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Abstract.

A generalized continued fraction algorithm associates with every real number x a

sequence of integers; x is rational iff the sequence is finite. For a fixed algorithm, call a

sequence of integers valid if it is the result of that algorithm on some input x0. We show

that, if the algorithm is sufficiently well-behaved, then the set of all valid sequences is

accepted by a finite automaton.

I. Introduction.

It is well known that every real number x has a unique expansion as a simple continued

fraction in the form

x = a0 +
1

a1 +
1

a2 + · · ·
= [a0, a1, a2, ...]

where ai ∈ ZZ for i ≥ 0, aj ≥ 1 for j ≥ 1, and if the expansion terminates with an, then

an ≥ 2.

Given x, we may find its simple continued fraction expansion with the following algo-

rithm:

Algorithm SCF(x); outputs (a0, a1, . . .):

SCF1. Set x0 ← x; set i← 0.

SCF2. Set ai ← bxic.

SCF3. If ai = xi then stop. Otherwise set xi+1 ← 1/(xi − ai);

set i← i+ 1 and go to step SCF2.
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For example, SCF(52/43) = (1, 4, 1, 3, 2).

In fact, the rules “aj ≥ 1 for j ≥ 1” and “if the expansion terminates with an, then

an ≥ 2” exist precisely so the set of valid expansions coincide with the possible outputs of

the continued fraction algorithm.

There exist other versions of the continued fraction algorithm. For example, the so-

called nearest integer continued fraction (NICF) satisfies the following rules: aj ≤ −2 or

aj ≥ 2 for j ≥ 1; if aj = −2 then aj+1 ≤ −2; if aj = 2 then aj+1 ≥ 2; and if the expansion

terminates with an, then an 6= 2. The NICF is generated by algorithm SCF above with

step SCF2 replaced by

SCF2′. Set ai ← bxi +
1
2c.

For example, NICF(52/43) = (1, 5,−4,−2).

(Actually, the NICF is usually described slightly differently in the literature, but our

formulation is essentially the same. See [Hur2].)

The concept of “rules” that describe the set of possible outputs of a continued fraction

expansion also appears in a paper of Hurwitz [Hur1] which describes the nearest integer

continued fraction algorithm in ZZ[i].

In this paper, we are concerned with the following questions:

(1) Which functions f are suitable replacements for the floor function in Algorithm

SCF (i. e. yield generalized continued fraction algorithms)?

(2) Which of these functions correspond to generalized continued fraction algorithms

which have “easily describable” outputs (i. e. accepted by a finite automaton)?

In this paper, we will answer question (1) by fiat , and then examine the consequences

for question (2).

II. Real Integer Functions and Finite Automata.

Let us introduce some notation. By [a0, a1, a2, ..., an] we will mean the value of the

expression

a0 +
1

a1 +
1

a2 + · · ·+
1

an

,
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and not necessarily the result of the algorithm SCF.

Let f : R→ ZZ. We say f is a real integer function if

(i) |f(x)− x| < 1 for all x ∈ R;

(ii) f(x+ j) = f(x) + j for all x ∈ R, j ∈ ZZ.

Examples are f(x) = bxc, f(x) = dxe, f(x) = bx+ 1
2c.

Real integer functions induce generalized continued algorithms by imitating algorithm

SCF above:

Algorithm CFf (x);outputs (a0, a1, . . .):

CF1. Set x0 ← x; set i← 0.

CF2. Set ai ← f(xi).

CF3. If ai = xi then stop. Otherwise set xi+1 ← 1/(xi − ai),

i← i+ 1 and go to step C2.

We leave it to the reader to verify that (i) The algorithm CFf terminates iff x is ratio-

nal and (ii) if CFf (x) terminates, with (a0, a1, . . . an) as output, then x = [a0, a1, . . . , an].

The main result of this paper is that the outputs of CFf are easily describable in most

of the interesting cases, including all the examples mentioned above. Let us define more

rigorously what we mean by “easily describable”.

Call a (finite or infinite) sequence of integers valid if it is the result of CFf (x) for

some x. We envision a finite automaton which reads a purported finite expansion a =

(a0, a1, . . . an) and reaches a final state on the last input iff a is valid. Also, given a valid

infinite sequence (a0, a1, . . .), the automaton should never “crash” (i. e. attempt to make

a transition for which the resulting state is undefined), though it may fail to “crash” on

invalid infinite expansions.

