
respectively, and ri(Yi) is a simple class predicate, one for each class ri ∈ ancestors(p). yi1 is the
first (self) attribute argument in the list Yi, x1 is the argument corresponding to the self attribute
in X.

The above rule is safe since all the argument variables in the head occur in the body as well.
Notice that the rule requires the simple predicate p to be completely specified, that is, contain
arguments for all attributes in closure(p).

Example 4.11 The isa rule associated with the simple predicate

Civilian airport(self : s1, name : n, address : a, alternative : t,
self : s2

19, earliest time : e, latest time : l)

becomes:

Civilian airport(s, n, a, t, e, l)← Civilian airport(s1, e, l),
Airport(s2, n, a, t), s1 = s2

We need a function λ to flatten record terms in a class predicate and replace object identifiers
with integers. Let x be a term; then:

• λ(x) = M(x) if x is an object identifier.

• λ(x) = x, if the corresponding attribute a is either an atomic or reference attribute.

19self : s2 is an attribute inherited from the Airport class.
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• λ(x) =< λ(y1), .., λ(yn) >, where y1, .., yn are new variables, if the corresponding attribute
a =< s, g(c1, .., cn) > is a record attribute and x is a variable.

• λ(x) =< λ(z1), .., λ(zn) > if x = g(s1 : z1, .., sn : zn) is a record term.

Given a simple Complex-Prolog predicate p(s1 : x1, .., sq : xq) without class terms, where s1, .., sq
are all p’s own attributes, the corresponding Datalog predicate is

p(λ(x1), .., λ(xq))

Since every intensional predicate symbol in Complex-Prolog is implicitly typed, we can extend
the definition of λ to intensional predicates similarly.

Notice that both isa rules and the λ function require a class predicate to be completely specified.
However, a class predicate in a rule (IC) written in non-positional notation may not have all its
arguments specified. Let p(s1 : v1, .., sq : vq) be an incompletely specified class predicate in some
rule r. Assume that n is the arity of p and sq+1, .., sn are the unspecified attributes. Then r cannot
be a fact with p as its head, since p will then not define a valid simple instance of the class p. Since
class predicates can occur only in the body of rules, r must be of the form:

s(v1, .., vk)← B1, .., Bm, p(s1 : v1, .., sq : vq)

where B1, .., Bm are other predicates in the body. We introduce new variables vq+1, .., vn for the
unspecified attributes of p. All these variables are universally quantified as required. The resulting
rule will be:

s(v1, .., vk)← B1, .., Bm, p(s1 : v1, .., sq : vq, sq+1 : vq+1, .., sn : vn)

We can apply a similar modification to any incompletely specified class predicate in the body
of integrity constraints. However, an IC can have a class predicate in its head and this predicate
can be incompletely specified. Consider an integrity constraint ICk with all class predicates in the
body completely specified. Let ICk be:

ICk = p(s1 : v1, .., sq : vq)← B1, .., Bq

where p is the class predicate described above and B1, .., Bq are any valid predicates.
We can introduce new variables for the unspecified attributes as done earlier. But, these vari-

ables must be existentially quantified to correctly represent the meaning of the IC (and leave it
safe). We therefore introduce new Skolem functions fq+1, ..fn of arity m, where m is the number
of variables u1, .., um (which must be universally quantified) in the body of ICk . We rewrite the
IC as:

p(s1 : v1, .., sq : vq, sq+1 : fq+1(u1, .., um), .., sn : fn(u1, .., um))← B1, .., Bq

The algorithm to transform a Complex-Prolog rule into (possibly several) Datalog rules is
described below. Our algorithm is from [GR89], modified to support the addition of ICs into the
language.
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Algorithm 1 Complex Prolog rules to Datalog rules.

Input: Any Complex-Prolog rule r.
Output: One or more equivalent Datalog rules.
Method:

• If r is a fact involving predicate p, use the isa rule to obtain a set of facts20 for p and each
class s ∈ ancestors(p).

