
A Generic Paradigm for Efficient
Distributed Communication

James W. Hong and James P. Black

Department of Computer Science
University of Waterloo

July 29, 1991

Abstract

In our work, we seek to reduce the complexity of communication in
distributed systems. We present the Buffer and Queue Model, which
consists of a set of simple standards and tools that provide an effi-
cient and consistent programming interface that can be used to imple-
ment a great variety of communication interactions both within and
among various types of paradigms, abstractions, and entities. The
Buffer-Queue protocol extends this consistent programming interface
transparently to a distributed environment. We give examples of how
various complex communication facilities may be developed using the
Buffer and Queue paradigm.

1

1 Introduction

As computers are connected via networks to share resources and to increase
performance, communication among them has become an essential part of
modern computing. With the rapid increase in the power and capabilities
of modern computers as well as in users’ needs, communication software has
mushroomed in response.
Over the years, various communication paradigms, abstractions and pro-

tocols have been developed independently to support specific system and
application needs. As a consequence, today’s programmers must deal with a
complex, incompatible set of standards, semantics and interfaces. Currently,
most communication software implementations are done by programmers
using their own ad hoc approaches, yielding a diverse and unwieldy program-
ming environment. In such an environment, there is a desperate need for a
single consistent and efficient communications programming interface, which
can be used by all types of entities for all types of communication, and which
can be extended transparently across a distributed system.
Recently, there have been some attempts to provide a single consis-

tent programming interface to reduce the complexity of such programming.
AT&T STREAMS [ATT87], BSD sockets [Leff88], the x-Kernel [Hutc88],
Choices Conduits [Zwei90] and TACT [Auer90] are some such attempts. Un-
fortunately, most of these efforts fail to support new forms, or as many forms,
of communication as one might wish. In our estimation, the main reason for
this failure is that most have a priori targeted a specific or limited set of areas
and thus are not based on sufficiently general communication abstractions.
We address the communication problem in distributed systems by seeking

answers to the following three related questions:

• How can a programmer write code to communicate with the provider
of a service?

• How can this code be made independent of the memory domain, ex-
ecution control regime (procedures, threads, processes, device drivers,
etc.), and physical location of the service?

• Can we achieve this independence even when the communicating enti-
ties have different characteristics?

2

In this paper, we present the Buffer and Queue Model as an efficient and
versatile solution to the problem, and as a specific implementation of the
generic communication model developed in [Hong91]. We use the object-
oriented design framework [Meye88] in the development of the model, since
it allows us to define or specialize the tools as needed. The Buffer and Queue
Model contains a set of communication concepts and primitives which is sim-
ple and general, rigorous and flexible, low-level and extensible. We show how
this model uses the efficiencies of a single memory domain while providing
a universal communications interface (called the internal communications
interface) between various types of entities across a wide spectrum of envi-
ronments. The internal communications interface can be used to replace ad
hoc approaches currently being employed between various entities, high-level
abstractions and implementation mechanisms to provide users with a single
consistent programming interface.
The rest of the paper is structured as follows. Section 2 lists a set of de-

sign constraints for a simple, efficient and versatile communication paradigm.
Section 3 presents the Buffer and Queue Model. Section 4 presents the
Buffer-Queue Protocol, which extends the internal communications interface
transparently to a distributed environment. Section 5 demonstrates how var-
ious complex communication facilities may be easily and efficiently developed
using Buffers and Queues and Section 6 presents some conclusions.

2 Design Constraints

We define communication as the transfer of data between two or more enti-
ties. The definition involves three fundamental concepts: data, entities, and
transfer (delivery and synchronization).
A survey of various communication paradigms in distributed systems and

a detailed discussion of important issues related to the fundamental concepts
of communication are given in [Hong91]. Based on this discussion, design
constraints are derived for a simple, efficient and versatile communication
model that provides a single consistent communications programming envi-
ronment. Some of those constraints are:

• a standard data-object structure is required, which all levels and types
of communication can use efficiently and consistently;

3

• a universal communications interface is required, which can be used be-
tween various types of entities across a wide spectrum of environments;

• for efficiency reasons, the model is required to use the conceptual effi-
ciencies of a single memory domain by passing a descriptor (or control)
of data objects rather than data objects themselves;

• for resource management and other purposes, a data object must always
be returned to its owner at completion of the operation;

• an identification scheme that can uniquely identify data or interface
objects across a system is required; and

• for transparent distribution of data objects, a protocol is required to
transfer a structural description of data objects as well as control in-
formation for peer-to-peer interactions.

