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Abstract

This thesis presents techniques for reducing the complexity of communication in

distributed systems. It presents a set of simple standards and tools that provide

an efficient and consistent programming interface that can be used to implement a

great variety of communication interactions both within and between various types

of paradigms, abstractions, and entities. It also provides a framework based on

these standards and tools, with which arbitrary communication systems can be

constructed.

Various communication paradigms and issues are examined in order to identify

and categorize the fundamental aspects of communication. These fundamental as-

pects are then redefined and organized into a set of communication abstractions

which is simple and general, rigorous and flexible, low-level and extensible. The

generic communication model based on this set provides a framework for arbitrary

communication systems. Further, the model utilizes the efficiencies of a single mem-

ory domain while providing a universal interface between various types of paradigms,

abstractions, and entities across a wide spectrum of environments.

The framework provided in the generic communication model is used to develop

a specific model called the Buffer and Queue Model which provides a single efficient

and consistent communications programming interface. The Buffer-Queue proto-

col extends this consistent programming interface transparently to a distributed

environment. Finally, a few examples are presented using Buffers and Queues that

illustrate how various complex communication facilities may easily be developed and

how the use of a common fundamental base makes intermixing of locally defined user

interfaces and conversion between higher-level protocols a relatively straightforward

task.
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Chapter 1

Introduction

As computers have grown more powerful, their capabilities have become more com-

plex and system software, defined as the standard package of system functions and

programming tools demanded by the end user, has mushroomed in response. Such

growth has been driven both by the increasing variety and sophistication of the

hardware interface (either through directly connected hardware devices, or in the

extended scope achieved through networking), and by the devolution of application-

level software packages into standard interfaces for yet higher layers of application

software [Sche86, Lint87, Flow90]. One consequence of this growth is that system

software, like hardware, can no longer be treated as a single monolithic entity, but

rather has become a complex network of interacting modules. Further, the diversity

of the types of entities (e.g., procedures, processes, devices) involved in such soft-

ware has produced vastly different communication semantics and interfaces. In such

a complex and diverse environment, there is a desperate need to identify and extract

common concepts and build a set of simple, efficient and widely applicable com-

munication abstractions which can be extended transparently across a distributed

system. The analysis and design of such a set form the major contribution of this
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CHAPTER 1. INTRODUCTION 2

thesis.

The modularization of such software was initially typified by the concept of lay-

ered structure as embodied in the ISO-OSI Reference Model [Zimm80] for network

protocols. Each layer abstracted a particular subset of network operations and ca-

pabilities and possessed a loosely-defined interface by which it could be invoked by

adjacent layers. As the move to hardware independence and open systems became

stronger and went beyond network protocols, complete procedural definitions of

operating system layers and standard interfaces have emerged, such as the System

V Interface Definition (SVID) [ATT85] or similar POSIX standards [IEEE88].

More recently, a need for dynamic flexibility in the type and arrangement of

layers has suggested the concepts of a much more self-contained and independent

module which performs a well-defined set of functional tasks and which possesses

a universal standard interface, and of a mechanism for assembling and disassem-

bling many related modules into a complex hierarchy. AT&T STREAMS is an

example of such a design [ATT87]. The growing move to the object-oriented design

philosophy [Booc86, Cox86, Meye88] takes this idea one step further to that of self-

contained code and data entities which embody a particular object or concept and

provide a complete specification of the operations which can be performed by or

on the entity. Furthermore, the object-oriented philosophy provides a framework

for categorizing and developing various types or classes using the concepts of class

hierarchy, inheritance and redefinition.

However, as system components become more modular and independent, such

that even the hardware and software base of the system could be changed on a

daily basis, the need for well-defined standards of communication between various

entities and types of entities becomes an increasing problem. Moreover, as tasks

involve greater numbers of independent modules and data flow among modules be-
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comes a more significant component of such tasks, efficiency coupled with versatility

becomes ever more important in such communication.

In order to satisfy a spectrum of both present and future needs, a set of commu-

nication concepts and standards is required which is simple and general, rigorous

and flexible, low-level (for use within a single node) and extensible (for applicability

to a distributed environment). This set of communication concepts and standards

should be accompanied by a framework that can support existing communication

paradigms and protocols and can be used to develop new paradigms or protocols.

This thesis develops such a set by reducing the communication problem to its

critical components and building a framework upon which arbitrary communication

systems can be dynamically organized and constructed. First, various communi-

cation paradigms and issues are examined as a means to identify and categorize

some of the fundamental aspects of communication. An attempt is made to rede-

fine and organize these fundamental aspects into three communication abstractions,

namely data, node and delivery/synchronization. Using the object-oriented design

approach, we organize these abstractions hierarchically and use them as the basis

for a generalized communication paradigm. The resulting generic communication

model consists of a set of communication concepts and standards which meets the

requirements described above.

The Buffer and Queue Model is presented as a specific instantiation of the

generic communication paradigm. It seeks to utilize the conceptual efficiencies

of a single memory domain while providing a universal interface between various

types of entities across a wide spectrum of environments. Finally, several examples

are presented that illustrate how various complex communication facilities may

easily be developed using these elementary tools and how the use of a common

fundamental base makes intermixing of locally defined user interfaces or conversion
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between higher-level protocols a relatively straightforward task.

1.1 Thesis Overview

The main theme of this thesis concerns the use of abstractions for reducing the

complexity of communication in distributed systems. The major research goal is to

develop a generic communication model that consists of a set of simple standards

and tools, that provides a universal communication programming interface (for

both the system and application levels), and that can be used to construct specific

communication models or paradigms. Another major goal is to develop a specific

communication model that satisfies the constraints of the generic model, and to

demonstrate its simplicity and versatility.

Numerous researchers have introduced various high-level abstractions in at-

tempts to provide a single consistent user interface that encompasses different un-

derlying transport techniques. Message-passing (MP), streams and remote proce-

dure call (RPC) are some examples of these attempts. However, these abstractions

have been designed to support communication between the same or similar types of

entities. At a low level, there are network communication protocols and hardware

devices with well-defined interfaces. These different types of entities, communi-

cation abstractions and implementation mechanisms are characterized by vastly

different communication semantics and interfaces. This makes communication be-

tween different types of entities, abstractions and mechanisms a very difficult (if not

impossible) task. Currently, most of these interactions are implemented by commu-

nication programmers using their own ad hoc approaches yielding the diverse and

unwieldy programming environment shown in Figure 1.1. In such an environment,

there is a desperate need for simpler universal standards, and interfaces and tools,
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which can be used by all types of partners for all types of communication.
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Figure 1.1: A Conventional Communications Programming Environment

In particular, there is a need for a universal interface lying just below the high-

level abstractions (called the internal communication interface), which can utilize

the conceptual framework and efficiencies of a local memory environment. The

internal communication interface should be accompanied by a uniform data object

structure that all types or levels of entities can deal with, thus yielding a truly

universal or generic communication programming paradigm.
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Figure 1.1 emphasizes the need for a better approach to communication in

modern computer systems. The universal communication programming paradigm

proposed in this thesis will provide simple answers to the following three related

questions:

• How can a programmer write code to locate some service, and then commu-

nicate with the provider of that service?

• How can this code be made independent of the memory domain, execution

control regime (procedures, threads, processes, device drivers etc.), and phys-

ical location of the service?

• Can this independence be achieved even when the communicating entities

have different characteristics?

Chapter 2 surveys various existing communication paradigms and issues in dis-

tributed systems as a means to identify and categorize some of the fundamental

aspects of communication. In particular, aspects of intra-task communication (com-

municating within the bounds of a protection domain), inter-task communication

(both within and across protection boundaries), and network communication (gen-

eral device and kernel-to-kernel communications) are examined for similarities and

differences. Various types of entities involved in these communication paradigms

have been examined, for example: conventional procedures, coroutines [Krak88],

kernel routines and ROM hardware routines in intraprocess communication; threads

(i.e., light-weight processes) [Acce86], processes (e.g., UNIX processes) and tasks in

interprocess communication; and combinations of these in network communication.

In the first half of Chapter 3, the fundamental aspects identified in Chapter 2

are examined more fully in an attempt to elucidate the basic requirements for such
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a set of simple, universal concepts and tools that can then be used in any type

of communication among all types of partners. Based on these fundamental con-

cepts and requirements, the object-oriented design framework is applied to develop

a generic communication model in the second half of Chapter 3. This generic com-

munication model can then be used to implement specific communication paradigms

efficiently or to develop future communication paradigms. Furthermore, the generic

communication model is designed to replace ad hoc interfaces used to implement

most current communication systems (shown in Figure 1.1) with a single internal

communications interface, which consists of a universal functional interface and a

uniform data-object structure.

Chapter 4 develops a specific instantiation called the Buffer and Queue Model,

which satisfies the constraints of the generic communication model developed in

Chapter 3. The Buffer and Queue Model provides a simple, low-level but power-

ful and efficient communication paradigm, which utilizes the conceptual efficiencies

of the shared-memory programmer’s environment while providing a universal in-

terface between various types of entities across a wide spectrum of environments.

In order to extend the internal communications interface transparently to a dis-

tributed environment, the Buffer-Queue protocol (BQP) is developed to provide

remote operations and data transfer.

Chapter 5 presents implementation examples of various communication

paradigms using Buffers and Queues. In particular, examples of internal communi-

cation (including procedure call and coroutines), local interprocess communication,

network communication, distributed communication and bulk data transfer are de-

veloped to illustrate the ease of construction. Further, examples implementing

distributed and conventional semaphores, one-way communication (e.g. multicast)

and distributed shared memory are also presented to show the versatility of the
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methods.

Chapter 6 summarizes the thesis and makes comparisons of the work with re-

lated work. Also, several possible areas for future research that stem from this work

are suggested. Finally, the major contributions of this thesis are discussed.

1.2 Related Work

Over the years, many researchers have worked on various aspects of communication,

some in developing new communication paradigms [Gent81, Birr84, Ritc84, Li86,

Ahuj88] or protocols [Abra73, Metc76, Post80, Post81, IEEE83, ISO84, Zwae85,

Ross89, Sand90], others in attempts at improvements or performance optimizations

[Cher86b, Vasu87, Cart89, OMal90]. Unfortunately, most have concentrated on a

specific or limited set of protocols and area of application, resulting in a large

number of highly specialized and mutually incompatible proposals.

Recently, there have been some attempts to provide a single consistent program-

ming interface that bridges many underlying techniques, which would reduce the

programmers’ concern for dealing with the conceptual partitioning of interfaces.

Berkeley sockets [Leff88], AT&T STREAMS [ATT87], TACT[Auer90], Choices

Conduits [Zwei90] and the x-Kernel [Hutc88] are examples of such attempts. Un-

fortunately, most of these efforts fail to support new forms or as many forms of

communication as one might wish. In my estimation, the main reason behind this

failure is that most have a priori targeted a specific or limited set of areas and

thus do not possess sufficiently general communication abstractions to start with.

Below, each attempt is examined and its shortfalls are pointed out.
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1.2.1 Berkeley Sockets

Sockets are a generalization of the UNIX file access system designed to incorporate

network protocols [Koch89]. Sockets offer several types of data transfer service:

stream, datagram, raw and sequenced-packet. A stream socket provides sequenced,

reliable, bidirectional connection-based byte streams. A datagram socket supports

connectionless, unreliable messages of a fixed maximum length. A raw socket pro-

vides access to internal network interfaces and is available only to the super-user.

A sequenced-packet socket is similar to a datagram socket except that packets are

guaranteed to be received in the order they are sent. They are also guaranteed to

be error-free.

Sockets provide a common set of data transfer operations for these different

types of service. A user specifies the type through a parameter field (or parameter

fields) to an operation call. For convenience and efficiency, sockets allow transfer of

data, which may be composed of memory fragments from non-contiguous memory

locations. However, this simple scatter-gather list is not effective in supporting

multiple protocol layers.

The Berkeley UNIX kernel implements communication using three conceptual

layers: the socket layer, the protocol layer, and the device layer. Thus, there exist at

least three interfaces: the user/socket interface, the socket/protocol interface, and

the protocol/device interface. The socket layer provides the interface between user

system calls and the lower layers, the protocol layer contains the protocol modules

used for communication (e.g., TCP, IP), and the device layer contains the device

drivers that interact with the network devices. Legal combinations of protocols and

drivers are specified at system configuration time.

Although sockets are used quite widely in a variety of applications involving
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interprocess communication in Berkeley UNIX systems, they fall short of providing

a single consistent programming interface for various communicating entities and

paradigms. One of the major shortfalls of the socket abstraction is that it only

supports one form of communication paradigm, namely the client-server model.

Thus, it fails to support, for example, the shared-memory paradigm (i.e., data

passed by reference). Although it may be possible to simulate other communication

paradigms such as shared memory, the socket abstraction does not provide the

necessary fundamental tools for the programmer to work with. Another major

shortfall of the socket abstraction is that it only supports one of three interfaces

present in the Berkeley UNIX kernel, namely the user/socket interface [Pete90]. For

example, sockets can be used to implement streams or sequenced packets in terms

of datagrams, but the kernel implementation does not use the socket programming

interface for Ethernet layer datagrams. Similarly, the socket abstraction cannot be

used by all entities such as application-level protocols, network protocols, or device

drivers.

1.2.2 AT&T STREAMS

AT&T STREAMS1 [ATT87] is a general facility and a set of tools for the de-

velopment of system communication services. It supports the implementation of

services ranging from networking protocol suites to individualized device drivers.

STREAMS defines standard interfaces for character input/output within the kernel,

and between the kernel and the user. A Stream is an abstraction of a full-duplex

data transfer path between a STREAMS driver in kernel space and a process in user

space. In the kernel, a Stream is constructed by linking a Stream head, a driver and

1AT&T STREAMS is implemented in the System V UNIX system and thus the terms AT&T
STREAMS and System V UNIX STREAMS are often used interchangeably.
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zero or more kernel-resident modules between the Stream head and driver. These

modules are used to perform intermediate processing of data as it passes between

the Stream head and driver.

STREAMS modules are dynamically interconnected in a Stream by a user pro-

cess. Each module consists of a pair of QUEUEs called message queues. One mes-

sage queue is used to handle messages traveling downward (called the write queue)

and the other is used to handle messages traveling upward (called the read queue).

Messages are the means of communication within a Stream. All messages are com-

posed of one or more message blocks. A message block is a linked triplet, defined

recursively to consist of a message block, a data block and a variable length buffer

block [ATT87]. The STREAMS mechanism also supports the ability to multiplex

Streams in several configurations: many-to-one, one-to-many and many-to-many.

Because modules in STREAMS can be inserted to form a chain of modules at

run-time, STREAMS is more dynamic and flexible than Berkeley sockets (recall

that legal combinations of protocols and drivers are specified at system configura-

tion time in Berkeley sockets). Although dynamic insertion of modules by the user

may be authorized by a privileged entity such as the kernel, STREAMS provides a

standard set of tools and a uniform interface, with which entities of various levels

can work. STREAMS uses the concept of a queue as a repository into which mes-

sages may be stored and from which they may be retrieved. The message structure

is flexible and versatile in that it is open-ended, and can support a tree structure of

multiple message fragments. Thus, STREAMS is more generic than the Berkeley

socket abstraction in that it can support all of application-level, network protocol,

and device driver interfaces.

However, the design approach taken for STREAMS is a classical example of

starting with abstractions for specific goals and having difficulties in enhancing or
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extending the abstractions to support other forms of communication. STREAMS

was originally designed to support character I/O within the kernel and later added

the capabilities of messages and multiplexing for network protocol processing. A

major shortfall of the STREAMS implementation is that its concepts do not extend

well to remote nodes (i.e., it does not provide a uniform interface for a distributed

system). That is mainly due to lack of an identification scheme and a protocol

which can be used to extend STREAMS concepts transparently to a distributed

environment.

1.2.3 TACT

TACT (Transport Abstraction Conversion Toolkit) is a toolkit (software function li-

brary) for synthesizing conversions between different transport interfaces [Auer90].

TACT classifies transport interfaces according to their abstraction type or basic

model of communication. Each actual transport interface is converted to or from a

canonical form for its abstraction type, and TACT provides abstraction converters

to convert between all of the canonical forms. A TACT conversion is accomplished

by combining some number of elementary conversions which execute in series. In

his work, Auerbach introduces the transport abstraction, which basically consists of

the peer semantics between communicating endpoints and from which the details

of the peer protocol, interface syntax and local semantics have been removed. He

defines a set of abstraction types (P1, P2, etc. in Figure 1.2), which capture most

of the crucial features of transport abstractions offered by all interesting transport

interfaces (M1, M2, etc.) and actual transports (N1, N2, etc.). Each of the abstrac-

tion types offers a “universal interface” but only for that particular type. Software

modules called abstraction converters are used to map every distinct abstraction

type onto every other. TACT provides a set of program interface packages, which



CHAPTER 1. INTRODUCTION 13

6666

¾

-
????

. . . .

. . . .

. . . .

N4N3N2N1

M4M3M2M1

Abstraction

Interface

Network Network

InterfaceInterface

Abstraction

Network

Interface

Network

P1 P2

Figure 1.2: TACT Conversion via a Set of Transport Abstractions

maps each of the actual interfaces onto one suitably chosen universal interface from

the set of such interfaces available. TACT also provides a set of transport imple-

mentation packages, which maps one suitably chosen universal interface from the

set of such interfaces available onto one of the actual implemented transports such

as TCP/IP, NETBIOS [IBM86], SNA [Cyps78] and OSI [ISO84].

TACT achieves its results by minimizing the number of “truly different” cases

through the transport abstraction concept. TACT supports five abstraction types:

1) the stream and 2) datagram abstractions, which are like their counterpart Berke-

ley socket types [Leff88], 3) the sequenced packet abstraction, which is based on the

OSI transport, and 4) the byte conversation and 5) the record conversation, which

are based on APPC semantics [Bara85] but with the full duplex extension. The

byte and record conversation abstractions support “short orderly exchanges”, with

the former being byte-oriented and the latter being record-oriented.

The goal of TACT is the same as one of the goals of this thesis, namely providing

a universal interface between different transport interfaces. The approach used to
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solve the problem is also very similar to ours. That is, both have reduced the

complexity of the problem by using the abstraction concept. TACT, however, falls

short of providing a “truly” universal interface since it provides a universal interface

only at the transport layer.

1.2.4 Conduits

The Conduit is an abstraction for bidirectional communication that is being used

to implement a family of network protocols as part of the Choices operating system

[Camp87]. The Conduit abstraction is used as a communication channel through

which messages are passed. There are different types of Conduits, each representing

a network communication protocol. For example, TCPConduit and ISO-Class 4

Transport Conduit are two of the virtual-circuit Conduits, and IPConduit and

EthernetConduit are two of the datagram Conduits. They have applied the object-

oriented design approach to the Conduit abstraction, and these various Conduit

classes are organized hierarchically. Conduits offer operations to connect to other

Conduits to form a chain of Conduits, which represents a data path through the

system, and to disconnect from each other when the path is no longer required.

The setting up and tearing down of Conduit chains can be done either at system

configuration time or at runtime. They also provide operations to insert messages

from the top of a Conduit for sending messages downward (i.e., user to device

driver) and to insert message from the bottom of a Conduit for sending messages

upward (i.e., device driver to user).

There is a separate abstraction of a message called a ConduitMessage. Various

ConduitMessage classes, each representing a communication protocol packet, are

also organized hierarchically. They offer operations for packetizing and depacketiz-



CHAPTER 1. INTRODUCTION 15

ing. These operations are used to add and remove control information (i.e., protocol

headers and trailers) conveniently. The internal structure of a ConduitMessage al-

lows both a simple message (i.e., a single block message) and a complex message

(i.e., a list of message fragments).

Conduits is basically an object-oriented version of AT&T STREAMS. They

have employed class definitions, redefinitions and inheritance for simpler and more

systematic development of various complex message and communication pipe struc-

tures required for user to kernel (protocol and device driver) communication. Their

message structure is more flexible and allows more efficient insertion or removal of

control information.

One of the major shortfalls of Conduits is that they are intended mainly for

network communication (user-to-kernel, kernel-to-kernel). They do not provide a

general basis for supporting other forms of communication such as user-to-user in-

terprocess communication (both local and remote). Another but related problem

is that their concepts do not extend to remote nodes and thus supporting trans-

parent distributed communication is not presently obvious. Nor do they have a

separate abstraction and hierarchy for either the delivery or synchronization. The

delivery is provided by a single method, which is by procedure call (or nested proce-

dure calls). They only support one form of user execution synchronization, namely

synchronous, where the user is blocked until the invoked operation completes.

1.2.5 x-Kernel

The x-Kernel, being developed at the University of Arizona, is a configurable oper-

ating system kernel that supports multiple address spaces, light-weight processes,

and an architecture for implementing and composing network protocols. The main
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objectives of the x-Kernel are to facilitate the implementation of protocols, and to

provide a framework for designing and evaluating new protocols [Hutc88].

The x-Kernel views a protocol as a specification of a communication medium

through which a collection of participants exchange a set of messages. It provides

three communication abstractions: protocols, sessions and messages. Protocol ob-

jects are used as an abstraction of network communication protocols (TCP, IP,

etc.). The relationships to other protocols are defined and created at configuration

time. Session objects are created dynamically as connections are made from one

protocol object to another. Each session object contains the code to process the ar-

riving messages (from either above or below) and data structures that represent the

local state of some network connection. Messages are objects that move through

the session and protocol objects. Messages arrive at the top and flow down, and at

the bottom and flow up. The flow of messages through the x-Kernel (i.e., between

protocol and session objects) is implemented by procedure calls.

Protocol and session objects provide a uniform interface for each communication

protocol. A series of protocol and session objects in the kernel provide a path for

messages to travel up and down. This is very similar to a series of connected

Conduits or a series of connected STREAMS modules. A protocol object supports

operations to create session objects and to demultiplex messages received from its

lower-level protocols. A session object supports operations for “pushing” messages

from a higher-level to a lower-level protocol and for “popping” messages in the

reverse direction. Both objects support control operations to access and manipulate

the internal state of the protocol or session according to the specified operation

code. Message objects support operations for manipulating the content of messages:

operations for adding and deleting headers, fragmenting and reassembling messages,

and saving and freeing messages.
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I believe that the x-Kernel work is closest to what I hope to achieve in this re-

search, which is a generic communication model that can be used to classify, develop

and implement various forms of existing and future communication. They have ab-

stracted fundamental concepts of communication and implemented a variety of net-

work protocols using the “object-based” design approach.2 Unfortunately, I do not

believe their abstractions, namely the protocol, session and message, are a complete

set or appropriate expressions of fundamentals to support all forms of communica-

tion in distributed systems. For instance, I believe that communication consists of

three components (namely data, endpoints and delivery/synchronization) but they

do not provide an abstraction for delivery or synchronization that is rich enough

to support a variety of forms. Their session and protocol abstractions view com-

munication as peer-to-peer transfer between endpoints with essentially identical

characteristics. Furthermore, their abstractions do not extend easily to distributed

communication (at least I have not seen their use in this paradigm), and thus their

main area of support is local interprocess communication and network communica-

tion [Hutc88].

Research presented in this section gives examples of attempts to provide a single

consistent programming interface that can be used in a variety of situations. In the

next chapter, a survey of various existing communication paradigms is made as a

means to identify and categorize some of the fundamental aspects of communication

to provide a starting point for a more universal programming interface.

2The “object-oriented” design approach is differentiated from “object-based” design approach
in that the former uses information hiding, data abstraction, class hierarchies and inheritance,
whereas the latter uses information hiding and data abstraction only.



Chapter 2

Current Communication

Paradigms

Communication is defined as the transfer of data between two or more entities. In

this definition, three fundamental concepts have been used. The first is the concept

of data or message, what is it and what forms might it take. The second is the

concept of nodes, entities or endpoints of the communication. The third is the

concept of transfer which involves the medium and mechanics of transporting the

data while preserving its form and content. The first two, as will be shown, can

generally be described by static structures, while the third represents the dynamic

functionality.

In this chapter, several current communication paradigms are examined as a

means to identify and categorize some of the fundamental aspects of communica-

tion. In particular, aspects of intraprocess communication (communicating within

the bounds of a single protection domain1, interprocess communication (both within

1Protection domain is defined as a set of accessible objects, with permitted access operations
or rights for each.

18
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and across protection domains), and network communication (general device and

kernel-to-kernel communications) are examined for similarities and differences.

2.1 Intraprocess Communication

Intraprocess communication usually takes place within a single address space2 and

is typified by the traditional procedure call. Within a traditional sequential pro-

gram, a single thread3 of control serially accesses individual modules or routines.