• If r is a rule, modify it such that class predicates are completely specified. While there is a
class or intensional predicate p in the rule do the following:

– If p is an extended class predicate, obtain the conjunction of equivalent simple predicates
using the hidden rules repeatedly. If p is positive in r, replace p by the conjunction of
predicates obtained. If p is negated in r, generate the rule for a new intensional predicate
q as the conjunction of predicates obtained due to p. Replace p by ¬(q).

If p is a simple predicate, replace p in r by the body of predicates obtained using the isa
rule. Handle negation as done above.

– For each class or intensional predicate p in the rule:

∗ Flatten each argument term x using the λ function defined above.

∗ Replace every occurrence of x in the rule by λ(x). Replace a comparison predicate
c with tuple arguments by multiple c predicates comparing the components, which
should be atomic.

The resulting Datalog rules are equivalent to r.

4.6.3 Translating Integrity Constraints

Complex-Prolog allows the specification of domain bounds for attributes in the definition of a class
predicate. Domain bounds correspond directly to two Datalog ICs, one for the lower bound and
one for the upper bound. For generalization and the inheritance of attributes, we must define a
referential constraint between a class and its subclass, such that each object identifier (the self
attribute) present in the relation representing the subclass also exists in the superclass. Other
superclass variables are defined in the IC by Skolem functions.

Example 4.12 To show that a Military airport isa Airport, we define the IC:

Airport(x, f1(x, y), f2(x, y), f3(x, y), f4(x, y), f5(x, y), f6(x, y))
←Military airport(x, y)

20Recall that these facts form tuples for the relations that correspond to its class in the Complex-Prolog model.
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Algorithm 2 Complex Prolog ICs to Datalog ICs.

Input: Integrity constraints defined in the Complex-Prolog schema.
Output: One or more equivalent Datalog ICs.
Method: Let ICk be an integrity constraint including the ones generated by the conversion of
value bounds and isa rules. For each of the ICs, we now:

• Modify ICk such that class predicates are completely specified. ICk may now contain Skolem
functions.

• If the head is a class predicate p:

– If p is an extended class predicate, replace it by the equivalent conjunction of simple
predicates, using the hidden rules. If p is equivalent to a conjunction of predicates,
generate multiple ICs with each of them as a head predicate. Apply the following steps
for each of the resulting ICs:

∗ If the head predicate p is simple, replace it by the body of predicates obtained using
the isa rule. Since we restrict an IC to have one head predicate, multiple ICs will
result if p is replaced by multiple predicates. Process each of the ICs using the
following steps:

∗ For each class predicate q in the body of IC:

· Replace the class predicate by equivalent predicates as specified in the above
algorithm.

∗ Apply the flattening function λ to the terms of all predicates and replace terms by
the results of the λ function applications.

∗ Generate multiple comparison predicates if the arguments are tuples.

We notice that both the rule transformation algorithm and the integrity constraint transfor-
mation algorithm terminate. An extended class predicate occurring in a program has a finitely
nested structure, hence it takes finite time to generate equivalent simple class predicates. Because
we restrict subclasses in the Complex-Prolog schema to be acyclic, application of isa takes only
finite time.

4.6.4 Answering Queries

The steps described above will be used to convert a Complex-Prolog query into an equivalent
Datalog query. Since no variables are eliminated during the translation, we can apply the reverse
transformation to the results of the Datalog query to get the results of the original Complex-Prolog
query.

5 Applying SQO to Complex-Prolog

In this section we describe how semantic query optimization techniques from [CGM90] may be
applied to an object-oriented model, defined using Complex-Prolog.



Semantic Query Optimization in OODBMS 125

In the previous section we discussed an algorithm from Greco and Rullo that converts a
Complex-Prolog into an equivalent Datalog program. Our addition of ICs to the Complex-Prolog
language allows us to take advantage of SQO techniques to perform query processing. Recall from
Section 3 that the heuristics used in the query transformations as described in [CGM90] are appli-
cable to the relational model. We assume in the query transformation process for a Complex-Prolog
query that these same transformation techniques can be used with an object-oriented model.

