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Abstract

Virtually all semantic or object-oriented data models assume objects have an identity

separate from any of their parts, and allow users to define complex object types in

which part values may be any other objects. In [20], a more general form of functional

dependency is proposed for such models in which component attributes may correspond

to descriptions of property paths, called path functional dependencies (PFDs). The main

contribution of the reference is a sound and complete axiomatization for PFDs when

databases may be infinite. However, a number of issues were left open which are resolved

in this paper. We first prove that the same axiomatization remains complete if PFDs

are permitted empty left-hand sides, but that this is not true if logical consequence is

defined with respect to finite databases. We then prove that the implication problem for

arbitrary PFDs is decidable. The proof suggests a means of characterizing an important

function closure which is then used to derive an effective procedure for constructing a

deterministic finite state automation representing the closure. The procedure is further

refined to efficient polynomial time algorithms for the implication problem for cases in

which antecedent PFDs are a form of complex key constraint.

Index Terms: constraints, functional dependencies, object-oriented data models, com-

plex objects, implication problems
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1. Introduction
There are at least two problems with the relational model when used for more involved appli-

cations [10]: users must introduce properties of objects to serve as their means of reference,

and all relationships between objects must be expressed indirectly in terms of these properties.

Virtually all semantic or object-oriented data models overcome these problems by assuming

that objects have an identity separate from any of their parts, and by allowing users to define

complex object types in which part values may be any other objects [1, 2, 11, 14, 16]. A more

general language of functional constraints for a data model supporting the definition of such

complex object types was considered in [20]. One feature of the model in common with a

number of others [4, 5, 8] is that a database is viewed as a directed labeled graph. The idea is

that objects and property values correspond to vertices and arcs respectively. The constraint

language is novel since it allows descriptions of property value paths in a database graph to

occur as component attributes. Members of the language are therefore referred to as path

functional dependencies (PFDs).

An example of a collection of complex object types which can be defined in terms of

the data model in [20] is illustrated by the UNIVERSITY schema graph in Figure 1, which

characterizes information about student course enrollment at a hypothetical university. In-

formally, each complex object type is represented by a labeled vertex together with a number

of outgoing labeled arcs. The vertex label is a class name and each outgoing arc represents a

function which is total on the “from” class and single-valued on the “to” class.

enroll-

ment

student

courseinteger

dept

string

prof

Mark

S

C

Time

Room

Num
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Inst

In

Head

Name

Name
Name

Figure 1: The UNIVERSITY schema graph.

Some examples of PFDs over the UNIVERSITY schema are listed in Table 1. The initial

four entries use the special property value path descriptor, Id, to assert “keys.” For example,

the first is satisfied by a database graph only if no two departments have the same name.
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(Similar constraints might also be given for students and professors.) The fifth and sixth

PFDs are consequences of a requirement that professors only teach courses offered by their

own departments, while the last is justified by physical reality—it asserts that a student

cannot be enrolled in two separate courses at the same time. Note that the last may also be

viewed as a form of complex or embedded key constraint. This becomes more apparent if one

considers an alternative wording for the constraint: “in the context of the enrollments for a

particular student, no two courses are given at the same time.”

Table 1: PFDs over the UNIVERSITY schema.

dept( Name → Id )

dept( Head → Id )

course( Num In → Id )

enrollment( S C → Id )

course( Inst.In → In )

course( In → Inst.In )

enrollment( S C.Time → C )

There are many reasons why it is important to be able to reason about functional depen-

dencies beyond their use in relational schema design and evaluation. An early application in

query optimization involves determining minimal covers of selection and join conditions [3].

Several authors have also suggested how they may be used to aid in automatically inserting

“cut” operators in access plans based on nested iteration [9, 12, 13, 20], in detecting search

conditions for complex object indices [20], and in deducing when “project” operations (or

DISTINCT modifiers) can be eliminated from a query expression [20].

An example of the last case, from [17], will help to motivate some of the results in this

paper. To begin, consider the following query on the UNIVERSITY database.

Find all students enrolled in some course taught at the same time as some other

course numbered 101 that is taught by a professor in the CS department.

An access plan for the request, expressed in terms of a complex object algebra [7, 8, 15, 18],

might be given as follows.

T1 := σInst.In.Name=‘CS’∧Num=101course

T2 := T1 ./Time=C.Time enrollment

T3 := π{S}T2

The problem is to determine if it is possible for the number of tuples in T2 to ever exceed

the number of tuples in T3. To see how PFD theory can help solve the problem, consider an

abstraction of the query as the additional result object type on the UNIVERSITY schema

illustrated by Figure 2. In addition, include in the query abstraction the following list of four

PFDs.
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Figure 2: A query on the UNIVERSITY schema.

result( T3 → T2.S )

result( T1.Time → T2.C.Time )

result( ∅ → T1.Inst.In.Name T1.Num )

result( T1 T2 T3 → Id )

Each is mandated in turn by the projection, join and selection operators, and on the grounds

that any particular combination of T1, T2 and T3 tuples need only be recorded at most once

by a result object. The issue is clearly resolved if the key PFD

result( T3 → Id )

is a logical consequence of these and the other PFDs listed in Table 1. In fact, the set of

inference axioms proposed in [20] is sufficient to determine that this is indeed the case.

The main contribution of this earlier work is a proof that the inference axioms are com-

plete. However, the proof of completeness depended on two assumptions: that the left-hand

sides of antecedent PFDs are non-empty, and that databases can be of infinite size. In Sec-

tion 3, we prove a positive and a negative result concerning these assumptions. The positive

result is that allowing PFDs with empty left-hand sides does not alter the theory. (The ex-

ample above demonstrates at least one use of such PFDs in abstracting selection conditions

in queries.) The negative result is that the inference axioms are not complete if logical conse-

quence is defined with respect to finite databases only; that is, we prove that the implication

problem and finite implication problem for PFDs are not equivalent.

Our main result relates to another issue which was left open in [20]. In Section 4, we

prove that the implication problem for arbitrary PFDs is decidable, which we believe to be

important new evidence that PFDs are a feasible concept in complex object databases. The

proof suggests a means of characterizing an important function closure. In Section 5, we derive

an effective procedure for constructing a deterministic finite state automation representing the

closure. The procedure is further refined in Section 6, in which we derive polynomial time

algorithms for the implication problem for cases in which antecedent PFDs are key constraints.

Our summary comments are given in Section 7.

2. Definitions and basic concepts
We begin by presenting the syntax of our data model, commonly referred to as the data

definition language (DDL). An instance of the DDL defines a space of possible databases. In

- 4 -



our case, an element of this space will correspond to a labeled directed graph.

Definition 1: (syntax—the DDL) A class schema S consists of a finite set of complex object

types of the form

C{P1 : C1, . . . , Pn : Cn}

in which C is a class name, and the set {P1, . . . , Pn} are its properties, written Props(C).

Each property Pi is unique in a given class scheme, and its type, written Type(C,Pi), is the

name Ci of another (not necessarily distinct) class scheme. The set of names of classes in S is

denoted Classes(S). By convention, only the first letter of property names will be capitalized.

2

The declarations for a UNIVERSITY class schema outlined pictorially in Figure 1 are

formally defined in Table 2. Note how several properties, such as S or C, have non-built-in

classes as their range, and how the In and Head properties demonstrate that problem schema

may be cyclic.

Table 2: The UNIVERSITY schema.

enrollment{ S: student, C: course, Mark: int }

student{ Name: string }

course{ In: dept, Inst: prof, Room: int, Num: int, Time: int }

dept{ Name: string, Head: prof }

prof{ In: dept, Name: string }

string{ }

int{ }

Definition 2: (semantics—a database) A database for class schema S is a (possibly infinite)

directed graph G(V,A) with vertex and edge labels corresponding to class and property names

respectively. G must also satisfy the following three constraints, where the class name label

of a vertex v is denoted lCl(v).

1. (property value integrity) If u
P
−→ v ∈ A, then P ∈ Props(lCl(u)) and lCl(v) = Type(lCl(u), P ).

2. (property functionality) If u
P
−→ v, u

P
−→ w ∈ A, then v = w.

3. (property value completeness) If u ∈ V , then there is an arc u
P
−→ v ∈ A for every P ∈

Props(lCl(u)). 2

The UNIVERSITY schema graph in Figure 1 is one possible database for the UNIVER-

SITY schema. In this case, a single object exists for each complex object type. The directed

graph of Figure 3 depicts another possibility in which two departments have the same name.

(Note that different string vertices represent different strings, although the particular strings

involved, or integers for that matter, are never important to our presentation.)
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Figure 3: A database for the UNIVERSITY schema.

Definition 3: A path function pf over schema S is either Id (short for identity), or a finite

sequence of property names separated by dots. (We assume Id does not correspond to the

name of any property in S. The identity path function is our means of referring to property

value paths of zero length.) Their composition and length are defined as follows.

pf1 ◦ pf2 =















pf1 if pf2 is Id,

pf2 if pf1 is Id,

pf1.pf2 otherwise.

len(pf ) =















0 if pf is Id,

1 + len(pf1) otherwise, where pf = pf1 ◦ P ,

for some property P .

LetX be a set of path functions {pf1, . . . , pfn}. We write pf ◦X to denote {pf ◦pf1, . . . , pf ◦pfn}.

2

Note that the composition operator is clearly associative; that is, pf1 ◦ (pf2 ◦ pf3) =

(pf1 ◦ pf2) ◦ pf3. For example, with the UNIVERSITY schema, S ◦ Name is the path function

S.Name, and both Id ◦ C and C ◦ Id are the path function C. The expression Id ◦ C ◦ Room

denotes either (Id ◦ C)◦ Room or Id ◦(C ◦ Room), and in both cases is the path function C.Room.

The following identity on len is also a straightforward consequence of our definitions.

len(pf1 ◦ pf2) = len(pf1) + len(pf2)

Definition 4: A path u −→ · · · −→ w
P
−→ v in a database G(V,A) for class schema S is

described by a path function pf iff either (1) the path consists of a single vertex u and pf is

Id, or (2) pf is pf1 ◦ P , where u −→ · · · −→ w is described by pf1. 2

For example, In.Name and In.Head.In.Name are path functions which describe paths

from vertex u to v in Figure 3. Now consider that Name.In is also a path function according
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to our definitions, but that no path can exist in any database for the UNIVERSITY schema

which is described by Name.In. In [20], a subset of path functions for a given schema S,

denoted PF (S) below, is defined and proven to satisfy a completeness property for databases

over S: any path in any database for S can be described by a path function in PF (S), and

any path function in PF (S) describes a path in some database for S. The same reference

also proves an important sense in which the composition operator remains closed over PF (S).

Both of the results are reproduced as Lemma 1 and Lemma 2 below.

Definition 5: The set of well-formed path functions PF (S) over class schema S is the smallest

set of path functions over S satisfying the following two conditions.

1. Id ∈ PF (S), where

(a) Dom(Id)
def
= Classes(S), and

(b) Ran(C, Id)
def
= C, for all C ∈ Classes(S).

2. If pf ∈ PF (S), C ∈ Dom(pf ) and P ∈ Props(Ran(C, pf )), then pf ◦P ∈ PF (S), where

(a) Dom(pf ◦ P )
def
= {C1 ∈ Dom(pf ) | P ∈ Props(Ran(C1, pf ))}, and

(b) Ran(C1, pf ◦ P )
def
= Type(Ran(C1, pf ), P ), for all C1 ∈ Dom(pf ◦ P ).

Capital letters X, Y and Z are used to denote finite subsets of PF (S) for some class schema

S, and XY , for example, denotes the union of path functions mentioned in X and Y . By

a slight abuse of notation, we write PathFuncs(C) to denote all path functions pf ∈ PF (S)

where C ∈ Dom(pf ), for C ∈ Classes(S). A class schema S is cyclic iff there exists pf ∈

PF (S)− {Id} and C ∈ Dom(pf ) where C = Ran(C, pf ). (A simple consequence is that S is

cyclic iff PF (S) is infinite.) 2

Note that the subset of well-formed path functions for cyclic class schema, however, con-

tinues to be infinite. For example, the UNIVERSITY schema has a well-formed “head of the

department” function In.Head, a “head of the department of the head of the department”

function In.Head.In.Head, and so on. Other well-formed UNIVERSITY path functions in-

clude

S, S.Name, C, C.Room, C.Time, C.Inst, C.Inst.In and C.Inst.In.Head.

