
ADAPTIVE LINEAR EQUATION SOLVERS

IN CODES FOR LARGE STIFF SYSTEMS OF ODES

K. R. JACKSON∗
AND W. L. SEWARD†

Abstract. Iterative linear equation solvers have been shown to be effective in codes for large
systems of stiff initial-value problems for ordinary differential equations (ODEs). While preconditioned
iterative methods are required in general for efficiency and robustness, unpreconditioned methods may
be cheaper over some ranges of the interval of integration. In this paper, we develop a strategy for
switching between unpreconditioned and preconditioned iterative methods depending on the amount
of work being done in the iterative solver and properties of the matrix being solved. This strategy
is combined with a “type-insensitive” approach to the choice of formula used in the ODE code to
develop a method that makes a smooth transition between nonstiff and stiff regimes in the interval of
integration. We find that, as expected, for some large systems of ODEs, there may be a considerable
saving in execution time when the type-insensitive approach is used. If there is a region of the
integration that is “mildly” stiff, switching between unpreconditioned and preconditioned iterative
methods also increases the efficiency of the code significantly.

Key words. type-insensitive ODE code, iterative linear solver, preconditioning.

AMS(MOS) subject classifications. 65L05, 65F10.

1. Introduction. In recent years, there have been several investigations of the
use of iterative linear equation solvers in codes for the numerical solution of large sys-
tems of stiff initial-value problems (IVPs) for ordinary differential equations (ODEs).
See, for example, [5, 6, 8, 11]. Such work has established clearly the potential ef-
fectiveness of the combination of these methods, but there are many open questions
concerning both the choice of iterative method and the way in which it interacts with
strategies used in the ODE solver. Frequently, the iterative methods investigated
have been of the “Krylov subspace” type, e.g., the conjugate gradient method, Or-
thomin [18] or GMRES [6]. In this paper, we also consider an iterative method of this
type but our results should apply to a broader class since we are primarily concerned
with the interaction between the iterative method and the other strategies of the ODE
solver.

We study the numerical solution of large systems of stiff IVPs for ODEs of the
form

y′ = f(t, y), y(t0) given.(1)

Due to the stiffness, such problems are usually discretized using an implicit numerical
method, most often the Backward Differentiation Formulas (BDFs) [10]. We will
concentrate on the BDFs, although many of our ideas apply to implicit numerical
methods in general. Applied to (1), a k-step BDF has the form

yn =
k
∑

j=1

αn−jyn−j + hnβnf(tn, yn).(2)

To find yn from (2), it is necessary to solve a system of equations of the form

F (yn) = yn − hnβnf(tn, yn)− φn = 0,(3)

∗ Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A4.
† Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

1



where φn contains the terms in (2) that do not depend on yn. In general, this system
is nonlinear and is solved by Newton’s method or some variant of it.

The usual form of Newton’s method is

• select an initial guess y0
n

• for l = 0, 1, . . .
– solve Fy(y

l
n)∆

l
n + F (yl

n) = 0 for ∆
l
n

– set yl+1
n = yl

n +∆
l
n

where Fy(y
l
n) = I − hnβn

∂f
∂y (y

l
n). It is common in ODE codes to use a chord- (or

pseudo-) Newton method in which Fy(y
l
n) is replaced by some approximation W l

n,
generally the Newton iteration matrix Fy (or some approximation to it) from some
earlier timestep. If the system of ODEs (1) is large, the linear algebra cost of the solve

step will be a major part of the cost of the integration. If W l
n is sparse, though, an

iterative linear algebra method may be an effective means of reducing this cost.
When an iterative linear equation solver is used in the solve phase of Newton’s

method, an inexact Newton method [9] is obtained. In general, such a method has the
form

• select an initial guess y0
n

• for l = 0, 1, . . .
– find ∆l

n satisfying Fy(y
l
n)∆

l
n + F (yl

n) = dl
n for d

l
n “sufficiently small”

– set yl+1
n = yl

n +∆
l
n

This iteration converges at least linearly if

‖dl
n‖ ≤ ηl‖F (y

l
n)‖,(4)

where 0 ≤ ηl ≤ η < 1. In the case where an iterative linear equation solver is used to
find yl

n, the residual d
l
n is the final residual of the linear iteration.

Brown and Hindmarsh [5] consider iterative linear equation solvers based on
Arnoldi’s method for use in the ODE code LSODE [12]. In their approach, the matrix-
vector product required in the iterative method is approximated by a finite difference
based on f . This approach avoids explicitly forming the iteration matrix W l

n needed
in Newton’s method and hence has been referred to as a “matrix-free” method. These
methods are very efficient in storage and, as expected, the iterative method converges
quickly if the eigenvalues of W l

n are clustered. When this is not the case, it is found
that preconditioning is required for efficiency and robustness in the ODE solver. In
[6], preconditioning strategies for use with the “matrix-free” approach are discussed.
These strategies require formation and storage of at least part of W l

n in general but
are still very efficient in terms of storage. The authors find that, with preconditioning,
a wider class of problems can be solved.

Chan and Jackson [8] also investigate both unpreconditioned and preconditioned
Krylov-type iterative methods used with LSODE. The methods they use are not
“matrix-free” — W l

n is formed, stored and used explicitly to compute the matrix-
vector products needed in the iterative method. The authors consider various ways
of reducing the amount of time spent in forming and processing W l

n. For example, if
preconditioning is not being used, they show that it is not difficult to keep the factor
hnβn in W

l
n current, thus requiring fewer Jacobian evaluations for the integration.

2



Hence, we observe that, for a variety of reasons, unpreconditioned iterative meth-
ods can be cheaper to use than preconditioned ones in stiff ODE solvers. However,
preconditioning appears necessary in general for efficiency and robustness. This ob-
servation led us to study an adaptive approach to switching preconditioning on and
off. In particular, if the eigenvalues of the Newton iteration matrix W l

n are clustered,
which always occurs when hn is small, preconditioning may not be necessary. In other
cases, it is likely that the number of iterations of the linear equation solver can be
reduced significantly by preconditioning.

Instead of not preconditioning at all, our method uses diagonal scaling , a cheap
preconditioner described in more detail below, when this seems to be effective, but
switches to a more powerful preconditioner when diagonal scaling appears to be in-
effective. We expect that CPU time can be saved by avoiding unnecessary expensive
preconditioning without sacrificing robustness since preconditioning is available when
necessary.

The idea of switching preconditioning on and off combines naturally with the use
of a “type-insensitive” ODE solver. A type-insensitive code switches between methods
appropriate for nonstiff and stiff IVPs depending on the nature of the problem. This
approach has been discussed by several authors for a variety of formulas. See, for
example, [4, 13, 14, 15]. Petzold [14] developed a type-insensitive method based on
the Adams formulas [10] and the BDFs. Her method starts integrating with the Adams
formulas and monitors the timestep, the eigenvalues of the Jacobian (indirectly) and
the region of absolute stability. It switches to the BDFs when it estimates that it can
increase the stepsize by a factor of five or more by doing so. When integrating with
the BDFs, the code continues to monitor the same information and will switch back
to the Adams formulas if it expects to maintain the same stepsize after the switch.

We have combined the ideas from [14] with our adaptive approach to precondition-
ing. Our code starts integrating with the Adams formulas and switches to the BDFs
as described in [14]. When this switch is made, the linear equation solver uses diag-
onal scaling only. Later the method may switch to a more expensive preconditioner
described below. It can switch back to diagonal scaling and to the Adams formulas.