3 The Buffer and Queue Model

We have applied the design constraints mentioned in the previous section
and developed an efficient and versatile communication model called the
Buffer and Queue Model, which consists of three communication abstrac-
tions, namely delivery/synchronization, Buffers, and Queues, corresponding
to the transfer of data among entities.

3.1 Buffers

A Buffer is an abstraction of a memory object consisting of an ordered se-
quence of bytes. The simplest form of Buffer is one that describes a single
contiguous block. A Buffer consists of two parts: data and operations. The
data portion of a Buffer is referred to as the Buffer descriptor or Bufd.1 It
consists of four elements: the starting address of a block of memory used by
the Buffer, the size of the Buffer, and the starting offset and the size of valid
data. Operations required in a Simple Buffer (shown in Figure 1 (a)) write
data into and read data from Buffers, and set and return Bufd information.

1Throughout this paper, when we use the term Buffer, we will mean the object in
the object-oriented sense [Cox86], while by Bufd, we will mean only the area of memory
occupied by the data corresponding to a particular instance.

4

6

-¾

¾ -

HH
HH

HH
HY

©©
©©

©©
©*

6

6

(b) A Segmented Buffer

Identification

Linkage

Status

Descriptor

Data

TrailerData or BufdHeader

Descriptor

Status

Linkage

Identification

Control

(c) A Recursive Buffer

offset
count

size
addressDesc:

Data

(a) A Simple Buffer

Figure 1: Buffer Structures

5

Communication based on Buffers and Queues involves transferring Buffers
among Queues. This requires that extra information be maintained in Bufds
in addition to data, namely identification and status information. Identifica-
tion fields include type, identifier and owner of a Buffer, as well as where the
Buffer should be returned at the completion of an operation (the returnQ).
Status fields include the present location (a Queue), and the status of the
most recent operation. During communication, messages may be fragmented
into smaller pieces and reassembled. Thus, a pair of pointers is used for
handling a sequence of Bufds as a doubly-linked queue. The structure of a
Segmented Buffer is given in Figure 1 (b).
The basic operations defined in the Simple Buffer can be inherited by the

Segmented Buffer. However, they need to be redefined to handle a list of
memory blocks. Moreover, operations to fragment a large data item into two
smaller pieces of data and to reassemble them back into a single large data
item are required.
A data structure such as this Segmented Buffer has been demonstrated

to be inefficient for protocol processing [Hutc88, Zwei90]. A more desirable
structure is one that can handle a hierarchy of Bufds, each Bufd capable of
containing multiple blocks of memory for header, trailer and data—or indeed,
(a pointer to) another Bufd. Such a structure, shown in Figure 1 (c), can
handle arbitrary layers of protocol headers and trailers. Operations on recur-
sive Buffers include push blk and pop blk. Push blk is used in packetization to
insert a header or trailer by linking the appropriate Bufd pointers to either
block. Pop blk, on the other hand, is used in depacketization to separate a
header or trailer from user data. Further, the read and write operations need
to be modified to traverse a recursive Bufd structure and access individual
blocks.
The recursive Buffer structure and functional interface can be used as

a “standard” structure for all levels and types of communication. If all
levels use this common structure, a uniform, simple and efficient software
interface can be designed for each layer that permits complex interactions
without regard for details of any higher or lower layer interfaces. Further,
the framework that we have used to develop hierarchical Buffer structures
can be used to modify existing or develop new Buffers as needed.