Note that each of these path functions is also in PathFuncs(enrollment). Also, for example,

Dom(Name) = {prof, dept, student}

and

Ran(enrollment, C.Inst) = prof.
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Lemma 1: (expressiveness of well-formed path functions—from [20]) LetG(V,A) be a database

for a given class schema S. If a path u −→ · · · −→ v exists in G, then there exists a

unique pf ′ ∈ PathFuncs(lCl(u)) describing u −→ · · · −→ v. Also, for every u ∈ V and

pf ′′ ∈ PathFuncs(lCl(u)), there exists a path u −→ · · · −→ v in G described by pf ′′. 2

Note that Lemma 1 also asserts that no two distinct paths with common end vertices

can be described by the same path function (which motivates the use of the phrase “path

function”, as opposed to, say, “path description”). For example, vertex v in Figure 3 is the

unique vertex reachable from vertex u by a path described by In.Name. By a slight abuse of

notation, we write u.In.Name to denote v, and in general u.pf to denote the unique vertex w

reachable from u by a path described by pf , whenever pf ∈ PathFuncs(lCl(u)).

Lemma 2: (closure of composition—also from [20]) Assume C ∈ Classes(S), for some class

schema S. Then

pf1 ∈ PathFuncs(C), pf2 ∈ PF (S) and Ran(C, pf1) ∈ Dom(pf2)

if and only if

pf1 ◦ pf2 ∈ PathFuncs(C). 2

The remaining definitions in this section present the syntax of our functional constraint

language, and define satisfaction and logical consequence as they relate to the above graph-

based view of databases.

Definition 6: The syntax of a path functional dependency (PFD) over a class schema S is

given by

C(pf1 · · · pfm → pfm+1 · · · pfn).

Such a constraint is well-formed if (1) 0 ≤ m < n and (2) pfi ∈ PathFuncs(C) for 1 ≤ i ≤ n.

(This definition differs slightly from the one given in [20]—we now admit PFDs with no path

functions occurring before the arrow.)

A key path functional dependency (key PFD) satisfies the condition that, for any pfj where

m < j ≤ n, there exists a path function pfj
′ such that pfj ◦ pfj

′ = pfi for some 1 ≤ i ≤ m; that

is, that every right-hand side path function is a “prefix” of some left-hand side path function.

We say that a key PFD is simple if n = m+ 1 and pfn is the path function Id; that is, if the

single path function Id occurs on the right-hand side. (This definition also differs from the

one given in [20]. The notion of a key PFD has been somewhat generalized to include what

we have called complex or embedded keys in our introductory comments.)

C(pf1 · · · pfm → pfm+1 · · · pfn) is satisfied by a database G(V,A) for S iff for any pair

of vertices u, v ∈ V where lCl(u) = lCl(v) = C, u.pfi = v.pfi for all 1 ≤ i ≤ m implies

u.pfj = v.pfj for all m < j ≤ n. Note that the antecedent is trivially satisfied when m = 0. In

this case, u.pfj = v.pfj for all 1 ≤ j ≤ n unconditionally.1 2

1For example, a PFD of the form C(∅ → Id) is only satisfied by a database with at most one C object.
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By Lemma 1, any PFD that is not well-formed is always (trivially) satisfied. Also note

that a schema graph, such as the one depicted in Figure 1 for the UNIVERSITY schema,

must satisfy any well-formed PFD when viewed as a database since no class has more than

one object. In contrast, the UNIVERSITY database in Figure 3 illustrates a violation of the

first key PFD in Table 1 on class dept (two distinct department objects have the same name).

Definition 7: (logical consequence) Let F denote a finite set of PFDs over a class schema S,

and let f denote an arbitrary PFD also over S. Then f is a logical consequence of F , written

F |=S f , iff any database G(V,A) satisfying all constraints in F must also satisfy f . If S is

clear from the context, then we write F |= f . 2

3. On Proof Theories for PFD Constraints
3.1 A Complete Axiomatization for the Implication Problem

In [20], it was proven that the inference axioms for PFDs listed in Table 3 are sound, and

that axioms A1 to A5 are complete if there are no PFDs of the form C(∅ → X) in F . In

this subsection, we extend this earlier work to show that allowing PFDs with empty left-hand

sides does not alter the theory; that is, that axioms A1 to A5 in Table 3 remain complete. A

proof theory based on the axioms is given as follows.

Definition 8: Let F ∪ {C(X → Y )} denote a finite set of PFDs over class schema S. There

is a derivation of C(X → Y ) from F , written F ` C(X → Y ), iff the former is a member

of F , or can be derived from F with the use of any of the inference axioms in Table 3. A

PFD C(X → Y ) over S is trivial iff ∅ |= C(X → Y ). Also, if X ⊆ PathFuncs(C), for some

class scheme C, then X+ denotes the smallest set containing all pf ∈ PathFuncs(C) where

F ` C(X → pf ). (Note that X+ may not be finite.) 2

Both the earlier proof of completeness in [20] and our modification to the proof require

the construction and manipulation of a special kind of database called a C-Tree.

Definition 9: Let C denote an arbitrary class in Classes(S), for some schema S. A C-Tree

is a database G(V,A) of S constructed in two steps as follows.

Step 1. For each pf ∈ PathFuncs(C), add vertex u with lCl(u) assigned Ran(C, pf ), and

with an additional vertex label lPf (u) (called its path function labeling) assigned pf .

The single vertex v with lPf (v) = Id is denoted as Root(v).

Step 2. For each u, v ∈ V where lPf (u) = pf and lPf (v) = pf ◦ P , add u
P
−→ v to A.

A partial C-Tree is a subtree of a C-Tree with the same root. (A partial C-Tree may be a

C-Tree as a special case.) For any vertex u in a partial C-Tree, we refer to len(lPf (u)) as the

depth of u. 2
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Table 3: Axioms for PFDs.

name definition

A1 (reflexivity)
∅ ⊂ Y ⊆ X ⊆ PathFuncs(C)

C(X → Y )

A2 (augmentation)
C(X → Y ), Z ⊆ Pathfuncs(C)

C(XZ → Y Z)

A3 (transitivity)
C(X → Y ), C(Y → Z)

C(X → Z)

A4 (simple attribution)
P ∈ Props(C)

C(Id→ P )

A5 (simple substitution)
P ∈ Props(C), Type(C,P )(X → Y )

C(P ◦X → P ◦ Y )

A6 (additivity)
C(X → Y ), C(X → Z)

C(X → Y Z)

A7 (projectivity)
C(X → Y Z)

C(X → Y )

A8 (attribution)
pf ∈ PathFuncs(C)

C(Id→ pf )

A9 (substitution)
pf ∈ PathFuncs(C), Ran(C, pf )(X → Y )

C(pf ◦X → pf ◦ Y )
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An example partial course-Tree for the UNIVERSITY schema appears in Figure 4. Note

that we have indicated the additional path function labeling for each vertex in parenthesis

below the class labeling. Also note that, although this tree is finite, a full course-Tree would

necessarily be infinite since PathFuncs(course) is infinite.

course

(Id)

dept

(In)

prof

(In.Head)

prof

(Inst)

string

(Inst.Name)

dept

(Inst.In)

In

Head

Inst

Name In

Root(G)

Figure 4: A partial course-Tree for the UNIVERSITY schema.

The properties satisfied by a C-Tree, which are important to our presentation, are given

in the following lemma.

Lemma 3: Let G(V,A) be a partial C-Tree over schema S, where C ∈ Classes(S). Then the

following three conditions hold:

C1: For every u ∈ V and every pf ∈ PathFuncs(lCl(u)), if u.pf ∈ V , then lPf (u) ◦ pf =

lPf (u.pf ).

C2: For every u ∈ V , u = Root(G).lPf (u).

C3: If G(V,A) is a full C-Tree, then for every pf ∈ PathFuncs(C), there is a unique

vertex u ∈ V such that u = Root(G).pf .

Proof. (See proof of Lemma 7 in [20].) 2

A simple consequence of condition C2 is that the depth of any vertex in a C-Tree G is its

path length from Root(G). For example, the depth of the single string vertex in the partial

course-Tree of Figure 4 is len(Inst.Name) (= 2).

Now let F be a finite set of PFDs over S which contains PFDs with empty left-hand sides.

Along the same line as proving Theorem 2 in [20], it can be shown that inference axioms A1

to A5 are sound; that is, F ` C(X → Y ) implies F |= C(X → Y ) for any PFD C(X → Y )

over S. Hence inference axioms A6 to A9 are also sound by Lemma 5 in [20].

In general, to prove that inference axioms A1 to A5 are complete, it suffices to show that

F 6` C(X → Y ) implies F 6|= C(X → Y ); that is, if Y 6⊆ X+, then to construct a database

for S that satisfies F but not C(X → Y ). We may also assume, without loss of generality,
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that no PFD in F is trivial, and furthermore, by additivity A6 and projectivity A7, that

the right-hand side of every PFD in F consists of a single path function; that is, that every

PFD in F is of the form C(Z → pf ).2 The earlier completeness proof in [20] constructed

such a database, called a Two-C-Tree, from two copies of a (complete) C-tree. The important

conditions satisfied by a Two-C-Tree database G are as follows.

1. G contains two vertices R1 and R2 in which lCl(R1) = lCl(R2) = C and such that

R1.pf = R2.pf iff pf ∈ X+ for every pf ∈ PathFuncs(C). (Thus, if Y 6⊆ X+, then G

must fail to satisfy C(X → Y ).)

2. G satisfies F (provided that no PFD in F has an empty left-hand side).

The main difficulty with a Two-C-Tree G(V,A), if F has PFD constraints with empty left-

hand sides, is that G might contain distinct vertices u, v ∈ V in which lCl(u) = lCl(v) = C ′,

for some C ′ ∈ Classes(S), and for which u = R1.pf1 = R2.pf1 and v = R1.pf2 = R2.pf2, for

some pf1, pf2 ∈ PathFuncs(C) (i.e. pf1, pf2 ∈ X+). Then, for example, G will fail to satisfy F

should it contain the constraint C ′(∅ → Id).3

Roughly, our refinement to the earlier proof is based on a modification to the definition

of a Two-C-Tree which overcomes this problem. The modification, call a Two-C-Graph, will

satisfy the condition that, for each C ′ ∈ Classes(S), there is a unique vertex v such that

R1.pf = R2.pf = v for every pf ∈ PathFuncs(C) with pf ∈ X+ and Ran(C, pf ) = C ′. We

prove that a Two-C-Graph database will satisfy all PFDs in F , including any with empty

left-hand sides.

As in the earlier case of a Two-C-Tree, the construction of a Two-C-Graph starts with

two copies of a (complete) C-Tree. However, unlike the previous case, another special kind

of database is also used. In our introductory comments, we referred to such a database as a

schema graph.

Definition 10: A schema graph for S is a directed graph Gs(Vs, As) satisfying the following

two conditions. (Note that Gs(Vs, As) is clearly a database for S.)

SG1: For each C ∈ Classes(S), there is a unique vertex v ∈ Vs such that lCl(v) = C.

SG2: For each C ∈ Classes(S) and each P ∈ Props(C), there is a unique arc u
P
−→ v ∈ As

such that lCl(u) = C and lCl(v) = Type(C,P ). 2

For example, the database illustrated in Figure 1 is a schema graph for the UNIVERSITY

class schema listed in Table 2. Another example of a class schema and corresponding schema

graph appears in Figure 5.

Finally, the definition of a Two-C-Graph will rely on the following “suffix closure” con-

dition for X+.

2No PFD in F has an empty right-hand side, since, by the reflexivity axiom A1, such a PFD would be

trivial.
3The problem generalizes to any PFD constraint of the form C ′(∅ → pf ).
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a{ B: b, C: c }

b{ A: a, D: d }

c{ G: b, E: e }
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e{ }
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Figure 5: A class schema and its schema graph.

Lemma 4: For pf ∈ PathFuncs(C), if pf ∈ X+, then pf ◦ pf ′ ∈ X+ for every pf ◦ pf ′ ∈

PathFuncs(C).

Proof. Let C ′ = Ran(C, pf ). Then pf ◦ pf ′ ∈ PathFuncs(C) implies pf ′ ∈ PathFuncs(C ′),

by Lemma 2. By attribution A8, we can derive C ′(Id→ pf ′), and thus C(pf → pf ◦ pf ′) by

substitution A9. Since pf ∈ X+ implies F ` C(X → pf ), C(X → pf ) and C(pf → pf ◦ pf ′)

imply C(X → pf ◦ pf ′) by transitivity A3. Hence pf ◦ pf ′ ∈ X+. 2

Now consider where there is a PFD C(X → Y ) such that F 6` C(X → Y ); that is,

Y 6⊆ X+. Then, since pf = Id ◦ pf for any pf ∈ PathFuncs(C), it follows from Lemma 4 that

Id 6∈ X+. (3.1)

Definition 11: Let F ∪ {C(X → Y )} denote a set of PFDs such that F 6` C(X → Y ). A

Two-C-Graph is a (possibly infinite) directed graph G(V,A) constructed as follows.