We emphasize again that our description must in some sense cover all valid outputs of

the algorithm, and is not concerned with, for example, the periodicity for specific inputs.

One minor problem with the model described above is that the ai belong to ZZ, but in

defining finite automata we usually insist that our alphabet Σ is finite. We can get around

this in one of two ways: first, we could expand the definition of finite automata so that
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there can be infinitely many transitions (but still only finitely many states). Second, we

could redefine our strings as numbers encoded in a particular base. (Even if a state has

infinitely many transitions associated with it, they are all of a certain form that is easily

describable by a regular set.) It turns out that either approach is satisfactory, but for

simplicity we choose the first.

Definition.

A finite automaton is a 5-tuple (Q,Σ, δ, q0, F ) where Q is a finite set of states, Σ is a

(not necessarily finite) input alphabet, q0 ∈ Q is the initial state, F ⊆ Q is the set of final

states, and δ is the transition function mapping Q × Σ to Q. δ may be incomplete; i. e.

δ(q, a) may be undefined for some pairs q, a.

We extend δ to a function which maps Q× Σ∗ to Q in the obvious fashion.

The reader to whom these definitions are unfamiliar should consult [HU].

Notation.

If A is a set, then by A−1 we mean the set {x ∈ R : x−1 ∈ A}. If f is a function, then

by f−1[a] we mean, as usual, the set {x ∈ R : f(x) = a}. If A is a set, then by A− a we

mean the set {x : x+ a ∈ A}. We will say x is quadratic if x is the real root of a quadratic

equation with integer coefficients.

Definition.

Let f be a real integer function. Then we say that the finite automaton A =

(Q,ZZ, δ, q0, F ) accepts the outputs of CFf if

(i) δ(q0, a0a1a2 · · · an) ∈ F iff there exists q ∈ |Q such that CFf (q) = (a0, a1, . . . , an).

(ii) If x is irrational and CFf (x) = (a0, a1, . . .), then δ(q0, a0a1 · · · an) is defined for

all n ≥ 0.

The object of this paper is to prove the following theorem:

Theorem 1.

Let f−1[0] be the finite union of intervals. Then there exists a finite automaton

accepting the outputs of CFf iff all the endpoints of the intervals are rational or quadratic.
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In section III below, we will prove one direction of this theorem; in section IV, we

prove the other.

Comment.

No simple characterization seems to exist in the case where f is not the finite union

of intervals. In section IV below, we will give an example of an f that is accepted by a

finite automaton, but f−1[0] is not the finite union of intervals.

III. One direction of the theorem.

Let f−1[0] be the finite union of intervals. We will create a finite automaton as follows:

states will correspond to certain subsets of f−1[0], and transitions will correspond to partial

quotients ai. We will define δ(q0, a0) = f−1[0] for all a0 ∈ ZZ and inductively define

δ(qi, a) = qj

where qj = (q−1
i ∩ f−1[a])− a. We say qi ∈ F if 0 ∈ qi.

To verify that this construction works, we need to show that (i) the automaton accepts

CFf and (ii) this process generates only a finite number of distinct states.

Let us agree to the following unpleasant notation. When we write

CFf (x) = (a0, a1, a2, . . . , an, . . .)

we will mean that the first n+1 outputs of the algorithm CFf on x are given by a0 through

an; there may be more outputs or not.

Lemma 2.

δ(q0, a0a1 · · · an) = {x : CFf ([a0, a1, a2, · · · , an−1, an + x]) = (a0, a1, . . . , an, . . .)}.

Proof.

The lemma is proved by induction. It is easy to verify that

δ(q0, a0) = f−1[0] = {x : CFf ([a0 + x]) = (a0, . . .)}.
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Assume true for k. Then

δ(q0, a0a1 · · · ak) = {x : CFf ([a0, a1, · · · , ak−1, ak + x]) = (a0, a1, . . . ak, . . .)}.

Thus

δ(q0, a0a1 · · · ak)
−1 = {x−1 : CFf ([a0, a1, · · · , ak−1, ak + x]) = (a0, a1, . . . ak, . . .)}

⇒ δ(q0, a0a1 · · · ak)
−1 = {x : CFf ([a0, a1, · · · , ak−1, ak, x]) = (a0, a1, . . . ak, . . .)}

⇒ δ(q0, a0a1 · · · ak)
−1 ∩ f−1[ak+1] = {x : CFf ([a0, a1, · · · , ak−1, ak, x]) =

(a0, a1, . . . ak, ak+1, . . .)}

⇒ δ(q0, a0a1 · · · ak+1) = (δ(q0, a0a1 · · · ak)
−1 ∩ f−1[ak+1])− ak+1

= {x : CFf ([a0, a1, · · · , ak, ak+1 + x]) = (a0, a1, . . . ak, ak+1, . . .)}.

which completes the proof.