6

3.2 Queues

Queues are the second fundamental concept in our model: the endpoints of
communication which represent the entities exchanging information. We use
the conventional concept of the queue abstract data type. The simplest queue
consists of a pair of pointers for storing data objects, and the operations en-
queue (to add objects) and dequeue (to remove objects). Although FIFO is
the normal access discipline for queues, we assume other access modes will
be useful, for example, to extract fragments of a single message from a Queue
holding interleaved fragments of a number of messages, or for handling prior-
ity data. A position cursor and a data-object counter are useful information
to maintain in a Queue for efficient access to data objects.
We call the specialization to a queue of Buffers a Buffer Queue (or BufQ).

In addition to queue pointers, identification and status information is needed
in BufQs for system management and communication. Identification fields
include the type, identifier and ownership of a Queue. Besides specifying the
type of a Queue, the type field may be used to indicate the delivery method
(e.g., via procedure call, wake-up signal). Status fields include a count of
the number of Bufds using this particular BufQ as their returnQ, and flags
for various purposes (such as whether a process is blocked on a dequeue
operation of a Buffer from a Queue).
Network communication usually involves a Buffer being passed through

multiple layers of communication protocols. At each layer, protocol-specific
processing is performed such as manipulating control information and updat-
ing state information. Since the control information and the operations for
manipulating it are stored within a Buffer, it is the Buffer that gets modified
as it travels downward or upward. However, state information to manage
each protocol layer should not be stored in the transient Buffer but rather
in endpoints or protocol modules. Thus, a Network Queue is a specialized
Buffer Queue that can potentially include a protocol-specific socket structure.
The universal interface (i.e., a Buffer Queue) developed in this section

can be used between various types of entities. It provides generic delivery
and signalling techniques and a storage capability for data objects (Buffers).
The framework that we have used to develop hierarchical Queue structures
can be used to tailor existing Queues or develop new Queues as needed.

7

3.3 Delivery and Synchronization

The enqueue and dequeue operations of Queues are used for delivery of
Buffers. The enqueue operation is used to transfer the control of the Buffer
to the receiver. The dequeue operation is used to accept the transfer of the
control from the sender. Unfortunately, the enqueue operation itself does not
suffice to deliver data since, short of continuous polling, the receiver has no
way of knowing when the data is available. Therefore, a signal function must
necessarily be incorporated into the enqueue operation to notify the receiver
of the Buffer transfer. Because different entities may wish to be signalled in
different ways, the signal function is defined as part of the Queue definition
by its owner and can be implemented differently in different communication
paradigms. For example, the signal function might simply be a call instruc-
tion in the procedure-call paradigm, or a wakeup call for a blocked process
in the message-passing paradigm. The sender (or the entity performing the
enqueue operation) should not need to know the details of the signal function
defined for any receiver’s Queue.
Transferring a Buffer is achieved by enqueueing a Buffer onto the BufQ

that represents the destination entity. Receiving a Buffer is achieved by
dequeueing it from a BufQ. Note that Buffer flow and ownership are orthog-
onal to data flow: there is no distinction in the model between full and empty
buffers, but rather, an emphasis on the management of the memory areas
containing the data.
Thus, a Buffer may be enqueued on any BufQ in the system. However,

we restrict dequeue operations to the owner of a BufQ. This is a reasonable
restriction which serves to maintain order in Buffer management. If more
flexible enqueue and dequeue semantics are required, one can build that
capability on top of the current semantics. For example, multiple readers can
be handled by interposing a server process which has specific code to deal
with such issues as resource management, synchronization, demultiplexing of
long messages and other interference aspects.
The Buffer and Queue Model provides a simple but versatile mechanism

for returning data delivery or Buffer operation status. The returnQs coupled
with the capability to access nested higher-layer Bufds inside a standard
Buffer from any level provide an elegant solution. Any receiver can either
return the Bufds in the reverse direction of the delivery path (i.e., remov-
ing the Bufd it created and passing the rest to its sender) or return them