Step 1. Construct two C-Trees G1(V1, A1) and G2(V2, A2), and a schema graph Gs(Vs, As).

Root(G1) and Root(G2) are denoted by R1 and R2, respectively.

Step 2. Let V ′
i = {v ∈ Vi | lPf (v) 6∈ X+} for i = 1, 2. Note that R1 ∈ V ′

1 and R2 ∈ V ′
2 by

(3.1). Let A′i = {u
P
−→ v ∈ Ai | u, v ∈ V ′

i } for i = 1, 2. Add all vertices in Vs ∪ V
′
1 ∪ V

′
2

to V and all arcs in As ∪ A
′
1 ∪ A

′
2 to A.

Step 3. For each u ∈ V ′
1 ∪ V

′
2 and each P ∈ Props(lCl(u)) where u

P
−→ v 6∈ A for any v ∈ V ,

add an arc u
P
−→ w to A, where w ∈ Vs and lCl(w) = Type(lCl(u), P ). Note that w is

unique by condition SG1 of Definition 10. 2

From Lemma 4, it should be clear that a Two-C-Graph is symmetric with respect to R1

and R2. An outline of the form of a Two-C-Graph is illustrated in Figure 6, in which we

denote a (possibly infinite) partial C-Tree consisting of V ′
i and A′i by the label G′

i(V
′
i , A

′
i),

where i = 1, 2. The arcs added in Step 3 are also indicated.

Lemma 5: The Two-C-Graph G(V,A) is a database for S satisfying the following three

conditions.
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Figure 6: General form of a Two-C-Graph.

TCG1: (a) If u ∈ Vs, then u.pf ∈ Vs for every pf ∈ PathFuncs(lCl(u)).

(b) If u ∈ V ′
i , then exactly one of u.pf ∈ V ′

i and u.pf ∈ Vs holds for every pf ∈

PathFuncs(lCl(u)), where i = 1 or 2.

TCG2: For every pf ∈ PathFuncs(C), pf ∈ X+ iff R1.pf ∈ Vs iff R1.pf = R2.pf .

TCG3: For any pair of distinct vertices u, v ∈ V where lCl(u) = lCl(v), if u.pf = v.pf for

some pf ∈ PathFuncs(lCl(u)), then u.pf ∈ Vs.

Proof. Since Gs(Vs, As) is a database for S, it can be proven with the same line of argument

used in the proof of Lemma 8 in [20] that G(V,A) is also a database for S.

Now consider TCG1. Clearly, just after Step 2 in Definition 11, for every u
P
−→ v ∈ A,

exactly one of {u, v} ⊆ V ′
1 , {u, v} ⊆ V ′

2 , and {u, v} ⊆ Vs holds. Furthermore, for each arc

u
P
−→ v added to A in Step 3, u ∈ V ′

1 ∪ V ′
2 and v ∈ Vs. Thus, after Step 3, for every

u
P
−→ v ∈ A, exactly one of v ∈ Vs, {u, v} ⊆ V ′

1 , and {u, v} ⊆ V ′
2 must be true. TCG1(a)

therefore follows. Since V ′
i ∩ Vs = ∅, TCG1(b) also follows.

Consider TCG2. We first prove that pf ∈ X+ iff R1.pf ∈ Vs. Since R1 ∈ V ′
1 , it follows

from TCG1(b) that R1.pf ∈ Vs iff R1.pf 6∈ V ′
1 . Thus, it suffices to show that

pf 6∈ X+ iff R1.pf ∈ V ′
1 . (3.2)

It follows from the definition of V ′
1 that, for every v ∈ V1, lPf (v) 6∈ X

+ iff v ∈ V ′
1 . This implies

(3.2) since there is a one-to-one correspondence between V1 and PathFuncs(C) according to

conditions C2 and C3 of Lemma 3. We next prove that R1.pf ∈ Vs iff R1.pf = R2.pf . Assume

R1.pf ∈ Vs. Since the Two-C-Graph is symmetric with respect to R1 and R2, R1.pf ∈ Vs

implies both R2.pf ∈ Vs and lCl(R1.pf ) = lCl(R2.pf ). Thus R1.pf = R2.pf by condition SG1
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of Definition 10. Conversely, since R1 ∈ V ′
1 , R2 ∈ V ′

2 and V ′
1∩V

′
2 = ∅, it follows from TCG1(b)

that R1.pf = R2.pf implies R1.pf ∈ Vs.

Finally consider TCG3. Assume that u.pf = v.pf but that u.pf 6∈ Vs for two distinct

vertices u, v ∈ V . By TCG1(a), u.pf 6∈ Vs implies u 6∈ Vs, that is, u ∈ V
′
1∪V

′
2 . Assume without

loss of generality that u ∈ V ′
1 . By TCG1(b), u ∈ V ′

1 and u.pf 6∈ Vs imply u.pf (= v.pf ) ∈ V ′
1 .

By TCG1(a) and (b), v.pf ∈ V ′
1 implies v ∈ V ′

1 ; that is, the three vertices u, v, and u.pf

(= v.pf ) are in V ′
1 . Since G′

1(V
′
1 , A

′
1) is a partial C-Tree, it follows from condition C2 of

Lemma 3 that

w = R1.lPf (w) for every w ∈ V ′
1 . (3.3)

Furthermore by condition C1 of that lemma, u.pf = v.pf implies lPf (u) ◦ pf = lPf (v) ◦ pf ,

that is, lPf (u) = lPf (v), and therefore that u = v—a contradiction with our assumption above

that u and v are distinct vertices. Hence, if u 6= v and u.pf = v.pf , then u.pf ∈ Vs. 2

Lemma 6: For pf ∈ PathFuncs(C), if there is a PFD C ′(Z → pf ′) ∈ F such that C ′ =

Ran(C, pf ) and pf ◦ Z ⊆ X+, then pf ◦ pf ′ ∈ X+.

Proof. Since C ′ = Ran(C, pf ), C ′(Z → pf ′) implies C(pf ◦ Z → pf ◦ pf ′) by substitution

A9. Since pf ◦ Z ⊆ X+, F ` C(X → pf ◦ Z) by definition. Hence C(X → pf ◦ Z) and

C(pf ◦ Z → pf ◦ pf ′) imply C(X → pf ◦ pf ′) by transitivity A3. That is, pf ◦ pf ′ ∈ X+. 2

Theorem 1: Inference axioms A1 to A5 are sound and complete, even in the case that there

are PFDs with empty left-hand sides.

Proof. It suffices to prove that a Two-C-Graph G(V,A) is a database satisfying F but not

C(X → Y ).

We first show that G(V,A) does not satisfy C(X → Y ). Since X ⊆ X+ by reflexivity A1,

it follows from condition TCG2 of Lemma 5 that R1.pf = R2.pf for every pf ∈ X. Conversely,

since Y 6⊆ X+, it follows from condition TCG2 that R1.pf 6= R2.pf for some pf ∈ Y . Hence

G(V,A) does not satisfy C(X → Y ).

We next show that G(V,A) satisfies F . Assume that G(V,A) does not satisfy a PFD

C ′(Z → pf ) ∈ F . Then there are two distinct vertices u, v ∈ V such that

lCl(u) = lCl(v) = C ′, (3.4)

u.pfz = v.pfz for every pfz ∈ Z,
4 and (3.5)

u.pf 6= v.pf . (3.6)

Since u.pf 6∈ Vs or v.pf 6∈ Vs by (3.4), (3.6), and condition SG1 of Definition 10, assume

without loss of generality that

u.pf ∈ V ′
1 . (3.7)

Then u ∈ V ′
1 by conditions TCG1(a) and (b) of Lemma 5. It follows from property function-

ality and property value completeness for the database G(V,A) that for every w ∈ V and

4If Z = ∅, then this condition holds trivially.
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every pf ′ ∈ PathFuncs(lCl(w)), there is a unique vertex w′ ∈ V such that w′ = w.pf ′. Since

u = R1.lPf (u) by u ∈ V ′
1 and (3.3) in the proof of Lemma 5,

u.pf ′ = R1.lPf (u) ◦ pf
′ for every pf ′ ∈ PathFuncs(lCl(u)). (3.8)

And since u.pfz ∈ Vs by (3.5) and condition TCG3 of Lemma 5, R1.lPf (u) ◦ pfz ∈ Vs for every

pfz ∈ Z by (3.8). Thus, by condition TCG2 of Lemma 5,

lPf (u) ◦ Z ⊆ X+. (3.9)

Since Ran(C, lPf (u)) = lCl(u) = C ′ by (3.4) and C ′(Z → pf ) is in F , it follows from Lemma 6

and (3.9) that lPf (u) ◦ pf ∈ X+. Conversely, since R1.lPf (u) ◦ pf ∈ V ′
1 by (3.7) and (3.8), it

follows from the definition of V ′
1 that lPf (u) ◦ pf 6∈ X+—a contradiction. Therefore, G(V,A)

satisfies F . 2

3.2 The Inequivalence of the Finite Implication Problem

In this subsection, we prove that the inference axioms for PFDs listed in Table 3 are not

complete if databases with infinitely many objects are disallowed. In particular, we exhibit a

class schema S and finite set F ∪ {C(X → Y )} of PFDs over S such that F 6|= C(X → Y ),

but in which C(X → Y ) is necessarily satisfied by any finite database for S that satisfies F .

If this were not the case, if the implication problem and finite implication problem for PFDs

were equivalent, then the existence of the semi-decision procedure for PFDs in [20] would

immediately imply the decidability of both problems [6].5

Definition 12: Let F ∪ {C(X → Y )} denote a finite set of PFDs over a given class schema

S. C(X → Y ) is a finite logical consequence of F , written F |=finite C(X → Y ), iff any finite

database for S satisfying F must also satisfy C(X → Y ). 2

Lemma 7: Let S consist of the following two complex object types.

a{ A: a, B: b }

b{ }

Then a( A.B → Id ) 6|= a( B → Id ) and a( A.B → Id ) |=finite a( B → Id ).

Proof. Since a( A.B → Id ) is a simple key PFD, the closure of B can be computed efficiently

by Theorem 6 in Section 6. In fact, it is easy to verify that B+ = { B }. Thus: a( A.B → Id

) 6|= a( B → Id ).

Assume that a( A.B → Id ) 6|=finite a( B → Id ). By definition, there must exist a

finite database G(V,A) for S that satisfies a( A.B → Id ) but does not satisfy a( B → Id

). Then G(V,A) contains a subgraph given in Figure 7, where v1 and v2 are distinct. There

are two cases to be considered.
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Case 1. Consider where both v1 and v2 have in-arcs labeled “A”; that is, G(V,A) contains

a subgraph given in Figure 8. Since v1 and v2 are distinct, v′1 and v′2 are also distinct by

property functionality. However, this implies that G(V,A) could not satisfy a( A.B → Id ),

no matter how the other part of G(V,A) would be constructed—a contradiction. Note that

vi may coincide with v′j, unless v
′
1 = v′2, where i = 1 or 2, and j = 1 or 2.

Case 2. Now consider where either v1 has no in-arc labeled “A” or v2 has no in-arc labeled

“A”. Assume without loss of generality that v1 has no in-arc labeled “A”. By property value

completeness, there is an arc v1
A

−→ u1 ∈ A where lCl(u1) = Type(lCl(v1), A) = Type(a, A)

= a = lCl(v1). By a similar argument, there is an arc u1
A

−→ u2 ∈ A, where lCl(u2) = a.

Therefore, in general, G(V,A) contains an infinite sequence v1
A

−→ u1
A

−→ u2
A

−→ · · · in which

all vertices are labeled “a”. Now, since G(V,A) is finite, at least one vertex occurs infinitely in

the sequence. Furthermore, v1 has no in-arc labeled “A” by assumption. Thus, the sequence

contains a subsequence v1
A

−→ u1
A

−→ · · ·
A

−→ ui
A

−→ · · ·
A

−→ ui in which ui occurs twice

but all other vertices occur at most once. This implies that the two in-arcs of ui must be

distinct. Let w
A

−→ ui and w′
A

−→ ui be the two distinct in-arcs of ui. Since (1) w and w′

are distinct by property functionality and (2) ui has an out-arc labeled “B” by property value

completeness, G(V,A) contains a subgraph given in Figure 9. However, this demonstrates that

G(V,A) can never satisfy a( A.B → Id ), no matter how the other part of G(V,A) might

be constructed—a contradiction. (Note that ui may coincide with w or w′, unless w = w′.)

