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Abstract

A numeration system based on a strictly increasing sequence of positive integers
u0 = 1, u1, u2, . . . expresses a non-negative integer n as a sum n =

∑i
j=0 ajuj . In this

case we say the string aiai−1 · · · a1a0 is a representation for n. If gcd(u0, u1, . . .) = g,
then every sufficiently large multiple of g has some representation.

If the lexicographic ordering on the representations is the same as the usual ordering
of the integers, we say the numeration system is order-preserving. In particular, if
u0 = 1, then the greedy representation, obtained via the greedy algorithm, is order-
preserving. We prove that, subject to some technical assumptions, if the set of all
representations in an order-preserving numeration system is regular, then the sequence
u = (uj)j≥0 satisfies a linear recurrence. The converse, however, is not true.

The proof uses two lemmas about regular sets that may be of independent interest.
The first shows that if L is regular, then the set of lexicographically greatest strings
of every length in L is also regular. The second shows that the number of strings of
length n in a regular language L is bounded by a constant (independent of n) iff L is
the finite union of sets of the form xy∗z.

1 Introduction

Let Σ be a finite or infinite alphabet. A numeration system is a map r : IN → Σ∗ that
assigns a string r(n), called the representation of n, to a nonnegative integer n. Sometimes
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not every integer have a representation, in which case r is a partial function, rather than a
function.
Common examples of numeration systems include radix-k representation (for k an integer

≥ 2), Fibonacci representation, factorial representation, etc. See [11, 12] for surveys on
numeration systems.
In this paper we consider only linear numeration systems constructed as follows: given

a strictly increasing sequence of positive integers u0, u1, u2, . . ., we try to express n as a
non-negative integer linear combination of the uj, say n =

∑

0≤j≤i ajuj. If we can write n in
this manner, we say n is u–representable (or representable if the sequence u is clear from the
context), and one representation of n is the string aiai−1 · · · a1a0. We define the mapping val
from strings back to integers as follows:

val(aiai−1 · · · a1a0) =
∑

0≤j≤i

ajuj. (1)

We say such a representation is normal if ai 6= 0. In this paper, we consider only normal
representations.
Note that if

gcd(u0, u1, . . .) = g,

then every sufficiently large multiple of g is representable.
For some choices of the sequence u = (uj)j≥0, the “digits” aj may be required to be

arbitrarily large. An example of this is the so-called factorial representation, where uj =
(j + 1)!. See, for example, [11]. In this paper we only consider numeration systems whose
digits are bounded by some fixed constant. A necessary condition to ensure bounded digits
is that the ratio uj/uj−1 is bounded by a constant.
Since, in general, there may be many normal representations with bounded digits for

a number n, we must identify one of these representations in order to specify the map
r. This can be done in a variety of ways; for example, one could choose r(n) to be the
lexicographically greatest representation for n, among all nonnegative linear combinations
of terms of the sequence u. The lexicographic order we use is defined as follows: if x =
x1x2 · · · xi and y = y1y2 · · · yj are strings, we say x is lexicographically greater than y, and
write x > y, if i > j, or if i = j and there exists an integer k, 1 ≤ k ≤ i, such that
x1 = y1, x2 = y2, . . . , xk−1 = yk−1, but xk > yk.

1

Another possible choice for r(n) is the greedy representation gr(n). We define gr(n) for a
positive integer n as follows: let i be the largest index such that ui ≤ n. Then successively
set ai ← bn/uic, n← n−aiui, and i← i−1 until i < 0. If n =

∑

0≤j≤i ajuj, then the greedy
representation for n is the string aiai−1 · · · a1a0, and we say n is greedily representable. If
not, then the representation for n is undefined. The greedy representation for 0 is defined

1Note that this ordering, called “radix order” by Berstel [1, p. 76] is a well-order (i.e. each nonempty set
has a least element), and it differs from the lexicographic order defined by other authors [26, p. 64]; [1]. It
is, however, the natural order for our problem.
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to be ε, the empty string. The set of greedy representations for all greedily representable
integers is written G(u).
It is easy to see that every non-negative integer is greedily representable iff u0 = 1.

If u0 6= 1, it is possible for a number to be representable, but not greedily representable.
For example, consider expressing 4 in the numeration system (u0, u1, u2, . . .) = (2, 3, 5, . . .).
Note that if u0 = 1, then the greedy representation is in fact the lexicographically greatest
representation.
A desirable property of any numeration system is that the mapping r that sends an integer

n to its representation be order-preserving. More precisely, we require that for integers m,n
in the domain of r, we have m > n iff r(m) > r(n). It is easy to see that the greedy
representation is order-preserving.
Given a numeration system r, based on the sequence u, we define R(r, u) = R(u) to be

the set of its representations for all non-negative integers. More formally,

R(u) =
∑

n≥0
n∈Dom r

r(n). (2)

Example 1.