8

all directly to their returnQs. Also, even should some intermediate entity
fail in the middle of a communication process, error status and Bufds can
still be recovered and returned since each Bufd always contains its own re-
turnQ information. Finally, returnQs are useful for resource management
and synchronization.
By convention, a Buffer is blocked (i.e., the user does not have access to

it) when it is enqueued on some BufQ other than the sender’s or it is in the
control of (has been dequeued by) some other entity. A Buffer is unblocked
when it is dequeued. The return of the Buffer indicates that whichever entity
had control of it relinquished it and is done with it. For instance, a message
contained in the Buffer may have been copied or sent so that the original
Buffer can be reused or reclaimed.
Using this convention, we can easily support both synchronous and asyn-

chronous communication, which are the basic forms of communication re-
quired in most modern computer systems. The Buffer and Queue commu-
nication paradigm is inherently asynchronous: the user invokes enqueue to
initiate the operation, and then resumes its execution. When it wants to
discover the status of the operation, it can simply poll or block on the de-
queue operation of the Buffer from its returnQ. In synchronous or blocking
communication, the sender must enqueue the Buffer to an appropriate Queue
and then block immediately on the dequeue operation of the Buffer from its
returnQ.
Although the principle of returning the Buffer to its sender when the op-

eration is complete is intended mainly to assist Buffer resource management,
it can be used as a vehicle for several other useful mechanisms. For instance,
it can be used to transport acknowledgements back to the requesting enti-
ties upon completion or failure of an operation. In turn, this results in the
signal function being invoked, which can be used to unblock any blocked
user entities. Another use is in synchronization of data control; the return
of a Buffer signals that it can be modified without fear of disrupting some
communication in progress.

4 The Buffer-Queue Protocol

The Buffer and Queue Model presented thus far views a system as a single
node, where efficiencies of a single memory domain can be enjoyed. That

9

is, from the user’s point of view, communication takes place within a single
global domain. In reality, however, there are a number of separate nodes
and protection domains in such a system and we must provide some tools to
bridge this gap if we wish to provide a truly transparent distributed Buffer
and Queue paradigm.
Local communication which passes Buffers by reference can easily deliver

arbitrarily complex local Buffers to any Queue within a single protection do-
main without losing any structural information. However, communication
across protection domains requires a relay or a pipeline through which the
data must be copied from the sender’s protection domain to the receiver’s. In
order to provide transparent Buffer and Queue communication across protec-
tion domains (both within a single node and between nodes), the structural
information of Buffers as well as control information for Buffer and Queue
operations should be delivered along with the content. The Buffer-Queue
protocol (BQP) is intended to do just this. Note that the data structure
encoding (which we call linearization) as opposed to the control aspects of
BQP could easily be replaced by external data representation standards such
as XDR [SUN87] or ASN.1 [ISO87] at the possible expense of some efficiency.
Between protection domains within a single node, a privileged entity such

as the kernel performs the copy operation (both structure and content) on
behalf of the sender and receiver. The kernel can employ memory manage-
ment “tricks” such as memory mapping [Russ89] to improve the efficiency
of such operations. Across nodes, however, no such third party exists: the
structural information must be encoded and transmitted along with the con-
tent by the sender, and there must be some entity on the remote node that
can decode and deliver it to the appropriate receiver.
In a layered communication system, an implementation of BQP would

result in a separate, thin layer in a stack of protocol layers. Since Buffers
must be transferred reliably between nodes, the BQP must either reside on
top of a reliable transport protocol or have the reliability aspect built into the
protocol itself. We chose to build the reliability features (e.g., sequencing,
error recovery) into the protocol so that it can be placed at an arbitrary level
in a protocol stack. These features only need to be activated when necessary.
In the Buffer and Queue Model, the structure of a Buffer is contained

in a Bufd or nested Bufds. Thus, the BQP transfers structural information
contained in higher-layer Bufds to the remote node. The remote BQP mod-
ule uses this information to reconstruct the original Buffer, with its internal