Corollary.

δ(q0, a0a1 · · · an) ∈ F iff there exists q ∈ |Q such that CFf (q) = (a0, a1, . . . , an).

Proof.

Assume δ(q0, a0a1 · · · an) ∈ F . Then by the definition of the set of final states F , we

must have 0 ∈ δ(q0, a0a1 · · · an). But by the lemma, then the first n + 1 outputs of the

algorithm CFf on input [a0, a1, . . . , an] are precisely (a0, a1, . . . , an). Hence we may take

q = [a0, a1, . . . , an].

Now assume that there exists q ∈ |Q such that CFf (q) = (a0, a1, . . . , an). Then from

the definition of CFf , we see that xn = an; hence

0 = xn − an ∈ δ(q0, a0a1 · · · an)

which shows that δ(q0, a0a1 · · · an) is a final state.

We leave it to the reader to verify that if x is irrational and CFf (x) = (a0, a1, . . .),

then the automaton never crashes on any prefix of the output.

It remains to show that this construction generates a finite number of states. By

the inductive definition of states as certain subsets of f−1[0], we see that if e ∈ [−1, 1] is
an endpoint of an interval in qj , then either e is an endpoint of an interval of f−1[0], or
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e = (1/d)−f(1/d), where d is an endpoint of an interval qi, where there exists a transition

δ(qi, a) = qj . Since for any particular x we have f(x) = bxc or f(x) = dxe, it suffices to

prove the following:

Lemma 3.

Define s1 : x→ (1/x)− b1/xc and s2 : x→ (1/x)− d1/xe. Consider the semigroup u

formed by s1 and s2 under composition. Let u(x) be the orbit of x under elements of u.

Then u(x) is finite iff x is rational or quadratic.

Proof.

One direction is easy. Assume u(x) is finite. Then in particular the set

x, s1(x), s
(2)
1 (x), . . .

is finite. Hence we have s
(j)
1 (x) = s

(k)
1 (x) for some j 6= k. But it is easily proved by

induction that

x = [0, a0, a1, . . . , an−1 + s
(n)
1 (x)]

for some sequence of integers a0, a1, . . .; hence there exist integers such that

x =
aj + bjs

(j)
1 (x)

cj + djs
(j)
1 (x)

,

and similarly

x =
ak + bks

(k)
1 (x)

ck + dks
(k)
1 (x)

.

Thus we see that s
(j)
1 (x) is the root of a quadratic equation, and so is either quadratic or

rational. Thus x itself is either quadratic or rational.

Now let us prove the other direction. The assertion is trivial for x rational, x = p/q,

for then s1(p/q) = (q mod p)/p and s2(p/q) = −((−q) mod p)/p. Thus an application of

s1 or s2 decreases the absolute value of the numerator, while retaining the relationship

|x| < 1. Thus iterated applications of s1 and s2 reduce p/q to 0.

Now let us consider the case where x is the root of a quadratic equation with integer

coefficients. We use the classical theorem that the simple continued fraction for x is

ultimately periodic iff x is quadratic. If x is quadratic, let r(x) denote the length of

the repeating portion (period) of the simple continued fraction for x, and let q(x) denote
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the length of the leading portion of the continued fraction. (Example: if x =
√
7, then

SCF(x) = (2, 1, 1, 1, 4, 1, 1, 1, 4, . . .); hence r(x) = 4 and q(x) = 1.)

Let S1 : x → 1/(x − bxc) and S2 : x → 1/(x − dxe). Since S1(x) = s1(x
−1)−1 and

S2(x) = s2(x
−1)−1, it suffices to prove the theorem for the semigroup U formed by S1 and

S2 under composition.

Let x be quadratic. We will show that U(x) is finite by showing that repeated ap-

plication of the maps S1 and S2 can result in at most a finite number of distinct simple

continued fraction expansions. More precisely, we show that every element in U(x) has a

simple continued fraction whose period is identical to or is a cyclic shift of the period for

x; that there exists a uniform upper bound for q(y) for y ∈ U(x), and that the partial

quotients of the continued fraction for each y ∈ U(x) are also bounded.