The basic iterative linear equation solver that we use is Orthomin [18]. Other
reasonable choices include GMRES [5] and the stabilized version of the conjugate-
gradient-squared (CGS) algorithm [17]. To focus on adaptive preconditioning, we
chose to use one basic iterative solver only. We selected the well-known scheme Or-
thomin, in part because an effective implementation of it along with several precon-
ditioners was readily available to us.

There are a variety of possible approaches for the “cheap” preconditioning. We
could use no preconditioning at all, in which case a “matrix-free” method or an ap-
proach that updates hnβn frequently might be very efficient. However, there may be
hidden costs associated with such methods. For example, a “matrix-free” method
requires one function evaluation per linear iteration. Forming the Newton iteration
matrix W l

n explicitly, on the other hand, is frequently a relatively inexpensive opera-
tion for a large sparse system of ODEs, costing a few function evaluations only.

In our numerical experiments, we chose to form W l
n explicitly, according to the

heuristics of the basic ODE solver, and to use diagonal scaling (that is, preconditioning
by a diagonal matrix to make the diagonal elements of W l

n all ones) as our cheap
preconditioner. The improvement in performance when diagonal scaling is used can
be significant even though the cost is low. Moreover, diagonal scaling often reduces the

3



cost of the iterative solver since it is not necessary to multiply by the matrix diagonal in
this case when computing matrix-vector products. So there is little point to omitting
diagonal scaling if W l

n is computed explicitly. Furthermore, diagonal scaling can be
used with other approaches to forming W l

n (see [5], for example, for a discussion of
scaling with “matrix-free” methods), but we have not attempted any elaboration of
our basic approach. For brevity, in the remainder of the paper, we occasionally refer
to an iterative method with diagonal scaling only as an unpreconditioned method.

A more powerful preconditioner is switched on if diagonal scaling appears to be
ineffective. The particular preconditioning strategies that we have studied are Level
0 and Level 1 Incomplete LU factorizations, denoted ILU(0) and ILU(1) respectively.
The ILU(0) preconditioner has the same sparsity structure as the original matrix,
while some fill-in is allowed in the ILU(1) preconditioner. We note that diagonal
scaling is also used with the ILU preconditioners, as it is often found to improve their
performance. These preconditioning strategies can be applied to any matrix and have
been found to work well in solving time-dependent PDEs. See, for example, [1, 2]. We
also develop criteria for switching these preconditioners off.

In the next section, we briefly describe the codes that were used in this investiga-
tion. Heuristics for identifying when to switch preconditioning on and off are discussed
in §3. The use of adaptive preconditioning in type-insensitive codes is considered in
§4. Test problems and numerical results are presented in both §3 and §4 to illustrate
the performance of the techniques. We end with some conclusions in §5.

2. Codes Used in the Investigation. The ODE package used in this investi-
gation was SPRINT [3]. This package is designed to offer to a user a range of methods
for the numerical solution of systems of IVPs in ODEs. It allows the user to select
from four time-stepping methods and three linear algebra packages to create the com-
plete method appropriate for a particular problem. The three algebra routines are
full, banded and sparse direct solvers. Because of this modularity, the SPRINT pack-
age is well-suited for testing the interaction of the iterative linear algebra solver with
the ODE method, since it is possible to couple our iterative solver to a sophisticated,
fully-developed time-stepping scheme.

SPRINT includes a space discretization module, but for one-dimensional PDE
systems only. Consequently, the higher-dimensional PDE test problems used in this
paper have been semidiscretized in space by hand. One motivation for our study of
iterative linear solvers is current work being done with SPRINT to develop modules
for spatial discretization of PDE systems in higher dimensions.

The particular ODE method used in this investigation is based on the BDFs and is
similar in implementation to the well-known code LSODE [12]. A variant of LSODE,
called LSODA, was written by Hindmarsh and Petzold to incorporate the ideas for
a type-insensitive method described in [14]. Our type-insensitive ODE solver was
developed by altering the SPRINT BDFs module corresponding to the changes made
to evolve LSODE into LSODA.

The iterative solver, WATSIT, used in our study was developed at the University
of Waterloo based on methods described in [1] and [2]. This code is designed to solve
systems of linear equations of the form Ax = b where the matrix A is large and
sparse. The basic technique is an incomplete factorization scheme with acceleration.
The user has several choices for both the acceleration method and the incomplete
factorization. Possible acceleration methods include the conjugate gradient method,

4



Orthomin [18], the conjugate-gradient-squared (CGS) algorithm [16] and a stabilized
version of CGS [17]. As noted in §1, since we wish to focus on our adaptive strategy
in this paper, we use Orthomin acceleration only in our numerical tests and have
not encountered any test problems where it breaks down. The user has the choice of
diagonal scaling only or preconditioning based on either Level 0 or Level 1 incomplete
LU factorization as described earlier in this paper.

In Brown and Hindmarsh [5], convergence criteria for the iterative method are
discussed in detail in the context of an ODE code. Both Brown and Hindmarsh [5]
and Chan and Jackson [8] find that the residual reduction condition (4) is overly
expensive — it forces linear iterations that do not seem to improve the accuracy of
the ODE solution significantly. In [5], the authors propose and justify a strategy
that accepts the result produced by the iterative linear solver if the residual is some
small fraction of the tolerance level required on the solution of the nonlinear system.
A similar strategy was developed in [8]. We adopt this approach and also use the
same fraction that is suggested in [5], namely, 1/20. The residual is measured in
the weighted norm used by the ODE solver. Since the acceleration methods used in
WATSIT return the residual directly, we do not need to scale the matrix to obtain the
weighted norm, as is done in [5]. The linear iteration is started with a zero vector as
its initial guess and always does at least one iteration. If the maximum iteration count
is reached without the desired reduction of the residual on the first Newton iteration,
the code continues provided that the current residual is smaller than the initial one.
Otherwise, a failure is signalled to the ODE solver and either the Newton iteration
or the timestep is retried, according to the criteria in the ODE code for a failure of
Newton’s method.

All numerical results reported in this paper were computed in double precision on
a MIPS M/120 RisComputer.

3. Adaptive Preconditioning. In this section, the adaptive choice of precondi-
tioning method is discussed independently of the type-insensitive approach for solving
stiff ODEs. The two ideas are combined in §4. To develop strategies for switching
between preconditioning methods, we need to assess the relative cost of the precondi-
tioners as well as the expected saving when the switch is made.

For a particular iterative method and implementation, it is straightforward to
estimate the relative cost of preconditioning by counting floating point operations in
the code. For simplicity, we estimate this operation count based on the number of
elements per row of the matrix. If the original matrix has on average nrow nonzero
elements per row and the preconditioned matrix has on average pnrow elements, then,
for our implementation of Orthomin, the following table gives the costs for a matrix
of dimension neq, where the cost of diagonal scaling is included in all cases.