5.1 Sample Complex-Prolog Database

Our example database models various aspects of the air transportation business; airlines, aero-
planes, flights, and airports.

1. Plane(model : char[15],manufacturer : char[20], runway length : int,
flight crew : 1..5, age : 0..50, lifetime : 5..60)

2. Cargo plane(item maxheight : int, item maxlength : int,
item maxweight : int, item maxwidth : int) isa Plane

3. Passenger plane(maximum passengers : 1..500, cabin crew : 1..25,
cargo capacity : int) isa Plane

4. Airline(name : char[25], home airport : Airport)

5. Airport(name : char[25],
address : Address(city : char[25], country : char[25]),
geographical postion : Geopos(latitude : int, longitude : int),
max runway length : int)

6. Military airport(armed forces dept : char[25]) isa Airport

7. Civilian airport(earliest time : int, latest time : int) isa Airport

8. Flight(plane : Plane, departure time : int, duration : int)

9. Civilian flight(airline : Airline, origin : Civilian airport,
destination : Civilian airport) isa Flight

10. Military flight(origin : Airport, destination : Airport) isa Flight

11. Stops(flight : Flight, airport : Airport, arrival time : int,
departure time : int)

5.2 Equivalent Datalog Schema

The Datalog schema for the Air Transportation database is determined by using the conversion
algorithm described in the previous section. Recall that domain specifications in the extensional
predicates, and isa hierarchies, are converted into Datalog integrity constraints. Our predicates are
presented in positional notation, to match the notation in [CGM90].
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1. Plane(self : int,model : char[15],manufacturer : char[20],
runway length : int, flight crew : int, age : int, lifetime : int)

2. Cargo plane(self : int, item maxheight : int, item maxlength : int,
item maxweight : int, item maxwidth : int)

3. Passenger plane(self : int,maximum passengers : int,
cabin crew : int, cargo capacity : int)

4. Airline(self : int, name : char[25], home airport : int)

5. Airport(self : int, name : char[25], city : char[25], country : char[25],
latitude : int, longitude : int,max runway length : int)

6. Military airport(self : int, armed forces dept : char[25])

7. Civilian airport(self : int, earliest time : int, latest time : int)

8. Flight(self : int, plane : int, departure time : int, duration : int)

9. Civilian flight(self : int, airline : int, origin : int, destination : int)

10. Military flight(self : int, origin : int, destination : int)

11. Stops(self : int, flight : int, airport : int, arrival time : int,
departure time : int)

Our referential integrity constraints for this Datalog representation are as follows:

IC1 Cargo plane isa Plane.

Plane(x1, f1(x1, x2, x3, x4, x5), f2(x1, x2, x3, x4, x5),
f3(x1, x2, x3, x4, x5), f4(x1, x2, x3, x4, x5), f5(x1, x2, x3, x4, x5),
f6(x1, x2, x3, x4, x5))

← Cargo plane(x1, x2, x3, x4, x5)

IC2 Passenger plane isa Plane.

Plane(x1, f1(x1, x2, x3, x4), f2(x1, x2, x3, x4), f3(x1, x2, x3, x4),
f4(x1, x2, x3, x4), f5(x1, x2, x3, x4), f6(x1, x2, x3, x4))

← Passenger plane(x1, x2, x3, x4)

IC3 Military airport isa Airport.

Airport(x1, f1(x1, x2), f2(x1, x2), f3(x1, x2), f4(x1, x2),
f5(x1, x2), f6(x1, x2))

←Military airport(x1, x2)
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IC4 Civilian airport isa Airport.

Airport(x1, f1(x1, x2, x3), f2(x1, x2, x3), f3(x1, x2, x3), f4(x1, x2, x3),
f5(x1, x2, x3), f6(x1, x2, x3))

← Civilian airport(x1, x2, x3)

IC5 Civilian flight isa Flight.