These modules communicate by passing data in registers or shared memory (which

includes memory defined globally relative to the modules), or memory allocated

dynamically on the stack. Data may be passed by value (i.e., a copy of the actual

data is transmitted), or by reference (i.e., a pointer to the data is passed). In either

case the form of the data is directly controlled by the user and is preserved during

the process. Transmission is accomplished using an argument passing protocol, and

transfer of control with implicit synchronization by the mechanics of the subroutine

call. Upon return from the call, the operation is known to be complete, and any

data structures may be accessed or modified by the caller without any fear that this

will affect the communication process. Such a process is inherently serial or syn-

chronous in nature. The thread of control in the calling routine is logically blocked

until a return from the callee resumes execution in the caller (i.e., synchronous

user execution). Another inherent characteristic of procedure call is that it is a

one-to-one operation between the caller and the callee.

In most systems, a variant of the procedure call is the most common form of

communication between user and kernel. The transmission is accomplished with

2An address space defined to be a self-contained area of memory accessible to an executing
program.

3A thread is defined to be a sequence of instruction executions.
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an interrupt or its equivalent, rather than with a subroutine call, with possible

changes to processor privilege level, stack environment or resource accessibility.

While the protection domain may have changed, it is usually the case that the

original user environment is a complete subset of the new environment, and thus

nothing is significantly different from the traditional procedure call. However, an

expanded protection domain may now overlap other previously inaccessible domains

permitting data to be copied between previously isolated entities. The need to copy

the data, that is to pass by value in such cases, is a property of a relay or pipeline

between memory-independent entities. Memory-independent entities are defined as

those that have separate protection domains. That is, an entity can not access the

memory of the other without the help of a privileged entity such as a kernel.

A more complex example of the procedure call is found in the Clouds [Dasg87,

Rama89] object invocation procedure. Clouds objects exist in individual address

spaces in the global virtual address space that spans the entire network. When an

object invocation is made, the kernel intervenes and remaps the segment(s) of the

invoked object into the address space of the caller [Rama89]. In general, such an

environment requires that data be passed by value, though ad hoc provisions can

be made to map corresponding blocks of memory in both modules. In the case of

large blocks of data, transmission by value can result in significant use of memory

and CPU resources as it is relayed through a shared medium such as the stack. On

the other hand, the memory-independent nature of the invocation makes it possible

to complete the invocation on an arbitrary node within a distributed system. It is

also possible, with the help of a name server and dynamic link table, to provide a

completely dynamic runtime environment.

Communication in Remote Procedure Call (RPC) [Birr84] is similar to the

Clouds example in that memory independence between caller and callee, trans-
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mission of data by value, and the accompanying degree of node independence are

distinguishing characteristics. RPC packages hide details of the underlying trans-

port protocols and automatically provide packing and unpacking of data, locating

remote procedures, bindings to remote procedures, and invocations of remote pro-

cedures. When an RPC4 is made to a remote node, a new thread of control or

agent is created which carries out the remote operations on behalf of the caller,

and coordinates the communication with a local stub. Local and remote stubs

connected through a low-level protocol is another example of a relay or pipeline,

however one in which the ends of the pipeline are themselves independent entities

communicating via a lower level protocol.

All of the above implicitly assume adherence of both caller and callee to a

rigorous interface definition, both in the format of the argument list (data) including

returned values, and in the mechanics of the transmission (calling protocol). The

rigorous nature of this paradigm can be enforced by static type-checking at compile

time, though this does not rule out all possibilities for runtime error. In addition,

the nature of the interaction is one of client-server in which the server (callee) is

always presumed ready to accept communication, and in which the client (caller)

is always blocked for the duration of the communication process.

2.2 Interprocess Communication

Message-passing (MP) [Gent81, Andr83], streams [Leff88, Ritc84] and shared mem-

ory [Andr83, Cher86a, Bal88] are subcategories of interprocess communication

(IPC), and as such are somewhat coarser-grained and more costly communication

4Although RPC is usually considered to be interprocess communication, its semantics are the
same as procedure call, where a single, logical thread of execution is involved. Thus, RPC is
categorized as part of intraprocess communication.
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paradigms than the procedure call. In its simplest conceptual form, IPC consists

of a pair of send-receive (or write-read) primitives executed by independent entities

at each end of the communication pipeline.

Unlike procedure calls, where callees are always ready to accept communica-

tion, independent entities or processes5 require privileged assistance (e.g., from the

kernel) in order to communicate (i.e., in synchronizing the send and receive oper-

ations and to copy data), because in general there is no longer any guarantee that

one party or the other will be ready to complete its side of the transaction, or in

fact will ever do so. This characteristic of independent execution is referred to as

temporal independence and techniques for overcoming it as synchronization. Thus,

for independent entities or processes, there exists in the general case both memory

independence and temporal independence. In addition, the dynamic nature of pro-

cesses gives rise to a runtime identification or addressing problem in that a logical

identification of the communication partner must be translated into a transient

physical address at the time of the operation. This dynamic nature limits error

detection in message-passing to runtime checks and can also introduce a signifi-

cant efficiency bottleneck. Below, the characteristics of each IPC subcategory are

examined.

2.2.1 Message-Passing

Several variants of message-passing exist in current systems [Andr83]. One of the

primary differences among them is the degree of blocking of user execution (i.e.,

when the communicating entities are unblocked to continue their executions). The

extreme variants are synchronous and asynchronous message-passing. Two other

5A process is defined as a sequence of instruction executions (i.e., a thread) plus an address
space.
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variants that will be discussed below are highly synchronous and partially syn-

chronous, which are both types of synchronous message-passing.

In synchronous message-passing, either the sender, the receiver or both must

be blocked prior to the start of actual data transfer. Only when data transfer is

complete will the logical threads of control resume executing statements following

the send and receive primitives, whereupon both sending and receiving parties

can access any data structures associated with the communication without fear of

interference. In general, some mechanism is required to signal the blocked entities

when the active agent or relay has completed its task. This is typically achieved by

the kernel marking each process as runnable and placing it in the ready queue. The

blocking send and blocking receive primitives supported in the Shoshin distributed

software testbed [Toku83] are an example of synchronous message-passing.

In asynchronous message-passing, the sender or receiver initiates communication

processing, but the thread of control returns immediately (usually before completion

of the operation). A separate synchronization step such as polling or blocking may

be executed later to check for completion. In this case, the sending or receiving

entities must ensure that the status of any data or control information is preserved

between the time the operation is initiated and the time that data is actually

transferred. Because a sender is allowed to continue execution before a receiver

actually receives the message that has been sent, asynchronous message-passing can

potentially allow a sender to get arbitrarily ahead of a receiver. Consequently, when

a message is received, it contains information about the sender’s state that is not

necessarily current. Messages may also be dropped without notice if communication

semantics permit (e.g., datagram).

Because of the potential for inadvertent data corruption, most asynchronous

message-passing implementations pass the data by value when the transfer is ini-
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tiated. Asynchronous message-passing is less popular than synchronous message-

passing in current systems because the buffer management for supporting asyn-

chronous message-passing is simply too difficult. Asynchronous message-passing

can be useful in applications where there is no need to wait for a result or acknowl-

edgement (ACK). It can provide improved performance compared to synchronous

message-passing by eliminating the wait for an unneeded result. It can also be

useful where reliability is not important or where reliability is provided by the

underlying communication system.

In highly synchronous message-passing, both the sender and the receiver must be

blocked before the data transfer can actually take place as in synchronous message-

passing. However, the sender is not unblocked when the sender’s data is received

by the receiver as in the case of synchronous message-passing. Instead, the sender

is blocked until the user reply has arrived from the receiver. Since the reply carries

user data, highly synchronous message-passing potentially guarantees user level

reliability. The send-receive-reply message transaction supported in the V Kernel

[Cher84] is an example of highly synchronous message-passing.

Partially synchronous message-passing6 falls somewhere between synchronous

message-passing and asynchronous message-passing. Others call this unreliable

blocking message-passing [Tane85] because it does not guarantee the reliable mes-

sage delivery to the receiver as synchronous message-passing does. Within the

course of a message exchange between two entities, numerous independent events

can easily be identified. Partially synchronous message-passing guarantees the de-

livery of data only to a particular event (or point), whereupon the blocked entity is

unblocked. Thus, each point to which the data is delivered can be associated with

6This variant is called “partially synchronous message-passing” because the user only blocks
partially compared to the degree of blocking that is generally accepted for synchronous message-
passing.
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a particular variant of partially synchronous message-passing, yielding numerous

variants.

This variant of message-passing is more useful for applications where synchro-

nization is not important or is achieved by some other explicit mechanism, but

different degrees of reliability are useful. An electronic mail delivery application

capable of sending back intermediate acknowledgements to the sender of how far

a mail message has reached is a coarse-grained example of such an application. In

a mail delivery system, the sender does not usually synchronize with the receiver.

However, the sender may wish to discover how far the mail message has travelled,

or may wish to have a guarantee of the delivery of his mail to at least a particular

point. Partially synchronous message-passing can support this kind of application.

A finer-grained application of partially synchronous message-passing can be

found in network communication. Among many different ways of identifying events,

several protocol layers embedded in most communication systems involving network

communication can be used to define event points. For example, the sender can

be unblocked when it receives an ACK of the delivery of the message from the

IPC layer in the receiver node. This ACK merely indicates that the remote entity

in the IPC layer (e.g., an IPC server) has received the message but does not say

anything about whether it has been delivered to the intended receiver. Other

possible variants include having the sender unblock when it receives an ACK from

the remote transport layer, from the remote network layer, from the remote device

layer, from the local device layer, from the local network layer, from the local

transport layer and so on. Each merely signals the reliable delivery of a message

to the corresponding layer but nothing more. As a particular example, datagram

sockets in Berkeley UNIX unblock when the message has been copied to the protocol

layer.
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One of the requirements for the underlying communication system to support

all these possibilities is to be able to send intermediate acknowledgements back

to the sender. However, this capability is not provided in most communication

systems because it is difficult or costly. Since all of the above possibilities of par-

tially synchronous message-passing provide less than the guarantee of delivery to

the final recipient, they also only provide loose synchronization. They all provide

tighter synchronization than asynchronous message-passing but nevertheless not

tight enough to use as a synchronization mechanism. Therefore, entities using par-

tially synchronous message-passing would require an explicit user synchronization

mechanism if end-to-end reliability is required (e.g., constructing RPC above UDP

[Post80]).

In these IPC examples, it can be seen that there is some ambiguity in the defi-

nitions of synchronous and asynchronous which must be resolved by consideration

of the context or granularity of the environment. A user may view a send primitive

as a synchronous or atomic operation, while to the system the same primitive is a

collection of asynchronous steps. On closer examination, it is clear that there are

two aspects to the problem, one dealing with the user execution thread and the

other with control of the data object. The semantics associated with the blocking

and unblocking of the data object7 are often of greatest concern.

Blocking and unblocking of the data object in message-passing is related to the

integrity of data. The user data is said to be blocked when it has been passed to

the underlying communication system and any change to the data may disrupt the

communication process. The user data is said to be unblocked when it has been

released by the underlying communication system. The user data is released when

7Throughout this thesis, the terms blocking and unblocking of data can be interchangeably used
with the terms locking and unlocking of data respectively.
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the operation has been completed or a copy of the message is made to a safe place

for subsequent transmission. Only when data is unblocked is it safe to modify it

for reuse or delete it. Thus, if a copy of the user data is made, the user data may

be unblocked immediately and any change to it will not disrupt the communication

process. However, the convenience and simplicity resulting from copying of data

comes at the expense of more CPU time and memory space for the communication

system. This could potentially become a serious problem if the user data is large

(on the order of megabytes).

The opportunity to corrupt user data during the communication process in

synchronous and highly synchronous message-passing is much less than in asyn-

chronous and partially synchronous message-passing. This is because the user’s

thread of execution is blocked until the data has been safely delivered to the re-

ceiver in synchronous message-passing, and until the user reply is received in highly

synchronous message-passing: the processes can not possibly access the data un-

til their threads of execution are unblocked. In both asynchronous and partially

synchronous message-passing, however, the user’s thread of execution is unblocked

before the message is delivered safely to the end receiver. Thus, there is a possibil-

ity of corrupting the data before it is safely delivered to the receiver, unless a copy

of the data is made by the underlying communication system. This is why most

systems that support asynchronous or partially synchronous message-passing opt

to make a copy of user data for subsequent transmission.

In addition to the one-to-one message-passing discussed above (i.e., one sender

and one receiver), message-passing includes the possibility of one-to-many commu-

nication (i.e., one sender and many receivers), of which broadcast and multicast are

two well-known examples [Cher85, Lian90, GM89]. At the hardware level, many

networks support both a broadcast and a multicast facility. In broadcast, a message
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is sent to all hosts connected to the network. In multicast, however, a message is

sent to a certain subset of those hosts. At the interprocess communication level, the

term multicast is more frequently used than broadcast since it is seldom necessary

to send a message to all processes in the entire system. Multicast facilities usually

provide operations to create, delete, join, and leave a group [Cher85].

Regardless of the level at which broadcast and multicast are used, they possess

interesting properties that can be useful in certain applications. In general, neither

broadcast nor multicast guarantee the delivery of data - no automatic retransmis-

sion is implied if messages are lost, and no acknowledgement of message delivery is

expected from the receiver. (Of course, there exist broadcast and multicast commu-

nication proposals that guarantee the delivery of data [Powe83, Birm87b].) Since it

takes approximately the same time to broadcast or multicast a message to a group

of receivers as to send it to one specific receiver, it is faster and cheaper to multicast

a message than to send many one-to-one messages [Bal89]. These characteristics

are useful for applications such as a naming service. A kernel might broadcast a

name look-up request to all hosts and it would be satisfied if only one of them

replied. Another important characteristic of broadcast and multicast is that they

may guarantee a certain ordering of messages that can not be easily obtained with

one-to-one messages. This characteristic is useful in applications such as updating

replicated data [Birm88].

Mailbox communication is an example of many-to-many message-passing (i.e.,

multiple senders and multiple receivers) [Pete83]. In mailbox communication, the

role of a relay is expanded to include memory resources, such that the sending

party need never block or explicitly synchronize with the receiver. A message is

copied from the sender to the mailbox (an intermediate message depository), and

later from the mailbox to the receiver. Note however, that a receiver is implicitly
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obliged to wait for a send event before it may successfully complete a transaction.

Mailbox communication can be useful in providing system services such as a printer

service, where there are multiple users and multiple printers. A mailbox, in this

example, can be used by a printer server which receives files from users to be printed,

receives printing job requests from printers and assigns files to available printers.

Distributed mailbox communication was demonstrated by the concepts of Tuple

Space [Gele85, Mats88] and Distributed Rendezvous Store [Lau86]. Both concepts

employ the mailbox-like message repository or repositories, each associated with

a server entity. Message send and receive requests are sent to a server entity,

which then performs a matching operation, and the intended message is transferred

when the matching operation is successful. These send and receive operations are

inherently asynchronous, though synchronous communication can be simulated.

Since these concepts are generally implemented using server entities, an explicit

synchronization mechanism is not necessary.

A variation of mailbox communication is called port communication [Balz71], in

which there are multiple senders but a single receiver only. Thus, port communica-

tion is an example of many-to-one message-passing. The UNIX operating system

uses the port concept widely in various system services such as remote login and

mail [Koch89]. Each service is assigned to a fixed well-known port, and users send

messages to this well-known port and a server receives messages from it.

In both mailbox and port communications, supporting long messages (i.e., con-

sisting of multiple message fragments) is inherently difficult. When multiple users

send fragmented messages simultaneously, the messages may be interleaved and

thus cause interference. Careful removal and reassembly of message fragments are

required by the receiving entity.
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2.2.2 Streams

A stream is another example of an interprocess communication abstraction. A

stream provides sequenced, reliable, bidirectional connection-based data transfer.

In current use, there are two major implementations of streams: one in Berkeley

UNIX sockets (stream with lower case ‘s’) [Leff88] and another in AT&T System

V UNIX (Stream with upper case ‘S’) [Ritc84]. The Berkeley stream is mainly

used for IPC, whereas the AT&T Streams are used for both IPC and network

communication (i.e., user to device or pseudo-device). A Stream developed by

Ritchie contains rigorous definitions of components such as modules, queues and

messages. AT&T Streams are implemented by passing messages between modules

in a Stream, whereas Berkeley streams does not define the implementation and

may run as pipes for local communication or on top of TCP [Post81] for remote

communication.

Although their implementations and internal structures are different, they have

several common features worth mentioning. They were both originally designed

for character I/O and extended for use in IPC. They both provide bidirectional,

reliable, sequenced, and unduplicated flow of data. In both streams, there are no

packet or message boundaries, except those imposed by applications using their

own delimiting conventions. They have the same user interface, the write operation

for sending data and the read operation for receiving data. The write or read

operation simply specifies as arguments an arbitrary amount of data to send/receive

and the starting address of data to be sent/received. The sender and receiver can

continue producing and consuming data as long as the stream is not full or empty,

respectively; otherwise they block.

Message-passing, which requires message boundaries, can be easily implemented
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on top of streams by inserting some protocol which has the effect of creating message

boundaries [Auer90]. Conversely, streams can be implemented on top of message-

passing by adding some logic to ignore message boundaries. However, it is not

usually possible to allow mixed interfaces at the ends of communication. That

is, current systems either do not allow or have difficulty supporting the streams

interface at one end and the message-passing interface at the other. Such capability

of supporting mixed user interfaces may be quite useful for applications running

on heterogeneous systems, where one host may only support streams and the other

only message-passing.

2.2.3 Shared Memory

In the previous two subsections, two categories of interprocess communication were

discussed: message-passing and streams. In this section, interprocess communica-

tion based on shared memory is discussed. The basic idea behind shared memory

IPC is that the independent communicating entities share a common area of mem-

ory for sending and receiving data. The shared memory may be physical memory

to all communicating parties, one party’s memory with access to it given to other

parties, or a third party’s memory (i.e., a party that is not directly involved in com-

munication) with access to it given to all communicating parties.8 Transmission

of data is achieved by writing data into shared memory by the sender and reading

data from it by the receiver.

Unlike procedure calls, which are inherently a one-to-one operation, one-to-one,

one-to-many, many-to-one, and many-to-many operations are all possible in the

shared-memory communication paradigm, as in message-passing. For situations

8Secondary memory can be also considered as a third party’s memory, which can be shared.
However, shared memory is used to mean main memory.
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other than one-to-one, the multiple readers/writers problem arises [Pete83]. In or-

der to ensure that conflicts do not occur which may produce unintended results, an

explicit synchronization mechanism is generally required in shared memory com-

munication. Many synchronization techniques based on shared memory have been

studied extensively. Some examples of these techniques are busy-waiting [Pete81],

semaphores [Dijk65], conditional critical regions [Hoar72], monitors [Dijk68], and

path expressions [Camp74]. All of these techniques (other than busy-waiting) need

to be used with an explicit wakeup function, which would signal the blocked pro-

cesses. An excellent survey of these techniques can be found in [Andr83].

When communicating entities reside in a common protection domain within a

single host, data can be written into and read from shared memory directly (i.e.,

without copying data). On the other hand, when communicating entities reside in

separate protection domains within a single host, shared memory can be provided

only with the help of a third party, such as a kernel. Shared memory IPC provided

in System V UNIX is such an example. When communicating entities are located

on different hosts, shared memory can be simulated by sending messages to the

host where the actual shared memory resides. Duplicate copies may or may not be

maintained on both machines. This form of shared memory is generally referred to

as distributed shared memory.

The main advantage of the shared-memory communication paradigm over

message-passing is its efficiency and simplicity. As mentioned earlier, it avoids

the copying operation (which in general is more expensive in terms of memory

space and time) as much as possible. Within a single protection domain, it also

allows transfer of arbitrarily complex data structures by passing pointers to them.

Across protection domains, however, the structural information of data must be

transferred along with the content if the conceptual efficiencies of shared memory
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are to be maintained. Note that there exist restrictions of which structures can be

passed; these restrictions depend on specific details of the shared-memory seman-

tics involved. For example, a pointer that points to a location outside the shared

memory may cause a higher-level consistency problem.

2.3 Network Communication

Network communication encompasses such diverse aspects as process to device com-

munication, kernel-to-kernel communication and such functions as would be part of

the details of the lower layers of the ISO-OSI Reference Model [Zimm80]. As such it

is often tailored to highly specialized environments and usually encompasses several

modularized layers of functional processing. In addition to many of the problems

of the preceding communication paradigms (such as memory and temporal inde-

pendence), several new difficulties arise.

At the lowest level, there are Ethernet broadcast packets [Metc76], serial line

character streams or direct memory access (DMA) ring buffers. At a slightly higher

level, the physical form of device data is logically arranged as datagrams, sequenced

packet streams, or logical disk blocks, and the node interconnection as a virtual

circuit, or store-and-forward network. One side effect of this is that more and

more intelligent devices are being developed with standardized high level interfaces

to specialized internal versions of network protocol layers. By thus raising the

hardware device interface to higher levels in the system software hierarchy, the

system task becomes a more manageable one of dealing with a small number of

standard logical communication interfaces [Auer90].

In contrast to previous communication paradigms, the data is not generally

accessed or manipulated as a clean logical structure, but is often fragmented or
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converted into diverse representations, which must be reconverted and reassembled

by an inverse process to be usable by the receiving entity. Fragmentation of data is

required by many device constraints, but it is often not precisely known what the

optimal fragment size might be until the lowest protocol layers. Moreover, the size

might change several times in the course of delivery through intervening nodes or

modules. On the other hand, small fragments are generally buffered in the frag-

menting peer module at the receiver side, even though delivery through the upward

path and reassembly at the end-user interface might in fact result in less strain

on system resources. In other cases such as asynchronous serial character devices,

buffering or reassembly may be needed to reduce processing overhead through the

layers to acceptable levels.

Reassembly often does not reproduce the precise original structure, but rather

attempts only to preserve content and order. This is because the conventional net-

work protocols only deliver the content of data, ignoring any structural information.

If the precise original structure of data is required at the destination, structural in-

formation must be explicitly sent to the destination along with the content of data.

Structure conversion protocols such as XDR [SUN87] and ISO ASN.1 [ISO87] are

frequently used to achieve this goal. This process can be viewed as a form of data

conversion. Another form of conversion involves converting the byte format of data,

from ASCII to EBCDIC for example. As another example, there currently exist

two types of byte ordering for sending data over the network: big-endian and little-

endian. In big-endian (or network order), the most significant byte is transmitted

first. In little-endian, the least significant byte is transmitted first. The conversion

between these two byte orderings is required in a heterogeneous network environ-

ment, where computers from different manufacturers which support different byte

ordering are involved in communication.
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Every network communication protocol includes control information, which is

encapsulated in a protocol header (and a trailer in some protocols). In general, the

header is attached in front of the data and the trailer is attached behind the data.

One of the responsibilities of a network protocol is to wrap control information

around the data. This process of adding headers and trailers to data is generally

referred to as packetization, and the reverse process (i.e., extracting header, data

and trailer from a sequence of data bytes) is referred to as depacketization. The

performance of a network application depends heavily on the speed of protocol

control information processing at each layer. Since there exists, in general, at

least several protocol layers in most communication systems, slow protocol control

information processing can add up quickly and thus affect the performance of the

overall application. Hence, it is desirable to have a structure of data that is flexible

enough to add and remove headers and trailers, and which also allows efficient

protocol control information processing.

One significant constraint on the layered approach is the need to pass data

from layer to layer through each intervening interface. As the number of layers

increases, the network communication costs escalate. On the downward path from

user to device interface, increasing privilege permits optimizations such as passing

by reference, and in general full utilization of resources allocated to higher levels.

This can, however, lead to a significant problem in freeing such resources, especially

if the downward processing thread is suspended and further processing is carried

out by subsequent kernel processes activated by interrupts. This is because when a

user process is interrupted in the kernel space, the new interrupt-generated process

does not have the same areas of accessibility as the original user process. Even

worse is the upward path on the receiving end, where user resources may not yet be

available to receive the data and thus the system must temporarily store the data;
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system-wide resource allocations must be pre-configured to meet a wide range of

anticipated needs. In any case, the final destination of such data can not be known

without first traversing each layer in reverse. The crossing of protection domains

further complicates the processing as it means that physical copies of data must

be made at each such boundary with accompanying duplication of demands on

system resources or reduction in the possibilities for optimization. These effects

serve to make the upward path a significantly more complex operation, and have

led to intense efforts to incorporate backwards flow control or throttling techniques

in network protocols [Tane88, Zwae85, Cart89, OMal90].

Transmission is, at least at some point in the process, by value and not by

reference, and thus resembles a relay or pipeline. Network communication channels

are often used by IPC as the relays to transmit data between disjoint memory

modules. Also, transmission invariably involves timing and synchronization aspects

which are filled with asynchronous independent events that do not lend themselves

well to normal serial processing. This can result in significant inefficiencies in

overhead processing to maintain and switch contexts9, or in resource scheduling to

insure that proper management avoids bottlenecks and deadlocks.