Operation Counts For The Iterative Method.
Scheme Initialization k iterations
no pre (2nrow + 4)neq (2nrow + 11)neq k + 3neq k(k − 1)
pre (2pnrow + 4)neq (4pnrow + 12)neq k + 3neq k(k − 1)

For example, for the heat equation ut = uxx+uyy+uzz in three space dimensions and
a centered finite difference spatial discretization, nrow = 7, for ILU(0), pnrow = 7
and for ILU(1), pnrow = 13. Using these values, we can calculate the relative costs for
different iteration counts shown in Table 1. We note that the iterations with ILU(0)

5



preconditioning are only about 40% more expensive than those that use only diagonal
scaling. Of course, the ILU-preconditioned iterations incur the extra cost of doing

Table 1

Relative cost of iterative methods applied to the heat equation

Iterations Scaling ILU(0) ILU(1)
1 43 neq 58 neq 94 neq

2 74 neq 104 neq 164 neq

3 111 neq 156 neq 240 neq

4 154 neq 204 neq 322 neq

5 203 neq 278 neq 410 neq

the ILU factorization, O(pnrow2 · neq) floating point operations. This cost is roughly
that of doing a few linear iterations. Since we are using a chord-Newton iteration and
the factorization is only done when found necessary by the ODE solver, this cost is
small compared to the total cost of linear iterations. We do not include here the cost
of forming the matrix W l

n since this is done in all cases. If the cheap preconditioning
strategy also avoided the formation of W l

n, then forming W
l
n would be an additional

cost of using the more powerful preconditioner.
In one single solve of a linear system, a preconditioned method will be cheaper

than an unpreconditioned one if the number of linear iterations is reduced sufficiently
by preconditioning. The necessary reduction can be shown clearly, as in the tables
above. Over the course of the integration of an ODE, the trade-off is more involved.
The basic strategy for a general-purpose ODE solver must be to use a preconditioned
iterative method for robustness. By substituting an unpreconditioned iteration in
some cases, we hope to reduce the total cost of linear algebra but expect to see the
total number of linear iterations increase, as a few expensive iterations are replaced
by a larger number of cheaper ones.

We address the question of switching from diagonal scaling to the more powerful
preconditioner first. Diagonal scaling is used at the start of the integration, since most
ODE codes begin time-stepping with a small stepsize and it is usual to find an initial
region of the integration where the stepsize remains small due to the accuracy require-
ment. The progress of the integration is then monitored with the aim of switching to
a more powerful preconditioner when diagonal scaling appears to require too many
iterations. An obvious strategy for assessing when the diagonally-scaled method is
using “too many” iterations is to wait until the iteration fails to meet the convergence
criterion in the maximum number of iterations. Frequently, this maximum number is
set fairly small — for example, Brown and Hindmarsh [5] found 5 iterations to work
well. In this case, switching preconditioning on when the diagonally-scaled iteration
“fails” is not unreasonable. In our tests, we have used a maximum value of 10 itera-
tions to try to assess the switching strategy independently of convergence failures. We
have found that the methods are more efficient if preconditioning is switched on when
the diagonally-scaled method is taking only a few (e.g., 2 to 4) iterations per solve.

It turns out to be straightforward to assess the number of linear iterations that
the method uses per solve. We have observed in practice that the number of linear
iterations per Newton iteration tends to remain constant over several Newton iter-
ations. That is, typically only one linear iteration per Newton iteration is required
at the start of an integration. This number increases to two at some point as the

6



stepsize increases, remains steady at two for a while, then increases to three, and so
on. Consequently, it is possible to estimate the number of linear iterations per solve
by taking the average over the last few Newton iterations.

We have not attempted to use any theoretical results to predict the reduction
in the number of linear iterations when preconditioning is applied. Such results are
available for some preconditioners and iterative methods but they give upper bounds
on the number of iterations required to reduce the residual to some fraction of its
initial size. Since our convergence criterion, discussed in §2, only requires reducing
the residual to a fixed value and since we expect to use only a few iterations per solve,
the theoretical results are not particularly useful here.

When a differential equation yields linear systems with clustered eigenvalues, un-
preconditioned and diagonally-scaled iterative methods can be very effective. In [5],
the authors use a reaction-diffusion system with two species in three space dimensions
as a test problem. The differential equations have the form

∂ci

∂t
= di∆c

i + f i(c1, c2), i = 1, 2,(5)

d1 = 0.05, d2 = 1.0

f1(c1, c2) = c1(b1 − a11c
1 − a12c

2), f2(c1, c2) = c2(b2 − a21c
1 − a22c

2),

a11 = 10
6, a12 = 1, a21 = 10

6 − 1, a22 = 10
6,

b1 = b2 = (1 + αxyz)(106 − 1 + 10−6).

The equations are defined on the unit cube with t ∈ [0, 10], homogeneous Neumann
boundary conditions and initial conditions

c1(x, y, z, 0) = 500 + 250 cos(πx) cos(3πy) cos(10πz),

c2(x, y, z, 0) = 200 + 150 cos(10πx) cos(πy) cos(3πz).

The authors point out that, as t → ∞, the solution approaches a steady state which
is given roughly by the asymptotic solution of the problem without diffusion, namely,

c1 = (1− 10−6)(1 + αxyz), c2 = 10−6(1 + αxyz).

The spatial derivatives are discretized using a centered second-order finite differ-
ence approximation on an evenly spaced mesh with m subdivisions in each direction,
yielding a system of 2(m + 1)3 ODEs. Near the steady state, the interaction terms
dominate the Jacobian and the dominant part of the spectrum is clustered in the
interval −106 to −106(1+α). Brown and Hindmarsh [5] point out that, consequently,
unpreconditioned iterative methods are expected to work well unless α is large. It
does not necessarily follow that diagonal scaling will work well, but, in this case, it
does since all eigenvalues of the scaled matrix are of moderate size. In [5], the ODE
problem is solved using a relative error tolerance of 10−6 and an absolute error toler-
ance of 10−8. We use the same tolerances here, with the result that the code takes a

7



very small stepsize (starting around 10−9) through the transient region, which lasts to
about t = 0.5. There is then an abrupt transition to the steady-state region, during
which the stepsize increases by factors of two to five several times in rapid succession.
The diagonally-scaled method encounters difficulty once the transition to the steady-
state region starts. Numerical results are shown in Tables 2 and 3 for the case m = 9
(2000 equations) and α = 0. The maximum number of linear iterations was set to 10.

Table 2 shows the number of function evaluations (NFCN), Jacobian evaluations
(NJAC), Newton iterations (NNWT), linear iterations (NLIN) and the time in seconds
(TIME) required to integrate the problem without adaptation of the preconditioning,
using either diagonal, ILU(0) or ILU(1) preconditioning. Table 3 shows the effect of
switching from diagonal scaling to ILU(0) or ILU(1) preconditioning during the inte-
gration. Each column corresponds to the number of linear iterations being used by the
diagonally-scaled method when the switch was made. This number was calculated by
looking at the average number of iterations over the last four Newton iterations. The
column labelled MAXIT indicates that the switch was made because the diagonally-
scaled method failed to converge in the maximum number of iterations. The criterion
used in the program was to switch if the code took an average of eight linear iterations
over the past four Newton iterations, but a convergence failure occurred in each case
before this condition was met. The row of the table labelled TSWI shows the elapsed
CPU time when the code switched on the preconditioning.

Table 2

Reaction-Diffusion Equation in 3D — No Switching

Diagonal ILU(0) ILU(1)
NFCN 1490 1466 1486
NJAC 71 67 68
NNWT 617 641 649
NLIN 1005 737 712
TIME 320 322 352

Table 3

Reaction-Diffusion Equation in 3D — Switching

ILU(0) ILU(1)
2 4 6 MAXIT 2 4 6 MAXIT

NFCN 1402 1390 1402 1417 1403 1404 1416 1416
NJAC 65 64 65 66 65 65 66 66
NNWT 601 601 601 604 602 603 603 603
NLIN 733 773 796 848 679 743 773 814
TSWI 217 243 253 263 217 243 256 266
TIME 278 280 284 295 280 281 288 293

From these tables, we see that there is a definite advantage to using the combi-
nation of the diagonally-scaled and preconditioned iterative methods, as most of the
CPU time is spent with the diagonally-scaled iteration. This reflects the fact that
75% to 90% of the work of the integration, measured in function evaluations, Jaco-
bian evaluations, or nonlinear or linear iterations is done using that diagonally-scaled
method. There is little to choose between switching criteria in terms of total time,

8



suggesting that there is a small range of the integration in which the diagonally-scaled
and preconditioned methods are equally expensive.