Flight(x1, f1(x1, x2, x3, x4), f2(x1, x2, x3, x4))
← Civilian flight(x1, x2, x3, x4)

IC6 Military flight isa Flight.

Flight(x1, f1(x1, x2, x3), f2(x1, x2, x3))
←Military flight(x1, x2, x3)

In addition, value bounds on the attributes flight crew, age, lifetime, maximum passengers, and
cabin crew are defined as follows:

IC7, IC8 Value bounds on attribute Plane.flight crew:

(x5 ≥ 1)← Plane(x1, x2, x3, x4, x5, x6, x7)

(x5 ≤ 5)← Plane(x1, x2, x3, x4, x5, x6, x7)

IC9, IC10 Value bounds on attribute Plane.age:

(x6 ≥ 0)← Plane(x1, x2, x3, x4, x5, x6, x7)

(x6 ≤ 50)← Plane(x1, x2, x3, x4, x5, x6, x7)

IC11, IC12 Value bounds on attribute Plane.lifetime:

(x7 ≥ 5)← Plane(x1, x2, x3, x4, x5, x6, x7)

(x7 ≤ 60)← Plane(x1, x2, x3, x4, x5, x6, x7)

IC13, IC14 Value bounds on attribute Passenger plane.maximum passengers:

(x2 ≥ 1)← Passenger plane(x1, x2, x3, x4)

(x2 ≤ 500)← Passenger plane(x1, x2, x3, x4)
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IC15, IC16 Value bounds on attribute Passenger plane.cabin crew:

(x3 ≥ 1)← Passenger plane(x1, x2, x3, x4)

(x3 ≤ 25)← Passenger plane(x1, x2, x3, x4)

Although we have defined integrity constraints for subclasses, a pair of classes related by an
isa relationship are defined in our Datalog model as distinct relations. For convenience, we can
define a view 21 (an intensional predicate) for each subclass and its ancestors. The join attributes
between each relation are simply the object identifiers; they are guaranteed to exist via the integrity
constraints defined above. Defining such a view is not necessary, since isa relationships are converted
to ICs and we can make use of these ICs when evaluating queries.

5.3 Semantic Compilation and Query Transformation

In this Subsection, we give two examples of utilizing semantic query optimization heuristics on our
converted Complex-Prolog schema. To illustrate the use of these techniques, we define some further
ICs, first using the Complex-Prolog language, and then its equivalent Datalog form:

IC17 The database does not have any over-aged planes.

(p < q)← Plane(self : −, age : p, lifetime : q)

Recall that Complex-Prolog constraint need not be completely specified. The equivalent
Datalog constraint is as follows:

(x6 ≤ x7)← Plane(x1, x2, x3, x4, x5, x6, x7)

IC18 Passenger planes that require a cabin crew of 10 or more carry at least 350 passengers.

(z ≥ 350)← Passenger plane(self : x, cabin crew : y,
max passengers : z),

(y ≥ 10)

The equivalent Datalog constraint is as follows (Skolem functions are shown without argu-
ments):

(x2 ≥ 350)← Passenger plane(x1, x2, x3, x4),
P lane(x1, f1, f2, f3, f4, f5, f6), (x3 ≥ 10)

21Defining a view, in fact, may not be so “convenient” if our underlying relational system does not support update
operations through a view; many systems, in fact, do not [Cod90]. For our purposes, view update support for PK-FK
and PK-PK join views is sufficient.
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Note that in this case the Plane predicate is redundant to IC2 already established.

In addition to the specific constraints IC17 and IC18, we could add referential constraints and
functional dependencies to our air transport schema, as described in [JCV84]. The referential
constraints ensure that each object reference in a extensional predicate refers to an existing tuple
in the associated relation. From functional dependency constraints we can derive further residues,
as explained in [CGM90]. However, to help simplify the examples we will omit these constraints.
Our Datalog schema above was defined using positional notation, but we included the attribute
names and types to better illustrate the transformation from Complex-Prolog. From now on, we
will use the strictly positional notation of [CGM90].