In this chapter, various communication paradigms have been examined as a

means to identify and categorize some of the fundamental aspects of all communica-

tion. In particular, aspects of intraprocess communication (communicating within

the bounds of a single process), interprocess communication (both within and across

protection boundaries), and network communication (general device and kernel-to-

kernel communications) were examined for similarities and differences. The results

of this examination have led to the more formal analysis of communication pre-

9Context is defined as the information accessible to the processor during an execution. The
context includes a processor context (programmable and internal registers) and a memory context
(code and data segments).
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sented in the next chapter.



Chapter 3

Communication Issues and

Abstractions

In this chapter, the fundamental aspects of communication discussed in Chapter

2 are examined more fully and redefined and organized into a set of communi-

cation abstractions that I believe is necessary to form the basis for a generalized

communication paradigm.

3.1 Communication Issues

In Chapter 2, communication is defined as the transfer of data between two or

more entities. Three components, namely data, entities and transfer (delivery and

synchronization), are thus minimum requirements for any communication. In this

section each component and issues involving it are examined fully as a means to

develop the necessary requirements of communication abstractions.

38
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3.1.1 Data

In this section, detailed discussions on a comprehensive set of issues related to

data communication in distributed systems are presented. Data (or messages) may

be passed from one entity to another either by reference or by value. Passing by

reference, realized in a single memory domain, is more efficient1 both in time and

space than passing by value since it does not involve operations on individual bytes

of data (i.e., copying). Passing by reference generally requires only a few bytes

of memory for passing a pointer to data of arbitrary size, whereas the amount of

memory and time required increase with the size of data when it is passed by value.

The memory resources required can become significant if communication involves

data being passed by value from one layer to another as in network communication

or if the size of data is large (e.g., hundreds or thousands of kilobytes).

Passing by reference, however, has shortfalls as well. One of the main concerns

in passing data by reference is the integrity of data during the transfer. The data

must be guaranteed to be unmodified by the sender or some entity other than the

receiver once the transfer is initiated and until the transfer is complete. On the

other hand, when data is passed by value, a copy is made by the relay. Thus, the

original data may be accessed or modified without any fear that this will affect the

communication process.

The shared-memory communication paradigm discussed in Chapter 2 is based

on passing of data by reference. Since communicating entities can both access the

same memory using a pointer to it, passing the structural information as well as the

content is not a problem. However, the same does not hold true for communication

across protection domains, where copying of data is a necessity. When copying data,

1Efficiency can be subdivided into efficiency in time (i.e., the amount of time required to
perform an operation) and in space (i.e., the amount of memory space required).
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its structure must be understood by the copier, which often limits such structures

to the simplest forms, such as a single contiguous sequence of bytes. More elaborate

schemes (such as XDR [SUN87], ASN.1 [ISO87]) generally require an extra protocol

layer to provide a structural description of the data to be transferred, which is

necessary if a single memory communication paradigm is to be provided across the

system.

As data is transferred, it may undergo a number of transformations. Most

communication places constraints on the size of data that can be transmitted at

one time. This may require the user data to be broken into a number of smaller

data fragments on the sending side and then reassembled on the receiving side.

Conventional network communication protocols require or make it advisable that

data fragments be reassembled by the same (peer) layer on the receiving side as

they were fragmented on the sending side. The rationale for this is the gain in

modularity and independence of such protocols. This, however, may place more

strain on system resources, particularly when large messages are being transferred.

Reassembling fragments of a large message at the peer layer requires memory large

enough to hold all the message fragments, and the user must provide at least the

same amount of memory to receive it. This effectively requires at least twice as

much memory as the original message. Such a strain on resources may be avoided

if the capability to reassemble at an arbitrary layer in the communication system

is provided and the memory provided by the user is available rather than requiring

extra memory for an intermediate layer.

Furthermore, reassembly by conventional network communication protocols usu-

ally does not reproduce the original structure of data precisely, but rather preserves

only the content and order. This is because the protocols do not, in general, de-

liver structural information about the data. Data format conversion (e.g., ASCII to
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EBCDIC and vice versa) is another form of data transformation, which is necessary

in a heterogeneous computing environment (i.e., when computers from different

manufacturers are involved in communication).

There is often additional control data associated with simple data blocks. Al-

though most modern computer systems supporting network communication do not

follow the seven layers suggested by ISO-OSI Reference Model exactly, they do sup-

port a varying number of layers. Each layer is responsible for its own set of functions

and is generally represented by a communication protocol. When the user wishes

to send data to a remote entity over a network, the user data must traverse from

layer to layer through each intervening interface. The control information (header

and trailer) is added by each layer on the sending side, and removed on the receiv-

ing side. Flexibility and common standards should be provided in the structure of

data so that the headers and trailers can be added and removed efficiently, while

ensuring that data can be easily passed by reference or manipulated from one layer

to another.

In order to distribute data objects transparently to nodes scattered about the

distributed system, two requirements are essential. First, an identification scheme

that can uniquely identify data objects across a system is required. Among many

uses, it can be used to distinguish data objects arriving in a single node and to

demultiplex message fragments out of interleaved messages from multiple senders.

Second, a protocol is needed to transfer the structural information of data objects

as well as control information for peer-to-peer interactions.

Finally, one of the most important system resources involved in communication

is memory. In communication, memory is required for storing message components

such as user data, control information, and descriptors that describe any of these

message components. Management of memory for these components is referred to
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as buffer memory management. Low-level aspects of memory management, such as

dealing with how and when memory is allocated and deallocated, are complex issues

which are best left to the user of the communication subsystem rather than being

prespecified by the communication software. However, the communication sub-

system must support memory management conventions that allow the efficiencies

of shared memory to be exploited by avoiding copy operations wherever possible,

and that minimize the need for expensive system resources for dynamic memory

allocation and deallocation. This is most simply accomplished by mandating that

the communication subsystem should return control of memory to the owner (i.e.,

the entity who originally allocated the resource) when it is no longer needed. The

principle involved is that the owner of the memory resource should be the only

entity that can destroy it and that destruction should only take place some time

after control is returned. This is a reasonable and necessary restriction needed to

maintain order in resource management. It should be also noted that control and

access are two different aspects. Control refers only to the determination of which

entity is authorized to access the resource. Access refers to the right of reading

and/or modifying the resource. Ensuring that only authorized access is possible is

a function of protection mechanisms.

In this section, a set of fundamental issues related to data in communication

in distributed systems has been discussed. Those issues included passing of data

(either by reference or by value), fragmentation and reassembly, transmission of con-

tent versus structure, packetization/depacketization, resource management, owner-

ship, distribution of data objects and control of buffer memory. If one wishes to

support a wide spectrum of communication types among various types of entities,

one needs a uniform data structure that is simple and general, low-level and ex-

tensible. It must be possible to manipulate this data structure efficiently both in
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space and time when it is passed from one entity to another.

3.1.2 Communicating Entities/Endpoints

In this section, detailed discussions on a comprehensive set of issues related to

the communicating entities or endpoints involved in communication in distributed

systems are presented.

There exist various types of communicating entities in distributed systems: con-

ventional procedures, coroutines [Krak88], kernel routines and ROM hardware rou-

tines, which communicate within a single protection domain; and threads (i.e.,

light-weight processes) [Acce86], and processes (e.g., UNIX processes), which com-

municate both within and across protection domains. Many researchers have in-

troduced various high-level abstractions (e.g., message-passing, streams, RPC) in

attempts to provide a single consistent user interface that encompasses different

underlying transport techniques. However, these abstractions have been designed

to support communication between the same or similar types of entities. At a

low level, there are network communication protocols and hardware devices with

well-defined interfaces. As discussed in Chapter 2, these different types of entities,

communication abstractions and implementation mechanisms are characterized by

vastly different communication semantics and interfaces. This makes communica-

tion between different types of entities, abstractions and mechanisms a very difficult

(if not impossible) task unless the external interface for all types is made uniform.

Some possible interactions in this diverse programming environment are shown in

Figure 1.1. Currently, most of these interactions are implemented by programmers

using their own ad hoc approaches.

In this kind of diverse communications programming environment, there is a
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need for simpler, universal concepts and tools (i.e., a uniform data structure, func-

tional interface and delivery/synchronization operations), which can be used by all

types of partners for all types of communication. In particular, there is a need for a

universal interface (which I call the internal communications interface), which can

utilize the conceptual efficiencies of a shared memory paradigm. For example, vari-

ous types of entities can use this universal interface to communicate with high-level

communication abstractions, and in turn can use the same interface to commu-

nicate with low-level implementation mechanisms. Ideally, the universal interface

would be used to communicate between entities using different local communication

abstractions (e.g., an entity with a message-passing interface attached to another

with a streams interface). Further, the universal interface can be used between

implementation mechanisms as well. For example, all layers in a network protocol

stack could be linked in a uniform fashion, thus providing an easy direct interface

to any sub-layer (e.g., to TCP, IP) from any other. Distributed communication,

which may involve multiple remote machines, can still enjoy some of the efficiencies

of shared memory if this universal interface can be naturally extended to remote

machines.

In actual implementations, however, the universal communications interface

must be adapted internally to the characteristics of the owner entity. This can

be achieved through local or type-specific conversions by the owner entity. Generic

interface objects can be provided, which are then specialized by the owners to suit

their own types. These interface objects should provide a storage area so that

control or protocol-specific data structures can be added, and a capability for type-

specific operations to be added or redefined.

Another important aspect related to communicating entities is connectivity,

which is concerned with maintaining logical paths for data transfer. Connection-
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oriented communication (e.g., virtual circuit) explicitly constructs a logical pipeline

between two communication endpoints before data transfer can take place. The

construction of such pipelines should be flexible so that they can be set up either

at system configuration time or at run time. Thus, operations that will connect

entities together and disconnect them on demand must be provided. Although

connection-less communication (e.g., datagram) does not involve any explicit con-

nections, minimum routing information must be maintained in each entity (both

intermediate and end entities) for transfer of data from one point to another. I do

not feel that providing data storage and operations to maintain such information

is a fundamental responsibility of the communications interface, but rather of the

individual protocol module or owner. However, since the connectivity issue is re-

lated to the delivery aspect of communication, it is not unreasonable to provide a

capability to include routing information and operations in the interface object.

An important issue closely tied to connectivity of communicating entities is

naming. When a sender wishes to send some message, the name or identification of

the destination must be specified. In most systems, users of communication do not

usually deal with physical addresses (e.g., Ethernet or Internet addresses) but with

logical names, which eventually get mapped or translated to physical addresses

by the subsystem. Name servers are typically used to locate entities the names

represent. For a universal interface that can be used at all levels of communication,

an abstract naming scheme which ignores the details of any particular physical

addressing schemes is desirable. I envision that an identifier represented by Abstract

Syntax Notation [ISO87] or a 64-bit integer value would suffice. Since the issue of

naming or name service is outside the scope of this research, the details are not

discussed here, as the topic is discussed at length in [Reed78, Wats81, Cher86c,

Lau87, Radi90].
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In this section, a set of fundamental issues related to endpoints and interfaces for

communication in distributed systems was presented. These issues include protocol

issues (working and target environments), universal interfaces, local conversions,

connectivity and naming.

3.1.3 Delivery and Synchronization

In this section, detailed discussions on a comprehensive set of issues related to de-

livery and synchronization are presented. Data delivery techniques vary greatly in

different communication paradigms. In Chapter 2, a survey was done on various

communication types and paradigms and their delivery techniques were discussed.

Delivery of data is called by different names in different communication paradigms:

send/receive, read/write, get/put, store/retrieve, push/pop, call/return, etc. Some

examples of delivery techniques are transmission via stacks or globally referenced

variables in procedure calls, writing into and reading from shared memory in shared-

memory IPC, and copying or transmitting data from the source to destination in

communication between disjoint protection domains. Generalized delivery primi-

tives should provide the fundamental building blocks to encompass all of them.

Closely associated with the data delivery is a signalling mechanism. A signal is

defined to be a way of notifying the receiver that control of data has been transferred

from the sender to the receiver, and thus that the data is available for reading

(receiving) and processing. This is necessary for all delivery techniques, since the

receiver must have some indication that data has arrived and is available for access.

Thus, the signal function is part of all delivery operations. As with the delivery

techniques, there exist different signalling techniques for different communication

paradigms. For example, the jump instruction is used both to transfer control and
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implicitly signal the availability of data in procedure calls, while a wakeup signal

may be used to unblock a process awaiting the arrival of data in message passing.

To handle various delivery and signalling techniques for various communication

entities, a generic expression of the delivery technique and the signalling technique

is desirable. Because both delivery and signalling techniques are tightly related to

entity types, there should be associated means for the entities to define or specialize

them to their own specific environments. Further, delivery means possible access

by multiple entities. In order to guarantee the integrity of data, these operations

may need to be executed under the control of a privileged entity such as a kernel

(and thus would be stored in a kernel library).

User data may flow either unidirectionally as in the send-receive IPC paradigm

or bidirectionally as in the request-receive-reply IPC paradigm. In these and other

communication paradigms, some form of acknowledgement or status is expected on

completion of the operation, even when user data or control information travels in

only a single direction. I believe that returning the control of data objects to their

owners at completion is a useful principle for local system resource management,

regardless of whether the data flow operation was unidirectional2 or bidirectional.

Moreover, if the principle of always returning control of data objects to their owners

when the operation is complete is enforced, the operation status or ACK can always

be returned at little or no additional cost by piggybacking it on the returning data

object.

Another important issue related to data delivery is efficiency. Although most

modern computer systems are equipped with a large amount of memory (tens of

megabytes), the bounded buffer problem [Pete83] still exists. That is, programmers

2For remote unidirectional communication (i.e., involving transmitting packets over a network)
the logical return of data objects from remote nodes should be suppressed as an optimization.
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have to deal with a finite amount of memory and must take necessary measures to

make programs as memory efficient as possible. Several examples of these measures

in implementing data delivery are as follows. On the sending side, data may be

buffered (i.e., small fragments are combined to form a larger fragment) before

being passed on to avoid wasting bandwidth by sending partially filled packets.

Modern systems are also equipped with DMA devices [Hama84], and scatter-gather

capabilities [Inte84], which can directly access user data at transmit or receive time

and thus reduce the overhead of copying operations. On the receiving side, data

may need to be reassembled before delivery to the final destination, in which case

it might be desirable and less of a burden on system resources to reassemble data

at an arbitrary layer (i.e., not necessarily at the same layer as it was fragmented

on the sending side).

Synchronization in communication can be broken down into two aspects: syn-

chronization of user execution of sender and receiver (or user blocking semantics)

and synchronization of data-object control (or blocking semantics of data objects).

In synchronous communication, the user is blocked while waiting for the completion

of the operation and return status. Here, the signal function discussed above can

be used to unblock users. Assuming that the receiver is blocked waiting for data to

arrive, the delivery operation will first transfer the control of data and then invoke

the signal operation to signal the arrival of data to the receiver. When the status

information is returned, the signal operation is also invoked, this time to signal the

arrival of the status to the blocked sender. In asynchronous communication, the

user does not block, but continues execution immediately after initiating either the

send or receive operation. The only way the user can discover the status of the

operation is either to poll for the completion or to explicitly block and wait for

it. If the user later blocks waiting for the return status, the unblocking process
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becomes the same as in the synchronous case. Although the signalling mechanism

may not always be used in asynchronous communication as in synchronous com-

munication, it should still be part of the generic delivery mechanism. That is, the

signal function is receiver-defined but should be executed as a mandatory part of

delivery by any sender. (Note that the sender of data is usually a receiver of a later

acknowledgement. Thus, each entity involved in the communication may have a

different implementation of the signal function.)

Synchronization of data-object control deals with the blocking semantics of data

objects. During synchronous communication, the user does not have access to the

data object until the user is unblocked and hence the integrity of the data object

is guaranteed assuming the data object is not being shared by other processes.

Thus, in synchronous communication the data object is unblocked at the same

time as the user is unblocked. In asynchronous communication, however, the user

is not blocked after initiating the data transfer, and thus can potentially access

the data and modify it before the operation completes. In order to avoid the

problem of determining when the data is unblocked, many systems supporting

asynchronous communication make a copy of the user data when the user initiates

the transfer, thus unblocking the data before the return from the initiation process,

but this requires additional resources and time to copy. What would be more

desirable is a rigorous principle for data-object control that would be adhered to

by all participating entities for all types of communication. An example of such a

principle is one that utilizes the conceptual efficiencies in passing a description of

data objects rather than data objects themselves. Thus, one must obtain physical

control of this descriptor to obtain control of the data object. If the descriptor is

not possessed by an entity (even if the entity is the owner, or even if the entity

has access to it), it does not have control of it. A principle like this can promote
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efficient and reliable resource management.

In this section, fundamental issues related to delivery and synchronization were

discussed. To handle various delivery and signalling techniques for various commu-

nication entities, a generic expression of delivery and signalling is desirable. This

should be accompanied by a set of general principles discussed in this section to

achieve efficiency and security.

3.2 General Organization of Communication

Abstractions

In the previous section, fundamental aspects of communication as a means to

identify the requirements of communication abstractions for distributed systems

were discussed. Further, useful principles that can accompany these abstractions

to achieve efficiency and security were discussed. In this section, I discuss hierar-

chical organizations of these communication abstractions, namely data, node and

delivery/synchronization, that I believe should form the basis of a generalized com-

munication paradigm.

In Chapter 2 and Section 3.1 (using Figure 1.1), the diverse communication

programming environment and the problems software developers must cope with

to support various types of communication between various types of entities were

presented. The main problem, as stated earlier, is a lack of a universal interface and

uniform data structure. I propose to replace the multiplicity of existing interfaces

used to implement most current communication systems with internal communi-

cation (shown in Figure 3.1), which consists of a universal functional interface and

uniform data structure. Internal communication is one of two major goals of the
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generic communication model. The other major goal is to provide a hierarchical

framework upon which arbitrary communication paradigms can be developed.

3.2.1 Data Abstraction

The fundamental logical abstraction of data is that of a memory object consisting

of an ordered sequence of bytes.

The simplest form of such an object is a single contiguous block of memory,

which might be described by its starting address and size. Users require such

information to perform operations such as locating the memory, writing data into

it, and reading data from it. This set of information is referred to as a descriptor.

Further, the term buffer is used frequently in operating systems and communications

to describe an area of memory that could contain transient messages. Thus, the

simplest data or buffer object consists of a data object descriptor, an actual block

of memory for data, and a user interface that provides operations to create/destroy

the data object, to read data from and write data into it, and to obtain data object

descriptor information. This simple unstructured data object (called a simple data

object) is shown graphically in Figure 3.2.

The user may send and receive a single block of data at once or fragments of

data piecemeal, or he may wish to to send a structured object consisting of several

fragments. Thus, the next level in the hierarchy is a data object that contains a

sequence of blocks of memory, which are non-contiguous, in general. The capability

to accommodate a sequence of memory blocks supports data fragmentation and

reassembly as well as scatter-gather techniques. Two reasonable implementations

of a sequence of memory blocks are linked-list and array. Hereafter, the use of

a linked-list is assumed as the implementation of a sequence for simplicity. For
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Figure 3.2: A Simple Data Object

example, the user may wish to send data in small fragments at a time, and these

fragments may be buffered before they are actually transmitted to the receiver. If

the fragments are pieces from a contiguous area of memory, they could be merged

to form a single large block of memory, otherwise the capability to form a list of

non-contiguous areas of memory is essential. As well, a large message may need

to be fragmented into a number of smaller fragments before being sent, due to

physical limitations of the transmission media . On the receiving end, the received

data may also need to be fragmented and passed to the receiver in small fragments

at a time, possibly due to the receiver’s limitation on request size. Alternatively,

small data fragments may need to be reassembled into the original data form before

being delivered to the receiver.

In order to describe and manipulate a list of memory blocks, a linkage capability

must be added to the simple data object described above. In addition, status

fields to record the details of fragmentation (e.g., sequence number, flag indicating

whether the fragment is the last block in the list) must also be added. This will allow

a list of simple data object descriptors, each describing a block of memory, inside

a single data object (which I call a segmented data object). Standard operations
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added with this type of data object include those for reading and writing data, for

fragmenting a block of memory into two smaller blocks, for reassembling two blocks

into a single large block, and for obtaining information describing the data. The

code for the read and write operations must be changed from that for the simple

data object described earlier to cope with the list of memory blocks.

¾ -
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Figure 3.3: A Segmented Data Object

Identification fields might include data object type, identifier and ownership.

There will be various types of data objects for various types of communication, thus

the type of data object needs to be specified. Identification is useful and convenient

for system management of memory blocks as well as for references to them by users.

(Identification could be part of a simple data object; it is not fundamental to a

segmented data object.) Since there may be hundreds or thousands of data objects

in a system, a unique identifier for each object in the system is desirable. Further,

since each object may consist of multiple blocks of memory, a scheme that can

uniquely identify each memory block within an object is also required. I propose an

augmented identification scheme, which uses a unique object identification scheme
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for identifying data objects, and a unique sequence field for identifying each memory

block within an object. Finally, a specification of the owner of each memory block is

also desirable so that they can be returned and appropriately disposed of or reused

at the completion of an operation.

Thus, the segmented data object consists of one or more simple data object

descriptors, identification, status and linkage fields, and requires operations for

manipulating a list of data object descriptors and the memory blocks they describe

as mentioned earlier. This data object is graphically shown in Figure 3.3.

A data structure such as the segmented data object described above has been

demonstrated to be inefficient for protocol processing [Hutc88, Zwei90]. The main

reason is that it is not suitable for handling nested protocol layers and their em-

bedded control information. In most types of communication, control information

is transmitted along with data. This control information is often mixed with pro-

tocol information and contained in header and trailer fields of a protocol packet.

Thus, the next level in the data object hierarchy is one that can handle control

information efficiently in addition to the identification, status and linkage fields as

described above. Functional capability is required for handling packetization and

depacketization, which are an essential part of protocol processing, and so this de-

scriptor includes control fields to describe a protocol header, and a trailer (if one

exists) in addition to the user data.

Most modern communication systems are designed with multiple protocol lay-

ers. As discussed earlier, one of the major concerns of communication is how one

can pass data efficiently from one protocol layer to another. Copying of data at

each layer interface can be very expensive in terms of both time and space, and is

compounded when multiple protocol layers are involved. A desirable solution is to

pass data by reference (i.e., without copying) as much as possible. Thus, the inter-
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Figure 3.4: A Recursive Data Object

nal structure of data should be standardized in such a way that it can be augmented

gracefully and efficiently, and the resulting data structure would correspond to a

stack of protocol layers. This can be achieved by allowing recursion, where the user

data fields in the data object descriptor point to either a simple user data object or

to an arbitrary data object descriptor. The resulting form is a tree structure cor-

responding to a stack of nested protocol layers, with each layer possibly including

header and trailer descriptors. Such a structure is open-ended (i.e., extensible) and

can easily accommodate an arbitrary number of protocol layers. In principle, each

protocol layer could potentially make use of the recursive and segmented features.

A recursive form of segmented data object, shown in Figure 3.4, is well-suited

for efficient packetization and depacketization. For example, when a recursive data

object is passed from a higher layer, each network communication protocol module

would create a data object descriptor (if not already created) for the layer, fill

in the appropriate information, link to it the data object passed from above, and
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pass the resulting data object to the layer below until information is eventually

transmitted by a network hardware device. In this way, the data from one layer

can be passed by reference between layers in protocol stack processing, avoiding

expensive copying operations. Furthermore, the recursive data object structure

and functional interface can be used as a “standard” structure for all levels of

communication. It provides all the facilities needed to implement a communication

protocol. Since all levels use this common structure, a uniform and simple software

interface can be made for each layer. Thus, a layer module should not have to

worry about the details of any of its higher or lower layer interfaces. The data is

available to any intermediate layer module. This is possible through recursive data

object pointers that can be followed by any module to access the data.

Since the recursive data object possesses all of the features of the simple and

segmented data objects described above, it should inherit all the operations from

them (modified accordingly for the new structure) and add some new operations.

The operations that need to be redefined are read and write operations, which must

traverse the nested structure to find the appropriate locations. In order to add and

remove headers and trailers efficiently, new operations to push a block or to pop

a block from a data object descriptor need to be added. These operations will

allow non-contiguous blocks of memory to be dynamically and efficiently inserted

and removed. Thus, this recursive data object may contain nested data object

descriptors that can describe multiple levels of control and protocol, and operations

to traverse this structure and manipulate parts of it.

The recursive data object described above possesses a data structure and a

comprehensive set of operations that are common to various communication types.