Therefore, there is no finite database that satisfies a( A.B → Id ) but does not satisfy

a( B → Id ). That is, a( A.B → Id ) |=finite a( B → Id ). 2

5This justifies our use of infinite databases in our decidability proof given the next section.
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Figure 9: A subgraph of G(V,A) in Case 2.
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By Lemma 7, we have the following theorem.

Theorem 2: Finite logical implication for PFDs is different from (infinite) logical implication

for PFDs, even if all given PFDs are simple key PFDs. 2

Theorem 2 implies that inference axioms A1 to A5, although sound, are no longer com-

plete for finite logical implication for PFDs.

4. Decidability of the Implication Problem for Arbitrary PFDs
We now resolve an important open issue concerning PFD theory: we prove that the implica-

tion problem for arbitrary PFDs is decidable. Our proof is based on an earlier semi-decision

procedure for the problem, given in [20], which returns “yes” if F |= C(X → Y ) (and, of

course, might not terminate if F 6|= C(X → Y )). Although the following revision to this

procedure is less effective (it may also not terminate if F |= C(X → Y )), much of its func-

tionality has been factored into another procedure, called MARK, which will be essential to

our presentation. Procedure MARK assumes that each vertex v in a database can be assigned

an additional boolean valued mark label, denoted Mark(v). In the discussion following, we

refer to a vertex v as marked (resp. unmarked) if Mark(v) has the value true (resp. false).

Procedure 1:

Input: a finite set F ∪ {C(X → Y )} of PFDs over S.

Output: “yes” iff F |= C(X → Y ).

Method: For a C-Tree Gc(Vc, Ac), execute procedure MARK(Gc, X) (defined immediately

following). If Root(Gc).pf is marked for every pf ∈ Y , then output “yes”; otherwise, output

“no”.

procedure MARK(G,X)

Input: a partial C-Tree G(V,A) and a finite subset X of PathFuncs(C).

Step 1. For each v ∈ V , assign Mark(v) the value false.

Step 2. For each pf ∈ X, assign Mark(Root(G).pf ) the value true.

Step 3. Apply the following two rules to G(V,A) exhaustively.

Rule 1: If vertex v has an ancestor u which is marked, then assign Mark(v) the value

true.

Rule 2: If u is a vertex and C ′(Z → pf ) a PFD in F such that (1) C ′ = lCl(u), and (2)

Mark(u.pfz) is true for every pfz ∈ Z,
6 then assign Mark(u.pf ) the value true.

For an example of running the MARK procedure, recall the class schema appearing in

Figure 5, and assume F consists of the following four PFDs.

6If Z = ∅, then condition (2) holds trivially.
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Figure 10: A partial “a”-Tree G(V,A).

f1: a( B.D C.G → Id )

f2: a( B.D.F C.G.D → C.E )

f3: b( D.F → A )

f4: d( F → Id )

Also assume the call to procedure MARK is of the form

MARK(G, { B.D, C.G.D }),

where G is the partial “a”-Tree given in Figure 10. At the end of Step 2, vertices v4 and v11

are marked and all other vertices are unmarked. Now consider what happens during Step 3.

Since vertex v9 has an ancestor v4 which is marked, Rule 1 updates G by assigning Mark(v9)

the value true. The conditions for two applications of Rule 2 are then satisfied. The first case

relates to vertex Root(G) and PFD f2 since (1) lCl(Root(G)) = a and (2) both Root(G).B.D.F

(= v9) and Root(G).C.G.D (= v11) are marked. The second case relates to vertex v1 and PFD

f3 since (1) lCl(v1) = b and (2) v1.D.F (= v9) is marked. Rule 2 will therefore update G by

assigning Mark(Root(G).C.E) and Mark(v1.A) the value true. Thus, vertices v6 and v3, which

were previously unmarked, are now marked. Finally, since v7 and v8 are vertices with the

marked ancestor v3, Step 1 again updates G by assigning Mark(v7) and Mark(v8) the value

true.

At this point, observe that no unmarked vertex in V can be changed to a marked status

by applying Rule 1 to any vertex in V , or by applying Rule 2 to any vertex in V and any PFD

in F . For example, although vertex v4 and PFD f4 satisfy the preconditions for a “firing”

of Rule 2, since (1) lCl(v4) = d and (2) v4.F (= v9) is marked, the firing does not change G

since it will not affect the marked status of v4.Id (= v4) (which is already marked). Also,

since there is no chance to apply Rule 2 to PFD f1 and any vertex in V , we may assume the

original call to procedure MARK will terminate with the result that only vertices v3, v4, v6,

v7, v8, v9, and v11 are marked.

Note that once a vertex satisfies the preconditions for either Rule 1 or Rule 2 in Step 3,

then it will continue to satisfy the same preconditions throughout the remaining execution of

Step 3. This holds since neither rule updates G by changing the status of a vertex from one
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that is marked to one that is unmarked. Thus, the final selection of marked vertices in G after

any call to MARK will not depend on the order of application of Rules 1 and 2 in Step 3.

The next lemma relates the path function labeling of a marked vertex, following a call to

procedure MARK, to its membership in an important closure.

Lemma 8: Assume that MARK(G,X) is executed for a partial C-tree G(V,A). For every

pf ∈ PathFuncs(C), if Root(G).pf exists and is marked, then pf ∈ X+.

Proof. By induction on the sequence of applications of Rules 1 and 2 in Step 3.

Basis. Since X ⊆ X+ by reflexivity A1, for each Root(G).pf which is marked at the end of

Step 2, pf is in X+.

Induction. Consider the nth application of either Rule 1 or Rule 2 in Step 3 which results

in changing a vertex v in G from an unmarked state to a marked state. If Rule 1 applies,

then v has an ancestor u which is marked. Condition C2 of Lemma 3 implies that u =

Root(G).lPf (u) and v = Root(G).lPf (v). Since v is a descendant of u, there is a path function

pf ∈ PathFuncs(lCl(u)) such that u.pf = v. Thus, by condition C1 of Lemma 3, lPf (v) =

lPf (u) ◦ pf . Since u is marked, the induction hypothesis implies lPf (u) is in X+. Therefore,

by Lemma 4, lPf (u) ◦ pf (= lPf (v)) is in X+, and the lemma follows since v = Root(G).lPf (v).

Now consider where Rule 2 applies. Then there is a PFD C ′(Z → pf ) ∈ F and a (not

necessarily proper) ancestor u inG such that (1) C ′ = lCl(u), (2) u.pfz is marked for every pfz ∈

Z, and (3) u.pf = v. Since u = Root(G).lPf (u) by condition C2 of Lemma 3, condition (2)

implies lPf (u) ◦ Z ⊆ X+ by the induction hypothesis. It then follows from Lemma 6 and

condition (1) that lPf (u) ◦ pf ∈ X+. Since v = Root(G).lPf (u) ◦ pf by conditions C1 and C2

of Lemma 3, the lemma again follows. 2

The correctness of Procedure 1 is now a simple consequence of the following lemma (since

F |= C(X → Y ) iff Y ⊆ X+).

Lemma 9: Let G′
c(V

′
c , A

′
c) be the state of a C-Tree Gc after a call of the form

“MARK(Gc(Vc, Ac), X)”,

where X ⊆ PathFuncs(C), and let Marked denote the set

{lPf (v) | v ∈ V
′
c and Mark(v)}.

Then: Marked = X+.

Proof. Assume Marked 6= X+. Since Marked ⊆ X+ by Lemma 8, the assumption implies

that Marked ⊂ X+ (A ⊂ B means that A is a proper subset of B). By Theorem 5 in [20],

there must exist at least one PFD C(Z → pf ) ∈ F1(C) ∪ F2(C) such that Z ⊆ Marked

and pf 6∈ Marked. Here, F1(C) is the set of PFDs of the form “C(pf ′ → pf ′ ◦ P )”, where

pf ′, pf ′ ◦ P ∈ PathFuncs(C), and F2(C) is the set of PFDs that can be derived from F by a

single use of substitution A9. Hense, there are two cases to consider.
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Case 1: where C(Z → pf ) ∈ F1(C). The PFD must have the form “C(pf ′ → pf ′ ◦ P )”;

that is, Z = { pf ′ } and pf = pf ′ ◦ P . Since Z ⊆ Marked by assumption, Root(Gc).pf
′ is

marked. Since Root(Gc).pf
′ ◦ P is a descendant of Root(Gc).pf

′, by Rule 1, Root(Gc).pf
′ ◦ P

will eventually be marked. Hence pf ′ ◦ P ∈ Marked—a contradiction with our assumption

that pf 6∈ Marked.

Case 2: where C(Z → pf ) ∈ F2(C). By the definition of F2(C), there is a path function

pf1 in PathFuncs(C) such that C ′ = Ran(C, pf1), C
′(W → pf2) ∈ F , Z = pf1 ◦ W , and

pf = pf1 ◦ pf2. Let v = Root(Gc).pf1. Then lCl(v) = C ′, since lCl(v) = Ran(C, pf1) by

definition. Furthermore, it follows from conditions C1 and C2 of Lemma 3 that v.pf2 =

Root(Gc).pf1 ◦ pf2 and v.pfw = Root(Gc).pf1 ◦ pfw for every pfw ∈ W . Since Z ⊆ Marked by

assumption, Root(Gc).pf1 ◦ pfw (= v.pfw) is marked for every pfw ∈ W . Thus, by Rule 2,

v.pf2 (= Root(Gc).pf1 ◦pf2) will eventually be marked in view of vertex v and the PFD. Hence

pf1 ◦ pf2 ∈ Marked—again, a contradiction with our assumption that pf 6∈ Marked. 2

In the above, if the C-Tree Gc(Vc, Ac) is finite, then MARK(Gc, X) terminates, and it

follows from Lemma 9 that Procedure 1 decides whether or not F |= C(X → Y ). However,

if Gc(Vc, Ac) is infinite, then Procedure 1 will not always terminate. Note that Gc(Vc, Ac) is

infinite iff there are two distinct vertices v1, v2 on a path from Root(Gc) such that lCl(v1) =

lCl(v2) = C ′, for some C ′ ∈ Classes(S). Since Classes(S) is finite, it is therefore decidable

whether or not Gc(Vc, Ac) is infinite.

Consequently, for the remainder of this section, we focus on the case in which Gc(Vc, Ac)

is infinite. The decidability of the implication problem for PFDs will be proved along the

following line of argument.

As above, let G′
c(V

′
c , A

′
c) be the state of a C-Tree Gc after a call of the form

“MARK(Gc(Vc, Ac), X)”, where X ⊆ PathFuncs(C). Given an integer c1, we can

find an integer c2 such that, for any pf ∈ PathFuncs(C), if (1) len(pf ) ≤ c1 and

(2) the “size” of a partial C-Tree G(V,A) is c2, then Root(G′
c).pf is marked iff

Root(G′).pf is marked, where G′(V ′, A′) is the state of G after a call of the form

“MARK(G(V,A), X)”. Now, since G(V,A) will be finite, the call to MARK must

eventually terminate. This then implies that it can be decided if Root(G′
c).pf is

marked without constructing the infinite C-Tree Gc(Vc, Ac).

Definition 13: LetG1(V1, A1) andG2(V2, A2) be two partial C
′-Trees, where C ′ ∈ Classes(S).

We write G1(V1, A1) ¹ G2(V2, A2) to mean that, for every pf ∈ PathFuncs(C ′), if Root(G1).pf

is marked, then Root(G2).pf is marked; that is, the marked vertices in G1(V1, A1) are covered

by the marked vertices in G2(V2, A2). If G1(V1, A1) ¹ G2(V2, A2) and G2(V2, A2) ¹ G1(V1, A1),

then we write G1(V1, A1) ≡ G2(V2, A2). 2

Definition 14: For C ′ ∈ Classes(S) and an integer l, a C ′-Tree of depth l is a partial C ′-Tree

obtained from a C ′-Tree by removing any vertex u and its incident arcs whenever the depth

of u is greater than l. Furthermore, a C ′-Tree of depth at least l is a partial C ′-Tree that
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contains a C ′-Tree of depth l as a subtree with the same root. In the context of a C ′-Tree

G(V,A) of depth at least l, we write G(V,A)[ l ] to denote the subtree of G(V,A) with the

same root whose depth is l. In the absence of any such context, G(V,A)[ l ] denotes a C ′-Tree

of depth l. Finally, we write #V (C
′, l) to denote the number of vertices in a C ′-Tree of depth

l. 2

For example, the tree G(V,A) given in Figure 10 is an “a”-Tree of depth 3. Note that it

coincides with Ga(Va, Aa)[3], for an “a”-Tree Ga(Va, Aa).