5.3.1 Semantically Constrained Axioms

At the end of the Semantic Compilation process, our cross-product of EDB predicates (mapped
directly into IDB axioms) and the 18 integrity constraints results in the following semantically
constrained axioms (SCAs). The notation used to describe these axioms is taken from [CGM90];
conditional predicates which must be true for a particular axiom are listed in braces. To conserve
space, Skolem functions are shown with no arguments.

SCA1 Plane(x1, x2, x3, x4, x5, x6, x7)← Plane(x1, x2, x3, x4, x5, x6, x7)
{(x5 ≥ 1); (x5 ≤ 5); (x6 ≥ 0); (x6 ≤ 50); (x7 ≥ 5); (x7 ≤ 60); (x6 ≤ x7)}

SCA2 Cargo plane(x1, x2, x3, x4, x5)← Cargo plane(x1, x2, x3, x4, x5)
{Plane(x1, f1, f2, f3, f4, f5, f6)←; (y5 ≥ 1); (y5 ≤ 5); (y6 ≥ 0); (y6 ≤ 50);
(y7 ≥ 5); (y7 ≤ 60); (y6 ≤ y7)}

SCA3 Passenger plane(x1, x2, x3, x4)← Passenger plane(x1, x2, x3, x4)
{Plane(x1, f1, f2, f3, f4, f5, f6)←; (y5 ≥ 1); (y5 ≤ 5); (y6 ≥ 0);
(y6 ≤ 50); (y7 ≥ 5); (y7 ≤ 60); (y6 ≤ y7); (x2 ≥ 350)← (x3 ≥ 10)}

SCA4 Airline(x1, x2, x3)← Airline(x1, x2, x3){}

SCA5 Airport(x1, x2, x3, x4, x5, x6, x7)← Airport(x1, x2, x3, x4, x5, x6, x7){}

SCA6 Military airport(x1, x2)←Military airport(x1, x2)
{Airport(x1, f1, f2, f3, f4, f5, f6)←}

SCA7 Civilian airport(x1, x2, x3)← Civilian airport(x1, x2, x3)
{Airport(x1, f1, f2, f3, f4, f5, f6)←}

SCA8 Flight(x1, x2, x3, x4)← Flight(x1, x2, x3, x4){}

SCA9 Civilian flight(x1, x2, x3, x4)← Civilian flight(x1, x2, x3, x4)
{Flight(x1, f1, f2, f3)←}

SCA10 Military flight(x1, x2, x3)←Military flight(x1, x2, x3)
{Flight(x1, f1, f2, f3)←}

SCA11 Stops(x1, x2, x3, x4, x5)← Stops(x1, x2, x3, x4, x5){}
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5.3.2 Unsatisfiable Query

Our first example shows how the integrity constraints can be used to determine that a null result
can be the only possible answer for a particular query.

Example 5.1 Query: Find manufacturers of passenger planes outliving their lifetime.

← Passenger plane(self : x,manufacturer : z∗, age : p, lifetime : q),
(p ≥ q)

Recall that Complex-Prolog queries that pertain to subclasses in the schema must be expanded to
include inherited attributes; in the relational sense, this means implying a join (perhaps several)
between the hierarchically related extensional predicates. Thus, our equivalent Datalog query is:

← Passenger P lane(x1, x2, x3, x4), P lane(x1, y2, y
∗
3, y4, y5, y6, y7),

(y6 > y7)

It is clear from the Datalog form of the query that it contradicts SCA3. Therefore the query
answer is ∅.

5.3.3 Index Introduction

Our second example shows how we can introduce an indexed attribute into the query so that the
execution plan is more efficient.

Example 5.2 Query: Find the manufacturers of passenger planes that require a cabin crew of at
least 10.