One can easily develop a particular protocol object by adding the type-specific data

structures and operations to the recursive data object and/or redefining existing
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operations. In particular, network protocol-specific data and operations need to be

added to the recursive data object to create layered network protocol-specific data

objects (TCP data object, IP data object, etc.).

The hierarchy of data objects presented in this section can be used to implement

various data forms used in various communication paradigms.

3.2.2 Node Abstraction

A node is an abstraction of a communicating entity or endpoint. More specifically,

a node is an abstraction of a communication interface object to various types of

communicating entities.

The simplest form of node object is one that simply provides a capability to store

and retrieve data objects. It basically provides storage for a list of data objects,

where the sender may place data objects being transmitted and where the receiver

may retrieve data objects. The static structure that “describes” such a capability

is called a node object descriptor.

Descriptor

Figure 3.5: A Simple Node Object

Abstract data types (ADTs) such as queues or stacks [Stan80] are reasonable

data structures that can support the functional requirements described above. They

offer basic operations such as enqueue and dequeue in queues and push and pop in
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stacks for storing and retrieving data respectively. The most common conventions

for storing and retrieving elements are first-in/first-out (FIFO) for queues and last-

in/first-out (LIFO) for stacks. Queues are more widely used ADTs in operating

systems since the FIFO discipline can be used to maintain the proper sequence

of pieces of data being delivered [ATT87]. Besides these generally accepted ac-

cess disciplines, however, node objects must also provide other access modes for

operations such as extracting fragments of a single message from a node object

holding interleaved fragments of a number of messages, or for handling priority

data. For implementation of these modes and efficient traversal and accounting of

data objects in a node object, an internal pointer and a counter respectively are

examples of basic descriptor information. Thus, the simplest node object contains

a simple node object descriptor and operations to create/delete node objects, to

store/retrieve data objects. The simple node object is shown in Figure 3.5.

The next level in the hierarchy of node objects is one that contains necessary in-

formation for communication and system management in addition to the descriptor

of the simple node object. Specifically, identification and other status information

are needed. Identification fields might include its type, node object identifier, and

ownership. There will be various types of node objects for various types of com-

municating entities, thus the type of node object needs to be specified. Each node

object should be associated with a unique identifier within a system for manage-

ment purposes, and which can also be used as an address to which data can be sent

and from which data can be received. The owner field specifies who created the

node object (the semantics of owner will be discussed in detail in the next section).

This node object (a system node object as shown in Figure 3.6) should include

status, identification and a descriptor, and operations to set and obtain this extra
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information in addition to those inherited from the simple node object.

The next in the hierarchy of node objects is one that can easily manage a

protocol layer. Network communication usually involves a message being passed

through nested layers of communication protocols. At each layer, protocol-specific

processing is performed such as adding header/trailer information and updating

state information. Since the header/trailer information and the operations for ma-

nipulating it are stored within a data object, it is the data object that is modified

as it travels down or up a protocol stack. However, the state information to manage

each protocol layer cannot be stored in the transient data object. In keeping with

the object-oriented design philosophy, the state information should be kept not

with the protocol-specific code but with a code-independent data structure. There

is no better place to put the state information than in the node objects. Thus,

this node object (called a network node object) can potentially include a protocol

specific data structure and operations on it. The network node object is shown

graphically in Figure 3.7.

In a layered communication system, the stack of communication protocols repre-

sents a pipeline or path data must travel through. In connection-oriented protocols

(such as TCP), explicit connections must be made, whereas in connection-less pro-

tocols (such as UDP) no explicit connections are required before data transfer can
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take place.

Two variants of interface are envisaged to support creation and destruction of

logical pipelines. One is to provide a procedure call interface which provides explicit

connection and disconnection operations. These allow users to connect protocol

software modules and initiate a pipeline so that messages can flow or to disconnect

them when they are no longer needed. Invoking any of the connection/disconnection

operations will cause the owner of the node object to perform appropriate actions.

For example, when responding to a connection request operation from the node

object in the layer above, the owner of a node object would check whether the

connection is valid and then complete the necessary steps. Note here that the exact

semantics of these operations depend on the type of target entity. For example,

when separate processes are involved, it will be the owner (or target) process that

will actually respond to an invocation (or a message) from the process in the layer

above. On the other hand, when a single thread of execution is involved, the thread

will be merely executing the code contained in the target node object in the caller’s

context (e.g., nested procedure calls).

The other type of interface to support logical pipelines is one that does not



CHAPTER 3. COMMUNICATION ISSUES AND ABSTRACTIONS 62

provide these explicit connection/disconnection operations but deals only with “self-

contained objects” which contain addressing and routing information. In this case,

the code of the protocol module must be capable of deciphering addressing and

routing information from received data objects, perhaps encoded in a header.

The preferred choice of interface is one that can handle both types described

above. That is, the generic interface should be able to support a procedure call

interface for setting up pipelines explicitly as well as the self-contained objects

interface. The generic interface provides flexibility so that the implementor can

simply add the necessary data structures and operations to the generic interface

to tailor it. This design gives a large degree of freedom to the implementor in the

choice of logical pipeline strategy.

In summary, the network node object described above possesses a static data

structure and a comprehensive set of operations that may be required by various

communication types. One can easily develop a particular node type by adding

the type-specific data structures and operations to the network node object and/or

redefining existing operations. In particular, network protocol-specific data and

operations need to be added to the network node object to create network protocol-

specific node objects (e.g., IPC node object, UDP node object, etc.).

The hierarchy of node objects presented in this section can be used to implement

various communicating entities or endpoints involved in various communication

types.

3.2.3 Delivery and Synchronization Abstraction

Delivery and synchronization is an abstraction concerned with the dynamic func-

tionality of transporting the data while preserving its form and content.
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In the generic communication paradigm, the store and retrieve operations of

node objects are the generalized delivery primitives. These operations, however,

must be atomic, that is, the execution of either operation must be completed with-

out any interference. How these operations may be implemented atomically depends

on the types of entities involved in the data transfer. For example, since there is

only a single thread of execution in the procedure call paradigm, providing atom-

icity is trivial. However, in the paradigms involving multiple threads of execution,

implementation may require assistance of the system hardware instructions (at a

low level) or of semaphores or monitors (at a higher level).

As mentioned earlier, there exist various types of communicating entities. Each

may require a different mechanism to signal the delivery of data and/or the initi-

ation of processing for that data. I propose a generalized mechanism for notifying

all types of communicating entities of the availability of data and/or resuming exe-

cution. This signal function should be a part of the node object since the signalling

mechanism depends on the type of the receiver. Thus, defining or specializing the

signal function is the responsibility of whoever defines the communicating entity

types.

Since the signal function is an essential part of the data send operation, we

propose that it be a part of the store operation. Thus, the store operation consists

of two major functions: one to transfer control of the data object and another to

signal the receiver. The code of the signal function is defined by the owner of the

node object. Thus, the sending entity does not know (and need not know) the

details of the signal function. The sender’s thread of execution merely invokes and

executes the signal function as part of the delivery operation. For example, the

sender’s thread of execution is continued in the called routine in case of procedure

calls and, in the case of IPC, may wakeup a blocked receiver or cause an interrupt,
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which would reschedule the receiving entity to continue its communication process.

Three general principles have been chosen to be applied to the generic communi-

cation paradigm: 1) any entity can store data objects to a node but only the owner

of the node can retrieve them, 2) the data object must always be returned to its

“home” node at the completion of an operation, and 3) the return of data objects

can be made directly or recursively. As mentioned above, sending a data object is

achieved by storing a data object onto the node object that is associated with the

destination entity, and signalling the receiver. Receiving a message is achieved by

retrieving a data object from a node object. A data object may be added to any

node object in the system. However, retrieve operations are restricted to the owner

of a node object. This is a reasonable restriction which serves to maintain order

in resource management. If more flexible store and retrieve semantics are required,

this capability can be built on top of the current semantics. For example, multiple

readers can be handled by interposing a server process which has specific code to

deal with resource management, synchronization, demultiplexing of long messages

and other interference aspects.

The home node, defined as the node whose owner created a particular data

object, is used extensively for returning acknowledgements and synchronization

as well as for resource management in the generic communication model. It is

associated with each communicating entity mainly for the purpose of recovering a

data object, which the entity has transferred earlier to another entity. It is where

the owner of a data object resides. For example, a user process sends a data object

containing a message to another process. The process either immediately (in case

of blocking IPC) or arbitrarily later in time (in case of nonblocking IPC) blocks

on retrieving this data object from its node object. As mentioned in Section 3.2.1,

each data object contains the information about where it should be returned when
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the operation is complete.3 Thus, the return of the data object to its home node

signals the completion of the requested operation. Furthermore, the return of the

data object also signals its availability. The user process is unblocked and the data

object is retrieved from the node object. The user process discovers the status of

the operation (i.e., whether the operation was successful or not) from the status

contained in the returned data object.

Note that in the generic communication model, the return of data objects at

completion of operations within a local host is required for all communications. In

remote communication, however, ACK or status is designed to be returned to peers

in synchronous or two-way communication but not in unidirectional or one-way

communication. For one-way remote communication, the data objects should be

returned their owners as soon as the packet transmission is made to the destination

host over the network. Since an ACK or status must be returned from a remote

entity (e.g., a remote communication server) in remote synchronous communication,

data objects are blocked until an ACK or status is returned from the remote host.

This requires that the request type be specified by the sending communication

server and recognized and acted upon accordingly (i.e., no return of data objects

for one-way remote communication). Thus, the home node concept can be used for

good local resource management with very little or no overhead. The use of home

nodes, I believe, is unique to the generic communication model. A more detailed,

specific example of one-way communication will be presented in Section 5.8.

Many data objects in the system may reference a particular node object as

their home node. Thus, one must be careful when destroying a node object since

destroying one could leave dangling data objects which have this node as their

3The home node information is inserted into each data object at its creation time and is
supplied by the creator.
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home node. This has implications in that the resources that have been allocated

previously by the owner of the node object can not be returned to the owner and

thus can not be freed properly.

The generic communication paradigm provides a simple but versatile mechanism

for returning data objects. In nested local procedure calls or RPCs, the return

status travels along with the control in the reverse direction of the calls when

it returns. However, returning the status of the data delivery involving multiple

layers, where an independent thread of control is involved in each layer, is not as

simple or clean. In many cases, it would be more efficient and convenient if the

return status could be returned directly to non-adjacent layers. In conventional

communication systems, this capability is generally very difficult to achieve or not

possible at all. However, the home node concept coupled with the capability to

access nested data object descriptors inside a standard recursive data object from

any level provide an elegant solution. Any callee can either return the object

descriptors in the reverse direction of the delivery path (i.e., popping only the

descriptor it had created and passing the rest to its caller) or return them all

directly to the appropriate home node. Also, should some intermediate entity fail

in the middle of a communication process, error status and descriptors can still be

recovered and returned to appropriate places since each descriptor always contains

its own home node information.

Thus, the delivery and synchronization abstraction of the generic communica-

tion model consists of generalized delivery operations, a generalized signal mecha-

nism and a mechanism to return data objects. The return mechanism can provide

an acknowledgement scheme, synchronization of user execution, synchronization

of data control, and efficient resource management at little or no additional cost.

However, in order to support these operations and mechanisms in a distributed
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environment, an explicit protocol such as the Buffer-Queue protocol introduced in

Chapter 4 is required.

In this chapter, a detailed discussion was provided of important issues related

to the fundamental concepts of communication, namely data, entities and transfer.

Based on this discussion, necessary requirements for communication abstractions

were derived as well as some basic design constraints for a simple, efficient and

general communication model that will provide a single consistent programming

environment. Some of these constraints are 1) a standard data-object structure is

required, which all levels and types of communication can use consistently, 2) a

universal interface is required, which can be used among various types of entities

across a wide spectrum of environments, 3) for efficiency reasons, the model should

utilize the conceptual efficiencies of shared memory by passing a descriptor (or

control) of data objects rather than data objects themselves, 4) any entity can

store data objects to a communications interface object but only the owner of the

interface object can retrieve data, and 5) a data object must always be returned to

its owner at the completion of an operation. Providing this consistent programming

interface across a distributed environment has never been explicitly included in

previous work.

The major contribution of this chapter is to develop a general communication

model using the object-oriented design methodology [Booc86, Meye88] based on

a set of simple, efficient and versatile communication abstractions. This model

provides a single efficient and consistent programming interface that allows different

types of entities to communicate easily across a wide spectrum of environments,

including distributed environments in particular. Further, this model can be used

to develop both existing and new communication paradigms. In the next chapter, a

specific implementation of the generic communication model called the Buffer and
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Queue Model is presented.



Chapter 4

The Buffer and Queue

Communication Model

In this chapter, the Buffer and Queue Model is developed, which satisfies the con-

straints of the generic communication model developed in Chapter 3. The Buffer

and Queue Model is a simple, low-level but powerful and efficient communica-

tion model, which utilizes the conceptual efficiencies of a single memory domain

while providing a universal interface among various types of entities across a wide

spectrum of environments. In particular, the model includes the use of the “Buffer-

Queue” protocol, which allows the paradigm to be applied to communication among

entities scattered throughout a distributed system.

4.1 The Buffer Abstraction

In this section, the details of the Buffer abstraction are presented and how it handles

various communication problems related to data is shown. The development of

69
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an efficient, versatile, uniform data object structure that all levels and types of

communication can use is also presented.

4.1.1 A Simple Buffer

A Buffer is an abstraction of a memory object consisting of an ordered sequence of

bytes. The simplest form of Buffer is one that consists of a single contiguous block.

A Buffer object consists of two parts: data and operations. The data portion of

a Buffer object is referred to as the Buffer descriptor or Bufd.1 A simple Bufd

basically consists of four elements: the starting address of a block of memory used

by the Buffer, the size of the Buffer, and the starting offset and the size of valid

data. Having these latter two variables to specify the valid data as opposed to

having just a single counter is useful when data fragments may be written and read

concurrently, as in the bounded-buffer problem [Pete83]. The class definition for the

simple Buffer is given in Figure 4.1. The class definitions throughout this thesis will

be described in C++ [Stro86]. However, it should be emphasized that they could

have been described in any object-oriented programming language that supports

inheritance of data and operations and redefinition of operations.

Next, the details of the operations defined in the Simple Buffer class are dis-

cussed briefly. The Buffer creation operation (constructor in C++) called Sim-

ple Buffer() is the initialization routine invoked when a Simple Buffer object in-

stance is created. It takes as an argument the address and the size of the data

memory the user has created, and initializes the Bufd accordingly. The starting

address field is initialized to the data buffer address. The size field is set to the

1Throughout the thesis, when the term Buffer is used it will mean the object in the object-
oriented sense, while Bufd will mean only the area of memory occupied by the descriptor corre-
sponding to a particular instance.
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class Simple_Buffer {

ADDR address; // start of buffer

int size; // buffer size

OFFSET offset; // offset of start of valid data

int count; // number of valid data bytes

// (offset + count <= size)

public:

Simple_Buffer(); // Buffer constructor

~Simple_Buffer(); // Buffer destructor

// write data into and read data from buffer

virtual int write_data( ADDR data, int len );

virtual int read_data( ADDR data, int len );

// move the pointer to specified location in buffer

virtual int seek_data ( int type, OFFSET off );

// get info related to valid data

virtual OFFSET get_offset();

virtual int get_count();

};

Figure 4.1: The Simple Buffer Class Definition
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size of data buffer. The count and offset fields are initialized to zero under the

assumption that there is no valid data at creation time. The Buffer destruction

operation (destructor in C++) called ~Simple Buffer() is responsible for disposing

of the Buffer object.

Writing user data into a buffer is handled by the write data() operation. It takes

as its arguments the starting address of user data and its length. The user data

will be written into the buffer from the location that the end address (i.e., offset

+ count) of valid data indicates. The size of valid data will be increased by len.

Reading user data from buffer is handled by the read data() operation. It takes as

its arguments the address where the data read will be stored and the size of data to

be read from the starting address of valid data. The starting address of valid data

is updated by advancing the offset by the size of data read. In both write data()

and read data() operations, when an error condition occurs (for example, the size of

data to be written or read is greater than the actual size of buffer), an appropriate

error code will be returned to the user.

The valid data offset can be set explicitly by using the seek data() operation. It

takes as its arguments the type of seek and an offset value. I envision the use of three

types of seek operation. The first option is ABSOLUTE, which sets the starting

offset of valid data to be the specified offset. The second option is RELATIVE,

which sets the starting offset of valid data to be the current offset of valid data plus

the specified offset. The last option is APPEND, which sets the starting offset of

valid data as the number of specified offset bytes from the end of valid data. In

all cases the valid data counter will be adjusted based on the new value of offset.

The starting offset of valid data can be obtained by the get offset() operation. The

current size of valid data can be obtained by invoking get count().
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4.1.2 A Segmented Buffer

When a Buffer is involved in communication, it abstracts data or a message being

transferred from one communicating entity to another. Communication based on

Buffers and Queues involves transferring Buffers among Queues in the system. This

requires extra information be maintained in Bufds in addition to data, namely

identification and status information. The capability of handling a sequence of

Bufds is also added, which is essential for message fragmentation and reassembly.

The class definition for the Segmented Buffer object is given in Figure 4.2.

A pair of doubly-linked pointers, q, is used for implementing a sequence of Bufds.

They are also used for linking Buffer objects to some Queue. Identification fields

include type, bid, sequence, owner and returnQ. Since various types of Buffers are

envisaged for various types of communication, the type needs to be specified. Note

that depending on the programming environment, it might be possible to elimi-

nate the type field. Recall that a data object identifier is needed for distribution.

Bid uniquely identifies the Buffer object across the system under consideration. I

propose a two-level identification scheme, hostID-localID pair, for Buffer identifi-

cation. A 32-bit hostID can be used to identify the host and another 32-bit localID

for local identification within a host. I believe that the hostID-localID pair naming

scheme is sufficient for Buffers and Queues. Higher-level naming schemes may be

implemented if desired, but naming is not discussed in detail since it is outside the

scope of this work.

The sequence field is used when there are multiple Bufds in a Buffer object.

Here, the ways of providing unique sequence numbers are briefly discussed. One

way to provide unique sequence numbers is to use offsets in an ordered sequence of

bytes. There are two options to this method. One is to use the sequence number
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as the offset from the beginning of data. The other is to use the offset from the

end of data (which is equal to the number of bytes remaining). The latter method

is appropriate for handling messages since they are always fixed by some finite

size. However, it is generally difficult to discover what the total data size is in a

streams type of communication. For the streams type, the former method is more

suitable. Another possible method is to use an extension identification scheme

adapted by ASN.1 [ISO87]. In the presence of multiple Bufds, each Bufd will

have the same Buffer identifier with a unique sequence number. The owner field

specifies who created the Bufd (the semantics of owner are discussed below). The

owner identification also uses the two-level (64-bit PID) identification scheme used

for the Buffer identification. ReturnQ, which corresponds to home node mentioned

in Chapter 3, specifies the QID to which the Buffer is supposed to return when the

requested operation is complete (the details of the Queue abstraction are left to the

next section).

Status fields include currentQ, return status, ref count and more blocks. Cur-

rentQ indicates the present location of the Buffer. This information is changed as a

Buffer moves from one Queue to another. Return status contains the status of the

most recent operation on the Buffer. For example, when a Buffer is enqueued onto

a Queue and dequeued by the receiving entity, the status of the enqueue operation

is set in the return status field, and thus the sender can discover the status of the

enqueue operation by dequeueing the returned Buffer and examining the return

status in it. Keeping the status with the data rather than with the code complies

with the philosophy of the object-oriented design approach. This will support any

kind of invocation strategy the implementor wishes to use. Ref count is used to keep

track of the number of current references made to a particular object instance. The

more blocks flag is used when a user data block in a Buffer is fragmented into mul-
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tiple fragments. This flag is set in each Bufd of the fragmented blocks except the

last, and the receiver is signalled that the current fragment is a part of a message

and more is to come. This flag is used in streams communication as well as other

types of communication which involve fragmentation and reassembly.

Static information such as owner, type, bid and returnQ will be set as part of

the Segmented Buffer object initialization process in the Segmented Buffer() con-

structor operation. On the other hand, dynamic information such as q, currentQ,

return status, ref count and more blocks will be set and changed as the Buffer object

is passed around the system. Here, the details of the constructor and destructor

operations defined in the Segmented Buffer class are briefly discussed. The con-

structor operation called Segmented Buffer() takes as arguments the address and

the size of the data memory the user has created, and initializes the Bufd ac-

cordingly. It also takes the home node (returnQ) as a parameter to the Buffer

creation operation (the use of returnQ is given in more detail in the next section).

It then invokes a kernel routine, which actually creates a copy of the Bufd with

the user supplied information in the kernel protected area. This means all Bufds

are “shadowed” by the kernel and any updates to shadow copy Bufds require priv-

ileged assistance. This would prevent unauthorized accesses to the Buffers. The

destruction operation called ~Segmented Buffer() is responsible for disposing of the

Buffer object, performing such tasks as freeing memory for Bufd information of the

object. This is also handled by the kernel which can check the kernel copy of Bufd

and make appropriate clean-ups. (This description assumes users are not trusted by

the kernel; clearly the assumption can be relaxed in many situations, and different

subclasses of Buffer can be created for trusted and untrusted users.)

The five basic operations defined in the Simple Buffer class are automatically

inherited since the Segmented Buffer class is defined as a subclass of Simple Buffer.
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class Segmented_Buffer : Simple_Buffer {

// linkage

QDHDR q; // doubly-linked Queue pointers

// identification information

BTYPE type; // Buffer type

BID bid; // Buffer identifier

int sequence; // sequence field for memory block

PID owner; // owner of Bufd

QID returnQ; // return queue

// status information

QID currentQ; // current queue

int ref_count; // Buffer reference count

int return_status; // Buffer operation status

FLAG more_blocks; // more horizontal Bufds if set

// data

Simple_Buffer* databuf; // data block

public:

Segmented_Buffer( BufQ returnQ ); // constructor

~Segmented_Buffer(); // destructor

virtual int write_data( ADDR data, int len );

virtual int read_data( ADDR data, int len );

virtual int seek_data( int type, OFFSET off );

virtual OFFSET get_offset();

virtual int get_count();

// operations for fragmentation and reassembly

virtual int fragment_data( OFFSET off );

virtual int reassemble_data( Seg_Buf b1, Seg_Buf b2 );

// operations for setting and getting Bufd fields also go here

virtual BTYPE get_type(); // get Buffer type

virtual BID get_bid(); // get Buffer identifier

virtual int get_sequence(); // get sequence field

virtual PID get_owner(); // get owner of Bufd

virtual QID get_returnQ(); // get return queue

virtual QID get_currentQ(); // get current queue

virtual int get_ref_count(); // get Buffer reference count

virtual int get_return_status(); // get Buffer operation status

virtual FLAG is_last_block(); // check if last block

};

Figure 4.2: The Segmented Buffer Class Definition
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However, they need to be redefined to handle a list of memory blocks. Moreover, the

operations to fragment a large data object into two smaller pieces (fragment data())

and to reassemble them (reassemble data()) are required. Given two data fragments,

the reassemble data() operation merges the two and creates a single Buffer if they

are contiguous. Otherwise, the second Bufd is simply linked to the first Bufd

forming a chain. Since numerous additional fields were added to the Bufd, the user

interface should also include operations such as get returnQ(), get sequence(), etc.

Buffers may be created dynamically, and the creator becomes the owner of the

Buffer by virtue of owning the memory blocks it describes. In the Buffer and Queue

Model, the owner of the Buffer is the only entity that can destroy the Buffer and

recover the memory blocks (except when the owner crashes and the system cleans

up on its behalf). This is a reasonable and necessary restriction needed to maintain

order in resource management. It is not desirable to allow an arbitrary entity to

delete Buffers without the owner’s knowledge. If more flexible owner semantics

than this are required, one can employ an explicit protection mechanism for Buffer

objects. Such a protection mechanism may be used to allow privileged entities other

than the owner to delete Buffers. However, this is outside the scope of the current

work.

4.1.3 A Recursive Buffer

A simple communication requires at least two communicating entities and data to

be transferred. But data used by more than one entity is often padded with control

and protocol information. Thus, communication involves transferring not only user

data but also control information. Communication protocol headers and trailers

are designed to transfer such information. The structure provided by Segmented
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Buffer objects is not capable of handling such control information (or cannot handle

it efficiently). Data structures and operations are needed, which can handle more

complex forms of data than the one described in the Segmented Buffer.

class Recursive_Buffer : Segmented_Buffer {

// a subclass of Segmented_Buffer

FLAG linearized; // send Bufd if this flag set

FLAG which_blks; // indicates which memory blks exist

// Bufd structure information

Simple_Buffer* header; // protocol header

union struct {

Recursive_Buffer* bufdptr; // recursive Bufd pointer

Simple_Buffer* databuf; // data buffer

} nextptr;

Simple_Buffer* trailer; // trailer

public:

Recursive_Buffer( BufQ returnQ ); // constructor

~Recursive_Buffer(); // destructor

virtual int read_data( ADDR data, int len, int type, int level);

virtual int write_data( ADDR data, int len, int type, int level);

FLAG which_blks_exist(); // which memory blks exist?