For the remainder of this section, we will also refer to the following values, as defined in

the context of a class schema S, a set of PFDs F , a class C ∈ Classes(S) and a finite set of

path functions X, where X ⊆ PathFuncs(C).

1. l1
def
= maxpf ∈X len(pf ).

2. l2
def
= maxpf ∈{Z∪{pf }|C′(Z→pf )∈F} len(pf ).

3. L2
def
= 1 + ΣC′∈Classes(S)2

#V (C′,l2). (Note that L2 is finite since a C ′-Tree of depth l2

is finite. Also note that the value 2#V (C′,l2) counts the number of different possible

true/false assignments of Mark(vi) for the vertices {v1, . . . , vn} in a C ′-Tree of depth l2;

that is, the number of different “marking patterns”.)

4. G0(V0, A0) is a C-Tree of depth l′1 + l2 + L2, where l
′
1 is an integer such that l′1 ≥ l1.

5. G′
0(V

′
0 , A

′
0) is the state of the C-Tree G0 following a call of the form “MARK(G0, X).”

(Note that the call to procedure MARK terminates since G0(V0, A0) is finite.)

The following is a key lemma, whose proof will be given in the rest of this section.

Lemma 10: G′
0(V

′
0 , A

′
0)[l

′
1] ≡ G′

c(V
′
c , A

′
c)[l

′
1]. 2

If Lemma 10 holds, then the implication problem will be decidable by the following

argument. Choose maxpf ∈(X∪Y ) len(pf ) as the integer l′1 (which implies l′1 ≥ l1 as required).

Then Root(G′
c).pf is in G′

c(V
′
c , A

′
c)[l

′
1] for every pf ∈ Y . Furthermore, Root(G′

c).pf is marked

iff pf ∈ X+ by Lemma 9. Hence Lemma 10 implies that Y ⊆ X+ iff Root(G′
0).pf is marked

for every pf ∈ Y . That is, the implication problem will be decidable.

Definition 15: Let G(V,A) be a partial C ′-Tree, where C ′ ∈ Classes(S). A vertex u ∈ V is

functionally complete in G(V,A) if, for every P ∈ Props(lCl(u)), there is an arc u
P
−→ v ∈ A

for which lCl(v) = Type(lCl(u), P ). Otherwise, u is functionally incomplete in G(V,A). Note

that if G(V,A) is a C ′-Tree of depth at least l, then every vertex in V whose depth is less

than l is functionally complete in G(V,A). 2
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For example, with regard to the partial “a”-Tree G(V,A) in Figure 10, every vertex whose

depth is less than 3 is functionally complete in G(V,A). Note that G(V,A) is of depth 3. As

for vertices of depth 3, vertex v9 is functionally complete, while vertices v7, v8, v10, and v11

are functionally incomplete. (For example, v7 is functionally incomplete since there is no arc

of the form v7
A

−→ u, even though lCl(v7) = b and A ∈ Props(b).)

Let l be an integer such that l ≥ l′1 + l2 + L2, and let G(V,A) be a C-Tree of depth at

least l but not of depth at least l + 1. (Such a C-Tree is well-defined since we have assumed

that the C-Tree Gc(Vc, Ac) is infinite.) Let G′(V ′, A′) be the state of G after a call of the form

“MARK(G,X).” Since G′(V ′, A′) is a C-Tree of depth at least l but not of depth at least

l + 1, there is a functionally incomplete vertex v ∈ V ′ whose depth is l. For each i such that

l′1 + 1 ≤ i ≤ l′1 + L2, there is an ancestor v′ of v whose depth is i. For such an ancestor v′,

there corresponds a C ′-Tree of depth l2 as a subtree with root v′, where C ′ = lCl(v
′), since

G′(V ′, A′) is a C-Tree of depth at least l(≥ l′1 + l2 + L2) and the depth of v′ is between l′1 + 1

and l′1 +L2. Let T (v
′) be the subtree with root v′. By the choice of L2, there are at least two

distinct ancestors v1, v2 of v such that (1) lCl(v1) = lCl(v2) = C ′ for some C ′ ∈ Classes(S),

(2) the depths of v1 and v2 are between l′1 + 1 and l′1 + L2, and (3)

T (v1)[l2] ≡ T (v2)[l2]. (4.1)

Assume without loss of generality that v1 is an ancestor of v2 (Figure 11 illustrates the shape

of the C-Tree G′(V ′, A′) as discussed thus far), and let Gr(Vr, Ar) be the tree obtained from

G′(V ′, A′) by replacing the subtree T (v2) with the subtree T (v1). Then we have the following.

Lemma 11: Every u ∈ Vr whose depth is less than l is functionally complete in Gr(Vr, Ar).

Also, the number of functionally incomplete vertices of depth l in Gr(Vr, Ar) is less than the

number of functionally incomplete vertices of depth l in G′(V ′, A′).

Proof. By definition of G′(V ′, A′), for every u ∈ V ′, if the depth of u is less than l, then u is

functionally complete in G′(V ′, A′). Furthermore, v1 is a proper ancestor of v2, since v1 and v2

are distinct. Thus, by replacing T (v2) with T (v1), at least the vertex Root(Gr).lPf (v) whose

depth is l becomes functionally complete in Gr(Vr, Ar), and, for every u ∈ V ′ whose depth is

less than l, Root(Gr).lPf (u) remains functionally complete in Gr(Vr, Ar). The lemma follows.

2

Lemma 12: Let G′
r(V

′
r , A

′
r) denote the state of Gr after a call of the form “MARK(Gr, X).”

Then:

G′
r(V

′
r , A

′
r) ¹ Gr(Vr, Ar) ¹ G′

c(V
′
c , A

′
c).

Proof. In the following, for a vertex u ∈ V ′, the corresponding vertices Root(Gr).lPf (u) ∈ Vr

and Root(G′
c).lPf (u) ∈ V ′

c are denoted by 〈u〉r and 〈u〉c, respectively, if the explicit corre-

spondence is necessary. Also, for vertices u ∈ Vr and v ∈ V ′
c , let Tr(u) and Tc(v) denote the
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Figure 11: The C-Tree G′(V ′, A′) in the case of depth l.
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subtrees of Gr(Vr, Ar) and G′
c(V

′
c , A

′
c) with roots u and v, respectively. If T is a tree and T ′ is

a subtree of T , then T − T ′ denotes the tree obtained by removing T ′ from T .

To begin, we claim the following.

Claim 1: (a) T (v1) ≡ Tr(〈v2〉r).

(b) G′(V ′, A′)− T (v2) ≡ Gr(Vr, Ar)− Tr(〈v2〉r). 2

Claim 2: (a) No unmarked vertex is marked by applying Rule 1 or 2 to G′(V ′, A′).

(b) No unmarked vertex is marked by applying Rule 1 or 2 to T (v1).

(c) No unmarked vertex is marked by applying Rule 1 or 2 to G′(V ′, A′)− T (v1). 2

Claim 3: No unmarked vertex is marked by applying Rule 1 or 2 to G′
c(V

′
c , A

′
c). 2

Claim 1 follows from the construction of Gr(Vr, Ar). Claim 2(a) is a simple consequence of the

fact that G′(V ′, A′) is obtained by applying Rules 1 and 2 exhaustively. Claim 2(a) implies

Claims 2(b) and (c) since T (v1) and G′(V ′, A′)−T (v1) are subtrees of G
′(V ′, A′), respectively.

Finally, Claim 3 holds by a similar argument for Claim 2(a).

Proof that G′
r(V

′
r , A

′
r) ¹ Gr(Vr, Ar). Note that G′

r(V
′
r , A

′
r) is obtained by initializing

Mark(v) to the value false, for all vertices v in Gr(Vr, Ar), and then executing Steps 2 and 3

of MARK. Let G′′
r(V

′′
r , A

′′
r) be the result of applying Steps 2 and 3 of MARK to Gr(Vr, Ar)

without the initialization. Since no marked vertex is changed to an unmarked status by Step 2

or 3, we have that G′
r(V

′
r , A

′
r) ¹ G′′

r(V
′′
r , A

′′
r). In the following, we prove that no unmarked

vertex is changed to a marked status by applying Steps 2 and 3 of MARK to Gr(Vr, Ar). This

implies that Gr(Vr, Ar) ≡ G′′
r(V

′′
r , A

′′
r), and therefore that G′

r(V
′
r , A

′
r) ¹ Gr(Vr, Ar).

Assume that an unmarked vertex in Vr is changed to a marked status in Step 2. Then

Root(Gr).pf must be unmarked for some pf ∈ X. Note that Root(G′).pf is marked since

G′(V ′, A′) is itself the result of a call to procedure MARK. Since (1) the depth of v2 is greater

than l′1 by definition and (2) len(pf ) ≤ l1 ≤ l′1, the depth of 〈v2〉r is greater than the depth of

Root(Gr).pf . Hence, Root(Gr).pf is in Gr(Vr, Ar)−Tr(〈v2〉r). Since Root(Gr).pf is unmarked,

so is Root(G′).pf by Claim 1(b)—a contradiction.

Now assume that an unmarked vertex in Vr is changed to a marked status in Step 3.

There are two cases.

Case 1: change occurs as a consequence of Rule 1. Then there are two vertices 〈u1〉r, 〈u2〉r ∈ Vr

such that (1) 〈u1〉r is marked and an ancestor of 〈u2〉r, and (2) 〈u2〉r is unmarked. By

Claims 1(a) and 2(b), it is not the case that both 〈u1〉r and 〈u2〉r are in Tr(〈v2〉r). By

Claims 1(b) and 2(c), it is not the case that both 〈u1〉r and 〈u2〉r are in Gr(Vr, Ar)−Tr(〈v2〉r).

Furthermore, 〈u1〉r is an ancestor of 〈u2〉r. Thus, the only possibility is that (1) 〈u1〉r is marked,

an ancestor of 〈v2〉r, and in Gr(Vr, Ar)−Tr(〈v2〉r), and (2) 〈u2〉r is unmarked, a descendant of

〈v2〉r, and in Tr(〈v2〉r). By the former observation and Claim 1(b), u1 is therefore marked and

in G′(V ′, A′)− T (v2). By the latter observation and Claim 1(a), there is an unmarked vertex

w in T (v1). Since u1 is marked, Rule 1 can be applied to u1 in G′(V ′, A′). By Claim 2(a), all
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descendants of u1 should be marked in G′(V ′, A′). Since 〈u1〉r is an ancestor of 〈v2〉r, u1 is also

an ancestor of v2; that is, v2 is a descendant of u1. Thus v2 is marked, and v1 is also marked

by (4.1). Then Rule 1 can be applied to v1 in G′(V ′, A′). By Claim 2(a), all descendants of

v1 should be marked in G′(V ′, A′); that is, all vertices in T (v1) should be marked. However,

this contradicts the assumption that w is unmarked and in T (v1).

Case 2: change occurs as a consequence of Rule 2. Then, for a vertex 〈u〉r ∈ Vr, there is a

PFD C ′(Z → pf ) ∈ F such that C ′ = lCl(〈u〉r), 〈u〉r.pfz is marked for every pfz ∈ Z, and

〈u〉r.pf is unmarked. There are two more specific cases to be considered.

Case 2.1: where 〈u〉r is in Tr(〈v2〉r). Since all 〈u〉r.pf and 〈u〉r.pfz are descendants of 〈u〉r,

these vertices are in Tr(〈v2〉r). Hence, in Tr(〈v2〉r), the unmarked vertex 〈u〉r.pf can be marked

by applying Rule 2 to the vertex 〈u〉r and the PFD. However, this contradicts Claims 1(a)

and 2(b).

Case 2.2: where 〈u〉r is in Gr(Vr, Ar)− Tr(〈v2〉r). We claim that u.pf is unmarked and u.pfz
is marked for every pfz ∈ Z.

If 〈u〉r.pf is in Gr(Vr, Ar)−Tr(〈v2〉r), then u.pf is unmarked by Claim 1(b), since 〈u〉r.pf

is unmarked. Assume that 〈u〉r.pf is in Tr(〈v2〉r). Since (1) 〈u〉r is in Gr(Vr, Ar)−Tr(〈v2〉r) and

(2) len(pf ) ≤ l2 by the choice of l2, 〈u〉r.pf must be in Tr(〈v2〉r)[l2]. Thus, u.pf is in T (v2)[l2].

Since: (1) 〈u〉r.pf is unmarked, and (2) T (v2)[l2] ≡ Tr(〈v2〉r)[l2] by (4.1) and Claim 1(a), u.pf

is unmarked. By a similar argument, u.pfz is marked for every pfz ∈ Z.