Let the simple continued fraction expansion of x be given by (a0, a1, a2, a3, . . .). Then

SCF(S1(x)) = (a1, a2, a3, . . .). (1)

The description of S2(x) is slightly more complicated:

SCF(S2(x)) =











(−(a2 + 2), a4 + 1, a5, a6, . . .) if a1 = 1, a3 = 1;
(−(a2 + 2), 1, a3 − 1, a4, a5, . . .) if a1 = 1, a3 ≥ 2;
(−2, a2 + 1, a3, a4, . . . ) if a1 = 2;
(−2, 1, a1 − 2, a2, a3, . . . ) if a1 ≥ 3.

(2)

For example, see [Knu, pp. 358, 600].

From equations (1) and (2), it is clear that

r(Si(x)) = r(x)

for i = 1, 2. An application of Si does not change the period, although by “sliding”

elements off the left end of the continued fraction, it may shift the period cyclically.

Now define t(x) = max(q(x), r(x), 3). I claim that

t(Si(Sj(x))) ≤ t(x),

for 1 ≤ i, j ≤ 2. This is a tedious verification of cases, and is left to the reader. Since t is

bounded, it follows that q is also bounded.

It remains to show that the partial quotients of elements of U(x) are bounded. Let

a(x; i) denote the ith partial quotient of the simple continued fraction for x. Let x(k) denote
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the kth iterate of x under one of the two maps S1 and S2. LetM = maxi≥0 |a(x; i)|. Clearly
M is finite since the simple continued fraction for x is ultimately periodic.

Then we will show that, for all k ≥ 0,

(a) 1 ≤ a(x(k); j) ≤M for all j ≥ 2.

(b) 1 ≤ a(x(k); 1) ≤M + 1.

(c) |a(x(k); 0)| ≤M + 2.

Assume not. Then there exists a minimal superscriptm such that one of the conditions

above fails for x(m).

Write SCF(x(m−1)) = (a0, a1, a2, . . .). Then using the lemma above, we have

SCF(x(m)) =



















(a1, a2, a3, . . .) (i)
(−(a2 + 2), a4 + 1, a5, a6, . . .) (ii)
(−(a2 + 2), 1, a3 − 1, a4, a5, . . .) (iii)
(−2, a2 + 1, a3, a4, . . .) (iv)
(−2, 1, a1 − 2, a2, a3, . . .) (v)

Assume (a) fails for k = m. Then a(x(m); j) > M for some j. But this is clearly

false for j ≥ 3. For j = 2, it is clearly false for cases (i), (ii), and (iv). For case (iii),

a3 − 1 > M ⇒ a3 > M + 1, which is impossible by minimality of m. For case (v),

a1 − 2 > M ⇒ a1 > M + 2, impossible by minimality of m.

Now assume (b) fails for k = m. Then a(x(m); 1) > M + 1. But this is clearly false

for cases (i), (iii), (v). For case (ii), a4 + 1 > M + 1⇒ a4 > M , which is a contradiction.

For case (iv), a2 + 1 > M + 1⇒ a2 > M , a contradiction.

Now assume (c) fails for k = m. Then |a(x(m); 0| > M + 2. But this is clearly false

for cases (i), (iv), and (v). For cases (ii) and (iii), | − (a2 + 2)| > M + 2⇒ a2 > M , which

is a contradiction.

This completes the proof of the Lemma 3.

Combining Lemmas 2 and 3 completes the proof of one direction of Theorem 1.

We now give an example of the construction of the finite automaton. Let us obtain

the description of the outputs for CFf for f(x) = bx +
√

2
2 c. We find q0 = f−1[0] =

[−
√

2
2 , 2−

√
2

2 ); q1 = [−
√

2
2 , 1 −

√
2]; q2 = (

√
2 − 2, 2−

√
2

2 ); q3 = [1 −
√
2, 2−

√
2

2 ). The

transitions δ(qi, a) are given by the following table:
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Insert table here

IV. Completing the proof of Theorem 1.

We now wish to show that if f−1[0] consists of the finite union of intervals, but one of

those intervals has an endpoint that is not rational or quadratic, then no finite automaton

can accept CFf .