10

structure intact, so that it can be delivered within the remote node as if
enqueued locally. A Bufd also contains the operational information such as
the returnQ and status as the requested operation completes. This infor-
mation must also be transferred along with the structural information. We
refer to these two types of information (structural and B-Q operational) as
essential Bufd information that needs to be transferred in order to support
the single-domain communication paradigm across the system.
However, the Bufds also contain information that is useless in remote

nodes (e.g., local virtual memory addresses), and which need not be trans-
mitted. One alternative is to extract and transmit only the essential infor-
mation from each Bufd. The other is to transmit the entire Bufd. Both have
advantages and disadvantages. Although the second approach uses some ad-
ditional bandwidth by transferring unused data, we prefer it because of its
simplicity and uniformity, and because the receiver need not re-allocate any
extra memory for Bufds, but may simply strip them from the inbound packet
and overwrite fields as appropriate.
The remaining problem is how to transfer the higher-layer Buffer struc-

ture (i.e., those Bufds above the BQP layer) to remote nodes. In normal
network communication, the transmission mechanism such as an Ethernet
device driver sends only the headers, data and trailers, but not the Bufds
themselves. As discussed at length in [Hong91], we assume that low-level
packet assembly is modified to also include Bufds marked for transmission –
specifically those above the BQP layer.
The BQP peer-to-peer communication is basically a transaction-oriented,

RPC-like interaction. A BQP entity sends a BQP message to another BQP
server requesting an action (e.g., enqueue a Buffer, or abort) and waits for a
reply. In the most common case of the enqueue operation, the reply occurs
when the Buffer in question is returned, that is, when an entity at the remote
node performs what it considers a remote enqueue operation on the returnQ
of a remote Buffer.
In summary, we claim that the Buffer and Queue Model coupled with the

BQP is able to support a wide range of communication requirements between
diverse types of entities both within a single node and across a distributed
system. The claim is substantiated by the examples presented in the next
section.

11

5 Communication Examples Using Buffers

and Queues

In this section, we demonstrate how one can easily and simply implement
complex communication facilities using Buffers and Queues. We first show a
simple example of internal communication, which we then extend to imple-
ment distributed communication which involves BQP on top of conventional
network communication.
As stated earlier, internal communication refers to communication be-

tween entities within a single protection domain, where messages are passed
by reference and copying of messages is avoided as much as possible. Our
internal-communication example, shown in Figure 2, involves two entities,
A and B. A receiveQ associated with the entity B is a BufQ onto which
incoming Bufds are enqueued and where they remain until dequeued by the
owner of the BufQ. A returnQ associated with the entity A is also a BufQ,
to which Buffers are returned after completing their journey to one or more
communication endpoints.

#

"

Ã

!

#

"

Ã

!¾

-

Bufd

Bufd

ReturnReturnQ

ReceiveQ

A B

Sent

Figure 2: An Example of Internal Communication

Entity A transfers a Bufd to entity B by enqueueing it onto B’s re-
ceiveQ, and invoking its signal function as a side effect. Entity B retrieves
the Bufd by dequeueing it from its receiveQ. The status of the Buffer trans-
fer is recorded in the return status field of the Bufd, and it is enqueued to
the source’s (A’s) returnQ by B. Entity A discovers the status of the data
transfer by dequeueing the returned Bufd from its returnQ and examining
the return status flag. Since this internal communication example takes place

12

within a single protection domain, neither the structural information nor the
content of the Buffer need to be copied.
The simple internal communication example described above can be di-

rectly applied to communication between threads (in the Mach [Acce86]
sense) within a single protection domain. In this case, the signal function
unblocks a blocked process. In the case of coroutines, signal is simply the
coroutine resume operation. If the two entities communicate by procedure
call, however, the enqueue and signal functions become asymmetric and more
complex.
Consider a procedure A (the calling procedure) invoking a procedure B.