FLAG check_linearized(); // check if Bufd linearized

int push_blk (addr, len, type) // insert control block

int pop_blk (addr, len, type) // remove control block

};

Figure 4.3: The Recursive Buffer Class Definition

A more desirable structure is one that can handle a hierarchy of Bufds, each Bufd

capable of containing multiple blocks of memory for header, trailer and data (or

another Bufd). Such a structure could handle arbitrary layers of protocol headers

and trailers. The Recursive Buffer class definition is given in Figure 4.3. It contains

several pointers and flags. The first points to a protocol header field, the second

to either data or another Bufd, and the third to a protocol trailer field. The flags,
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which blks, is used to keep track of which memory blocks exist in a Bufd. It also

specifies whether this Bufd contains a data block or a pointer to another Bufd;

these alternatives are mutually exclusive. The flags can be retrieved by the user

invoking the which blks exist() operation. The linearized flag is used to support the

Buffer-Queue protocol (the detailed use of the flag and the protocol is presented

later in this chapter). To support efficient manipulation of control structures, the

operations push blk() and pop blk() are added. The push blk() operation is used

during the packetization process to insert header or trailer control blocks by linking

the appropriate Bufd pointers to either block. The pop blk() operation, on the other

hand, is used as a depacketization process to separate a header or trailer from user

data.

It is also useful to be able to read/write data from/to user data or control

blocks. This requires that the read data() and write data() operations be modified

to traverse through recursive Bufd pointers and access individual blocks. In addition

to the usual parameters to these operations, parameters such as the type of memory

block and the traversal level will also be necessary (e.g., 0 may mean the current

Bufd, 1 may mean the next Bufd, and so on).

As mentioned in Chapter 3, efficient packetization and depacketization can lead

to increased performance and saving of resources. The recursive Bufd structure is

well-suited to efficient packetization and depacketization. The data can be passed

by reference between layers in protocol stack processing, avoiding expensive copying

operations. As the recursive Buffer is passed down through a protocol stack, the

Bufd of each layer is linked to it, and as it is passed up, the Bufd of the corresponding

layer is popped and the rest is passed on. Furthermore, the recursive Bufd structure

and functional interface can be used as a “standard” structure for all levels of

communication. Since all levels use this common structure, a uniform and simple
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software interface can be made for each layer. By appropriate traversal of pointers,

data can be available to any intermediate layer module.

A recursive Buffer usually contains multiple Buffers, each of which may have

different owners. This is quite common in implementing a stack of protocols (e.g.,

in network communication implementation). For example, when the IPC layer is

implemented by an IPC server, the IPC process will create a Bufd, allocate a header

and trailer, and link them to the Bufd. Appropriate information including a new

Buffer identifier is filled in the newly created Bufd, and the Bufd that was passed

from the above layer is linked to the IPC Bufd. Direct access by unprivileged

entities to the header, trailer and user data memory can be prevented since they

would have their own protections. Besides, they must access through the Buffer

interface, which would also require its own access privilege. Each owner can receive

an individual ACK through the return of local Bufds. Even if some intermediate

entity fails in the middle of a communication process, error status and Bufds can

still be recovered and returned to all appropriate places since each Bufd always

contains information regarding the place of return (returnQ). A further discussion

of these ACKs will be given in Section 4.3.

As an example, Figure 4.4 shows the resulting Buffer structure at the Ethernet

device driver layer, just before being transmitted for an X Window [Sche86] client-

server interaction. The content of the Buffer is transmitted using an algorithm

which traverses each Bufd and transmits all the headers first, then user data followed

by trailers. If the network controller supports the gather capability, then copy

operations can be avoided completely since the controller can transmit multiple

memory fragments directly, including those from the user process. A more detailed

discussion of the construction and transmission of such recursive Buffer structures

will be given in Chapter 5.
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4.1.4 The Buffer Hierarchy

The framework that is used to develop hierarchical Buffer structures above can be

used to modify existing or develop new Buffer structures as needed. For example,

one can create a network Buffer by simply inheriting the features of the recursive

Buffer and adding the protocol-specific data and operations. One can create TCP

Buffers by adding TCP-specific control data and functional operations to the recur-

sive Buffer. Similarly, one can create IPC Buffers (such as message-passing Buffers,

stream Buffers), as well as IP Buffers, UDP Buffers and so on. These different

network protocol Buffers all have the generic recursive structure but differ in the

protocol-specific data and operations they handle. This Buffer class hierarchy is

shown in Figure 4.5.

In this section, the details of the Buffer abstraction and the solutions to various

communication problems related to data were presented. Also, the development of

an efficient, versatile recursive Buffer structure that all levels of communication can

use was presented.
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4.2 The Queue Abstraction

In this section, the details of the Queue abstraction and the solutions to various

problems related to communication entities or endpoints and their communication

interfaces are presented. Also, the development of a universal interface that all

communicating entities can use is presented.

4.2.1 A Simple Queue

The conventional concept of the queue abstract data type is used. The simplest

queue consists of a pair of pointers, head and tail, and the operations enqueue (to

add elements) and dequeue (to remove elements). The most common convention

for adding and removing elements is that they are added to the tail of a queue

and are deleted from the head. Furthermore, the first element added is the first

element that can be removed (i.e., FIFO). In most cases, such a convention must

be used to maintain proper sequence of pieces of data being delivered. Although

FIFO is the accepted access discipline in queues, other access modes can be useful

in such operations as extracting fragments of a single message from a Queue holding

interleaved fragments of a number of messages, as well as handling priority data.

The class definition for the Simple Queue is given in Figure 4.6. For convenience

and utility purposes, a counter, q cnt, is maintained for keeping track of the number

of data elements in the Queue. This counter is incremented as an element is added

and decremented as it is removed. Instead of counting every time a user wants

to know the number of data elements in the Queue, this counter can be accessed

using the operation get q cnt(). For efficient access and retrieval, a position pointer,

q pos, is also maintained within a Queue. This pointer is set or moved using the
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class Simple_Queue { // the simplest Queue

QDHDR head; // doubly-linked queue pointers

int q_pos; // current position in queue

int q_cnt; // number of elements in the queue

public:

Simple_Queue(); // constructor

~Simple_Queue(); // destructor

virtual int enqueue(); // add data elements

virtual int dequeue(); // remove data elements

virtual int seek_pos(); // move queue position pointer

virtual int get_q_pos(); // get current position in queue

virtual int get_q_cnt(); // get no. of elements in the queue

};

Figure 4.6: The Simple Queue Class Definition

seek pos() operation. The pointer can be reset to the head of a Queue, or moved

forward or backward by the specified number of data elements. The position pointer

can be obtained using the get q pos() operation. The dequeue operation dequeues

the data item the position pointer currently points to. These operations are the

fundamental Queue operations that are required (or will be inherited) by subclass

Queues.

4.2.2 A Buffer Queue

Queues can store various types of data elements. One can think of queues of

memory segments, queues of processes and so on. Since the Buffer and Queue

paradigm transfers Buffers among Queues in the system, Queues are needed that

can handle various types of Buffers. Such Queues can be obtained by specializing

the Simple Queue developed above. The resulting Queue is called a Buffer Queue

(or BufQ), and its class definition is given in Figure 4.7.
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class Buffer_Queue : Simple_Queue { // Qs for handling Buffers only

// BufQ identification

int type; // Queue type

QID qid; // global Queue identifier

PID owner; // owner process of this Queue

// BufQ status

int flags; // flags

int status; // status

int ref_count; // reference counter

virtual int signal(); // signal the receiver

public:

// operations

Buffer_Queue(); // constructor

~Buffer_Queue(); // destructor

virtual int enqueue(); // enqueue Buffer

virtual int dequeue(); // dequeue Buffer

// operations for getting BufQ fields go here

virtual int get_type(); // get Queue type

virtual QID get_qid(); // get qid

virtual PID get_owner(); // get owner

virtual int get_flags(); // get flags

virtual int get_status(); // get status

virtual int get_ref_count(); // get reference counter

};

Figure 4.7: The Buffer Queue Class Definition

In addition to data fields described in Simple Queues, extra information is

needed in BufQs for system management and communication, namely identification

and status information. Identification fields include type, qid and owner. I envisage

that there will be various types of Queues for various types of communicating en-

tities, thus the type of BufQ needs to be specified. The type field may also be used

to indicate the type of delivery method (e.g., via procedure call, wake-up signal).

Note that the type field is used only for information purposes and is not necessary
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for Queue operations. As with the Buffer types, the type field would not necessarily

be required if one uses an object-oriented programming language. The qid field

uniquely identifies the BufQ across the system under consideration. I propose to

use the same two-level identification scheme that was used for the Buffer identifi-

cation: a 32-bit hostID and a 32-bit localID pair. The owner field specifies who

created the BufQ.

In the Buffer and Queue communication paradigm, transferring a Buffer is

achieved by enqueueing a Buffer onto the BufQ that is associated with the des-

tination entity. Receiving a message is achieved by dequeueing a Buffer from a

BufQ. A Buffer may be enqueued on any BufQ in the system. However, dequeue

operations are restricted to the owner of a BufQ. This is a reasonable restriction

which serves to maintain order in Buffer management. As mentioned in Chapter

3, if more flexible enqueue and dequeue semantics are required, one can build that

capability on top of the current semantics.

Status fields include flags and ref count. The flags can be used for setting various

bit options (such as whether the owner is blocked on a dequeue operation of a Buffer

object from a Queue). The ref count field indicates the count of Bufds in the system

using this particular BufQ as a returnQ. A BufQ can only be properly destroyed if

this value is zero. Otherwise, Buffers, which contain memory previously allocated

by the owner of the BufQ, can not be returned to the owner and thus can not be

freed properly.

Users can obtain the identification and status fields by invoking appropriate

‘get’ operations that are defined in the Buffer Queue. For example, ref count can

be obtained by invoking the get ref count() operation and so on. The signal()

operation is used to signal the receiver of the arrival of Buffers, and is a part of

the enqueue operation (the detailed definition and use of the signal function will be
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given in the next section).

Thus, the Buffer Queue includes pointers for a doubly-linked queue, status and

identification information, and operations for transfer of Buffers as well as to set

and obtain BufQ descriptor information.

4.2.3 A Return Queue

Here, the return Queue (or returnQ) concept is introduced, which I believe is unique

to the Buffer and Queue model. The returnQ is used extensively for acknowledge-

ments and synchronization (described later) in the Buffer and Queue communica-

tion paradigm. The returnQ is a BufQ with no added features. It is associated

with each communicating entity mainly for the purpose of retrieving Buffers which

the entity has transferred earlier to another entity. Since all Buffers involved in

communication must contain the returnQ information as the place of return when

the intended operations are complete, the creator of a Buffer supplies a returnQ as

a parameter to the Buffer creation operation.

As mentioned in the last section, the Buffer creation operation is a kernel opera-

tion in the Buffer and Queue Model (assuming untrusted users). The kernel creates

a Bufd with the information supplied by a user. The kernel maintains a descriptor

for each Bufd created in the kernel. This is required for garbage collection of Buffer

resources left by their owners who may have accidently died without proper clean-

ups. A similar situation can occur if a Queue is destroyed and there exist Buffers

in the system that have used the Queue as their returnQ. For these situations, the

kernel can traverse a list of kernel Bufds and do the proper storage reclamation.

Here, an IPC example is used to demonstrate the use of returnQs, and as a

concrete example of the home node concept discussed in Section 3.2.3. A user



CHAPTER 4. THE BUFFER AND QUEUE COMMUNICATION MODEL 88

process sends a Buffer containing a message to another process. The process either

immediately (in the case of blocking IPC) or arbitrarily later in time (in the case of

nonblocking IPC) blocks on dequeueing this Buffer from the returnQ. As mentioned

earlier, each Buffer object contains the information about where to return the Buffer

when the operation is complete. Thus, the return of a Buffer to the returnQ signals

the completion of the send operation. The user process is unblocked and the Buffer

is retrieved from the returnQ. The user process discovers the status of the operation

(i.e., whether the operation was successful or not) from the status contained in the

returned Buffer. Furthermore, the return of the Buffer also signals its availability.

This encourages efficient resource management.

4.2.4 Network Queues

Network communication usually involves a message being passed through multiple

layers of communication protocols. At each layer, protocol-specific processing is per-

formed such as adding header or trailer information and updating state information.

Since the header and trailer information and the operations for manipulating them

are stored within a Buffer, it is the Buffer that is modified as it travels downward

or upward in a protocol stack. However, as discussed in Section 3.2.2, the state

information to manage each protocol layer should not be stored in the transient

Buffer. In keeping with the object-oriented design philosophy, the state informa-

tion should be kept not with the protocol-specific code but in a code-independent

data structure. There is no better place to put the state information than in the

Queues. Thus, a Network Queue is a subclass of Buffer Queue and can potentially

include a protocol-specific data structure.

As discussed in the generic communication model in Chapter 3, the network
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node objects can have two types of interface for supporting logical pipelines, ‘pro-

cedural’ and ‘self-contained objects’. The Network Queue is a template class that

can support both types of interface. The choice is left to the implementor to define

the type of interface he wishes in the protocol-specific object that will be inserted

in place of protocol descriptor as shown in Figure 4.8.

class Network_Queue : Buffer_Queue { // a subclass of Buffer_Queue

Protocol protocol_descriptor; // protocol specific stuff

virtual int signal(); // signal the receiver

public:

Network_Queue(); // constructor

~Network_Queue(); // destructor

virtual int enqueue(); // enqueue network Buffers

virtual int dequeue(); // dequeue network Buffers

};

Figure 4.8: The Network Queue Class Definition

4.2.5 The Queue Hierarchy

Thus, a Network Queue is a specialized Buffer Queue that can contain the protocol-

specific data, and operations to manipulate them. The framework that is used to

develop hierarchical Queue structures above can be used to modify existing or de-

velop new Queue structures as needed. For example, Queues for various network

communication protocols (e.g., TCP Queues, IP Queues) can be created by simply

inheriting the features of the generic Network Queue and adding the protocol-

specific data structures and operations. The Queue class hierarchy containing var-

ious Queue classes is shown in Figure 4.9.

In this section, the details of the Queue abstraction and the solutions to various
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Figure 4.9: The Queue Hierarchy

problems related to communication entities or endpoints and their communications

interfaces have been presented. The universal interface (i.e., a Buffer Queue) that

has been developed in this section can be used by all types of communicating entities

in a wide spectrum of environments.

4.3 The Delivery and Synchronization Abstrac-

tion

In this section, the third abstraction in the Buffer and Queue Model is presented,

namely the delivery and synchronization abstraction, as well as some solutions to

communication problems related to the dynamic functionality of transporting the

data.
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4.3.1 Delivery

The enqueue and dequeue operations of Queues are used for delivery of Buffers in

the Buffer and Queue paradigm. The enqueue operation is used to transfer the

control of the Buffer to the receiver. The dequeue operation is used to accept the

transfer of the control from the sender. Unfortunately, the enqueue operation itself

does not suffice to deliver the data since, short of continuous polling, the receiver

has no way of knowing when the data is available. Therefore, a signal function must

necessarily be incorporated into the enqueue operation to notify the receiver of the

Buffer transfer. Because different entities may wish to be signalled in different

ways, the signal function is defined as part of the Queue definition by its owner,

and its implementation details will usually differ from one type of communication

paradigm (or entity) to another. For example, the signal function might simply be

a call instruction in the procedure call paradigm, which is used both to transfer

control and to signal the availability of data, or a wakeup call in the message-passing

paradigm to signal a blocked process to resume execution and process new data.

The sender (or the entity performing the enqueue operation) should not need to

know the details of the signal function defined for any receiver’s Queue.

The signal function is initially defined in the Buffer Queue class definition in

Figure 4.7, and is subsequently redefined in the Network Queue class definition

in Figure 4.8. For the moment, it is defined as a private operation, which means

it can only be invoked by member functions (i.e., can not be invoked directly by

users). The reason for defining the signal operation as a private operation is that

initially I envisage only invoking it as part of the enqueue operation. Thus, the

first part of the enqueue operation stores the Buffer in the BufQ and then invokes

the signal operation, which notifies the receiver. It may be necessary to separate

the signal function from the enqueue operation in special cases such as sending
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multi-segmented messages and signalling only once at the end. However, this is left

for future work.

The Buffer and Queue Model also provides a simple but versatile mechanism

for returning data delivery status. The Buffer returnQs coupled with the capability

to access nested higher layer Bufds inside a standard Buffer object from any level

provide an elegant solution. Any callee can either return the Bufds in the reverse

direction of the delivery path (i.e., removing the Bufd it had created and passing

the rest to its caller) or return them all directly to appropriate returnQs. Also, even

should some intermediate entity fail in the middle of a communication process, error

status and Bufds can still be recovered and returned to appropriate places since

each Bufd always contains its own returnQ information. Finally, returnQs are also

useful for resource management and synchronization as will be discussed below.

4.3.2 Synchronization

In Chapter 3, synchronization in distributed systems was subdivided into synchro-

nization of user execution and synchronization of data-object control. Recall that

synchronization of user execution is concerned with supporting various execution

blocking semantics and synchronization of data-object control is concerned with

control of data objects (Buffers in the Buffer and Queue communication paradigm).

Below, the ways of handling both types of synchronization in the Buffer and Queue

Model are discussed.

By convention, a Buffer is blocked (i.e., the user does not have access to it)2

when it is enqueued on some BufQ other than the sender’s or it is in the control of

2The user may actually have access to it but the underlying assumption is that it is not safe
to modify the contents since the message has not yet been sent or else is needed for some other
reason.
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some other entity. A Buffer is unblocked when it is dequeued. The return of the

Buffer indicates that whichever entity had control of it relinquished it and is done

with it. For instance, a message contained in the Buffer may have been copied or

sent so that the original Buffer is no longer needed.

In asynchronous or non-blocking IPC, the user initiates a send or receive op-

eration and then resumes its execution. When it wants to discover the status of

the operation, it simply checks or blocks on the dequeue operation of the returned

Buffer from its returnQ. Recall that the Bufds contain return status and are re-

turned to the appropriate returnQs when the operations are complete. From the

sender’s point of view, the Buffer is said to be blocked until it is returned to its

returnQ. The Buffer will be returned by the recipient as soon as it becomes free

(i.e., data is copied or sent).

In synchronous or blocking IPC, a Buffer will not be returned to its returnQ un-

til the message has actually been delivered to the end destination. In the meantime,

the initiating user would block attempting to dequeue from the returnQ immedi-

ately after initiating the operation.

There are other user blocking semantics: highly synchronous and partially syn-

chronous IPC operations. These can be supported by building on the basic synchro-

nization provided by the Buffers and Queues. Highly synchronous IPC operations

can be built on top of synchronous IPC operations. Since the user who initiated a

highly synchronous send operation is blocked until the user reply is received, hav-

ing a sent Bufd returned to its returnQ is not sufficient: two steps are required.

The first step is to wait for the return of the original Bufd on its returnQ, which

acknowledges the safe delivery of the message to the end destination. The second

step is to block on dequeueing a Bufd containing the reply message on its message

queue. The first step must succeed before going on to the second step because there



CHAPTER 4. THE BUFFER AND QUEUE COMMUNICATION MODEL 94

is no point in waiting for the reply message if the request message has not been

delivered successfully to the destination.

To reduce communication cost, many message-passing IPC implementations

have tried to reduce the number of packet exchanges. Thus, one way to optimize

the request-receive-reply interaction has been to suppress the explicit ACK for the

request message but include it implicitly in the reply message [Cher84]. In the

Buffer and Queue communication paradigm, one can easily achieve this optimiza-

tion with the help of the Buffer-Queue Protocol (which is presented in the next

section), by including two Bufds (ACK and reply) in a single packet. However, the

sender must still perform two separate dequeue operations, first to receive the ACK

and then to receive the reply message.

Partially synchronous IPC operations can also be built on top of the basic syn-

chronization provided by the Buffers and Queues. Partially synchronous operations

require the ability to return an “intermediate” acknowledgement to the sender en-

tity. This, in turn, requires the ability to extract the returnQ information from

Bufds. The returnQ information can be easily extracted from any layer in the local

node since all layers deal with the standard Buffer structure and know how to access

any part of its components. Any layer module can access the returnQ information

of its higher layers from the Bufd passed by its higher layer. Thus, it is possible to

return intermediate acknowledgements to any higher layer entities. In the simplest

case, the Bufd can be returned when it reaches a predetermined point such as the

transport layer, network layer or device layer, which acknowledges that the message

has reached that layer.

However, the basic Bufd return mechanism allows the Bufd to be returned only

once, implying at most a single intermediate acknowledgement. It may be useful

to receive more than one intermediate acknowledgement in some applications such
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as communication system debugging or mail delivery. For example, an intermedi-

ate acknowledgement can return when a message reaches the transport layer and

another when it reaches the network layer and so on. However, this would require

extra work to be done outside the normal Buffers and Queues communication. The

user can be provided with an optional flag indicating the desire to receive multiple

acknowledgements. Intermediate modules can then return Bufd duplicates to the

sender as the real Bufd passes through, decrementing a counter. When the counter

reaches zero, the real Bufd is returned.

The ability to receive local intermediate acknowledgements can be easily ex-

tended to remote intermediate acknowledgements as well. That is, intermediate

acknowledgements can be received indicating that the message has reached the re-

mote device layer, network layer, transport layer and so on. Such a capability is

independent of the number or type of intervening nodes.

The principle of returning the Buffer to its sender when the operation involving

the Buffer is complete also provides the basis for Buffer resource management.

When the Buffer is no longer needed, the entity that used or held it enqueues the

Buffer on its returnQ, where the owner has the responsibility to recover and dispose

of or reuse it. Although this mechanism is intended initially to assist Buffer resource

management, it can be used as a vehicle for several other useful mechanisms needed

in communication. For instance, it can be used to transport acknowledgements

back to the requesting entities upon completion or failure of an operation. Directly

related to acknowledgements is the synchronization of user execution. Return of

acknowledgements can be used to unblock any blocked user entities. Another use

is in synchronization of data control. The return of a Buffer signals its availability,

as discussed above.

In this section, the delivery and synchronization abstraction of the Buffer and
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Queue Model was presented. The semantics of enqueue, dequeue and signal op-

erations were presented, which provide the dynamic functionality of transporting

data and synchronizing user execution and control of Buffers. In a distributed en-

vironment, the Buffer-Queue protocol discussed in the next section is responsible

for transmitting Buffers and synchronizing between sites. In addition, it must also

guarantee the return of Buffers to their owners, even in the presence of failures.

4.4 Buffer Queue Protocol

The Buffer and Queue Model presented thus far views a system as a single node,

where efficiencies of shared memory can be enjoyed. That is, from the user’s point

of view, communication takes place within a single global domain. In a distributed

Buffer and Queue paradigm, Buffers are transferred among Queues that are scat-

tered throughout a distributed system. In reality, however, there are a number of

separate nodes and protection domains in such a system and some tools to bridge

this gap are necessary if a truly transparent distributed system is to be provided.

Local communication which passes Buffers by reference can easily deliver ar-

bitrarily complex local Buffers to any Queue within a single protection domain

without losing any structural information. Thus, the structural information of

Buffers as well as other control information to make the distributed Buffer and

Queue operations transparent should be somehow delivered along with the content.

This contrasts with conventional network communication which is designed to de-

liver only the content but not the structure of data. The Buffer-Queue protocol

(BQP) is intended to do just this.

The BQP, thus, is concerned with two aspects of distributed Buffer and Queue

communication: remote Buffer and Queue operations and the description and en-
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coding of data. The BQP peer modules handle and synchronize remote operations

and ensure that copies of updated fields are passed back and forth as required. Note

that for the current version of the Buffer and Queue Model, only remote enqueue

and return operations are allowed. This restriction is a side effect of one of the

general principles, which allows only the owner of the Queue to dequeue Buffers

from its Queue. However, if Buffers are allowed to be dequeued by arbitrary enti-

ties then remote dequeue operations would also be needed. This would also require

implementing higher level access control mechanisms, and modifying the current

principles drastically.

The data structure encoding (called linearization) as opposed to the control as-

pects of BQP could easily be replaced by external data representation standards

such as XDR [SUN87] or ISO ASN.1 [ISO87] at the possible expense of some effi-

ciency. Besides linearizing the Buffer on the sending side and delinearizing on the

receiving side, BQP provides remote routing through Queue identifiers, and if not

handled by lower-level protocols it can also provide reliability (e.g., error recovery,

sequencing), fragmentation/reassembly and multiplexing.