In the following tables, we show some numerical results obtained using the heat
equation in three space dimensions as a test problem. It is well-known that the eigen-
values of the associated Jacobian matrix are widely spread without clustering and that
unpreconditioned and diagonally-scaled iterative methods are generally inefficient. As
described in [8], the PDE has the form

ut = uxx + uyy + uzz,(6)

on the unit square with homogeneous Dirichlet boundary conditions, t ∈ [0, 10.24] and
initial condition

u(0, x, y, z) = 64x(1− x)y(1− y)z(1− z).

The spatial derivatives were discretized using a centered second-order finite difference
discretization on a mesh of m equal subdivisions, resulting in a system of (m − 1)3

ODEs. In this example, m = 16 (3375 equations). The maximum number of linear
iterations was set to 10. The absolute error tolerance in the ODE solver was set to 10−4

and no relative error control was used. Table 4 shows the results without adaptation
of the preconditioner and Table 5 shows the effect of switching preconditioners. The
number of linear iterations was calculated as the average over the last four Newton
iterations.

Table 4

Heat Equation — No Switching

Diagonal ILU(0) ILU(1)
NFCN 356 373 326
NJAC 19 20 17
NNWT 117 122 113
NLIN 400 200 140
TIME 130 107 94

Table 5

Heat Equation — Switching

ILU(0) ILU(1)
2 4 6 MAXIT 2 4 6 MAXIT

NFCN 357 358 369 372 373 360 369 373
NJAC 19 19 20 20 20 19 20 20
NNWT 118 119 118 121 122 121 118 122
NLIN 189 244 320 359 170 212 306 340
TSWI 22 48 90 100 22 48 90 100
TIME 98 106 118 127 102 103 117 125

The most efficient way to solve this particular problem is to use the ILU(1) pre-
conditioner over all iterations. This seems to be due, at least in part, to accuracy
considerations related to the use of the diagonally-scaled iterative solver. Following
Brown and Hindmarsh [5], the solution of the linear system is accepted if

‖dl
n‖ ≤ ε,

9



where dl
n is the residual at the last linear iteration. With two different iterative

methods, it often happens that one method just meets this criterion while the other
returns a solution with a much smaller residual. This difference in accuracy affects
not only the acceptance of the Newton iteration but also the error control strategy
and stepsize selection in the ODE solver. In the tables, we note that, as expected, the
total number of linear iterations increases as we use the diagonally-scaled method for
a longer period. The other statistics are more variable because of this effect of the
accuracy of the linear solver.

For the ILU(0) preconditioning, the approaches that switch when the diagonally-
scaled method is taking two or four iterations per solve are no worse than using
preconditioning on all steps. Switching always decreases performance with the ILU(1)
preconditioning.

For both the reaction-diffusion problem (5) and the heat equation (6), we have
tested the effect of averaging the number of linear iterations over the last six and the
last eight Newton iterations. Changing this parameter has little effect on the step at
which preconditioning is switched on.

Based on the results from these two test problems and additional numerical exper-
iments, it seems reasonable to use the following strategy to switch from a diagonally-
scaled method to a preconditioned one:

• Find the average number of linear iterations over the past four Newton iter-
ations.

• Switch on preconditioning when the average is four or greater, and definitely
when the diagonally-scaled iteration fails to converge in the maximum number
of iterations.

This approach yields a significant improvement in performance sometimes; for those
problems where it is less efficient, it does not degrade performance very much. The
particular value of four linear iterations obviously depends on the relative costs of the
preconditioning strategies and hence is dependent on the problem class but does seem
appropriate for the PDE problems that we have tested.

For either the reaction-diffusion equation (5) or the heat equation (6), we observe
that the number of linear iterations per solve is reduced when preconditioning is first
switched on. As the integration continues with the preconditioned method, the num-
ber of iterations per solve increases again, along with the timestep, as the solution
of the differential equation approaches a steady state. This is typical behaviour for
many time-dependent systems, but problems exist for which phases similar to the
initial transient recur. For such problems, it is reasonable to consider switching pre-
conditioning off. We have developed a test to switch preconditioning off based on both
the amount of work being done by the linear solver and the character of the iteration
matrix. As the primary test, we require that the iterative solver takes one iteration
only per solve over the last several Newton iterations. Around 15 to 20 Newton iter-
ations seems appropriate since we wish to avoid cases where, say, the error estimate
has forced an anomalously small stepsize over a few steps. This also avoids switching
preconditioning off again immediately after switching it on.

A quantity relevant to convergence of a Krylov-subspace type iterative method is
the spectral ratio — the ratio of the largest to the smallest eigenvalues of the matrix
or, for clustered eigenvalues, the ratio of largest to smallest eigenvalues within each
cluster. We use Gerschgorin circles to estimate the clustering of the eigenvalues of the
Newton iteration matrix. We need consider one cluster only since all the Gerschgorin

10



circles of the diagonally-scaled matrix will have center (1, 0). We also observe that
the matrices D−1W l

n, W
l
nD

−1 and D−1/2W l
nD

−1/2 are similar, hence have the same
eigenvalues, but need not have the same Gerschgorin circles. (D = diag(W l

n) is the
diagonal scaling matrix.) When the Newton iteration matrix is formed by the ODE
solver, the Gerschgorin circles for these three matrices are calculated by both rows and
columns, giving six estimates of the eigenvalue range. If all the circles for a single case
(particular scaling and row or column calculation) lie in the same half plane, we call
the ratio of the extreme real axis intercepts of the Gerschgorin circles the Gerschgorin

ratio of the matrix. We take the minimum of our six calculated Gerschgorin ratios
and use it to approximate the associated spectral ratio. When this value is small, it
is reasonable to expect that an unpreconditioned iterative method will work well.

As the theory suggests, we have found for all our test problems that, at the start
of the integration, the eigenvalues of the diagonally-scaled iteration matrix are all
contained in one small cluster centered at (1, 0). As the stepsize increases, the cluster
usually expands. If any circle crosses the axis into the left half plane, we consider the
Gerschgorin ratio to be infinite. Here, we expect that the diagonally-scaled iterative
method will have difficulty and therefore we do not switch preconditioning off.

Van der Pol’s equation (see, for example, [14]) is often used as an example of an
ODE system in which transients recur throughout the integration. This second-order
equation is frequently rewritten as system of two first-order ODEs. We have extended
it to a large system by using the two ODEs as the reaction terms in a reaction-diffusion
PDE system, as follows.

∂ci

∂t
= di∆c

i + f i(c1, c2), i = 1, 2,(7)

d1 = 0.05, d2 = 1.0 ,

f1(c1, c2) = c2, f2(c1, c2) = η(1− (c1)2)c2 − c1,

on the unit square with η = 100, homogeneous Neumann boundary conditions and
initial conditions

c1(x, y, 0) = 1− cos(πx) cos(2πy),

c2(x, y, 0) = 1 + 2 cos(2πx) cos(πy).