Assume that such an automaton A exists. Then we may assume that each state is in

fact reachable from q0; otherwise this state may be discarded without affecting A. For each

state qj , construct an input sequence a0a1 · · · ai such that δ(q0, a0a1 · · · ai) = qj . Let us

label each state qj with a subset of |Q, L(qj), by the following rule: If δ(q0, a0a1 · · · ai) = qj ,

then

L(qj) = {x ∈ |Q : CFf ([a0, a1, . . . , ai−1, ai + x]) = (a0, a1, . . . , ai, . . .)}.

We need to show that this map is indeed well-defined, in the sense that different paths

from q0 to qj give the same labels L(qj). Assume that

δ(q0, a0a1 · · · ai) = qj

and

δ(q0, b0b1 · · · bk) = qj ,

and there exists a rational number p such that

p ∈ S1 = {x ∈ |Q : CFf ([a0, a1, . . . , ai−1, ai + x]) = (a0, a1, . . . , ai, . . .)} (3)

but

p 6∈ S2 = {x ∈ |Q : CFf ([b0, b1, . . . , bk−1, bk + x]) = (b0, b1, . . . bk, . . .)}. (4)

Write CFf (p) = (0, ai+1, . . . , an); by our definition of what it means to accept the output

of CFf , we know that

δ(qj , ai+1 · · · an) = qr ∈ F,
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a final state. Let y = [b0, b1, . . . , bk, ai+1, . . . an]. Then since the automaton is in state qj

upon reading inputs b0b1 · · · bk, we have

δ(q0, b0b1 · · · bkai+1 · · · an) = qr.

Hence CFf (y) = (b0, b1, . . . , bk, ai+1, . . . an). But then y = [b0, b1, . . . , bk + p] which shows

that indeed p ∈ S2, a contradiction.

Thus we may assume that sets Li = L(qi) are well-defined. Let Ā denote the closure

of the set A in R, and consider the sets L̄i. I claim that since f−1[0] consists of the finite

union of intervals, so does each of the sets L̄i; this follows easily from the definition of

CFf . Suppose δ(qi, a) = qj ; then the endpoints e of intervals of L̄j are those of f−1[0] or

are related to the endpoints E of L̄i by the equation

e =
1

E
− a.

Since f−1[0] contains an endpoint which is not rational or quadratic, so must L̄0. Hence

there exists a transition δ(q0, a) = qi such that L̄i contains an endpoint which is not

rational or quadratic. Continuing in this fashion, and remembering that there are only a

finite number of states, we eventually return to a state previously visited, which gives one

of the two equations

e = [0, a1, . . . , ak]

or

e = [0, a1, . . . , ak + e]

which shows that e is rational or quadratic, contrary to assumption.

This completes the proof of Theorem 1.

Now let us give an example of an f such that f−1[0] is not the finite union of intervals,

but nevertheless there is a finite automaton accepting CFf .

Let f(x) be defined by

f(x) =

{

bxc, if x is rational;
dxe, if x is irrational.

Then

f−1[0] = {x : x rational , 0 ≤ x ≤ 1} ∪ {x : x irrational ,−1 ≤ x < 0}.
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Clearly f−1[0] cannot be written as the finite union of intervals. Then it is easily verified

that the procedure of section III generates a finite automaton with four states that accepts

CFf .

It may be of interest to remark that the automata accepting the result of CFf may be

arbitrarily complex. For example, it can be easily shown that the automaton corresponding
to

f−1[0] = [−Fn−1

Fn

,
Fn−2

Fn

)

has n+ 1 states. (Here Fn denotes the nth Fibonacci number.)

V. Epilogue.

Several other writers have noted connections between finite automata and continued
fractions. One of the best known papers is that of Raney, who showed how to obtain the

simple continued fraction for

β =
aα+ b

cα+ d

in terms of the continued fraction for α. See [Ran], [Bey].

Istrail considered the language consisting of all prefixes of the continued fraction for

x, and observed that this language is context-free and non-regular iff x is a quadratic

irrational [Ist].

Allouche discusses several applications of finite automata to number theory, including

continued fractions [All].

In this paper, we have been concerned with a different approach; namely, describing

the “set of rules” associated with a generalized continued fraction algorithm. One imme-

diately wonders if similar theorems may be obtained for continued fraction algorithms in

ZZ[i], such as those discussed by Hurwitz [Hur1] and McDonnell [McD].

In [Sha], the author proved that the McDonnell’s continued fraction algorithm can be

described by a finite automaton with 25 states. The corresponding result for Hurwitz’s

algorithm is not known.
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