By the above argument, in regard to G′(V ′, A′) and the given PFD, the unmarked vertex

u.pf can be changed to a marked status by applying Rule 2 to vertex u, which is in contra-

diction with Claim 2(a). Our earlier assertion that G′
r(V

′
r , A

′
r) ¹ Gr(Vr, Ar) then follows.

Proof that Gr(Vr, Ar) ¹ G′
c(V

′
c , A

′
c). It follows from Lemmas 8 and 9 that

G′(V ′, A′) ¹ G′
c(V

′
c , A

′
c). (4.2)

This implies thatG′(V ′, A′)−T (v2) ¹ G′
c(V

′
c , A

′
c)−Tc(〈v2〉c). Thus, by Claim 1(b), Gr(Vr, Ar)−

Tr(〈v2〉r) ¹ G′
c(V

′
c , A

′
c)−Tc(〈v2〉c). What remains to prove is that Tr(〈v2〉r) ¹ Tc(〈v2〉c). Since

T (v2)[l2] ¹ Tc(〈v2〉c)[l2] by (4.2), it follows from (4.1) that

T (v1)[l2] ¹ Tc(〈v2〉c)[l2]. (4.3)

From this observation and Claim 1(a), it suffices to show that

T (v1)− T (v1)[l2] ¹ Tc(〈v2〉c)− Tc(〈v2〉c)[l2] (4.4)

in order to prove Tr(〈v2〉r) ¹ Tc(〈v2〉c). It follows from condition C1 of Lemma 3 that, for a

vertex u in T (v1), there is a path function pf ∈ PathFuncs(lCl(v1)) such that v1.pf = u. To

simplify the notation, assume u′ denotes the corresponding vertex 〈v2〉c.pf in Tc(〈v2〉c), and

let u be a marked vertex in T (v1) − T (v1)[l2]. Then (4.4) follows if u′ must also be marked,

which we prove by induction on the sequence of applications of Rules 1 and 2 during execution

of Step 3 in procedure MARK which occur as a result of a call of the form “MARK(G,X).”
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Basis. Initially, for each pf ∈ X, vertex Root(G).pf is marked in Step 2. Since (1) the depth

of v1 is greater than l′1, by definition, and (2) len(pf ) ≤ l1 ≤ l′1, the depth of v1 is greater than

the depth of Root(G).pf . Thus, Root(G).pf is in G(V,A)− T (v1); that is, there is no marked

vertex in T (v1)− T (v1)[l2] at the end of Step 2. Hence (4.4) holds trivially.

Induction. Consider where vertex u is changed to a marked status by the ith application. By

the induction hypothesis, we may assume that, for j < i, if the jth application of a rule in

Step 3 changes vertex w in T (v1) − T (v1)[l2] to a marked status, then w′ is also marked in

Tc(〈v2〉c)− Tc(〈v2〉c)[l2]. There are two cases to be considered.

Case 1: where u is changed to a marked status by Rule 1. Then there is an ancestor w of u

that has already been marked. There are three subcases to be considered.

Case 1.1: where w is in T (v1)[l2]. Then w′ is in Tc(〈v2〉c)[l2] and marked by (4.3). Since w′

is an ancestor of u′, vertex u′ can be changed to a marked status by applying Rule 1 to w′ in

G′
c(V

′
c , A

′
c). By Claim 3, u′ is therefore marked.

Case 1.2: where w is in T (v1) − T (v1)[l2]. Since w was changed to a mark status at the

same time as u, w′ is marked by the induction hypothesis. Hence, as in Case 1.1, u′ must be

marked.

Case 1.3: where w is in G(V,A) − T (v1). Since T (v1) is a tree with root v1 and w is an

ancestor of u, the assumption implies that w is an ancestor of v1. Thus, v1 as well as u can

be changed to a marked status by applying Rule 1 to w. Furthermore, since v1 is in T (v1)[l2],

〈v2〉c is marked by (4.3). Since 〈v2〉c is an ancestor of u′, as in Case 1.1, vertex u′ must be

marked.

Case 2: where u is changed to a marked status by Rule 2. Then, for an ancestor w of u,

there is a PFD C ′(Z → pf ) ∈ F such that C ′ = lCl(w), w.pfz is marked for every pfz ∈ Z,

and w.pf = u. Since (1) len(pf ) ≤ l2 by choice of l2, and (2) u is in T (v1) − T (v1)[l2] by

assumption, the ancestor w of u must be in T (v1) in order to satisfy w.pf = u. Thus, each

marked vertex w.pfz is also in T (v1). It can be proven along the same line of argument for

Cases 1.1 and 1.2 above that each corresponding vertex w′.pfz is marked. Hence, w′.pf could

have been changed to a marked status by applying Rule 2 to the vertex w′ and the PFD

in G′
c(V

′
c , A

′
c), and therefore, by Claim 3, w′.pf is marked. (Note that u′ = w′.pf .) This

completes the induction proof; Lemma 12 now follows. 2

We are now ready to prove Lemma 10. Consider the following procedure, where N is an

integer such that N ≥ l′1 + l2 + L2.

Procedure 2:

Step 1. Let the initial value of G(V,A) be the state G′
0(V

′
0 , A

′
0) of the C-Tree G0(V0, A0) of

depth l′1 + l2 + L2 which results after the call “MARK(G0, X).” (Observe that there is

no functionally incomplete vertex in V whose depth is less than l′1 + l2 + L2.)

Step 2. for i← l′1 + l2 + L2 to N do
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Step 3. while there is a vertex v of depth i that is functionally incomplete in G(V,A) do

begin

Step 3.1. For such a vertex v, find two distinct ancestors v1, v2 of v satisfying the fol-

lowing three conditions (assuming, without loss of generality, that v1 is an ancestor

of v2):

1. lCl(v1) = lCl(v2),

2. The depths of v1 and v2 are between l′1 + 1 and l′1 + L2, and

3. T (v1)[l2] ≡ T (v2)[l2].

Step 3.2. Replace the subtree with root v2 by the subtree with root v1.

end 2

It follows from Lemma 11 that Procedure 2 always terminates and yields a C-Tree of depth

at least N for the given integer N . Let GN(VN , AN) the final state of G(V,A) after a call to

Procedure 2. Since Lemma 12 applies to each replacement in Step 3.2, we have

G′
N(V ′

N , A
′
N) ¹ GN(VN , AN) ¹ G′

c(V
′
c , A

′
c), (4.5)

where G′
N(V ′

N , A
′
N) denotes the state of GN after a call to procedure MARK of the form

“MARK(GN , X).” Now, since limN→∞G′
N(V ′

N , A
′
N) ≡ G′

c(V
′
c , A

′
c) by definition, (4.5) implies

that

lim
N→∞

GN(VN , AN) ≡ G′
c(V

′
c , A

′
c). (4.6)

Since each replacement in Step 3.2 occurs at a deeper location than any subtree within depth

l′1 of the root, the marked status of any vertices of depth less than or equal to l′1 remains

unchanged throughout the execution of Procedure 2; that is,

G′
0(V

′
0 , A

′
0)[l

′
1] ≡ GN(VN , AN)[l′1]. (4.7)

Hence, Lemma 10 follows from (4.6) and (4.7), and we have the following.

Theorem 3: Let F ∪ {C(X → Y )} denote a set of PFDs over a given class schema S. Then

it is decidable whether or not F |= C(X → Y ). 2

5. On Computing Closures
Let X denote a finite subset of PathFuncs(C) for some class schema S and class C in

Classes(S). Although the closure X+ may be an infinite subset of PathFuncs(C), the de-

cidability proof in the previous section suggests a means of characterizing X+. In fact, in this

section, we derive an effective procedure for constructing a finite automaton which accepts

X+, and therefore prove that X+ forms a regular set.
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Figure 12: An “a”-Tree G(V,A).

To begin, let Gc(Vc, Ac) denote a C-Tree, and G′
c(V

′
c , A

′
c) the state of Gc after a call

to procedure MARK (defined in the previous section) of the form “MARK(Gc, X).” We

can view G′
c as a (possibly infinite) automaton by letting Root(G′

c) be the initial state, each

marked vertex an accepting state, and each unmarked vertex a non-accepting state. Then the

automaton accepts X+ by Lemma 9 (with the simple convention that the automaton ignores

any “dots” which occur in argument path functions).

If G′
c is finite, then it is clearly a finite automaton accepting X+. For the remainder of

this section, we focus on the more difficult case that arises when G′
c if infinite. As a matter

of convenience, we reuse the various notation introduced by the previous chapter during the

proof of Lemma 12.

Our overall strategy will be to modify G′
c to a finite automaton by redirecting various

arcs. An informal example should help to clarify the main ideas behind this strategy. To

begin, let S consist of the complex object types

a{ B: b, C: c }

b{ A: a }

c{ }

and consider where F consists of the single PFD

a( C → B.A.C )

and where X = { C }. An “a”-Tree G(V,A) (which is infinite) is illustrated in Figure 12.

Now assume a call is made to procedure MARK of the form “MARK(G,X).” At the end of

Step 2, vertex v1 is marked and all other vertices are unmarked. In fact, at the end of Step 3,

it is straightforward to confirm that each vertex labeled “c” (e.g., v4 or v7 in Figure 12) will

be marked, and all other vertices unmarked. Consider each subtree of depth at least 3 (= l2)

with a root vertex labeled “a”. Each such subtree will have the “marking pattern” illustrated

in Figure 13 in which the marked vertices will correspond to the vertices with bullets in the

pattern. Thus, each (infinite) subtree whose root is a vertex labeled “a” has the same marking

pattern. (This will be formally proven below.) We can therefore represent the marking pattern

of G by redirecting the destination of the out-arc of v5 from v6 to v3. For this graph, we can

construct a finite automaton accepting {C}+ as follows: (1) let Root(G) be the initial state,

(2) let the two marked vertices v1 and v4 be accepting states, and (3) let all unmarked vertices
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Root(G), v2, v3, and v5 be non-accepting states.7 The resulting automaton is illustrated in

Figure 14. Clearly, given pf ∈ PathFuncs(a), the automaton can decide in O(len(pf )) time

whether or not pf ∈ C+.

Lemma 13: Let v1 and v2 be vertices in V ′
c such that (1) lCl(v1) = lCl(v2), (2) the depths of

v1 and v2 are greater than l1, and (3) Tc(v1)[l2] ≡ Tc(v2)[l2]. Then Tc(v1) ≡ Tc(v2).

Proof. By symmetry and assumption, it suffices to show that

Tc(v1)− Tc(v1)[l2] ¹ Tc(v2)− Tc(v2)[l2]. (5.1)

A proof of this is analogous to our prove of (4.4) in Lemma 12, and is left to Appendix 7. 2

Given pf ∈ PathFuncs(C), we need to decide whether or not Root(G′
c).pf is marked; that

is, if Root(G′
c).pf will qualify as an accepting state in the eventual automaton. Choose l1 as

the integer l′1, and assume len(pf ) ≥ l1 + l2 +L2. Then there are two distinct ancestors v1, v2

of Root(G′
c).pf satisfying the three conditions of Step 3.1 in Procedure 2, and it follows from

Lemma 13 that Tc(v1) ≡ Tc(v2). Thus, for every pf
′ ∈ PathFuncs(lCl(v1)), v1.pf

′ is marked iff

v2.pf
′ is marked. Now consider that there must exist path functions pf1, pf2 and pf3 such that

(1) Root(G′
c).pf1 = v1, (2) Root(G

′
c).pf1◦pf2 = v2, (3) pf = pf1◦pf2◦pf3, and (4) Root(G′

c).pf is

marked iff v1.pf3 is marked (since pf3 ∈ PathFuncs(lCl(v1))). With this observation in mind,

consider the following procedure for navigating within G′
c(V

′
c , A

′
c) by following arcs labeled by

properties in the sequence they occur in an argument path function.

7A simpler automaton exists in this case. In general, it is not part of our intention in this section to derive

automatons with the fewest states.
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procedure TRAVERSE(P1.P2. · · · .Pn)

Input: a path function P1.P2. · · · .Pn ∈ PathFuncs(C).

Output: a vertex v ∈ V ′
c with the same marked status as vertex Root(G′

c).pf .

Step 1. Let v ← Root(G′
c).

Step 2. for i← 1 to n do

begin

Step 2.1. Let v ← v.Pi.

Step 2.2. if there is a proper ancestor u of v such that (1) lCl(u) = lCl(v), (2) the depth

of u is between l1 + 1 and l1 + L2, and (3) T1(u)[l2] ≡ T1(v)[l2] then let v ← u.

end 2

The important conditions satisfied by vertex v returned by this procedure are given by the

following lemma.

Lemma 14: (a) The depth of v does not exceed l1 + L2 during TRAVERSE(pf ).