We assume that there are some parameters transmitted by A to B and re-
sults returned from B to A. Further, we assume that the process of saving
and restoring the context of the calling procedure will be handled by the
normal procedure-call mechanism. The calling procedure “prepares” the in-
put parameters by filling in appropriate information in the Buffer to be sent
to the called procedure. Those parameters passed by value are copied into
the Buffer, and those passed by reference will have their addresses copied
into it. The prepared Buffer is enqueued to the receiveQ of B. The signal
function invokes the dequeue operation of B’s receiveQ to obtain the input
parameters, before finally calling procedure B. After the execution of B,
the results are appropriately stored in the Buffer again and returned to the
calling procedure by enqueueing on A’s returnQ. This enqueue operation also
calls the signal function, but that version of signal is a null operation: the
effect of the signal is achieved through the normal procedure call mechanism
as a number of stack frames are popped. Execution continues at the next
statement in A, which dequeues the returned Buffer to access values sent by
B.
Note that in the Buffer and Queue paradigm, entity A does not need

to “know” that B is accessed by a procedure call, and B does not need
to “know” that it is being called through the Buffer and Queue interface.
Furthermore, the Buffer and Queue interface which encloses B does not need
to know details of the implementation of A’s returnQ.
This example of procedure-call communication can be extended trivially

to remote procedure call by performing the enqueue operations on remote
Queues. Any failure of the remote system would be detected by the local
BQP server, which would return the Buffer with an appropriate error status;
this status would be received at the time of the caller’s dequeue operation.

13

These simple uses of Buffers and Queues for internal communication are
used as a building block in the following, more elaborate example.
To demonstrate how Buffers and Queues can be used across protection

domains within a single node (i.e., local IPC between two virtual address
spaces) and across nodes (i.e., remote IPC), consider a remote X11 [Sche88]
client-server communication example. An X11 client wishes to send a request
to a server located on another node on the network. It creates an X11 Buffer
and fills it with the appropriate information such as the request op-code
and its arguments, and then invokes an appropriate X Toolkit [Swic88] or X
library routine. Recall that in the hierarchy of X11 communication protocols,
there is a thin layer of IPC. We also assume the use of a stack of TCP, IP
and Ethernet protocols under the IPC layer.
Presumably, the X library routine requests the kernel to create an IPC

Buffer. The X library routine prepares the IPC Buffer and passes it to the
IPC server by enqueueing it on the server’s BufQ. Note that a typical IPC
server would be equipped with two BufQs, one for storing Buffers containing
messages to be sent (sendQ) and another for storing Buffers that are to re-
ceive arriving messages (receiveQ). At this point, the server checks whether
the Buffer is destined to a remote or local entity. If it is local, the server
would try to find a match from Buffers that are enqueued onto its receiveQ,
transfer data to the receiver’s Buffer and complete the local IPC by returning
the Buffers to their corresponding returnQs. In this case, the IPC server acts
as the relay between two protection domains by copying the data from the
sender’s protection domain to the receiver’s. The user processes communi-
cate with the IPC server’s queues through a kernel (procedure) call, while
the kernel returns Buffers to the user processes through blocking queues as-
sociated with the process control blocks.
If the destination is remote, the IPC server must transfer the Buffer to

the remote IPC server. This is an example of a pipeline between nodes.
Since there is no third party that can assist in relaying Buffers as in the
local IPC example, the peer BQP modules are responsible for linearizing
and delinearizing, transferring Buffers reliably, and synchronizing the parties
involved. Thus, the IPC server passes the Buffer to its lower layer, the BQP
layer, again by enqueueing it to the BQP server’s sendQ. In this case, the
IPC and BQP servers may be special system processes communicating in a
shared-memory domain through kernel Queues. The IPC servers on the two
systems use the BQP to relay between their disjoint memory domains.