4.4.1 Transmission of Structural Information

In a layered communication system, an implementation of BQP would result in a

separate, thin layer in a stack of protocol layers. One possible placement of the BQP

layer in a typical system is shown in Figure 4.10. However, it should be emphasized

that the BQP layer can be placed at an arbitrary level as will be demonstrated in

implementation examples in Chapter 5.

In the Buffer and Queue Model, the structural information of a Buffer is con-

tained in a Bufd or nested Bufds of the Buffer. Thus, one essential aspect of the
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BQP Layer
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Figure 4.10: The BQP Layer in a Layered Communication Model

BQP is that it transfers structural information contained in Bufds above the BQP

layer to the remote node. The BQP layer on the receiving side uses this information

to reconstruct the original Buffer, so that a message with its internal structure in-

tact can be delivered within the remote node as if done locally. A Bufd also contains

the Buffer and Queue operational information such as the Buffer return address (re-

turnQ) and status of Bufds as the requested operation completes. This information

must also be transferred along with the structural information. These two types

of information (structural and B-Q operational) are referred to as essential Bufd

information that needs to be transferred in order to support the shared-memory

communication paradigm across the system.

Before discussing how to deliver the essential Bufd information to remote nodes,

what to transfer must be decided since the Bufds contain more than just the struc-



CHAPTER 4. THE BUFFER AND QUEUE COMMUNICATION MODEL 99

tural and operational information. They also contain information that is useless in

remote nodes (e.g., local virtual memory addresses), which need not be transmitted.

There are roughly two ways to transfer the essential Bufd information. One is to

extract and transmit only the essential information from each Bufd. The other is to

transmit the entire Bufd. Both have advantages and disadvantages. Although the

second approach uses some additional bandwidth by transferring additional data,

I believe the second approach provides a better choice for its simplicity and uni-

formity. The main disadvantages of the first approach are the complexity involved

and its susceptibility to changes in Bufd fields in the future. These problems of

course vanish if one has already paid the price of using XDR or ASN.1 encoding.

The second approach puts less burden on the receiver as well, as the receiver need

not re-allocate any extra memory for Bufds but may simply strip them from the

inbound packet and overwrite fields to make them into appropriate Bufds. This

assumes that no Bufd straddles a packet boundary which is a reasonable assump-

tion since I believe in most cases the headers and Bufds will fit in a single network

packet. If they do not fit in a single packet, then the receiver must ensure that the

Bufd fragments are reassembled as a contiguous memory allocation. Should Bufd

fields change in the future, one can simply change the Bufd header and recompile

across the system without any changes in the code since all Bufd structures are in

effect treated as simple Buffers during communication.

There is still another major problem that must be overcome, which is to transfer

the higher-layer Buffer structure (i.e., those Bufds above the BQP layer) to remote

nodes. In normal network communication, the transmission mechanism such as

an Ethernet device driver sends only the headers, data and trailers but not the

structural relationships among them specified by the Bufds themselves. I have

thought of three possible ways to accomplish this task. One is to modify the
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Bufd structure above the BQP layer in such a way that the higher-layer Bufds,

headers, and trailers all appear as data blocks. In this scenario, the Bufds would be

transmitted as the contents of a Buffer. The other two methods do not modify the

Bufd structure but instead modify the read operation’s traversal method slightly

in the device layer to include these higher-layer Bufds, headers and trailers. Below

all three schemes are described followed by my preferred choice.
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IPC-Bufd IPC-Header X11-Bufd Data

Figure 4.11: Physically Linearized Higher Layer Bufds

The term linearization is used to describe the process of preparing the Bufds

as well as the header, trailer and user data for the purpose of transmission. In the

first scheme, linearization requires physical structural changes to the Bufd above

the BQP layer. In order for all memory blocks (i.e., Bufds, headers, trailers and

data) above the BQP layer to be transmitted as data, the Bufd structure is flattened

with each memory block described by its own additional Bufd (except the one for

the user data memory block, which already has one). The resulting Bufd structure

above the BQP layer consists of a list of Bufd-header-trailer triples for each layer

followed by the user data. For example, the linearized Bufd structure for Figure 4.4

above the transport layer would look like Figure 4.11 before it is passed to lower
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layers (assuming that the BQP layer is located between the IPC and transport

layers).
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Figure 4.12: An Ethernet Buffer with Physically Linearized Bufds Above the BQP

Layer

The BQP-Bufd points to the BQP header and a list of Bufds (or segmented

Bufd) that contain the Bufds, headers, and trailers of the higher-layer protocols

as well as the user data. The actual data seen by the transport layer is the BQP

header followed by IPC-Bufd, IPC-Header, X11-Bufd and user data. The BQP

header, therefore, must contain enough information to be able to reconstruct the

above structure on reception. However, what is missing in Figure 4.4 is the BQP
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layer. When the BQP layer is inserted, the entire Buffer structure would look

like Figure 4.12. When the original traversal scheme described in Section 4.1.3

is employed on this physically linearized Bufd structure, the actual transmitted

Ethernet frame would be as shown in Figure 4.13.

l
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E-TLRTCPIPETH BQP Data

IPC-Bufd X11-BufdIPC-Hdr Data

Figure 4.13: Actual Transmitted Data in an Ethernet Frame

The second and third linearization schemes involve no physical modification of

the Bufd structure, but rather change the way a device layer traverses the Bufd

structure for transmitting various memory blocks. That is, the Bufd structure is not

modified as done in Figure 4.12 in the first scheme but rather the read operation

is modified. In this scheme, the original Bufd structure is maintained with the

BQP layer inserted as shown in Figure 4.14, with each higher-layer Bufd marked

as “send this Bufd as a part of Buffer content.” A flag is simply used in the Bufd

(i.e., linearized flag bit in the Buffer definition) to mark it as such. This flag can

be set when higher-layer Bufds are created (when the layers already know that the

Bufds they create will be transmitted as part of a linearized Bufd structure), or the

BQP layer can simply traverse the Bufd structure and set the flag in each Bufd as a

part of the linearization process. In either case, the flag in each of the higher-layer

Bufds will be set so that the Bufds themselves are transmitted as data.

The main difference between the second and third schemes is in the way they

traverse the Buffer structure for transmitting the content and Bufds. In the original
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Figure 4.14: The Linearized Buffer Structure for the Second and Third Lineariza-

tion Schemes – asterisks in Bufds indicate linearized flag set
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traversal scheme, the Bufd structure is simply traversed from bottom to top, taking

all headers, the user data and then all the trailers. Here, the device driver simply

checks the flag in each Bufd as it traverses from bottom to top and takes headers

only if the flag is not set, then whatever is in the data field, and then trailers. If

the flag is set, it takes the Bufd itself, then its header and then the trailer, and

goes on to the data. So, from Figure 4.14 the Ethernet device driver would check

Ethernet, IP, TCP and BQP Bufds and find the flags not set so it would first

take their headers: Eth-header, IP-header, TCP-header, and BQP-header. When

it checks IPC-Bufd, it will find the flag set, so it would take IPC-Bufd, IPC-header

(and IPC-trailer if it existed), and go on to the next Bufd, which is an X11-Bufd.

It also finds the flag in the X11-Bufd set, so it takes X11-Bufd. The next layer

only includes the data memory block so it simply takes it. This process would then

check for BQP, TCP, IP and Ethernet trailers in that order, and succeeding with

Ethernet. Overall, the resulting packet is equivalent to the one created by the first

scheme, and is shown in Figure 4.13.

The third scheme also checks the linearized flag in each Bufd as in the second

scheme. However, the difference is that the third scheme transmits all the linearized

Bufds first, then headers, trailers and data, as opposed to the second’s Bufd-header-

trailer-data. So the third scheme transmits all the headers of non-linearized layers,

then all the Bufds of linearized layers, headers, trailers and data of linearized layers

and finally the trailers of non-linearized layers.

The second and third schemes are preferred over the first one for efficiency in

memory space and time. The first scheme requires more memory space for extra

Bufds, as well as extra complexity for rearranging the Bufd structure. The second

and third schemes require only a minor modification in the traversal algorithm,

which involves checking an extra field in each Bufd. However, the idea of transmit-
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ting all the Bufds and headers first as in the third scheme should benefit in long

message reassembly operations since the receiver would then receive all the head-

ers first and extract whatever information necessary for reconstructing the original

Buffer structure before data arrives in communications involving long messages.

Because BQP transmits Bufd fields directly, it must be concerned with low-level

details such as byte ordering, if it is to be used in a heterogeneous environment.

There are two approaches that can be taken to support such heterogeneity. One

is to convert the BQP data to “network order” at the source and convert back at

the destination if necessary. The other is to set a flag in the BQP header to denote

the type of byte ordering the source data is in and convert at the destination BQP

layer only if it uses the different byte ordering. The latter approach is better since

it will perform a lazy conversion (i.e., convert only when it is necessary to do so).

4.4.2 The BQP Header

What has been shown so far is how higher-layer Bufds can be delivered to achieve

transparency. However, the information needed in the BQP header to support

remote Buffer and Queue operations transparently has not been discussed. A Buffer

object potentially consists of a number of memory blocks: Bufds, headers, trailers

and data. One or more of these memory blocks may exist in a layer. For example,

the user layer may only have data and a Bufd for it. The IPC layer may have a Bufd,

IPC-header and a user Bufd and user data. Another possibility is a list of Bufd,

header, Bufd, data1, Bufd, data2, ... Bufd and dataN. There are of course other

possibilities. In order to be able to reconstruct the original Buffer structure, one

needs to know exactly what memory blocks exist at each layer and their individual

lengths as well as the total number of Bufds. The first two pieces of information are
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already available in each Bufd, thus transmitting Bufds would be sufficient. The

total number of Bufds, and the total message length need to be specified in the

BQP header. Above the BQP layer, the order of memory blocks used in packaging

will be Bufd, header, trailer followed by data if the second traversal algorithm is

used, or all Bufds, headers, trailers and data if the third traversal algorithm is used.

The BQP header, shown in Figure 4.15 will also need to specify how many layers

it has linearized; this information is especially necessary when more than one Bufd

exists in a layer (e.g., multiple fragmented data memory blocks and their Bufds in

user layer).

argument memory blocks go here . . . . .

. . . . .

Number of BufdsTotal Message Length

ChecksumSequence

Layer CountMore

FlagsType

Destination QIDSource QID

Figure 4.15: BQP Header Format

What other pieces of information are required in the BQP header? Since commu-

nication based on Buffers and Queues involves transferring Buffers among various
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Queues in the system, Queue identifiers (QIDs) are used as addresses of endpoints.

Thus, Source QID indicates the source address and Destination QID indicates the

destination address. The Type field indicates the type of remote Buffer and Queue

operation. The Flags field is used for setting various flags. The More flag is used

when a BQP message is fragmented into a number of small messages. It indicates

that this message fragment is not the last. The Sequence field is used for num-

bering fragmented messages. It is required for checking that fragmented messages

are received correctly as well as for retransmission in case of errors. For checking

the correctness of transmission, a Checksum field is also required. Two popular

approaches of calculating checksum are 1) to do the checksum of the BQP header

only and 2) to do the checksum of the entire BQP packet. Both approaches are

allowed. The choice is made by the implementor by setting a flag bit in the Flags

field. The choice usually depends on the type of underlying service. For example, if

the underlying protocol provides a reliable service, then it is probably not necessary

to do the checksum of the entire BQP packet. On the other hand, if the user of

BQP requires a reliable service which is not provided by the underlying protocol,

then the choice is more likely to do the checksum of the entire BQP packet. Layer

Count indicates the number of layers linearized above the BQP layer. Total Mes-

sage Length specifies the total message size (i.e., header plus data) and Number of

Bufds specifies the number of linearized Bufds above the BQP layer.

The BQP peer-to-peer communication is basically a transaction-oriented, RPC-

like interaction. A BQP entity sends a BQP message to another BQP server re-

questing an action (e.g., enqueue a Buffer, or abort) and waits for a reply. In the

most common case of the enqueue operation, the reply occurs when the Buffer in

question is returned, that is, when an entity at the remote node performs what it

considers a remote enqueue operation on the returnQ of a remote Buffer.
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4.4.3 The BQP State Machine

The BQP protocol requires end-to-end sequenced reliability. Internal mechanism

is provided to do this in order to provide flexibility in the placement of the BQP

in a protocol stack. If the reliability aspect had not been included in the BQP

design, it would always have to be implemented on top of a reliable protocol in

order to perform any remote operation. If the BQP layer is placed on top of a

reliable protocol then the implementor has the option to ignore this aspect. The

BQP is designed to be a state-driven protocol which contains explicit definition of

state and transition actions. The BQP is designed based on the reliable message

exchange protocol that has been implemented and tested on Shoshin [Toku83].

However, the protocol itself is independent of Buffer and Queue functions. The

BQP yields a well-defined interface for sequenced reliable remote operations. The

protocol can support multiple transactions by using a separate state machine for

each transaction. If entities involved in a transaction goes out of synchronization,

the protocol can easily detect and abort the transaction. Figure 4.16 illustrates the

possible states, events and actions for various events The diagram actually does

not show all possible actions but only the important ones. A full list of events and

actions is given in Appendix C. Ellipses in the diagram represent the current state,

numerators represent events, and denominators represent actions.

Initially, the entities (i.e., the users of the protocol) are in the null or idle state

(IDLE). When the receiving module receives a sender data packet (S SDD), it

creates a state record for a new transaction (R INIT). A state record is basically a

BQP header with the available information filled in and modified as the transaction

progresses. If the request was contained within a single packet, then the receiver

goes into the waiting-reply-from-user state (R REP) immediately. If the request

packet consists of multiple packets (i.e., more packets to follow), then the receiver
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Figure 4.16: The BQP State Transition Diagram
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goes into the waiting-data-from-sender state (R WDD) to receive the remaining

packets. When the last data packet is received, the receiver goes into the R REP

state and waits for the user reply, that is, the return of the Buffer. When the

receiver module receives a user reply (U REPLY), it sends the reply to the sender

and goes into the receiver-sending-data (R SDD) state. If the reply contains more

than one packet, it keeps sending and remains in the R SDD state. The receiver

then waits for an acknowledgement from the sender indicating it has received the

reply correctly. If the acknowledgement is not received within a timeout period,

then the receiver retransmits the last packet sent. This will handle any lost packets.

When the receiver receives the final acknowledgement packet (S DONE), it cleans

up the state record for the transaction and goes immediately back to the idle state.

When the sender entity is in the null state and receives a send request from

the user (U SEND), it first creates a state record for a new transaction. It then

sends a request packet (S SDD) to the receiver. If the request packet is the first

of many, then it goes into the sender-sending-multiple-packet-request (S SDD) and

remains in that state while transmitting those data packets. When the sender

finishes sending the last data packet or if the initial packet was the only packet,

it goes into the S WDD state waiting for the reply. In general, there is always

a short timeout mechanism to resend unacknowledged packets. The appropriate

ACK is always to send the last packet plus the current state. If the receiver module

receives a duplicate packet while waiting for the reply from its user, it will simply

reply with a R REP packet indicating so. When the sender receives the reply, it

acknowledges with the S DONE packet and goes into the S DONE state. In the

case of a multi-packet reply, it acknowledges incoming packets and remains in the

S WDD state until it has received all reply data packets.

Timeout mechanisms are used to retransmit packets and to check whether re-
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mote nodes are alive. A short timeout mechanism is used by a BQP server entity

when it initiates a packet (or multi-packet) transmission and is waiting for an ack

(or acks) from the remote peer. For example, when the local server entity transmits

a multi-packet request in the S SDD state, it expects acks to arrive from the remote

peer after a short period of time (e.g., after several packet transmission time). On

the other hand, when it goes into the S WDD state (waiting for a user reply which

is initiated from the remote node), it uses a long timeout mechanism. In that state,

if the reply is not received and a timeout expires, it sends a “ping” message to

the remote node to check whether it is still alive. Thus, if timeouts expire but the

remote node does not respond or if the transaction goes out of synchronization, the

transaction will abort. When the long timeout expires in the S DONE state, how-

ever, the sender assumes the receiver received the final acknowledgement correctly,

cleans up the state record for the transaction, and returns to the idle state. While

in the S DONE state, if the sender receives a send request (U SEND) from the

user, it creates a new state record for a new transaction, sends the request packet

and goes to the S SDD state just as if it were idle.

There also exist some internal actions for the BQP entities. The R DONE ac-

tion is initiated when the receiver entity receives the S DONE acknowledgement

packet from the sender entity after sending the user reply. The R ACK action is

used to acknowledge multiple data packets from the sender entity. The R INIT and

S INIT actions are used to create state records for the receiver and sender entities

respectively. P IGN is used to drop or ignore useless packets. P CLR is used to

abort and clear transaction when communicating entities lose synchronization, and

resets the state machine. When an unexpected packet arrives, it usually gener-

ates an error (P ERR). In this case, an appropriate message is generated and the

transaction is aborted. A complete data table is given in Appendix C.



CHAPTER 4. THE BUFFER AND QUEUE COMMUNICATION MODEL 112

In this chapter, the Buffer and Queue Communication Model is presented, which

satisfies the constraints of the generic communication model of Chapter 3. The

Buffer and Queue Model is a simple, low-level but powerful and efficient communi-

cation model for distributed systems. The reliable Buffer-Queue Protocol has been

developed to support transparent distributed Buffer and Queue operations. Fur-

thermore, the BQP can be used to transfer long messages efficiently across multiple

nodes, to reduce the number of packet exchanges in transaction-oriented remote in-

teractions, to support efficient bulk data transfer, and to support distributed shared

memory as will be shown in the next chapter.

Note that the current version of the BQP does not support “forwarding” of

Buffers. That is, when a Buffer is sent to a remote entity, which then in turn sends

it to another remote entity and so on, the Buffer must be returned through the exact

path it took in the reverse direction. Returning the Buffer directly to its original

entity from the last entity to which the Buffer was forwarded requires some extra

work among the parties involved. One simple solution is to notify the original sender

of the fact that the intermediate entity is forwarding the Buffer to a third entity

and to close the transaction with the original sender. The original sender would

now expect the transaction to continue between the entity returning the Buffer and

itself. There are other simple solutions as well. Supporting such capability may be

useful or allow more efficient communication in some applications, and I envision

such extension as a trivial task. However, the extension is left for the future work.

In summary, I claim that the Buffer and Queue Model is able to support a wide

range of communication requirements between diverse types of entities both within

a single node and across a distributed system. The claim is substantiated by the

examples presented in the next chapter.



Chapter 5

Examples Using Buffers and

Queues

In Chapter 4, the Buffer and Queue Model was presented. In this chapter, a number

of examples of how Buffers and Queues can be used in different types of communi-

cation paradigms and communication related problems is presented. First, several

examples of simple internal communication are shown, all within a single protection

domain. Internal communication is elaborated and used to present local interpro-

cess communication using Buffers and Queues. An example of network communi-

cation involving multiple communication protocol layers is presented. Combining

the above, a simple example of distributed communication which involves transfer-

ring short messages is presented. Then an example of distributed communication

which involves transferring long messages is presented. The last two examples

demonstrate how the BQP layer is used to provide location transparency. Opti-

mistic blast protocols for high throughput bulk data transfer proposed by Carter

and Zwaenepoel [Cart89] and O’Malley et al [OMal90] are examined, and a sim-
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pler solution based on Buffers and Queues is presented. Examples of implementing

distributed and conventional semaphores [Dijk65], one-way communication (e.g.,

broadcast, multicast), and distributed shared memory [Li86] are also presented.

5.1 Internal Communication

As stated earlier, internal communication refers to communication between enti-

ties within a single protection domain, where shared memory is provided. It is a

communication environment where messages are passed by reference and copying

of messages is avoided as much as possible. The internal communication example,

shown in Figure 5.1, involves two entities, A and B. A receiveQ associated with

the entity B is a BufQ onto which incoming Buffers are enqueued and where they

remain until dequeued by the owner. A returnQ associated with the entity A is

also a BufQ, to which Buffers are returned after completing their journey to one or

more communication endpoints.

#

"

Ã

!

#

"

Ã

!¾

-

Bufd

Bufd

ReturnReturnQ

ReceiveQ

A B

Sent

Figure 5.1: An Example of Internal Communication

Entity A transfers a Buffer to entity B by enqueueing it onto B’s receiveQ,

and invoking its signal function as a side effect. Entity B retrieves the Buffer by

dequeueing it from its receiveQ. The status of the Buffer transfer is recorded in the
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return status field of the Bufd, and it is enqueued to the source’s (A’s) returnQ by

B. Entity A discovers the status of the data transfer by dequeueing the returned

Buffer from its returnQ and examining the return status flag.

Note that so far, the direction of data flow has not been mentioned, but only

that of Buffer flow. The direction of data flow and the direction of Buffer flow are

orthogonal in the Buffer and Queue Model. That is, entity A can send data to

entity B by transferring a full Buffer to B’s receiveQ, and entity A can request

data from entity B by transferring an empty Buffer to B’s receiveQ. In the former

case, the empty Buffer along with the status will be returned to A’s returnQ. In

the latter case, the filled Buffer along with the status will be returned. It is also

possible to generate bidirectional data flow by having the returning Buffer filled

with B’s user data. When a Buffer is dequeued from a returnQ, it is assumed to

be safe to reuse it or destroy it.

The simple internal communication example described above can be directly

applied to communication between threads (in the Mach [Acce86] sense) within

a single protection domain. In this case, the signal function unblocks a blocked

process. In the case of coroutines, signal is simply the coroutine resume operation.

If the two entities are required to communicate by procedure call, the enqueue and

signal functions become asymmetric and more complex.

Consider a procedure A (the calling procedure) invoking a procedure B. Assume

that there are some parameters transmitted by A to B and results returned from

B to A. Further, assume that the process of saving and restoring the context of

the calling procedure will be handled by the normal procedure call mechanism, so

that the description can be focused on the communication aspect of procedure call.

The calling procedure “prepares” the input parameters by filling in appropriate

information in the Buffer to be sent to the called procedure. Those parameters
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passed by value are copied into the Buffer, and those passed by reference will have

their addresses copied into it. The prepared Buffer is enqueued to the receiveQ of

the called procedure. The signal function is then invoked as part of the enqueue

operation to switch the thread of execution from the caller’s context to the callee’s

context. The signal function invokes the dequeue operation of the callee’s receiveQ

to access the input parameters (i.e., put them on callee’s stack), before finally

calling procedure B. After the execution of B, the result is appropriately stored

in the Buffer again and returned to the called procedure by enqueueing it to the

caller’s returnQ. As in the calling sequence, the signal function would be executed

and the result is put on the caller’s stack. At this point, the normal procedure

return mechanism causes execution to return to the next statement in A.

Note that in the Buffer and Queue paradigm, entity A does not need to “know”

that B is accessed by a procedure call, and B does not need to “know” that it is

being called through the Buffer and Queue interface. Furthermore, the Buffer and

Queue interface which encloses B does not need to know details of the implemen-

tation of A’s returnQ.

This example of procedure call communication can be extended trivially to

remote procedure call by performing the enqueue operations on remote Queues.

Any failure of the remote system would be detected by the local BQP server, who

would return the Buffer with an appropriate error status, which would be received

at the time of the caller’s dequeue operation.

These simple uses of Buffers and Queues for internal communication are used

as a building block in the subsequent examples.
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5.2 Local Interprocess Communication

Next, an example of interprocess communication between two local processes or

entities that do not share an address space is presented. Since the communicating

entities do not share a common area of memory, data transfer involves a copy

operation from the sender’s address space to the receiver’s. The copy operation is

usually carried out by a privileged third party such as a kernel, which also acts as

an agent to synchronize the transfer, and which has access to both address spaces.

A process, A, has some data to transfer to another process, B. Process A

obtains an IPC Buffer by either creating a new one or reusing an existing one. If a

new IPC Buffer is required, A would make a kernel request. The kernel would then

create an IPC Buffer and return a user copy to A. Since the sender has the data

and knows to whom it wishes to send, it inserts the pertinent control information

in the appropriate fields of the IPC header and links the data memory block to the

IPC Buffer. Process A then passes the IPC Buffer to the IPC layer entity or IPC

server (e.g., the PostMaster in Shoshin [Shew90]) by enqueuing the IPC Buffer to

the IPC server’s BufQ as shown in Figure 5.2. Process B, which wishes to receive

some data from process A also “prepares” an IPC Buffer with an empty data block

and passes it to the server. The IPC server is equipped with two BufQs: sendQ

and receiveQ. A sendQ is a BufQ, where the Buffers that contain data to be sent

are enqueued, and a receiveQ is also a BufQ, where the Buffers that contain empty

data blocks to be filled with incoming data are enqueued.