The spatial derivatives were discretized using a centered second-order finite differ-
ence approximation on an evenly spaced mesh with m subdivisions in each direction,
yielding a system of 2(m+ 1)2 ODEs.

We solved this problem with m = 10 subdivisions, t ∈ [0, 1000], relative and ab-
solute error tolerances of 10−6 and 10−4 respectively and various switching strategies.
As noted earlier, to be conservative about switching preconditioning off, it seems most
appropriate to observe the number of linear iterations over a larger number of Newton
iterations than is used in the test to switch it on. We require that the linear solver has
taken only one iteration per solve over the last 16 Newton iterations before we consider
switching preconditioning off. If we use this criterion only, and no information about
the iteration matrices, the code switches preconditioning on 14 times and off 13 times
in the interval [0, 1000].

11



To use information about the matrix, a bound on the Gerschgorin ratio is chosen.
If the smallest Gerschgorin ratio is less than the bound, then we switch preconditioning
off if the requirement on number of iterations per solve is also met. We solved Van
der Pol’s equation again with the Gerschgorin bound set to two and observed the
same number of switches as above. Comparing results from the two tests shows that
the switches occur at about the same times in the integration, a satisfactory result
since they should be triggered by the behaviour of the continuous system rather than
being artifacts of the code. However, we observe that, without matrix information, the
code switches preconditioning off as much as one hundred timesteps earlier than when
matrix information is used. The earlier switch seems satisfactory in the sense that the
diagonally-scaled method experiences no difficulties after the switch, converging in one
or two iterations. This result suggests that using a larger Gerschgorin bound might be
appropriate, a conclusion supported by tests using values of four and eight that also
yield satisfactory behaviour of the switching strategy. With the value eight, we observe
the same results as when no matrix information is used — that is, the condition on
number of iterations controls the switch. There is no significant difference in total
solution time in any case, including a comparison to doing the whole integration with
preconditioning (ILU(1) preconditioning was used in all tests). This is due to the
small size of the ODE system. We note that the Gerschgorin ratio in the right half
plane grew as large as 103 and that some circles extended into the left half plane on
several Jacobian evaluations.

With m = 20 subdivisions (882 equations), t ∈ [0, 500] and the same error tol-
erances, the integration time using ILU(1) preconditioning on all iterations was 742
seconds, with 452 seconds spent in linear algebra. The time when switching was used
with the Gerschgorin bound set to four was 722 seconds, including 435 seconds of
linear algebra. The code switched preconditioning on seven times and off six times.
Similar results were obtained when the Gerschgorin bound was set to two.

As the mesh is refined, the diffusion term in the PDE causes the ODE system to
become stiffer. The results shown in Table 6 are for a grid with m = 40 subdivisions
(3362 equations), t ∈ [0, 500] and the same error tolerances. The code switched ILU(1)
preconditioning on if the diagonally-scaled method was taking four iterations per solve
over the last four Newton iterations, and off if the ILU(1)-preconditioned method
took only one iteration per solve over the last 16 Newton iterations. The Gerschgorin
bound (G.B.) used in each test is given at the top of the column. Here, the most

Table 6

Van der Pol Equation — Switching on and off

No switches G.B. 2 G.B. 4
NFCN 7447 7967 8129
NJAC 341 376 375
NNWT 3956 4118 4290
NLIN 9496 10474 11214
TIME 4365 4569 4597

efficient solution technique is to use ILU(1) preconditioning on all steps. With the
Gerschgorin bound set to two, preconditioning was switched on four times and off
three times; with bound four, the code switched preconditioning on seven times and
off six times. The grid size is sufficiently small that the diffusion terms keep the ODE

12



stiff and preconditioning on all steps is the most efficient technique.
For the Van der Pol equation, we expect to encounter recurring transients during

the integration, causing the ODE solver to use a small timestep to meet the accuracy
requirement. Due to this small timestep, all the eigenvalues of the unscaled Newton
iteration matrix will be of moderate size and will occur in one single cluster. Checking
the Gerschgorin circles of the unscaled matrix confirms that in the tests above, when-
ever the code switched preconditioning off, the circles of the unscaled matrix made up
one small cluster. This is not the case for the following test problem, used in [5] and
[7]. This PDE system, also of reaction-diffusion type, models ozone production in the
stratosphere and has the following form.

∂ci

∂t
= Kh

∂2ci

∂x2
+

∂

∂z

(

Kv(z)
∂ci

∂z

)

− Vh
∂ci

∂x
+Ri(c1, c2, t), i = 1, 2,(8)

Kh = 4 · 10
−6, Kv(z) = 10

−8ez/5, Vh = 0.01,

R1(c1, c2, t) = −k1c
1 − k2c

1c2 + k3(t) · 7.4 · 10
16 + k4(t)c

2,

R2(c1, c2, t) = k1c
1 − k2c

1c2 − k4(t)c
2,

k1 = 6.031, k2 = 4.66 · 10
−16,

k3(t) =

{

exp[−22.62/ sin(πt/43200)] for t < 43200
0 otherwise

k4(t) =

{

exp[−7.601/ sin(πt/43200)] for t < 43200
0 otherwise

The problem is posed for x ∈ [0, 20], z ∈ [30, 50] and t ∈ [0, 86400] with homogeneous
Neumann boundary conditions and initial conditions

c1(x, z, 0) = 106α(x)β(z), c2(x, z, 0) = 1012α(x)β(z),

α(x) = 1− (0.1x− 1)2 + (0.1x− 1)4/2,

β(z) = 1− (0.1z − 4)2 + (0.1z − 4)4/2.

If the differential equations are discretized using central differences for both the dif-
fusion and convection terms, as is done in [5] and [7], the eigenvalues of the Jacobian
are found in two clusters, as discussed in [5].

The problem was solved with m = 9 subdivisions (200 equations) and relative and
absolute error tolerances of 10−5 and 10−3 respectively. With the Gerschgorin bound
set to two, the code switches preconditioning on at t = 13340, then off at t = 42064 and
completes the integration successfully using the diagonally-scaled method. Checking
the Gerschgorin circles of the unscaled matrix reveals that when preconditioning is

13



switched off, the circles make up two small clusters although the ratio of the extreme
limits of all the circles is over 100. In this case, the diagonal scaling has mapped
these two clusters into a single small circle. With the bound set to four, the code
switches preconditioning on then off twice between t = 13340 and t = 35002, finishing
the integration with the diagonally-scaled method. It is less efficient than when the
bound is set to two.

The results in Table 7 are obtained with a discretization having m = 19 sub-
divisions (800 equations). The ODE solver has some difficulty with the integration,
probably due to the central difference discretization since it does not occur when up-
stream differencing is used for the convection term. With the Gerschgorin bound set
to either two or four, the code switches preconditioning on five times and off five times
between t = 7734 and t around 42700; the switches occur at slightly different times
depending on the bound. When preconditioning is switched off at t = 42700, the
Gerschgorin circles of the unscaled Newton iteration matrix form two small clusters.
The earlier switches occur because the timestep is small enough, often after a failed
step, to force all the circles of the unscaled matrix into one cluster. It is not clear if
these switches should be made; the timestep tends to increase rapidly after a failed
step and the possible higher accuracy of the more powerful preconditioner might be
useful.