14

The BQP server dequeues the Buffer and fills in the protocol information
(such as source and destination QIDs, total message length, number of Bufds,
etc.) in the BQP header. Since the BQP sits on top of a reliable stream (TCP
in our example), activating the reliability features (e.g., sequencing, check-
sum) is unnecessary unless BQP is multiplexing several concurrent operations
and thus fragmenting and sending Buffers piecemeal itself.
The BQP server then passes its Buffer to the transport layer. The lower

layers (i.e. transport, network and device layers) prepare their Buffers, per-
form protocol processing and pass them to their lower layers using internal
communication between layers whenever possible. In this way, the Buffers
are passed by reference from the user layer to the device layer, avoiding copy
operations. The resulting Buffer structure before transmission is shown in
Figure 3. In conventional network communication, the transmission traversal
scheme would involve visiting all Bufds and transmitting only the headers,
data and trailers but not Bufds. In distributed Buffer and Queue commu-
nication, however, Bufds above the BQP layer must also be transmitted as
explained earlier. The corresponding Ethernet packet transmitted is shown
in Figure 4.
After the Ethernet controller transmits the packet to the remote node,

the Bufds in the Ethernet Buffer can be returned recursively to higher layers,
or directly to individual returnQs by the Ethernet or any intermediate layer
as appropriately flagged. When the packet arrives in the remote node, it is
processed in a conventional manner (i.e., headers and trailers are stripped
from the received data and passed to higher layers) until data reaches the
BQP layer. The BQP server also strips its header from the data. It then
reconstructs the IPC Buffer from the information in this header. It strips the
IPC Bufd and X11 Bufd from the data and fills in information such as local
virtual addresses of the X11 Bufd and IPC Bufd. Thus, the resulting IPC
Buffer contains the IPC header block, the X11 Bufd, and the user data block.
It also sets a local returnQ QID and the appropriate inverse QID mapping
so the local return of the relevant Bufds will be caught and redirected to the
remote node.
The BQP server then passes the IPC Buffer to the IPC server by enqueue-

ing it to the IPC server’s sendQ. The IPC server performs a matching oper-
ation. If a matching Buffer (i.e., the intended receiver’s Buffer) is found in
the server’s receiveQ then the data transfer takes place, otherwise it remains
in the server’s sendQ until a matching Buffer arrives. Upon completion, the

15

HH
H ©©©

HH
H

HH
H

HH
H

HH
H

Bufd

E-TLRETH

ETH

Bufd

IP

IP

TCP

Bufd
TCP

BQP

BQP

Bufd

IPC

IPC

Bufd
*

X11
Bufd

*

Data

Figure 3: The Internal Structure of an Ethernet Buffer with the Flagged
Bufds

l
ll

""""

E-TLRTCPIPETH BQP Data

IPC-Bufd X11-Bufd IPC-Hdr Data

Figure 4: The Transmitted Ethernet Packet Containing Flagged Bufds

16

Buffer will be returned to the BQP layer, which, acting as the agent for
the original sender, will ensure that status and controls are returned to the
originating node and the corresponding actions and clean-ups carried out.
This example demonstrates not only how one can implement conventional

network communication efficiently, but also how different types of entities
(e.g., user processes, kernel routines, kernel processes, devices) can commu-
nicate using a uniform data structure as well as a uniform communications
interface. Further, the BQP extends the internal communication interface to
a distributed environment.

6 Conclusion

Our work has focused on reducing the complexity of communications pro-
gramming in distributed systems. Currently, programmers use ad hoc ap-
proaches in developing and implementing communication paradigms and pro-
tocols. Our main goal is to develop a set of simple standards and tools for
a uniform, efficient and consistent programming interface that can be used
to implement various communication interactions both within and among
different paradigms, abstractions, and entities.
As a simple and efficient solution to the communication problem, we pro-

pose the Buffer and Queue Model, which meets the constraints of the generic
communication model developed in [Hong91] and thus provides a single con-
sistent programming environment which uses the conceptual efficiencies of
the local-memory paradigm. The Buffer-Queue protocol was developed to
extend the Buffer and Queue abstractions transparently to a distributed en-
vironment. The Buffer and Queue model is simple and low-level so that
various communication systems and utilities can easily be built on top. We
demonstrated the generality and versatility of the Buffer and Queue Model
by presenting implementation examples of various existing communication
forms. Additional examples we have investigated include the use of Buffers
and Queues for conversion to and from stream- and message-based communi-
cation, for efficient processing of long messages in a distributed environment,
for optimistic blast protocols, and for one-way (broadcast) communication.
Using this model, the communication programmers can implement var-

ious communication systems efficiently. Since the programmers are using a
single consistent programming interface, supporting communication between