(b) Assume that the three preconditions of Step 2.2 are satisfied when the value of v is

v′ during a call to procedure TRAVERSE. Then v′ is the shallowest vertex on the path from

Root(G′
c) to v′ which satisfies the three preconditions. That is, for any proper ancestor v ′′ of

v′, there is no proper ancestor u′′ of v′′ such that (1) lCl(u
′′) = lCl(v

′′), (2) the depth of u′′ is

between l1 + 1 and l1 + L2, and (3) T1(u
′′)[l2] ≡ T1(v

′′)[l2].

Proof. Part (b) of the lemma is a straightforward consequence of the fact that v is reassigned

to an ancestor vertex as soon as the three preconditions of Step 2.2 are satisfied. With regard

to part (a) of the lemma, assume conversely that the depth of the vertex referenced by v, say v ′,

exceeds l1 +L2. By virtue of the value L2, there must then exist two distinct proper ancestors

v1 and v2 of v′ satisfying the three preconditions of Step 3.1. Since v is either reassigned to a

child vertex in Step 2.1 or to an ancestor vertex in Step 2.2, v must necessarily have “visited”

every ancestor of v′. Thus, since v2 is an ancestor for which the three preconditions of Step 2.2

are satisfied, procedure TRAVERSE will never visit any proper descendant of v2, including

v′—a contradiction. 2

Now choose l1 + l2 + L2 as the integer l′1, and let G1(V1, A1) = G′
0(V

′
0 , A

′
0)[l1 + l2 + L2],

where G′
0(V

′
0 , A

′
0) is the state of a C-Tree G0(V0, A0) of depth l′1 + l2 + L2 following a call to

procedure MARK of the form “MARK(G0, X).” Then, by Lemma 10,

G1(V1, A1) ≡ G′
c(V

′
c , A

′
c)[l1 + l2 + L2]

and it follows from Lemma 14(a) that any call to another version of TRAVERSE, navigat-

ing G1(V1, A1), will return a vertex v which has the same marked status as Root(G′
c).pf .
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(Note that, although any vertex referenced by v in the body of the procedure is always in

G1(V1, A1)[l1+L2] by Lemma 14(a), the additional vertices in G1(V1, A1)−G1(V1, A1)[l1+L2]

are still required in order to ensure that the third precondition of Step 2.2 remains effective.)

Thus, since G0(V0, A0) is finite, G1(V1, A1) can be effectively constructed, and we can then

use this new version of TRAVERSE as the means of deciding the marked status of any vertex

in V ′
c .

Let us now consider how to construct a finite automaton accepting X+ from G1(V1, A1).

By Lemma 14(b), we can compute the set of ordered pairs (v′, u′) of vertices in V1 such that,

whenever the vertex referenced by v in the body of procedure TRAVERSE becomes v ′ in

Step 2.1, then it is changed into u′ in Step 2.2. In fact, a pair (v′, u′) is in the set, say Redirect,

iff it satisfies the following two conditions.

1. v′ is the shallowest vertex on the path from Root(G1) to v′ such that the three precon-

ditions of Step 2.2 are satisfied.

2. u′ is the proper ancestor of v′ for which the three preconditions are satisfied.

Let (v′, u′) be in Redirect, and let w denote the parent vertex of v′. Then there is an arc

w
P
−→ v′ ∈ A1 for some property P .8 Consider when the vertex referenced by v in the body

of TRAVERSE is changed from w to v′ in Step 2.1 by virtue of the assignment “v ← w.P .”

By definition of the pair (v′, u′), the vertex referenced by v will then subsequently be changed

to u′ in Step 2.2. The same effect can therefore be achieved by redirecting the destination of

the arc w
P
−→ v′ in A1 from v′ to u′ and then to perform the assignment v ← w.P .

By these observations, a finite automaton accepting X+ can therefore be effectively con-

structed from G1(V1, A1) as follows.

1. Let Root(G1) be the initial state, let each marked vertex be an accepting state, and let

each unmarked vertex be a non-accepting state.

2. For each pair (v′, u′) in Redirect, redirect the destination of arc w
P
−→ v′ from v′ to u′,

where w
P
−→ v′ ∈ A1.

Hence, we have the following theorem and corollary.

Theorem 4: Let X denote a finite subset of PathFuncs(C), where C ∈ Classes(S) for some

class schema S. Then there is an effective procedure for constructing a finite automaton that

accepts X+. 2

Corollary 1: The closure X+ is regular. 2

Note that the constructed finite automaton is essentially deterministic in the sense that

there is neither an arc labeled Id nor a vertex which has two or more out-arcs with the same

label.9 Thus, once the finite automaton accepting X+ is generated, it can be decided in

O(‖Y ‖) time whether or not F |= C(X → Y ), where ‖Y ‖ is the size of Y .

8Since G1(V1, A1) is a tree, only one such arc connecting w and v′ will exist.
9An arc labeled Id corresponds to an empty transition.
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Figure 15: A schema graph for S.

6. Polynomial Time Algorithms for Implication Problems
The decision procedure given in Section 4 is not efficient. In fact, it takes more than expo-

nential time on the total size of S, F , and C(X → Y ) in order to decide whether or not

F |= C(X → Y ). In this section, we will present two special cases which have polynomial

time algorithms for deciding whether or not F |= C(X → Y ).

To simplify matters in the remainder of this section, we first consider the problem of

deciding membership of (arbitrary) path functions in PathFuncs(C), for some C ∈ Classes(S).

This can be accomplished by a simple transformation of a schema graph Gs(Vs, As) for S into

a finite automaton FAc which accepts PathFuncs(C) in the sense outlined in the previous

section. The transformation proceeds as follows. First, assign the vertex v ∈ Vc such that

lCl(v) = C as the initial state.10 And second, assign all vertices in Vs as accepting states. It

then follows from Condition SG2 of Definition 10 that FAc is essentially deterministic, and

that, for any (not necessarily well-formed) path function pf , v.pf ∈ Vs iff pf ∈ PathFuncs(C).

Hence, presuming that missing transitions will in fact go to an additional non-accepting state,

FAc decides in O(len(pf )) time whether or not pf ∈ PathFuncs(C).

For example, let S consist of the following complex object types.

a{ B: b, C: c, F: f }

b{ A: a }

c{ D: d, E: e }

d{ }

e{ }

f{ }

(6.1)

Then a schema graph for S will have the form illustrated in Figure 15. The graph is trans-

formed into the automaton FAa by assigning the vertex labeled “a” as the initial state, and

by assigning all vertices as accepting states. Then FAa decides in O(len(pf )) time whether

or not pf ∈ PathFuncs(a). For example, it accepts the path function B.A.C which is in

PathFuncs(a), but rejects the path function C.D.E.F which is not in PathFuncs(a) (since, as

presumed, an “E” transition from the state labeled “d” goes to an non-accepting state).

Returning to the issue of efficient algorithms for the implication problem, let X be a finite

10Recall that v must be unique by condition SG1 of Definition 10.
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subset of PathFuncs(C), for some C ∈ Classes(S), and let G′
c(V

′
c , A

′
c) be the state of a C-Tree

Gc(Vc, Ac) after a call to procedure MARK of the form “MARK(Gc, X).” G′
c(V

′
c , A

′
c) was con-

sidered as an automaton accepting X+ ⊆ PathFuncs(C) in Section 5. If pf ∈ PathFuncs(C),

then the form of Rule 1 of Step 3 in procedure MARK ensures that no non-accepting state

is entered after reaching an accepting state. Hence, a simple expedient is to presume for any

such automaton that, once an accepting state is entered, the remaining input is skipped and

the automaton terminates with an “accept” status. We shall refer to such a machine as an ac-

ceptor of X+ in the following discussion. Of course, the acceptor will only work property if the

input is in PathFuncs(C), but this can be resolved efficiently with the use of the automaton

FAc.

By slightly modifying procedure MARK, one can construct an acceptor of X+.

procedure CONS(G,X)

Input: a partial C-Tree G(V,A) and a finite subset X of PathFuncs(C).

Step 1. Let Root(G) be the initial state and let all vertices in V be non-accepting states.

Step 2. For each pf ∈ X, if Root(G).pf is in V , then change Root(G).pf into an accepting

state, and remove all proper descendants and their incident arcs.

Step 3. Apply the following rule to G(V,A) exhaustively.

Rule 3: For a vertex v ∈ V , if there is a PFD C ′(Z → pf ) ∈ F such that (1) C ′ = lCl(v),

(2) each path function in Z has a form pf1◦pf2 such that v.pf1 is an accepting state,11

and (3) v.pf is in V and is a non-accepting state, then change v.pf into an accepting

state and remove all proper descendants and their incident arcs. 2

Since Rule 3 derives from Rules 1 and 2 in Step 3 of procedure MARK, it can be proven along

the same line of argument used in the proof of Lemma 9 that the automaton produced by

procedure CONS after a call of the form “CONS(Gc, X)”, denoted M(Gc, X) in the remainder

of this section, is an acceptor of X+. But, since G(V,A) may be infinite, a call to procedure

CONS will not always terminate.

In the remainder of this section, we consider two cases in which the acceptor of X+ can

be constructed efficiently. The first case occurs if all antecedent PFDs (i.e. members of F ) are

key PFDs. Also, we shall continue to presume, without loss of generality, that the right-hand

side of any member of F consists of a single path function.

Consider an application of Rule 3 to Gc(Vc, Ac). In particular, assume there exists a

vertex v ∈ V and a PFD C ′(Z → pf ) ∈ F such that (1) C ′ = lCl(v), (2) each path function

in Z has a form pf1 ◦ pf2 such that v.pf1 is an accepting state, and (3) v.pf is in V and is a

non-accepting state. Since C ′(Z → pf ) is a key PFD, there exists a path function pf ′ such

that pf ◦ pf ′ ∈ Z. Conditions (2) and (3) then imply that there exists path functions pf3 and

pf4 where pf
′ = pf3◦pf4 and where v.pf ◦pf3 is an accepting state which is a proper descendent

11If Z = ∅, then condition (2) holds trivially.
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of v.pf . Rule 3 will then update the automaton by first assigning v.pf as a accepting state

and then by removing all proper descendents of v.pf (including v.pf ◦ pf3). Now let

Prefix (X)
def
= {Root(Gc).pf

′ | there exists pf ′′ such that pf ′ ◦ pf ′′ ∈ X}

Then Prefix (X) is a finite subset of Vc. At the end of the second step during an invocation of

procedure CONS, the initial set of accepting states will be a subset of {Root(Gc).pf | pf ∈ X}

(which in turn is a subset of Prefix (X)). By the observation above, the set of accepting states

must continue to be a subset of Prefix (X) during the execution of the third step. Hence,

the set of accepting states in M(Gc, X), denoted Saccept in the following, is also a subset of

Prefix (X). In order to determine if a non-accepting state is to be changed to an accepting

state, according to Rule 3, one need only record the set of present accepting states. That is,

in order to compute Saccept, it suffices to keep at most Prefix (X).

With this in mind, consider the time complexity for computing Saccept. Clearly, during

Step 1, there is no need to construct the entire C-Tree Gc(Vc, Ac). Only a subtree induced

by Prefix (X) needs to be created. Such a subtree is a partial C-Tree G(V,A) with V =

Prefix (X) and A = {u
P
−→ v ∈ Ac | u, v ∈ Prefix (X)}. Since the size of Prefix (X) is

‖X‖, we can construct in O(‖X‖) time a partial C-Tree induced by Prefix (X). Thus, Step 1

requires O(‖X‖) time. Since the partial C-Tree is essentially deterministic, Step 2 also requires

O(‖X‖) time. Furthermore, for a given vertex v and PFD C ′(Z → pf ), it can be decided

in O(‖Z ∪ {pf }‖) time whether or not the PFD satisfies the three preconditions of Rule 3

with respect to v. Hence, deciding whether or not Rule 3 can be applied to a vertex requires

O(‖F‖) time. Since (1) the conditions of Rule 3 cannot be satisfied by any leaf vertex, and

(2) the number of internal vertices in the tree is at most ‖X‖ − |X| + 1, where |X| is the

cardinality of X, one application of Rule 3 requires O(‖F‖(‖X‖ − |X| + 1)) time. Also, the

number of internal vertices decreases each time Rule 3 is applied to a vertex, which implies

that Rule 3 is applied at most ‖X‖−|X|+1 times in Step 3 as a whole. Thus, Step 3 requires

O(‖F‖(‖X‖ − |X| + 1)2) time. Hence, Saccept can also be computed in that time. Note that

Saccept is sufficient for constructing an acceptor of X+, even if the number of non-accepting

states in M(Gc, X) is infinite. Consequently, we have the following theorem.