Table 7

Ozone Production Model — 800 equations

No switches G.B. 2 G.B. 4
NFCN 6001 6267 6179
NJAC 297 320 310
NNWT 3552 3606 3612
NLIN 3552 4985 4865
TIME 654 657 650

The results in Table 8 are obtained with m = 39 subdivisions (3200 equations).
When the Gerschgorin bound is set to two, the code switches preconditioning on at
t = 7216 then off at t = 42321. With bound four, there are four on-off switches between
t = 7216 and t = 42293 and the integration again finishes using the diagonally-scaled
method. In this case, it is more efficient to switch preconditioning off when possible.

Table 8

Ozone Production Model — 3200 equations

No switches G.B. 2 G.B. 4
NFCN 7713 7686 7766
NJAC 307 318 314
NNWT 5182 5065 5173
NLIN 5182 7490 7874
TIME 4559 4113 4168

Overall, it seems that our strategy for switching preconditioning off does detect
problem information correctly, i.e., nonstiffness of the Van der Pol oscillator. Also,
the diagonal scaling is able to exploit the clustering of the eigenvalues in Equation (8).
Computing the six different Gerschgorin ratios can have an effect on when the switches

14



occur. For the Van der Pol equation, all six values tend to be close on all Jacobian
evaluations. For Equation (8), where the components are of widely differing magni-
tudes, the six values can be very different particularly when they are large. When a
Gerschgorin bound of two was used to switch preconditioning off, we found that the
ratios were close when a switch occurred. In contrast, with a bound of four, some
switches would not have occurred if all six values had not been computed. Any strat-
egy should certainly be conservative about making a switch. A bound of two seems a
better choice, although the value four yields better results in some cases.

4. Adaptive Preconditioning in Type-Insensitive Codes. In this section,
we insert our strategies for adaptive preconditioning into the type-insensitive ODE
solver described in §2. We report the results of numerical experiments with several
test problems. In these tests, the maximum number of linear iterations is always
set to 10. Preconditioning is switched on if the diagonally-scaled method took four
iterations per solve over the last four Newton iterations and off if the Gerschgorin
bound (2, unless otherwise specified) is met and only one iteration per solve was
required over the last 16 Newton iterations.

In the tables, the preconditioning strategy (either ILU(0) or ILU(1)) and number
of equations are shown in the caption. The column labels have the following meanings:

• No switch: BDF method; ILU preconditioning on all iterations.
• Switch: BDF method; switching from diagonal scaling to ILU preconditioning.
• Type-ins: Type-insensitive method; ILU preconditioning on all iterations.
• Combined: Type-insensitive method; switching from diagonal scaling to ILU
preconditioning.

4.1. Reaction-diffusion equation in three space dimensions. Equation (5)
was solved on a number of different grids with α = 100 and t ∈ [0, 100]. All other
problem and method parameters are the same as in §3. When α = 100, the eigenvalues
of the Jacobian are somewhat more widely spread than in the tests reported in §3.
Extending the range of integration from t = 10 to t = 100 simply causes the code to
take one large last step, of order 100 itself. This large step poses no problem for the
iterative solver in this case.

Table 9

ILU(0) preconditioning — 2000 equations

No switch Switch Type-ins Combined
NFCN 1414 1335 1448 1444
NJAC 65 60 44 44
NNWT 613 596 350 346
NLIN 653 726 391 449
TIME 298 262 237 226

We always find that the method that combines the type-insensitive approach with
adaptive preconditioning is the most efficient, saving 18 to 24% of execution time with
ILU(0) preconditioning and 26 to 31% with ILU(1) preconditioning. Without adaptive
preconditioning, the ILU(0) method is more efficient, but when preconditioning is
applied only when necessary, it is as efficient to use the more powerful ILU(1) approach.

4.2. Ozone production model. In §3, equation (8) was discretized using cen-
tered differences for both the diffusion and convection terms, following [5] and [7].

15



Table 10

ILU(1) preconditioning — 2000 equations

No switch Switch Type-ins Combined
NFCN 1414 1334 1439 1444
NJAC 65 60 42 44
NNWT 613 595 365 346
NLIN 631 697 379 437
TIME 328 259 260 227

Table 11

ILU(0) preconditioning — 5488 equations

No switch Switch Type-ins Combined
NFCN 1365 1378 1278 1270
NJAC 62 64 44 44
NNWT 602 589 400 392
NLIN 674 722 465 530
TIME 869 798 725 670

Table 12

ILU(1) preconditioning — 5488 equations

No switch Switch Type-ins Combined
NFCN 1365 1378 1290 1270
NJAC 62 64 44 44
NNWT 602 589 412 392
NLIN 643 698 445 501
TIME 966 801 763 667

Table 13

ILU(0) preconditioning — 16000 equations

No switch Switch Type-ins Combined
NFCN 1401 1363 1568 1527
NJAC 64 60 43 42
NNWT 612 624 372 343
NLIN 744 849 511 556
TIME 2895 2698 2541 2365

Table 14

ILU(1) preconditioning — 16000 equations

No switch Switch Type-ins Combined
NFCN 1413 1362 1568 1539
NJAC 65 60 43 43
NNWT 612 623 372 343
NLIN 694 786 443 505
TIME 3158 2668 2662 2342

16



Since the convection coefficient Vh = 0.01 while the diffusion coefficients have magni-
tude 10−6 to 10−4, this problem is convection-dominated and it is reasonable to use
upstream differencing for the convection term. This discretization leads to a Jacobian
matrix that is better conditioned than when centered differences are used and allows
the code to take much larger timesteps. We do not expect that preconditioning will be
switched off once it has been turned on. Upstream differencing was used in computing
the results in Tables 15 and 16. The equations were discretized on a grid with 41 mesh
points in each direction, giving ∆x = ∆z = 0.5 and a system of 3362 equations. As
before, an absolute error tolerance of 10−3 and a relative tolerance of 10−5 were used.

Table 15

ILU(0) preconditioning — upstream differences — 3362 equations

No switch Switch Type-ins Combined
NFCN 1508 1566 1533 1375
NJAC 78 81 70 62
NNWT 705 731 599 523
NLIN 954 1083 826 773
TIME 677 696 652 574

Table 16

ILU(1) preconditioning — upstream differences — 3362 equations

No switch Switch Type-ins Combined
NFCN 1276 1614 1359 1350
NJAC 61 86 57 59
NNWT 647 729 557 528
NLIN 837 1004 800 775
TIME 613 709 618 590

Again, it is found that the method that combines the type-insensitive approach
with adaptive preconditioning is the most efficient, although the saving is not as
significant as for Equation (5). The method with ILU(1) preconditioning on all steps
does well, taking fewer function evaluations than any other approach. As mentioned
previously, this seems to indicate that there is an advantage in accuracy to using
ILU(1) preconditioning. Adaptive preconditioning alone degrades efficiency although
it does well in combination with the type-insensitive method. With the combined
method, the switch from the Adams formulas to the BDFs occurs at step 93, t =
3.93, then preconditioning is switched on at step 140, t = 1142. With adaptive
preconditioning only, the switch occurs later at step 189, t = 2167.

In Table 17, we show results computed with the type-insensitive and combined
methods and a central difference discretization of all terms, for comparison with results
given in §3. (Those results are also included in this table.) In this case, the switching
method and the combined method have comparable cost. In the switching method,
preconditioning is turned on at t = 7216 then off at t = 42321. In the combined
method, the BDFs are selected as above at t = 3.93, step 93; preconditioning is
turned on at t = 5837 and off at t = 42360.