17

different types of paradigms, abstractions and entities is not any more diffi-
cult than supporting communication within a single paradigm.
The main problem we intended to solve in our work was to find answers

to the set of questions raised in the introduction. Consider the following code
segment.

simple_op() {

Buffer_Queue *Dest_Q, Return_Q; // create Qs

Simple_Buffer *Bufp, Buf(Return_Q); // create Bs

Ask_Name_Server(Service, Dest_Q); // locate service

Dest_Q->enqueue(Buf); // send request

Return_Q.dequeue(Bufp); // get reply or ack

}

The name server returns the QID of the service in Dest Q (assuming
such a service exists). The client sends the request by simply enqueueing the
Buffer filled with the message onto the service provider’s Queue. The client
then retrieves the status of the request (or a reply message) by dequeueing
the returning Buffer from its returnQ. This code using Buffers and Queues is
independent of memory domain, execution control regime, physical location
of the service and types of entities. The client and server can be different
types of entities, located locally or remotely, executed by a single thread
or by separate threads, in a single memory domain or in separate memory
domains or any combinations of these.

References

[Acce86] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Teva-
nian, and M. Young, “Mach: A New Kernel Foundation for UNIX
Development”, Summer Conference Proceedings 1986, USENIX
Association, Atlanta, GA, 1986.

[ATT87] AT&T, “UNIX System V Streams Programmer’s Guide”, Prentice-
Hall Inc., Englewood Cliffs, NJ, 1987.

[Auer90] J. Auerbach, “TACT: A Protocol Conversion Toolkit”, IEEE Jour-
nal on Selected Areas in Communications, Vol. 8, No. 1, pp. 143–
159, January 1990.

18

[Cox86] B. J. Cox, Object-Oriented Programming: An Evolutionary Ap-
proach, Addison-Wesley, Reading MA, 1986.

[Hong91] James W. Hong, “Communication Abstractions for Distributed
Systems”, PhD Thesis, Research Report CS-91-43, Dept. of Com-
puter Science, University of Waterloo, 1991.

[Hutc88] N. C. Hutchinson and L. L. Peterson, “Design of the x-Kernel”,
Proc. of the ACM SIGCOMM ’88 Symposium, pp. 65–75, Stanford
CA, August 1988.

[ISO87] ISO, “Information Processing - Open Systems Interconnection -
Specification of Abstract Syntax Notation One (ASN.1)”, Inter-
national Organization for Standardization and International Elec-
trotechnical Committee, International Standard 8824, 1987.

[Leff88] S.J. Leffler, M.K. McKusick, M.J. Karels, and J.S. Quarterman,
“Interprocess Communication”, The Design and Implementation
of the 4.3BSD Unix Operating System, Addison-Wesley, 1988.

[Meye88] B. Meyer, Object-Oriented Software Construction, Prentice Hall
International, New York, 1988.

[Russ89] V. Russo and R. Campbell, “Virtual Memory and Backing Storage
Management in Multiprocessor Operating Systems Using Object-
Oriented Design Techniques”, Technical Report 89-13, University
of Illinois at Urbana-Champaign, Urbana, Ill, April 1989.

[Sche88] R. W. Scheifler, “X Window System Protocol, MIT X Consortium
Standard, X Version 11, Release 4”, Laboratory for Computer Sci-
ence, MIT, 1988.

[SUN87] SUN, “XDR: External Data Representation Standard”, Request
for Comments 1014, DDN Network Information Center, SRI Inter-
national, June 1987.

[Swic88] R. Swick and M. S. Ackerman, “The X Toolkit: More Bricks for
Building User-Interfaces or Widgets for Hire”, USENIX Winter
Conference, pp. 221–228, Dallas Texas, February 1988.

[Zwei90] J. M. Zweig and R. E. Johnson, “The Conduit: a Communication
Abstraction in C++”, Proc. of 1990 USENIX C++ Conference,
San Francisco CA, April 1990.

19