The IPC server now has the sender’s Buffer on its sendQ and the receiver’s Buffer

in its receiveQ. The IPC server matches the sender and receiver by examining the

source and destination fields of the IPC headers (any specific matching algorithm

is not discussed here since it is a function of the IPC protocol and outside the scope
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Figure 5.2: An Example of Local Interprocess Communication

of this work) and copies the data from process A’s Buffer to process B’s Buffer.

At this time, the IPC server records the status of the data transfer by setting the

return status field in each Buffer. It also records the number of bytes that have

been actually transferred to the receiver’s Buffer. The IPC server then returns A’s

Buffer to A’s returnQ and B’s Buffer to B’s returnQ. Process A obtains the status

of the data transfer by dequeueing the Buffer from its returnQ and examining the

return status field. Process B, on the other hand, can retrieve the received data by

dequeueing the returned Buffer from its returnQ.

Note that the user memory provided by the sender or receiver does not nec-

essarily have to be a single contiguous block. It can be in other forms such as a

scatter-gather list of memory fragments. It merely needs to be an acceptable Buffer

object. The Bufd (or Bufds) in a Buffer contain all the necessary information per-

tinent to the composition of memory blocks. Thus, a novel feature of the Buffer

and Queue Model is that the Buffer structure of the sender and that of the receiver
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do not need to be the same. This feature was used to show the equivalence of

message-passing and streams through the intermediate use of Buffers and Queues.

Basically, the sender has a message-passing user interface (i.e., a MP Buffer) and

the receiver has a streams user interface (i.e., a streams Buffer). A sender’s message

is received by the receiver in small chunks as desired, and the end of message signals

the end of stream. Thus, user interface and basic communication are orthogonal

components in the Buffer and Queue Model.

Note that in streams IPC, several Buffers may actually be involved at one end to

fill or empty a single one at the other. A stream is closed by setting the more flag to

false in the last Bufd, which forces both sides to terminate in an appropriate manner.

Also, privileged processes, which have access to shared Buffer memory, need not

copy data into their own memory areas. They can simply arrange to have Buffers

forwarded directly to their own BufQs, effectively turning the IPC server into a

simple router. They would have the option of returning the Buffers themselves, or

of returning them through the IPC server. Obviously, many systems may choose

to encapsulate these Buffer and Queue implementations of IPC in library or kernel

routines for the convenience of user processes.

5.3 Network Communication

Next, an X11 [Sche88] client-server communication example is used to demonstrate

how Buffers and Queues can be used for efficient conventional network protocol

processing. An X11 client, which wishes to send a request to a server located on

another node on the network, creates an X11 Buffer and fills it with the appropri-

ate information such as the request op-code and its arguments. It then invokes an

appropriate X Toolkit [Swic88] or X library routine. Recall that in the hierarchy
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of X11 communication protocols, there is a thin layer of IPC. X11 uses sockets in

Berkeley UNIX and STREAMS in System V UNIX as its underlying IPC mecha-

nism. However, they are similar in that both layers are responsible for connection

and addressing. In this example, the use of a stack of TCP, IP and Ethernet

protocols under the IPC layer is also assumed.

Presumably, the invoked X library routine would request that the kernel create

an IPC Buffer. The kernel then would create an IPC Buffer, and return a user

copy to the X library routine. The X library routine “prepares” it as process A

did in the local IPC example above and passes the IPC Buffer to the IPC server

by enqueueing it on the server’s sendQ. The server notices that the Buffer is to be

transferred over the network, so it passes the Buffer to its lower layer, the transport

layer, again by an enqueue operation. Since TCP is the transport layer protocol in

this example, TCP prepares a TCP Buffer, links the IPC Buffer to it and passes

the result to the network layer. The network layer, IP, prepares an IP Buffer and

passes it to the device layer. The device layer, Ethernet, then prepares an Ethernet

Buffer and notifies the Ethernet controller to transmit the data over the Ethernet

network. At this time, the Ethernet Buffer’s internal structure looks like Figure 4.4,

reproduced in Figure 5.3.

The content of the Buffer is transmitted using an algorithm which traverses

each header and transmits all the headers first, then user data followed by trailers.

If the network controller supports the gather capability, then copy operations can

be completely avoided since the controller can directly transmit multiple memory

fragments including those from the user process without any copy operation. The

actual transmitted packet is shown in Figure 5.4. In this way, the Buffers are passed

by reference from the user layer to the device layer, avoiding copy operations as

much as possible. When the Ethernet controller transmits the packet to the remote
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Figure 5.3: The Internal Structure of an Ethernet Buffer

node successfully, the Bufds in the Ethernet Buffer can be returned recursively to

the previous returnQs, or directly to individual returnQs by the Ethernet or any

intermediate layer as appropriately flagged. As mentioned earlier, this is possible

due to the capability to access nested higher layer Bufds inside a Buffer at any

level.

This example demonstrates not only how one can implement conventional net-

work communication efficiently, but also how different types of entities can com-

municate using a uniform data structure as well as a uniform communications

interface. The entities involved in this example range from user processes, through
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ETH IP TCP IPC E-TLRX11-Data

Figure 5.4: The Transmitted Ethernet Packet

kernel routines or processes, to devices.

5.4 Distributed Communication

Next, an example of distributed communication, which involves transferring Buffer

objects to remote BufQs in a distributed system, is presented. As demonstrated

earlier, the complexity of the Buffers’ internal structures can vary greatly. How

some of these simple and complex Buffers are transferred among Queues within

a single memory domain has been demonstrated in the last three examples. In

the network communication example presented above, only the content of a Buffer

is transmitted to a remote node. To achieve transparent internal communication

throughout the system, any Buffer object should be transferrable to anywhere in

the distributed system while keeping its original structural form intact. The BQP

layer also relays other control functions (e.g., abort, enquiry and recovery) and in-

formation (e.g., returnQ, return status, etc.) essential for remote Buffer and Queue

operations. Here, we demonstrate how the BQP supports location transparency in

distributed communication. The transfer of short messages is demonstrated in this

example and the transfer of long messages in the next example.

In the X11 communication example used earlier, a reasonable place to insert

the BQP layer is between the IPC and transport layers. Since the transport layer

(e.g., TCP) provides reliable end-to-end data delivery, the BQP layer can ignore
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this aspect and concentrate on transferring the content as well as the structural

information of Buffers.

As in the network communication example, the X client prepares an X11 Buffer

and invokes an X library routine, which in turn prepares an IPC Buffer and enqueues

it to the IPC server. Since the Buffer is destined to a remote X server, the IPC server

passes the Buffer to the BQP layer by enqueueing it to the BQP server. The BQP

server fills in the source and destination QIDs in the BQP header. If higher-level

naming was used by the user, a name server can be called to resolve the destination

address. The BQP server sets an appropriate packet type and flags in the BQP

header as well. Since the BQP layer sits on top of a reliable stream, the sequence,

more flag and chksum fields (of the BQP header shown in Figure 4.15) are redundant

unless BQP is multiplexing several concurrent operations and thus fragmenting and

sending Buffers piecemeal itself. Since there are two layers, IPC and X11, above

the BQP layer, it sets 2 in the layer count field. The total message length field

would contain the length of all the headers and data above the BQP layer. The

number of bufds field would contain the value 2 since there are two Bufds above

the BQP layer: the IPC and X11 Bufds. The BQP server then traverses the Buffer

structure pointed by its next Bufd field and sets the linearized flag field in the IPC

and X11 Bufds. As explained earlier, the Bufds with this flag set are transmitted

to the remote node as part of data to be used for reconstructing the original Buffer

structure.

The BQP server then passes its Buffer to the transport layer. The lower layers

(i.e. transport, network and device layers) prepare their Buffers, perform protocol

processing and pass them to their lower layers as described in the network commu-

nication example. The resulting Buffer structure before transmission is shown in

Figure 5.5. The content of the Buffer is transmitted using an algorithm which is a
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variation of the one used for the conventional network communication packet trans-

mission (the third scheme described in Section 4.4.1 is used here). As each Bufd is

visited, the algorithm checks to see if the linearized flag is set. If it is not set, the

Bufd is not transmitted but only the header. If it is set, the Bufd is transmitted

first and the algorithm continues upward until no further Bufd is found.1 Then all

the headers, trailers of flagged Bufds and user data are transmitted, followed by

the trailers of unflagged Bufds. The corresponding Ethernet packet transmitted is

shown in Figure 5.6.

When the packet arrives in the remote node, it is processed in a conventional

manner (i.e., headers and trailers are stripped from the received data and passed

to higher layers) until data reaches the BQP layer. The BQP server also strips its

header from the data. It then reconstructs the IPC Buffer from the information in

this header. It strips the IPC Bufd and X11 Bufd from the data and fills in the

appropriate local information such as local virtual addresses of the X11 Bufd and

IPC Bufd. Thus, the resulting IPC Buffer contains the IPC header block, the X11

Bufd, and the user data block. It also sets a local returnQ QID and the appropriate

inverse QID mapping so the local return Bufds will be caught and redirected to the

remote node. It then passes the IPC Buffer to the IPC server by enqueueing it to

the server’s sendQ. The IPC server performs a matching operation. If a matching

Buffer (i.e., the intended receiver’s Buffer) is found in the server’s receiveQ then

the data transfer takes place, otherwise it remains in the server’s sendQ until a

matching Buffer arrives. Upon completion, the Buffer will be returned to the BQP

layer, which, acting as the agent for the original sender, will ensure that status and

controls are returned to the originating node and the corresponding actions and

1Unless there was an error in preparations of Bufds above the first Bufd that had the linearized

flag set, the flag should be set in all Bufds. Thus, these flagged Bufds get transmitted as part of
data.
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clean-ups carried out.

5.5 Distributed Communication with Long

Messages

The last example demonstrated a distributed communication involving short

messages. This example involves long messages (e.g., 100 kilobytes), which re-

quires message fragmentation and reassembly. Assume that the IPC layer does not

fragment the message but passes the entire message to its lower layer, the BQP

layer. Since the BQP layer has been placed on top of a reliable stream transport

protocol, TCP, the BQP layer also does not fragment the message but simply trans-

mits the entire message to the transport layer. TCP and/or IP will fragment the

message into a number of smaller message fragments so that each can fit in an

Ethernet packet.

The remote BQP layer will receive a small message fragment at a time from

its lower layer, because of the TCP stream semantics. The first BQP packet will

contain the BQP header, all the higher layer headers and Bufds, the structural

information for reconstructing the Buffer, and perhaps even the first few bytes of

user data. (If all the Bufds did not arrive in the initial packet, the remote BQP

server simply waits for the subsequent packet(s) until all Bufds arrive.) At this

time, the Buffer can be reconstructed by stripping the Bufds and headers from

the arrived packet, filling in the appropriate local information in various fields of

Bufds and linking them appropriately to form a template of a segmented Buffer

according to the passed structural information. In conventional protocols, all the

message fragments would have to be reassembled before the message could be passed
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to the higher layer. However, much greater flexibility can be achieved using the

BQP protocol. The BQP allows one to pass each subsequent message fragment

immediately as another segment, wait for multiple message fragments until some

desired amount of data is accumulated (i.e., partial reassembly) or wait until the

entire message has arrived. The reassembly does not need to be done in the same

layer as fragmentation is performed at the source. In fact, the BQP allows the

reassembly to take place at an arbitrarily higher layer (e.g., at the user layer) as

will be demonstrated below.

The IPC layer also has an option of sending each message fragment to the user

or waiting for the entire message. An example of message reassembly at the IPC

layer is shown in Figure 5.7. Since the IPC layer knows that all Buffers in a chain

are part of a segmented Buffer, it can return the Bufds and headers from each

template immediately to the BQP layer reassembling the data into a single Buffer

or a more compact segmented Buffer as an efficient memory management measure.

The IPC server can keep the full structure of the first Buffer and keep only the X11

Bufd and data memory blocks for the subsequent Buffers. Thus, the data fragments

can be linked via queue pointers in the X11 Bufds.

The capability of deliverying each fragment to an arbitrarily higher layer without

reassemblying all the fragments at the same layer as the source is one of the novel

aspects of the BQP. This capability is essential for supporting a stream type of

communication, where arbitrarily-sized fragments of data are written or read. This

capability is also useful for efficient resource management. Since each fragment can

be delivered and processed all the way up to the final destination Buffer (i.e., the

user Buffer), tying up large amounts of valuable resource for a long period of time

can be avoided. Using the conventional approach, the same amount of memory

would be needed as the original unfragmented message memory tied up in the IPC
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layer until all the fragments are reassembled. Here, the IPC layer could queue

message fragments until either a receive operation has been issued at application

level or a buffer has been made available by some other means, then copy them as

they arrive. Furthermore, since the copy operation is avoided in passing the Buffer

from one layer to another, the extra memory which would be needed otherwise is

not necessary.

Here, multiplexing in the BQP layer is described briefly, which can be useful and

more efficient if multiple users share a single transport channel at the BQP layer.

Kernel-to-kernel communication [Vasu87] is a good example of using multiplexing.

Rather than dedicating the entire bandwidth to one user and denying service to

others for potentially a long period of time, assigning a portion of the bandwidth to

each user may be more efficient. This can be achieved by fragmenting large messages

in the source BQP layer, multiplexing multiple user data and demultiplexing at the

destination BQP layer. Here, the more flag, sequence and chksum fields of the BQP

header need to be used. The more flag will be set as each fragment is transferred

except the last fragment. The sequence and chksum fields are used for error recovery

purposes.

5.6 Optimistic Blast Bulk Data Transfer

Recently, there have been studies of optimistic blast protocols for supporting high

throughput user-to-user bulk data transfer [Cart89, OMal90]. Here, these protocols

are briefly examined because they provide special ways of handling long messages

in a distributed environment. Since the Buffers and Queues provide an efficient

solution for transferring long messages in a distributed environment, these special-

ized protocols should also be easily supported. Thus, a solution is proposed, which
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will achieve the same goal, based on the Buffers and Queues. This exercise will also

demonstrate the flexibility of the Buffer and Queue Model, which can be used to

support very specialized protocols such as the optimistic blast protocols.

These optimistic blast protocols basically increase throughput by avoiding the

copy operation of data from the kernel address space to the user address space

and vice-versa, with the help of the scatter-gather capability of the network con-

trollers. These protocols are based on Zwaenepoel’s blast protocol [Zwae85], where

the sender fragments large messages into multiple network packets and sends all

the packets, one immediately after the other, without waiting for each packet to be

acknowledged. The receiver sends an acknowledgement only after all the fragments

have been received. Carter and Zwaenepoel’s optimistic blast protocol [Cart89]

supports only a single transport protocol, namely the V-kernel’s. On the other

hand, the optimistic blast protocol of O’Malley et al [OMal90] can support multi-

ple protocol suites.

These optimistic blast protocols all require a scatter-gather capability on the

network controllers. They can avoid the copy operation of data by having advance

knowledge of the likely destination of data in the next incoming packet. On the

sending side, the user provides the source address of the data by passing its address

to the device driver. The sender also provides the destination address of a Buffer

for the reply message in the case of a request/receive/reply interaction. On the re-

ceiving side, the device driver can obtain the address of the receiver Buffer from the

information contained in the sender’s network frame. In Carter and Zwaenepoel’s

protocol, the receiving network device driver peeks at the header of the network

frame to detect the first fragment of a blast sequence, and thus obtains the des-

tination address of the message fragments. O’Malley et al’s facility transmits an

explicit control frame to signal the start of a blast sequence. They support two
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optimistic blast protocols: padded blast and by-request blast. The padded blast

protocol is similar to Carter and Zwaenepoel’s in that it uses a fixed header size.

In contrast, the padded blast protocol supports variable-length headers by padding

each header to the same fixed length. The control frame sent to signal the start

of a blast sequence does not contain any header information, since the receiving

device driver knows the header size and hence can figure out where the user data

starts. The by-request blast protocol does not use the fixed header size but relays

the pertinent information (such as total size of the data, the size of the first header,

etc.) in the control frame to the receiving device driver.

Both research groups have used some interesting memory management “tricks”

as well as network controllers that have the scatter-gather capability. Some of these

“tricks” involve the fixed header size for supporting only a single transport protocol

or a fixed header size that is big enough to handle any existing stacks of network

communication protocols, and requiring that user data be page-aligned. These

optimistic blast protocols can be easily supported using the Buffers and Queues

with the same “tricks”.

Here, a solution based on Buffers and Queues is presented, that will support

multiple protocol suites without the constraints imposed on O’Malley et al’s proto-

cols (see Figure 5.8). Since the Buffer structure (described in the Buffer abstraction)

is already suitable for avoiding the copy operation as it traverses the network com-

munication layers, if a scatter-gather network controller is used, any copy operation

of data can be avoided on the sending side. In this case, the BQP protocol can

transmit the Bufd information necessary for the proper interpretation of subsequent

data. Recall that the BQP protocol is responsible for transmitting all the headers,

data, trailers and the structural information of a Buffer.

Their optimistic blast protocols are handled at the lowest layer, the network
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device driver, so that they can avoid any protocol processing which requires the copy

operation of inbound network frames. For the same reason, the same functionality

should be built in the network device driver in the Buffer and Queue solution.

In the earlier examples, the BQP protocol was placed between the transport and

IPC layers. Here, the layer immediately above the network device driver handles

optimistic blasts with special commands to configure the network device driver

reception buffers. The device driver places not only all the headers, trailers, and

data, but also all the Bufds above the device layer into the outgoing network packet.

This first network packet will thus contain the headers, trailers, Bufds, zero or more

bytes of user data, and a flag (e.g. Ethernet packet type) indicating the start of a

blast sequence. If the headers span more than one packet, then whatever number

of initial packets are required will be handled by normal protocol processing at the

start of the blast. When the header packet or packets arrive at the receiving device

driver, then the BQP Buffer can be reconstructed immediately. Through normal

layered processing, the incoming message must be matched with an outstanding

Buffer. At this point, all the necessary information is available to configure the

network controller to scatter incoming data fragments. If no outstanding Buffer has

yet been supplied by the receiver, any of the solutions proposed in [Cart89, OMal90]

can be chosen.

5.7 Semaphores

Next, implementation of traditional semaphores [Dijk65] using the Buffers and

Queues is presented. Implementations of binary semaphores, counting semaphores

(also called general semaphores), and distributed versions of these are described.

A semaphore is a protected variable whose value can be accessed and altered only
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by the operations P() and V(). Binary semaphores can assume only the value 0

or 1. Counting semaphores can assume only nonnegative integer values. In order

to permit distributed semaphore operations while respecting the restrictions that

only the owner may dequeue, the implementation is more complex than would be

required to support only local semaphores.

The basic idea is to use Buffer descriptors (Bufds) as tokens or rights to access

a shared object, and a SemaphoreQueue (SQ) as a place where these tokens are

initially stored. A token is passed from a SQ to a client when the P() operation is

invoked and a token is returned to the SQ when the V() operation is invoked. The

proposal presented here is not new; the notion of “token passing” has been used

in ISIS for implementing distributed semaphores [Birm87a]. However, what I hope

to achieve through this exercise is to demonstrate the versatility of the Buffer and

Queue model by demonstrating an implementation of various semaphores without

too much overhead or effort.

In the current conceptualization of Buffer and Queue model, data elements (e.g.,

Bufds) in a Queue are only dequeueable by the Queue’s owner. This restriction

forces one to implement a semaphore as a server entity or at least an object with

the code to accept and process semaphore operations by the signal operation within

the enqueue operation. In the latter case, the client’s thread of control would be

extended to execute the semaphore object’s code when the P() and V() operations

are invoked. For simplicity, the implementation using a semaphore server entity is

described here. An implementation of binary semaphores is described first, followed

by counting semaphores, and distributed versions of these.

For the P() operation of binary semaphores, the client sends a Bufd containing

the semaphore request operation code (C-Bufd) to the SQ and the client is blocked

on dequeueing the token Bufd (S-Bufd) from its receiveQ. The SQ owner replies to
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the client with a token Bufd if and when the token Bufd is available for the client.

It keeps the client’s Bufd until the token Bufd is returned. Note that keeping the

client’s Bufd by the SQ owner allows the SQ owner to keep track of who currently

holds the token and to recover from lost tokens and unfaithful P()’ers. It also serves

as a vehicle to acknowledge the return of the token by a subsequent V(). When the

token Bufd is enqueued onto the client’s receiveQ, the client is unblocked and has

now obtained the semaphore.

In a normal request-reply-ack transaction, the client sends an ACK back to the

server to complete the transaction. However, here the client P() request is satisfied

by the SQ sending a token. The latter can also be thought of as a request by

the SQ to retrieve its token. The V() operation by the client is the reply to this

request, and the return of the original client Bufd is the final ACK terminating the

extended operation. Thus, the P() and V() operations of binary semaphores can be

considered as an overlap of two request-reply-ack transactions, which involves the

exchanges of four packets rather than the normal six packets. The timing diagram

for the exchange of two Bufds is given in Figure 5.7.

So far, an implementation of binary semaphores has been described, where the

use of a single token Bufd and a single client Bufd per client is sufficient. Counting

(or general) semaphores work essentially as above, except that there would simply

be more token Bufds managed by the SQ server. For example, for N -counting

semaphores N token Bufds are required in the SemaphoreQueue. These token

Bufds would be sent out to clients as they perform P() operations and returned as

they perform V() operations. When there are no more token Bufds left in the SQ,

the clients would be blocked until a token Bufd is available.

Distributed semaphores allow entities or processes located on different machines

to synchronize. An implementation of distributed semaphores can be accomplished
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using Buffers and Queues with the aid of the BQP. Token request and return

aspects of the distributed semaphore implementation work essentially the same

as in centralized binary or counting semaphores except that the BQP is used for

semaphores to work transparently over remote machines.

The BQP was originally designed to encode/decode Buffer structuring informa-

tion as well as to transfer dynamic control information for remote Buffer and Queue

operations. Since the delivery of data associated with Bufds is not a concern in

supporting semaphores, the BQP can be used to transfer only the token aspect of

Bufds and the dynamic control information associated with them. Thus, the en-

coding/decoding aspect of the BQP can be simplified substantially. However, since

the Bufds may travel from one node to another with important information such as

its SemaphoreQueue (or returnQ), requested operation code and status, they must

be delivered reliably. One may implement the BQP on top of a reliable transport

mechanism or utilize the reliability capability of the BQP if necessary.

Thus, Buffers and Queues can be used to implement semaphores (both binary

and general) and distributed semaphores in a simple and efficient manner with the

BQP.

5.8 One-Way Communication

Next, a solution for supporting an efficient one-way communication is presented,

where the sender does not require an acknowledgement from the receiver(s). Broad-

cast and multicast basically provide one-way flow, as opposed to bidirectional flows

of information. Also, datagram protocols (e.g., UDP) does not obviously map well

onto the transaction-based Buffer and Queue Model. One can always send an extra

packet and drop or ignore it, but it might be useful to build a component into
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Buffers and Queues that handles such things as part of the protocol and thus can

avoid redundant steps in intermediate operations and optimize efficiency.

Clearly, once an entity has copied the datagram message from a Buffer, the

Buffer can be deleted or returned. After reception, if one passes back a Buffer

to a local intermediate entity such as the BQP server, and it is known that the

originating remote Buffer was a datagram Buffer, then there is no need to acknowl-

edge it or clean-up previous elements of the chain, and it can be grounded (i.e.,

no acknowledgement is sent over the network). However, it is useful to retain the

shared-memory transaction-like behavior within a particular domain (e.g., local

group multicast) for the purpose of resource management. By recognizing data-

gram Buffers, it is possible to avoid a packet exchange, unblock the sender as soon

as transmission is complete, but still use Buffer and Queue facilities to manage

system resources on both nodes. A simple and efficient solution to achieve this

optimization is to have the sender set a flag in the Bufd. After transmission, the

Buffer is returned immediately to higher layers. On reception, the intermediate re-

ceiver would check this field upon processing a returned Buffer and act accordingly.

From the sender’s perspective, this is an example of partially synchronous blocking,

or ACK within a single domain only.

To elaborate slightly, when a one-way remote data transfer is initiated by a

local entity, local resources will be allocated appropriately to construct required

Bufds as explained in previous examples involving network communication. The

“prepared” Buffer is passed to a local BQP server, which in turn flags the Buffer to

be one-way communication, and then passes it down the layers of network protocols.

When the network device driver transmits the content of the Buffer, the Buffer can

be returned to the layers above. Each layer above the device layer can reclaim

its Bufd and memory associated with it, and pass the remaining Buffer structure
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upward as explained in the network communication example. This process can go

on recursively until all Bufds are returned to its appropriate places including the

user since it is a one-way communication requiring no ACK or reply. In two-way

communication, the Bufds above the BQP layer will not be returned to their owners

until an ACK or reply message is received from the remote BQP layer.