4.3. Van der Pol Equation. We use the modified Van der Pol Equation (7) to
investigate the interaction between turning preconditioning on and off and switching

17



Table 17

ILU(1) preconditioning — centered differences — 3200 equations

No switch Switch Type-ins Combined
NFCN 7713 7686 7933 7668
NJAC 307 318 311 296
NNWT 5182 5065 5157 5016
NLIN 5182 7490 5157 7347
TIME 4559 4113 4863 4146

from the BDFs back to the Adams formulas. As we noted in §3, on a grid with m = 40
subdivisions (3362 equations) the ODE system is quite stiff due to the effect of the
diffusion terms regardless of the behaviour of the reaction terms. The results shown
in Table 18 were computed using the same problem and method parameters as in §3.
G.B. denotes the Gerschgorin bound.

Table 18

ILU(1) preconditioning — 3362 equations

No switch Switch Type-ins Combined
G.B. 2 G.B. 4 G.B. 2 G.B. 4

NFCN 7447 7967 8129 7840 7521 8054
NJAC 341 376 375 353 334 359
NNWT 3956 4118 4290 4015 3890 4169
NLIN 9496 10474 11214 9608 9073 11198
TIME 4365 4569 4597 4485 4267 4639

In the “switching” code, preconditioning is first turned on at time t = 0.025,
step 65. Since the total integration takes around 4000 steps, this is very early in the
integration. With the Gerschgorin bound set to two, preconditioning is switched on 4
times and off 3 times; with bound four, the code switches preconditioning on 7 times
and off 6 times during the integration. The type-insensitive method is less effective
than the code that uses ILU(1) preconditioning throughout, somewhat surprisingly
since the type-insensitive code switches from the Adams formulas to the BDFs at time
t = 0.0076, step 85 and never switches back to the Adams formulas. The combined
method with Gerschgorin bound two turns preconditioning on at t = 0.026, step 115,
and never switches it off. With the bound set to four, the combined method makes
the same number of switches as the “switching” code, at essentially the same times in
the integration.

This problem is best solved with ILU(1) preconditioning. The same set of tests
were run using ILU(0) preconditioning and the same relative performances were ob-
served. The total time to complete the integration was about 1000 seconds greater in
all cases.

To investigate the effect of switching between the Adams formulas and the BDFs
when the number of equations is large, the diffusion coefficients were reduced from
0.05 and 1 to 0.005 and 0.1. The numerical results using ILU(0) preconditioning are
given in Table 19, those using ILU(1) preconditioning in Table 20. Other parameters
of the problem and method are the same as in §3.

With ILU(0) preconditioning, the “switching” method and the combined method

18



Table 19

ILU(0) preconditioning — 3362 equations — small diffusion

No switch Switch Type-ins Combined
G.B. 2 G.B. 4 G.B. 2 G.B. 4

NFCN 9503 9363 9579 9918 9930 10129
NJAC 414 398 408 275 262 275
NNWT 5264 5288 5402 3171 2941 2990
NLIN 7964 8517 8792 5889 5849 6129
TIME 4216 4048 4073 3492 3343 3391

turn preconditioning on 7 times and off 6 times for both choices of Gerschgorin bound.
The type-insensitive method selects the BDFs for the first time at t = .709, step 1285,
where the total integration still takes around 4000 steps. Following the initial formula
change, there are three subsequent switches to the Adams formulas then back to
the BDFs. The combined method makes four subsequent switches between Adams
formulas and BDFs. Three of these switches are at essentially the same values of
t as the type-insensitive method but there is one additional switch. There are two
switches between preconditioning and diagonal scaling where the Adams formulas
are not selected. A switch to the Adams formulas is always preceded by switching
preconditioning off. This order is due only to the switching strategies already described
— the code could allow a switch directly from the BDFs with preconditioning to
the Adams formulas. In fact, the switch from preconditioning to diagonal scaling
typically precedes the switch from the BDFs to the Adams formulas by about 80 to
100 timesteps, indicating that the method detects a region of “mild” stiffness in the
transition from a stiff regime to a transient regime.

Table 20

ILU(1) preconditioning — 3362 equations — small diffusion

No switch Switch Type-ins Combined
G.B. 2 G.B. 4 G.B. 2 G.B. 4

NFCN 9519 9605 9612 10049 10041 9966
NJAC 417 411 413 288 275 266
NNWT 5250 5398 5385 3302 2954 2939
NLIN 6547 7472 7761 4703 4570 4934
TIME 4028 3879 3853 3360 3132 3096

When ILU(1) preconditioning is used, the “switching” method and combined
method still turn preconditioning on 7 times and off 6 times for both choices of
Gerschgorin bound. The type-insensitive method of course selects the BDFs for the
first time at the same timestep as in the ILU(0) case, then there are four subsequent
switches to the Adams formulas then back to the BDFs. The combined method makes
the same switches, with either Gerschgorin bound. A switch to the Adams formulas
is always preceded by switching preconditioning off; the switches occur at essentially
the same times for ILU(0) preconditioning.

The strategy for formula selection appears to be robust with respect to effects of
the linear algebra, as one would hope. Also, the switches between diagonal scaling
and preconditioning always occur at about the same t values, indicating that the

19



switching strategy is, in fact, detecting properties of the ODE system. It is still
difficult to choose a value for the Gerschgorin bound based on these tests. As noted in
§3, the value two appears preferable since it gives a saving whenever one is achieved
by switching preconditioning and does better when a saving is not achieved.

4.4. A “Dense” Two-dimensional Problem. The system of PDEs defined by
(9) below is used as a test problem in [6]. Although this problem is similar in nature
to (5) — both are reaction-diffusion systems modelling a predator-prey interaction —
it poses a slightly different challenge to the iterative methods since it includes a large
number of species, making the associated Jacobian matrix relatively dense.

∂ci

∂t
= di∆c

i + f i(c), i = 1, 2, . . . , s,(9)

where c = (c1, c2, . . . , cs)T , p = s/2

di = 1, i = 1, 2, . . . , p,

di = 0.05, i = p+ 1, . . . , s,

f i(c) = ci(bi +
s
∑

j=1

aijc
j),

aii = 1, ∀i

aij = −0.5 · 10−6, i ≤ p, j > p,

aij = 104, i > p, j ≤ p,

aij = 0, for all other i and j;

bi = (1 + αxyz), i ≤ p,

bi = −(1 + αxyz), i > p.

The system (9) is defined on the unit square with t ∈ [0, 10]. The problem has
homogeneous Neumann boundary conditions and initial conditions

ci(x, y, 0) = 10 + i[16x(1− x)y(1− y)]2, 1 ≤ i ≤ s.

Here, we take s = 20 (p = 10) and α = 50. The steady state solution is spatially
inhomogeneous and the Jacobian is highly nonsymmetric at equilibrium [6].

The spatial derivatives are discretized using a centered second-order finite differ-
ence approximation on an evenly spaced mesh with m subdivisions in each direction,
yielding a system of s(m+ 1)2 ODEs. Following [6], we take m = 11, which gives an
ODE system of 2880 equations. This problem is solved using a relative error tolerance
of 10−6 and an absolute error tolerance of 10−8. Numerical results for ILU(0) and
ILU(1) preconditioning are given in Tables 21 and 22 respectively.

The approaches that use ILU(0) preconditioning are always more efficient than
those using ILU(1) preconditioning, due to the density of the Jacobian matrix, which
has 42,240 nonzero entries, as does the ILU(0) preconditioner, while the ILU(1) pre-
conditioner has 112,840 nonzeros. Hence, even though the code using ILU(1) precon-
ditioning generally uses fewer function and Jacobian evaluations, nonlinear and linear
iterations, the total CPU time is greater. In both cases, the combined method is the
most efficient.