Theorem 5: If F consists entirely of key PFDs, then an acceptor of X+ can be constructed

in O(‖F‖(‖X‖ − |X|+ 1)2) time. 2

For example, let S consist of the six complex object types (6.1) above, and let F consist

of the following three key PFDs.

f1: a( B C.E → C )

f2: a( B.A.C.E C.D → B.A )

f3: b( A → Id )

We construct an acceptor of X+ for the subset X of PathFuncs(a) consisting of the following
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Figure 16: A tree induced by Prefix (X).

path functions.
B.A.C.E

B.A.C

B.A.F

C.D

C.E

(6.2)

A partial “a”-Tree induced by Prefix (X) is illustrated in Figure 16. After the first step of

procedure CONS, vertex Root(G) is assigned as the initial state, and all vertices as non-

accepting states. In Step 2, five vertices v4 to v8 are changed into accepting states. For

example, v8 is changed into an accepting state by virtue of the path function B.A.C.E ∈ X.

However, the process of changing v6 into an accepting state (by virtue of B.A.C) will have the

side-effect of removing vertex v8.

In Step 3, the conditions of Rule 3 are satisfied by vertex Root(G) and PFD f2 since (1)

lCl(Root(G)) = a, (2) Root(G).B.A.C (= v6) and Root(G).C.D (= v4) are accepting states for

the left-hand side B.A.C.E, C.D of f2, and (3) Root(G).B.A (= v3) is a non-accepting state

for the right-hand side B.A of f2. Applying Rule 3 to Root(G) and f2 then has the effect of

changing vertex v3 into an accepting state, and of removing vertices v6 and v7. Rule 3 can

then be applied a second time to vertex v1 and PFD f3. Following this application, v1 is itself

changed into an accepting state, and vertex v3 is removed. The third and final application of

Rule 3 concerns vertex Root(G) and PFD f1. This will have the effect of changing vertex v2

into an accepting state, and of removing vertices v4 and v5.

The resulting acceptor of X+ appears in Figure 17. Note that Root(G) is the initial

(non-accepting) state, and that the remaining vertices, v1 and v2, are accepting states.

A second case in which the acceptor of X+ can be constructed efficiently relates to the

more specific circumstance in which F consists of key PFDs which are also simple, that is, in

which each key PFD in F has the single identity path function Id occurring on its right-hand
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side. In this case, Saccept can be computed more efficiently as explained below.

Assume we are computing Saccept with the use of procedure CONS in the manner outlined

above, and let v be a non-accepting vertex for which no combination of a descendant of v

(assuming v also qualifies as a descendent) and key PFD in F satisfies the three preconditions

of Rule 3 of procedure CONS. We claim that no subsequent firing of Rule 3, during the

remaining computation of Saccept, will assign v as an accepting state if the key PFDs in F

are simple. To prove this claim, it suffices to show that no non-accepting descendant of v is

changed into an accepting state by a subsequent application of Rule 3. To see this, consider

any such subsequent application applied to a vertex u and a key PFD in F . Then u itself is

changed into an accepting state and all its proper descendants are removed (since the right-

hand side of the PFD is Id by assumption). Now, if u is an ancestor of v, then v will be one

of the proper descendants of u which is removed, and the claim continues to hold in this case.

Otherwise, if u is not an ancestor of v, then u is not a descendant of v by assumption, and,

again, the claim continues to hold.

Now assume that the possible application of Rule 3 for vertices is considered is a bottom-

up fashion. By the claim above, there will never be any need to “return” to any vertex v

previously considered if, at an earlier time, it had been confirmed that no PFD in F together

with v satisfied the preconditions of Rule 3. Alternatively, if the preconditions of Rule 3 had

been satisfied by v and some PFD in F , then v will have been made a leaf.

These observations imply that Saccept can be computed by considering the possible ap-

plication of Rule 3 in Step 3 of procedure CONS for each non-accepting vertex at most once

in a bottom-up fashion. Hence, the time for Step 3 is reduced to O(‖F‖(‖X‖ − |X| + 1)).

Therefore, Saccept can also be computed in that time, and the following theorem holds.

Theorem 6: If every PFD in F is a key PFD which is simple, then an acceptor of X+ can

be constructed in O(‖F‖(‖X‖ − |X|+ 1)) time. 2

For example, reconsider the construction of X+ given above in which S and X consist of

the six complex object types (6.1) and five path functions (6.2) respectively, but now assume

F consists of the following three PFDs (note that each is a key PFD which is also simple).

f4: a( B.A C.E → Id )

f5: a( C.E F → Id )

f6: b( A → Id )
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The first two steps of procedure CONS will have the same effect on the partial “a”-Tree

in Figure 16. As we have suggested for Step 3, each vertex in the tree is then considered

in a bottom-up fashion to see if the vertex together with any of f4, f5 or f6 satisfy the

preconditions of Rule 3. To begin, assume vertex v3 is the first vertex considered (vertex v2

would also qualify). Clearly, v3 and PFD f5 satisfy the preconditions of Rule 3, and therefore

v3 is assigned as an accepting state, and vertices v6 and v7 are removed. Note that no further

consideration of v3 is necessary since v3 is now a leaf vertex.

Assume vertex v2 is the next vertex considered (vertex v1 would now also qualify). In

this case, however, neither f4, f5 nor f6, together with v2, satisfy the preconditions of Rule 3,

and therefore v2 remains as a non-accepting state. Again note that no further consideration

of v2 will be necessary.

The only possible choice for the next vertex to be considered is now v1. In this case, v1

and PFD f6 satisfy the preconditions of Rule 3. v1 is therefore assigned as an accepting state,

and vertex v3 is removed.

Finally, vertex Root(G) must be considered. In this case, Root(G) and PFD f4 satisfy

the preconditions of Rule 3. This will cause Root(G) to be assigned as an accepting state, and

all other vertices to be removed. Thus, an acceptor of X+ consists of a single vertex Root(G),

which is the initial (accepting) state. Hence, X+ coincides with PathFuncs(a).

Note that, with the earlier construction ofX+, it would not have been possible to consider

vertices in a purely bottom-up fashion. In particular, vertex v1 and PFD f3 would not satisfy

the preconditions of Rule 3 unless the rule is applied in advance to vertex Root(G) (a proper

ancestor of v1) and PFD f2.

Note that an acceptor of X+ constructed in a manner outlined in this section is essentially

deterministic. Thus, once the acceptor X+ is constructed, for a given PFD C(X → Y ), it can

be decided in O(‖Y ‖) time whether or not F |= C(X → Y ).

7. Summary and Open Problems
In order to overcome several problems with the relational model when used for complex

applications, semantic or object-oriented data models support the definition of complex object

types with at least two properties. First, any object of a given type is assumed to have an

identity separate from any of its parts; and second, the parts themselves may be the same or

any other objects. The notion of a path functional dependency (or PFD) in which component

attributes correspond to descriptions of property value paths in such object bases was first

proposed and considered in [20]. The main contribution of this earlier work was a sound and

complete axiomatization when databases may be infinite. In this paper, we have resolved a

number of issues which were left open.

• We have proven that the same axiomatization remains complete when PFDs are permit-

ted empty left-hand-sides. In our introductory comments, we reviewed an application

of PFD theory which makes use of such constraints.
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• We have shown that the axiomatization is not complete if logical consequence is defined

with respect to finite databases only.

• We have resolved the issue of decidability of logical implication for PFDs in the affir-

mative. Our proof suggested that an important functional closure forms a regular set,

which lead us to the derivation of an effective procedure for constructing a deterministic

finite state automaton accepting the set.

• We have derived efficient polynomial time algorithms for the implication problem based

on this procedure which apply in cases where antecedent PFDs are a form of complex

or embedded key constraint.

Some issues that remain unresolved include the following.

The complexity of the general membership problem for PFDs.

Given a finite set F ∪ {C(X → Y )} of PFDs over a class schema, is it NP-hard (or

NP-complete) to decide whether or not F |= C(X → Y )? The issue remains unresolved

even if one restricts schema to be acyclic.

A finitely complete axiomatization.

Find a complete set of inference axioms for finite logical implication for PFDs.

Decidability and complexity issues for finite logical implication.

Given a finite set F ∪ {C(X → Y )} of PFDs over a class schema, is it (efficiently)

decidable whether or not F |=finite C(X → Y )? The issue remains unresolved even if

F ∪ {C(X → Y )} consists only of simple key PFDs.

In view of past experience on finite implication problems for the relational model, we expect

that problems in the latter two categories will be very hard.

There is one final point worth noting about our underlying data model which relates to

the concept of generalization. Another important feature of a semantic or object-oriented data

model is that it usually allows the definition of a class (or object type) to mention at least one

superclass (or supertype) — more than one if the model supports so-calledmultiple inheritance.

One of the authors has extended the earlier work on PFDs in [20] to a more general model

in which complex object types can also be organized in an arbitrary generalization taxonomy

[19]. In particular, this later work permitted a complex object type to include an additional

“isa” clause. For example, a grad complex object type for the UNIVERSITY schema could

be defined as

grad{ Sup: prof } isa { student, prof }.

We wish to simply note that it is straightforward to extend the results of this paper to the

more general model used in [19].
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Appendix A: Proof of (5.1) in Lemma 13

By condition C1 of Lemma 3, for a vertex u in Tc(v1), there is a path function pf ∈

PathFuncs(lCl(v1)) such that v1.pf = u. For convenience, let us denote the corresponding

vertex v2.pf in Tc(v2) by u
′. Let u be a marked vertex in Tc(v1)−Tc(v1)[l2]. In order to prove

(5.1), it suffices to show that u′ is marked, which we prove by induction on the sequence of

applications of Rules 1 and 2 during execution of Step 3 in procedure MARK which occur as

a result of a call of the form “MARK(Gc, X).”

Basis. Initially, for each pf ∈ X, vertex Root(Gc).pf is marked in Step 2. Since (1) the depth

of v1 is greater than l1 by assumption and (2) len(pf ) ≤ l1, the depth of v1 is greater than

the depth of Root(Gc).pf . Thus Root(Gc).pf is in Gc(Vc, Ac) − Tc(v1). That is, there is no

marked vertex in Tc(v1)− Tc(v1)[l2] when Step 2 is executed. Hence (5.1) holds trivially.

Induction. Consider where vertex u is changed to a marked status by the ith application.

Assume, as an induction hypothesis, that if j < i, then for every vertex w in Tc(v1)−Tc(v1)[l2]

that is marked by the jth application of a rule in Step 3, w′ is also marked in Tc(v2)−Tc(v2)[l2].

There are two cases to be considered.

Case 1: where u is changed to a marked status by Rule 1. Then there is an ancestor w of u

that has already been marked. There are three subcases to be considered.

Case 1.1: where w is in Tc(v1)[l2]. Then w
′ is in Tc(v2)[l2], and thus marked by the assumption

that Tc(v1)[l2] ≡ Tc(v2)[l2]. Since w
′ is an ancestor of u′, vertex u′ can be marked by applying

Rule 1 to w′. By Claim 3 in the proof of Lemma 12, u′ is marked in G′
c(V

′
c , A

′
c).

Case 1.2: where w is in Tc(v1) − Tc(v1)[l2]. Since w was marked when u is marked, w′ is

marked by the induction hypothesis. Hence u′ is marked as in Case 1.1.

Case 1.3. Assume that w is in Gc(Vc, Ac)− Tc(v1). Since Tc(v1) is a tree with root v1 and w

is an ancestor of u, the assumption implies that w is an ancestor of v1. Thus v1 as well as u

can be marked by applying Rule 1 to w. Furthermore, since v1 is in Tc(v1)[l2], v2 is marked by

the assumption that Tc(v1)[l2] ≡ Tc(v2)[l2]. Since v2 is an ancestor of u′, vertex u′ is marked

as in Case 1.1.

Case 2: where u is changed to a marked status by Rule 2. Then, for an ancestor w of u, there

is a PFD C ′(Z → pf ) ∈ F such that C ′ = lCl(w), w.pfz has been marked for every pfz ∈ Z,

and w.pf = u. Since (1) len(pf ) ≤ l2 by the choice of l2 and (2) u is in Tc(v1)− Tc(v1)[l2] by

assumption, the ancestor w of u must be in Tc(v1) in order that w.pf = u. Thus, each marked

vertex w.pfz is also in Tc(v1). It can be proven in the same way as Cases 1.1 and 1.2 above that

each corresponding vertex w′.pfz is marked. Hence, w′.pf can be marked by applying Rule 2

to w′ and the PFD C ′(Z → pf ). By Claim 3, w′.pf has already been marked in G′
c(V

′
c , A

′
c).

(5.1) then follows since u′ = w′.pf . 2
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