On the receiving host, when data is delivered to the user, Bufds will be returned

to appropriate places as well, this time in the downward direction. When the

returning Buffer reaches the BQP layer, using the information stored in the BQP

layer, the BQP server will detect that this particular transfer was one-way and will

not generate a reply message to the sender BQP server2. The remaining Bufds will

then be returned to their appropriate places.

5.9 Distributed Shared Memory

Recently, two terms, distributed shared memory and distributed virtual memory,

have been used in the literature with no clear distinction emerging between the two.

For the purposes of this thesis, distributed shared memory (DSM) is defined as a

way of extending shared memory to a distributed environment for communication.

Mirage [Flei89] and Agora [Bisi87] are two examples of DSM. Distributed virtual

memory (DVM), on the other hand, is an extension of virtual memory in the

operating system sense to a distributed environment.

Distributed shared memory thus refers to logical sharing of memory across a

distributed computing environment. It gives the illusion to users that the memory

being shared (whether it is physically local or remote) is local memory. The un-

2In two-way communication, the return of local Bufds will trigger the transmission of a reply
message to the sender BQP server.
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derlying system supporting distributed shared memory is responsible for handling

issues such as coherence, access synchronization, address space structure, block size

and replacement policy to provide that illusion [Tam90]. The first two issues, namely

coherence and access synchronization, can be easily supported by the Buffers and

Queues. However, the latter three issues are really part of memory management

and thus outside the scope of the Buffer and Queue Model.

The data abstraction in the Buffer and Queue Model is flexible enough to de-

scribe various granularities of memory objects. For example, it could represent

memory of a single byte, pages of an address space, or permanent memory objects

(files). Coherence, which refers to consistency control of write and read operations

on various memory objects, can be supported by the owner or home concept of

Buffers. Write or page request operations on shared memory are sent to the owner

node, which would then make appropriate changes to the master copy or reply with

the requested page. The owner would also take appropriate actions to make sure

that the readers currently holding the stale data get the updated data.

Access synchronization is another important issue in supporting distributed

shared memory, and it ensures that no more than a single writer accesses the

shared memory. A simple solution using the Buffers and Queues is that the token

aspect of Bufds can be used to control access synchronization as presented earlier

in the semaphore example. The writer must obtain the token (that is, a Buffer

descriptor) for any particular segment of memory before he can make changes to

that segment.

The Buffer and Queue model, as demonstrated here, can easily and efficiently

support important issues of distributed shared memory. However, since the low-

level memory management issues such as the structure of the shared address space,

page replacement policy, and block size are outside the scope of the Buffer and
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Queue model, it must be integrated with memory management to provide full

support for distributed shared memory

5.10 Summary

In this chapter, implementations of various communication paradigms and facilities

were given using Buffers and Queues. Several examples of simple internal communi-

cation, which enjoy the efficiencies of the shared-memory paradigm, were presented.

These internal communication examples showed that Buffers and Queues can be

used between the simplest communicating entities such as procedures and corou-

tines, and more complex entities such as threads in a single domain. The local

interprocess communication example showed interactions between local processes,

each with its own protection domain. Network communication as well as distributed

communication examples demonstrated the use of a uniform data structure and a

universal interface between different types of entities.

The shared-memory communication paradigm is extended transparently to re-

mote communication by inserting the BQP layer, as demonstrated in the two dis-

tributed communication examples. The bulk data transfer example demonstrated

that Buffers and Queues with the help of the BQP can implement specialized proto-

cols easily and efficiently. Other examples also presented were implementations of

conventional and distributed semaphores, one-way communication and distributed

shared memory. Although an explicit solution was not presented I feel that more

complicated communication mechanisms such as Psync[Pete87] can be easily im-

plemented using Buffers and Queues.
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Conclusions

6.1 Summary

This research in communication in distributed systems has focused on managing the

complexity of communication. In conventional systems, there exist various types

of communication paradigms, abstractions and entities. Communication between

different types of paradigms, abstractions or entities is very difficult (if not im-

possible). This research has focused on developing a single efficient and consistent

programming interface that can be used by programmers to implement various com-

munication interactions both within and between various paradigms, abstractions

and entities. Furthermore, a hierarchical framework has been provided that can be

used to develop both existing and future communication paradigms and protocols.

In this study, a survey was done on various existing communication paradigms

and the issues involved in distributed systems as a means to identify and catego-

rize some of the fundamental aspects of all communications. In particular, aspects

of intra-process communication (communicating within the bounds of a protection

142
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domain), inter-process communication (both within and across protection bound-

aries), and network communications (general device and kernel-to-kernel commu-

nications) were examined for similarities and differences. The fundamental aspects

identified in Chapter 2 were examined more fully, and were redefined and orga-

nized them into a set of communication abstractions, namely data, node, and deliv-

ery/synchronization. A framework has been built based on this set of abstractions.

The result is a generic communication model, which provides a single efficient and

consistent programming interface that all communication paradigms, abstractions

and entities can deal with for various types of interactions. Further, the generic

communication model can be used to construct arbitrary communication systems.

A specific instantiation of the generic communication model called the Buffer

and Queue Model was developed, which consists of three communication abstrac-

tions, namely Buffer, Queue and delivery/synchronization abstractions. These ab-

stractions are combined to implement a communication model for distributed sys-

tems, which is simple and low-level but powerful and efficient, and which satisfies

the constraints of the generalized paradigm developed in Chapter 3. The Buffer-

Queue protocol was used to extend the programming interface to a distributed

environment so that the conceptual efficiencies of a single memory domain can also

be enjoyed between remote entities.

The versatility and generality of the Buffer and Queue Communication Model

were demonstrated by presenting implementation examples of a variety of communi-

cation paradigms and communication-related problems using the model. In particu-

lar, examples of internal communication, local interprocess communication, network

communication, distributed communication and bulk data transfer were presented.

Further, examples of implementing distributed and conventional semaphores, one-

way communication (e.g., multicast) and distributed shared memory were also pre-
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sented.

6.2 Discussion of Related Work

A common problem in the other attempts at providing a single consistent pro-

gramming interface (such as Berkeley sockets, AT&T STREAMS, Conduits, and

the x-Kernel) is that their concepts do not extend well to remote nodes. They

certainly have merits of their own for supporting local IPC or network communica-

tion. However, they all have to go out of their abstraction to extend their concepts

nicely to distributed environments. First, they all lack global identifiers that can

be used to identify and name their abstract objects across a system. Second, I do

not believe they have considered how to mix different types of entities as exten-

sively as I have. Last, but not least, they have not developed a specific protocol

that can allow transparent remote operations. On the other hand, the Buffer and

Queue abstractions view a distributed system as a single node, where efficiencies

of a local-memory environment can be enjoyed. That is, there is no node depen-

dence in the model. In reality, however, there exist separate nodes and protection

domains. The transparency which allows one to view the entire system as a sin-

gle shared domain has been achieved through an appropriate standardization and

hierarchical development of the abstractions, and through the linkage provided by

the BQP protocol as shown in Chapter 4.

As mentioned in Chapter 1, TACT [Auer90] and this work have a lot of sim-

ilarities in both approaches and goals. Both abstract complex problems in com-

munication into a set of simple concepts and standards that is more manageable.

Both strive to provide a universal interface between different types of endpoints. In

TACT, Auerbach introduced five canonical forms in the transport level as well as
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the tools to convert a specific type of data flow to one of these forms. The conver-

sion may actually involve one or more abstract conversions between canonical forms

themselves before achieving the form required by the destination. In my work, I go

one step further and provide a standard interface and a standard data structure for

various types of entities at all levels (not just in the transport level as in TACT)

across a wide spectrum of environments. Some local conversion may be involved,

which depends on and is handled by each local entity. However, all entities deal

with a uniform data structure through a uniform interface. Thus, I claim that the

communication programming interface developed in this thesis is “truly” universal.

In the x-Kernel, protocol and session objects attempt to provide a uniform in-

terface for each communication protocol. Their interface provides what I call a

“procedure-call interface” as discussed in Section 3.2.2. However, the communi-

cation interface presented in this thesis is more generic than theirs, since it can

support both the procedure-call interface and the “self-contained objects” interface

(also discussed in Section 3.2.2). Furthermore, they have designed their interface

for network communication protocols, whereas I have designed it to be used for any

type of communicating entities. Thus, I believe that my communication interface

is more generic and universal than theirs.

Another major difference between the x-Kernel work and this work is that they

have included low-level memory management aspects into communication abstrac-

tions whereas I have not. Although memory management is definitely an essential

aspect of communication, I strongly believe that low-level aspects of memory man-

agement such as how memory is allocated and deallocated should not be a concern

of the communication system but that of users of the communication system or

the memory management subsystem. Although memory management is intention-

ally (and correctly) separated from the generic model and the Buffer and Queue
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communication model, I have incorporated principles and tools that are useful in

maintaining sound memory management.

6.3 Future Work

One of the obvious extensions of this research is to do a full implementation of

the Buffer and Queue communication mechanism based on the class definitions

presented in this thesis. Some ad hoc implementations for a couple of communi-

cation paradigms have been demonstrated by Dave Shewchun using the Buffers

and Queues concepts in the Shoshin distributed software testbed [Shew90]. Al-

though he did not take full advantage of the Buffer and Queue class hierarchies

presented in this thesis, he followed the general concepts of Buffers and Queues

and demonstrated that it was possible to implement a serial streams capability on

top of Buffers and Queues.1 He further demonstrated that local message-passing

could be handled with the addition of a kernel communication manager called the

PostMaster.

The full Buffer and Queue implementation would involve filling in the detailed

code for various operations which are part of the class definitions as well as in-

corporating any system-dependent details. With appropriate modifications to the

PostMaster and kernel Buffer and Queue management subsystem, supporting lo-

cal message-passing, streams, shared memory, and mixed interactions among them

should be relatively easy. The next step could be to implement the Buffer-Queue

protocol layer, to allow distributed communication (e.g., remote message-passing,

streams) via conventional network communication. In order to truly take full

advantage of the Buffer and Queue paradigm, the next step could be to imple-

1The implementation was done in C.
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ment various network protocols for various types of network communication (e.g.,

connection-oriented, connection-less) using Buffers and Queues. Other examples

of communication facilities and protocols presented in Chapter 5 could also be

implemented.

In Chapter 4, three different ways of transmitting the structural information

in Buffers to remote nodes were presented as part of the BQP protocol. One

involved a physical structural change to the internal Buffer structure so that the

information required to be transmitted was arranged as if it were user data. The

other two schemes involved a change not in the physical internal structure but in

the way the read operation traverses the Buffer structure to transmit the necessary

information. Also, two ways of sending Bufds to remote nodes were discussed. One

is to send only the essential information, and the other is to send the whole Bufd.

An interesting study would be to implement various combinations of these choices

and make performance comparisons.

Other possible future work involves developing other communication systems

or models based on the generic communication model. The Buffer and Queue

Communication Model is just one instantiation of the generic model. I envisage that

other specific systems or models (such as Berkeley sockets, the x-Kernel, Choices

Conduits, and AT&T STREAMS) can be easily developed from it. For example, I

believe that one can easily apply the concepts of Conduits and ConduitMessages to

the generic model to develop the Choices Conduit communication system. Also, one

can apply the concept of STREAMS Queues and Messages to the generic model to

develop AT&T STREAMS. I believe that the generic model is sufficiently general

to develop most existing and future communication systems and models. This

type of extension would presumably involve incorporating system-wide identifiers,

a protocol for remote operations, and serious consideration of how to mix different
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entity types.

Another possibility involves applying the hierarchical framework that was used

in this research to other disciplines of operating systems. Memory is an abstraction

for data storage. Thus, one might also apply the same framework for the data ab-

straction to memory objects. There are various types of memories: main memory,

secondary memory, cache memory, virtual memory, distributed virtual memory,

etc. Managing various types of memory is becoming as complex as managing com-

munication in distributed systems. By an appropriate hierarchical framework, one

would hope to reduce the complexity of memory management to a more tractable

and universal form.

Somewhat closely related but a more concrete application of memory man-

agement is in supporting memory objects in the sense of Mach memory objects

[Acce86], Clouds objects [Dasg87], and Choices memory objects [Camp87] using

the Buffer and Queue concepts. The Buffer concept abstracts an ordered sequence

of bytes. I can envisage implementing a disk storage subsystem by extending the

concept to include permanent Buffers. After all, a disk represents an ordered se-

quence of bytes with particular internal structures (e.g., blocks, cylinders, sectors,

etc.). Furthermore, structured memory objects with different types of segments

(e.g., data segment, code segment, etc.) might also be handled using a form of

recursive Buffers.

I envision memory object servers with one or more Queues as interfaces, where

memory objects are stored and retrieved. These memory objects would be effi-

ciently transferred from one Queue to another within a protection domain or across

protection domains. The concept of memory objects is often being used as a basis

for supporting distributed virtual memory [Youn87, Russ89], and thus supporting

distributed virtual memory using the Buffers and Queues falls out quite naturally.
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I believe the Buffers and Queues possess a set of tools that is simple, low-level but

powerful and versatile to support these and other modern concepts in distributed

systems.

6.4 Contributions

This research has focused on reducing the complexity of communication in dis-

tributed systems. Currently, programmers use ad hoc approaches in developing

and implementing communication paradigms and protocols. There were two goals

in this research. One was to provide a framework upon which arbitrary communica-

tion systems or models can be developed. The other was to develop a set of simple

standards and tools that can provide a single efficient and consistent programming

interface that can be used to implement various communication interactions both

within and between various paradigms, abstractions, and entities.

In this study, the fundamental aspects of communication in distributed systems

were examined and organized into a set of abstractions; this forms the basis for

a generic communication model. This model satisfies both of the goals. That is,

the generic communication model provides a single programming interface that

the communications programmers can use to implement interactions both within

and between different types of paradigms, abstractions and entities. This interface

allows its users to cross boundaries of protection and temporal domains without

having to deal with the conceptual partitioning of interfaces based on the type of

target module. Further, the hierarchical framework can be used to develop arbitrary

communication systems or models. Thus, a major contribution this thesis has made

is the development of such generic communication model.

Another major contribution this thesis has made is the development of the Buffer
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and Queue Model, which meets the constraints of the generic communication model,

and thus provides a single consistent programming environment which utilizes the

conceptual efficiencies of the shared-memory paradigm. The Buffer-Queue protocol

was developed to extend the Buffer and Queue abstractions transparently to a

distributed environment. The Buffer and Queue model is simple and low-level so

that various communication systems and utilities can easily be built on top. The

generality and versatility of the Buffer and Queue Model were demonstrated by

presenting implementation examples of various existing communication forms and

utilities.

The main problem intended to solve in this thesis was to find answers to the

following set of questions:

• How can a programmer write code to locate some service, and then commu-

nicate with the provider of that service?

• How can this code be made independent of the memory domain, execution

control regime (procedures, threads, processes, device drivers etc.), and phys-

ical location of the service?

• Can this independence be achieved even when the communicating entities

have different characteristics?

The Buffer and Queue communication paradigm provides a simple and efficient

solution for the above problem, as shown by the code segment in Figure6.4.

The name server returns the QID of the service in Dest Q (assuming such a

service exists). The client sends the request by simply enqueueing the Buffer filled

with the message onto the service provider’s Queue. The client then retrieves the

status of the request (or a reply message) by dequeueing the returning Buffer from



CHAPTER 6. CONCLUSIONS 151

simple_op() {

Buffer_Queue *Dest_Q, Return_Q; // create Qs

Buffer *Bufp, Buf( Return_Q ); // create Bs

Ask_Name_Server( ‘‘Service’’, Dest_Q ); // locate service

Dest_Q->enqueue( Buf ); // send request

Return_Q.dequeue( Bufp ); // get reply or ack

}

Figure 6.1: The Code for a Buffer and Queue Communication Example

its returnQ. The beauty of this code using Buffers and Queues is that it can be

used independent of memory domains, execution control regime, physical location

of the service and types of entities. For example, the client and server can be of

different types of entities, located locally or remotely, executed by a single thread

or by separate threads, in a single memory domain or in separate memory domains

or any combinations of these.

Using the Buffer and Queue communication programming paradigm, the sys-

tems programmers can implement various communication systems efficiently. Since

the programmers are using a single consistent programming interface, supporting

communication between different types of paradigms, abstractions and entities is

not any more difficult than supporting communication within a single paradigm.

Further, these communication systems will provide the same universal interface

to user level applications, and thus allowing an efficient and truly universal pro-

gramming environment in both system and application levels. I believe the Buffer

and Queue programming paradigm can not only solve a lot of problems in current

systems but also in the future systems, in which heterogeneity will undoubtedly

increase.



CHAPTER 6. CONCLUSIONS 152

Finally, the following two aspects are minor contributions of this thesis. First,

the systematic design approach used for developing the generic communication

model appears to be applicable to reducing complexity of other operating system

disciplines as well, and it would be interesting to explore the possibilities in memory

management and process management. Second, the survey of current communica-

tion paradigms and issues involved as a first step in this research can be used as

a comprehensive reference to the literature of communication in distributed sys-

tems.
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Buffer Classes

class Simple_Buffer {

ADDR address; // start of buffer

int size; // buffer size

OFFSET offset; // offset of start of valid data

int count; // number of valid data bytes

// (offset + count <= size)

public:

Simple_Buffer(); // Buffer constructor

~Simple_Buffer(); // Buffer destructor

// write data into and read data from buffer

virtual int write_data( ADDR data, int len );

virtual int read_data( ADDR data, int len );

// move the pointer to specified location in buffer

virtual int seek_data ( int type, OFFSET off );

// get info related to valid data

virtual OFFSET get_offset();

virtual int get_count();

};

Figure A.1: The Simple Buffer Class Definition
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class Segmented_Buffer : Simple_Buffer {

// linkage

QDHDR q; // doubly-linked Queue pointers

// identification information

BTYPE type; // Buffer type

BID bid; // Buffer identifier

int sequence; // sequence field for memory block

PID owner; // owner of Bufd

QID returnQ; // return queue

// status information

QID currentQ; // current queue

int ref_count; // Buffer reference count

int return_status; // Buffer operation status

FLAG more_blocks; // more horizontal Bufds if set

// data

Simple_Buffer* databuf; // data block

public:

Segmented_Buffer( BufQ returnQ ); // constructor

~Segmented_Buffer(); // destructor

virtual int write_data( ADDR data, int len );

virtual int read_data( ADDR data, int len );

virtual int seek_data( int type, OFFSET off );

virtual OFFSET get_offset();

virtual int get_count();

// operations for fragmentation and reassembly

virtual int fragment_data( OFFSET off );

virtual int reassemble_data( Seg_Buf b1, Seg_Buf b2 );

// operations for setting and getting Bufd fields also go here

virtual BTYPE get_type(); // get Buffer type

virtual BID get_bid(); // get Buffer identifier

virtual int get_sequence(); // get sequence field

virtual PID get_owner(); // get owner of Bufd

virtual QID get_returnQ(); // get return queue

virtual QID get_currentQ(); // get current queue

virtual int get_ref_count(); // get Buffer reference count

virtual int get_return_status(); // get Buffer operation status

virtual FLAG is_last_block(); // check if last block

};
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class Recursive_Buffer : Segmented_Buffer {

// a subclass of Segmented_Buffer

FLAG linearized; // send Bufd if this flag set

FLAG which_blks; // indicates which memory blks exist

// Bufd structure information

Simple_Buffer* header; // protocol header

union struct {

Recursive_Buffer* bufdptr; // recursive Bufd pointer

Simple_Buffer* databuf; // data buffer

} nextptr;

Simple_Buffer* trailer; // trailer

public:

Recursive_Buffer( BufQ returnQ ); // constructor

~Recursive_Buffer(); // destructor

virtual int read_data( ADDR data, int len, int type, int level);

virtual int write_data( ADDR data, int len, int type, int level);

FLAG which_blks_exist(); // which memory blks exist?

FLAG check_linearized(); // check if Bufd linearized

int push_blk (addr, len, type) // insert control block

int pop_blk (addr, len, type) // remove control block

};

Figure A.2: The Recursive Buffer Class Definition
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Queue Classes

class Simple_Queue { // the simplest Queue

QDHDR head; // doubly-linked queue pointers

int q_pos; // current position in queue

int q_cnt; // number of elements in the queue

public:

Simple_Queue(); // constructor

~Simple_Queue(); // destructor

virtual int enqueue(); // add data elements

virtual int dequeue(); // remove data elements

virtual int seek_pos(); // move queue position pointer

virtual int get_q_pos(); // get current position in queue

virtual int get_q_cnt(); // get no. of elements in the queue

};

Figure B.1: The Simple Queue Class Definition
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class Buffer_Queue : Simple_Queue { // Qs for handling Buffers only

// BufQ identification

int type; // Queue type

QID qid; // global Queue identifier

PID owner; // owner process of this Queue

// BufQ status

int flags; // flags

int status; // status

int ref_count; // reference counter

virtual int signal(); // signal the receiver

public:

// operations

Buffer_Queue(); // constructor

~Buffer_Queue(); // destructor

virtual int enqueue(); // enqueue Buffer

virtual int dequeue(); // dequeue Buffer

// operations for getting BufQ fields go here

virtual int get_type(); // get Queue type

virtual QID get_qid(); // get qid

virtual PID get_owner(); // get owner

virtual int get_flags(); // get flags

virtual int get_status(); // get status

virtual int get_ref_count(); // get reference counter

};

Figure B.2: The Buffer Queue Class Definition
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class Network_Queue : Buffer_Queue { // a subclass of Buffer_Queue

Protocol protocol_descriptor; // protocol descriptor

virtual int signal(); // signal the receiver

public:

Network_Queue(); // constructor

~Network_Queue(); // destructor

virtual int enqueue(); // enqueue network Buffers

virtual int dequeue(); // dequeue network Buffers

// protocol specific operations go here

};

Figure B.3: The Network Queue Class Definition
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The BQP State Transition Table

The list of communication types, protocol states and actions are listed below.

Figure C.1 is a table containing all possible states, events and actions. The rows

are labeled by current states, and the columns by events (or the messages received).

The intersections of rows and columns represent actions. (Due to space constraints,

the events and their corresponding actions in the table have been wrapped around

and stored in two rows for each current state.)

• Receiver Event/State/Action:

– R WDD : Wait for data from sender

– R REP : Wait for user reply

– R SDD : Send data to sender

– U REPLY : User reply

• Sender Event/State/Action:

– S DONE : Sender all done

159
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===============================================================

| P_NUL R_WDD R_REP R_SDD U_REPLY ...

| S_DONE S_SDD S_WDD U_SEND X_ABORT

===============================================================

P_NUL | P_IGN P_ERR P_ERR P_ERR P_ERR ...

| P_IGN P_ERR P_ERR S_INIT,S_SDD X_ABORT

---------------------------------------------------------------

R_WDD | P_IGN P_ERR P_ERR P_ERR P_ERR ...

| P_ERR R_WDD P_ERR P_CLR P_CLR

---------------------------------------------------------------

R_REP | P_IGN P_ERR P_ERR P_ERR R_SDD ...

| P_ERR R_REP R_REP P_ERR P_CLR

---------------------------------------------------------------

R_SDD | P_IGN P_ERR P_ERR P_ERR P_ERR ...

| R_DONE R_SDD R_SDD P_CLR P_CLR

===============================================================

S_DONE | P_IGN P_ERR P_ERR S_DONE P_ERR ...

| P_ERR P_ERR P_ERR S_INIT,S_SDD P_CLR

---------------------------------------------------------------

S_SDD | P_IGN S_SDD S_WDD S_WDD P_ERR ...

| P_ERR P_ERR P_ERR P_ERR P_CLR

---------------------------------------------------------------

S_WDD | P_IGN P_ERR S_WDD S_WDD P_ERR ...

| P_ERR P_ERR P_ERR P_ERR P_CLR

---------------------------------------------------------------

X_ABORT | P_IGN P_ERR P_ERR P_ERR P_ERR ...

| P_ERR P_ERR P_ERR P_ERR X_ABORT

---------------------------------------------------------------

Figure C.1: The BQP State Transition Table
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– S SDD : Send data to receiver

– S WDD : Wait for data from receiver

– U SEND : User initiated send

• Other Event/Actions:

– X QEXIST : Queue existence query

– X ABORT : Abort Buffer operation

• Internal State/Actions:

– R DONE : Decommission receiver

– R ACK : Ack S SDD

– R INIT : initialize receiver

– S INIT : initialize sender

– P NUL : Null/Reset state

– P IGN : ignore/drop packet

– P CLR : clear transaction and retry

– P ERR : protocol error - reset and transmit Abort
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