Brown and Hindmarsh [6] identify the nonstiff transient region for this problem
as roughly 0 ≤ t ≤ 10−3. Our strategy for switching on preconditioning also picks

20



Table 21

ILU(0) preconditioning — 2880 equations

No switch Switch Type-ins Combined
NFCN 1614 1515 1388 1330
NJAC 43 40 31 29
NNWT 395 380 203 201
NLIN 780 755 655 621
TIME 507 449 416 384

Table 22

ILU(1) preconditioning — 2880 equations

No switch Switch Type-ins Combined
NFCN 1451 1592 1257 1173
NJAC 38 42 27 24
NNWT 372 401 184 186
NLIN 586 638 397 496
TIME 570 507 422 418

out this region. While the switch from the Adams formulas to the BDFs takes place
at t = 2.88 · 10−5, the switch from diagonal scaling to preconditioning takes place at
t = 2.45·10−3 when the “switching” code is used and at t = 2.76·10−3 in the combined
code.

The ratio of the number of linear iterations to the number of Newton iterations
(AVDIM) is reported in [6]. This value provides a rough comparison of the work
being done by the iterative method in the various approaches. For problem (9), it is
also interesting to compare the work done in the nonstiff and stiff regimes, which we
characterize by the intervals [0, 1] and [1, 10] for convenience. Values are reported in
Table 23. As expected, AVDIM increases when diagonal scaling is used and also when
the type-insensitive method is used. The iterative solver works considerably harder
in the stiff regime. The values for AVDIM found here are similar to those reported in
[6].

Table 23

AVDIM — ratio of linear to Newton iterations

ILU(0) No switch Switch Type-ins Combined
[0, 1] 1.82 1.90 2.88 2.97
[1, 10] 5.17 5.10 5.72 4.53

ILU(1)
[0, 1] 1.48 1.53 1.99 2.56
[1, 10] 5.10 4.22 4.58 4.25

5. Conclusions. We have developed a strategy for the adaptive choice of pre-
conditioning when an iterative linear solver is used in an ODE code. This strategy
successfully identifies characteristics of the problem and is able to switch precondi-
tioning on or off according to those characteristics. This approach combines naturally
with the use of a type-insensitive ODE solver. For the test problems considered, we
found that, when the type-insensitive approach yields a saving in execution time, the

21



combined method increases the saving. There are problems for which the adaptive ap-
proach is not effective — in these cases, it appears that the type-insensitive approach
is not appropriate either. As a simple rule of thumb, the combined method is effective
when both the Adams formulas and the diagonally-scaled preconditioning are used
over a significant percentage of steps.

There are a variety of ways of adapting the preconditioner that one might consider.
Possible choices for the “cheap” preconditioner were discussed in the introduction.
Another idea is to adapt through various more powerful preconditioners, say ILU(0)
to ILU(1), possibly to a direct solution method if the ODE appears very difficult to
solve. However, the difference in cost of the various preconditioning methods is not
that great. As we noted earlier, for example, ILU(0) preconditioning is only about
40% more expensive than diagonal scaling on many problems derived from PDEs. This
suggests that little additional saving would be achieved by this incremental approach.
A “cheap” preconditioner that was effective over a longer range would be more useful.
Switching to a direct method is possible if the problem size is not too great or if a
sparse direct method does not suffer too much fill-in.

Both the ILU(0) and ILU(1) preconditioners worked well for these test problems.
They have the advantage of being “black-box” strategies that can be applied to any
matrix. The choice between them depends on the amount of fill-in generated by the
ILU(1) factorization and how difficult the ODE is to solve. As we saw for the last
test problem, even though ILU(1) preconditioning can be significantly more efficient
in terms of the number of linear iterations, the cost per iteration may make ILU(0)
preferable. We note that the choice of the maximum number of iterations can have a
significant effect on the overall performance of the code. In a method such as Orthomin
or GMRES, the amount of storage restricts the choice of this maximum. (Although
restarting can be used, it is not clear how effective it is.) If the ODE solver fails and
reduces the stepsize because the iterative method did not converge, this can have a
ripple effect throughout the rest of the integration, significantly increasing the total
number of steps and amount of work. The maximum should be chosen as large as
possible consistent with the storage available.

REFERENCES

[1] A. Behie and P. Forsyth, Comparison of fast iterative methods for symmetric systems, IMA
J. Numer. Anal., 3 (1983), pp. 41–63.

[2] , Incomplete factorization methods for fully implicit simulation of enhanced oil recovery,
SIAM J. Sci. Stat. Comput., 5 (1984), pp. 543 – 561.

[3] M. Berzins and R. Furzeland, A user’s manual for SPRINT - a versatile software package for
solving systems of algebraic, ordinary and partial differential equations: Part 1 - Algebraic
and ordinary differential equations, Tech. Report TNER.85.058, Thornton Research Centre,
Shell Research Ltd., Thornton, U.K., 1985.

[4] , An adaptive method for the solution of stiff and non-stiff differential equations, tech.
report, School of Computer Studies, Leeds University, Leeds, UK, 1990.

[5] P. Brown and A. Hindmarsh,Matrix-free methods for stiff systems of ODE’s, SIAM J. Numer.
Anal., 23 (1986), pp. 610–638.

[6] , Reduced storage matrix methods in stiff ODE systems, J. Appl. Math. Comp., 31 (1989),
pp. 40–91.

[7] G. Byrne, Pragmatic experiments with Krylov methods in the stiff ODE setting, in Proc. IMA
Conference on Computational Ordinary Differential Equations, 1989, J. Cash and I. Glad-
well, eds., London, 1989, Oxford University Press.

22



[8] T. Chan and K. Jackson, The use of iterative linear-equation solvers in codes for large systems
of stiff IVPs for ODEs, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 378 – 417.

[9] R. Dembo, S. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal.,
19 (1982), pp. 400–408.

[10] C. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall,
Englewood Cliffs, N.J., 1971.

[11] C. Gear and Y. Saad, Iterative solution of linear equations in ODE codes, SIAM J. Sci. Stat.
Comput., 4 (1983), pp. 583 – 601.

[12] A. Hindmarsh, LSODE and LSODI, two new initial value ordinary differential equation solvers,
ACM SIGNUM Newsletter, (1980), pp. 10–11.

[13] S. Norsett and P. Thomsen, Switching between modified Newton and fix-point iteration for
implicit ODE-solvers, BIT, 26 (1986), pp. 339–348.

[14] L. Petzold, Automatic selection of methods for solving stiff and nonstiff systems of ordinary
differential equations, SIAM J. Sci. Stat. Comput., 4 (1983), pp. 136 – 148.

[15] L. Shampine, Type-insensitive ODE codes based on extrapolation methods, SIAM J. Sci. Stat.
Comput., 4 (1983), pp. 635 – 644.

[16] P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric systems, SIAM J. Sci. Stat.
Comput., 10 (1989), pp. 36 – 52.

[17] H. van de Worst and P. Sonneveld, CGSTAB, a more smoothly converging variant of CGS,
Tech. Report 90 – 50, Delft University of Technology, Delft, Netherlands, 1990.

[18] P. Vinsome, Orthomin, an iterative method for solving sparse sets of simultaneous linear equa-
tions, in Society of Petroleum Engineers of AIME, Paper SPE 5729, 1976.

23