← Passenger plane(self : x,manufacturer : y∗, cabin crew : z), (z ≥ 10)

Our equivalent Datalog query is:

← Passenger P lane(x1, x2, x3, x4), P lane(x1, y2, y
∗
3, y4, y5, y6, y7),

(x3 ≥ 10)

Again, from SCA3 we can infer that (x2 ≥ 350). If an index exists on the maximum passengers
attribute, but not on the cabin crew attribute, then we can introduce the literal (x2 ≥ 350) into
the query using the index introduction heuristic. Our transformed query then becomes:

← Passenger P lane(x1, x2, x3, x4), P lane(x1, y2, y
∗
3, y4, y5, y6, y7),

(x3 ≥ 10), (x2 ≥ 350)

Many additional examples can be generated from the above schema, especially if we include
referential constraints and functional dependencies. Although we have skipped many details, it
appears that the logic-based approach by Chakravarthy et al. can be used on an object-oriented
data model, by means of translating the schema and the database rules into their equivalent Datalog
form.
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6 Conclusion

Capturing more meaning in a database system by managing integrity constraints can lead to a
number of possible benefits:

• Since the database manager now enforces integrity constraints instead of being encoded within
application programs, we can ensure that all application programs adhere to the same set of
consistency rules.

• Ad-hoc updates to the database may now be controlled.

• Altering constraints may involve no changes to application programs.

• The additional metadata may be used to semantically optimize queries.

By extending Datalog to support complex objects, Greco and Rullo[GR89] derived a database
programming language called Complex-Prolog. Complex-Prolog schemas and queries support the
notions of generalization, inheritance, and object identity.

In this paper, we showed that by adding integrity constraints (ICs) to Complex-Prolog we
could apply the semantic query optimization techniques from Chakravarthy et al. [CGM90] de-
fined for a relational model to support a complex-object model. The technique is applicable to
both data models because Complex-Prolog may be converted to an equivalent Datalog (relational)
representation.

There remains to be done significant work in both the areas of SQO and complex-object data
models. Some of the issues remaining in semantic query optimization include:

• We can attempt to relax our restrictions on the specification of IDB rules and ICs, such as
permitting an IC to include an IDB predicate in its head[LH88].

• Little work appears to have been done to determine a better way of reporting database
integrity violations to the user. With semantic query optimization, we may infer additional
constraints from the given set of ICs. It may not be obvious to a user that their query or
update cannot be executed due to an integrity violation (or contradiction) when the violated
constraint contains a predicate that does not appear in the query. Furthermore, the set of
integrity constraints used for the inference may be quite large.

• A similar problem to the above exists for database administrators (DBAs) who wish to add
or update ICs to the metabase. It may be difficult for the DBA to determine why a new con-
straint contradicts the existing base of ICs, given a large IC set and the inferences performed.

• The heuristics used for SQO, as defined originally by King[Kin81, Kin84], were identified as
appropriate for the relational model, using (possibly) clustered indices on attributes. Further
work in semantic query optimization has been based on these heuristics, and their underlying
data structure assumptions. Indeed, our examples of the previous section assume that the
relational heuristics are valid with our (translated) Complex-Prolog schema.

Additional research needs to address different physical data structure implementations, such
as hashed organizations, or derived relations[BCL86, LY87]. Further, indexing issues for
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complex-object data models are still being actively studied, and much further work in this
area is required[Kim90, pp. 336]. SQO heuristics must be adapted to support the new types
of indexing schemes required with object-oriented database systems.

• Further extension of SQO techniques can be applied to distributed databases as well. Using
SQO techniques with a distributed database is both more rewarding, and more challeng-
ing. SQO is more rewarding with distributed systems since there may be a tremendous
improvement in query processing time if, for example, a relation stored at another site can be
eliminated from a query. SQO is more challenging because integrity constraints from different
individual databases may be necessary to optimally transform the query. Furthermore, the
integrity constraints present at each site may be incompatible in a “global” view; see [TK81].

Using SQO for homogeneous relational database systems in a distributed fashion is a complex
issue. If we allow heterogeneous database systems to form the distributed system (sometimes
termed a federated database [LMR90, SL90]), the complexities become more severe.
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