Let uj = kj, for k an integer ≥ 2. Then the set of greedy representations G(u) is

ε+ (1 + 2 + · · ·+ k − 1)(0 + 1 + · · ·+ k − 1)∗,

which is nothing more than the ordinary radix-k representation.
If we let uj = j + 1, then the set of greedy representations is simply ε + 10∗. This

numeration system is essentially “unary” notation.

Example 2.

Let uj = Fj+2, where Fj is the jth Fibonacci number. Then it can be shown that the set
of greedy representations G(u) is

ε+ 1(0 + 01)∗.

(For more on Fibonacci representations, see [25, Ex. 1.2.8.34], [31], [5], [24], and [2].)

Example 3.

Let uj = 2
j+1 − 1. Then the set of greedy representations G(u) is

(ε+ 1(0 + 1)∗)(ε+ 20∗).

See the recent paper of Cameron and Wood [4].

Suppose we are given an increasing sequence of positive integers (uj)j≥0, and suppose
there is a constant C such that every non-negative integer n has a representation n =
∑

0≤j≤i ajuj with 0 ≤ aj ≤ C. Let r(n) be defined as the lexicographically least representation
among all such representations for n.
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It is not difficult to show that this r is order-preserving. An example is as follows:

Example 4.

Let uj = 2
j, and consider expressing integers n as n =

∑

0≤j≤i ajuj with 0 ≤ aj ≤ 2. Then
Reznick has shown [29] that the number of such such representations is s(n+1), where s(n) is
the Stern function, defined by s(0) = 0; s(1) = 1; s(2n) = s(n); and s(2n+1) = s(n)+s(n+1)
for n ≥ 1.
Now define r(n) to be the lexicographically least representation of this form for n; for

example, r(13) = 221. Then it is easy to see that r(n) is a string of 1’s and 2’s; in fact, R(u),
the set all such representations, is (1 + 2)∗. This corresponds to the well-known observation
that every non-negative integer can be written uniquely in base 2, using only the digits 1
and 2. Note that this numeration system is not obtained via the greedy algorithm.

The main result of this paper is Theorem 6, which proves the following: suppose the
numeration system r is such that the set R(r, u) is regular. Then, subject to some techni-
cal conditions on r, the sequence u must satisfy a linear recurrence with integer constant
coefficients.
The proof depends on two lemmas about regular sets, which may be of independent

interest.

Remarks on the literature.

The point of view we will adopt in this paper is similar to that of Frougny, who has
written extensively on this topic. See [13, 14, 15, 16, 17, 18, 19].
In [30], I proved that the set of greedy representations is regular for the numeration

systems with bounded digits considered by Fraenkel [11].
We note several other papers that have examined the relationship between ways of rep-

resenting numbers and regular sets. See [20, 27, 7, 8, 21, 22]. However, these papers have
adopted a very different point of view.

2 More Notation

Throughout this paper, Σ is a finite alphabet, and q, s, t denote regular expressions. The
letters v, w, x, y, z denote strings. The lower-case letters a, b, c, d, e, g, i, j, k,m, n and the
upper-case letters A,B,C denote integers. We also use the letters a and b to represent
elements of Σ. The capital letters L and Z denotes languages and the capital lettersW,X, Y
denote finite languages.

3 Lexicographically Largest Strings

Suppose L is a regular language over a finite alphabet Σ. Suppose Σ has a total ordering; for
example, suppose Σ = {0, 1, 2, . . . , k− 1}. If x, y ∈ Σn, we say x > y if x is lexicographically
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greater than y. More precisely, we say x > y if there exists an integer i, 1 ≤ i ≤ n, such that
x1 = y1, x2 = y2, . . . , xi−1 = yi−1, but xi > yi.

2 Then we informally define B(L) as follows:
it is the union, over all n ≥ 0, of the lexicographically largest string of length n in L. 3 More
formally, define

B(L) =
⋃

n≥0

{x ∈ L ∩ Σn : ∀ (y ∈ L ∩ Σn) x ≥ y}. (3)

For example, B(1(0 + 01)∗) = (10)∗(ε+ 1).

Lemma 1 If L is regular, then so is B(L).

Proof.

We show that L − B(L), the relative complement of B(L) in L, is a regular set. From
this the result follows: B(L) ⊆ L, and so

(Σ∗ − (L−B(L))) ∩ L = B(L).

But regular sets are closed under complement and intersection, and so B(L) is regular.
Let M = (Q,Σ, δ, q0, F ) be a deterministic finite automaton accepting L. (See [23] for

the basic notions about automata and the notational conventions that we use here.) The
idea is to accept L− B(L) with a nondeterministic finite automaton. We use two “fingers”
to mimic the behavior of M on input w: the first “finger” imitates M precisely. The second
“finger” nondeterministically simulates M on all possible inputs of length |w|, trying to find
some string in L that is lexicographically greater than w. If we succeed, and w is accepted
by M , then we have found a string in L that is not lexicographically greatest, and so we
accept.
More formally, let M ′ = (Q′,Σ, δ′, q′0, F

′), a nondeterministic finite automaton, where
Q′ = Q× Q × {g, e, l}. Here g indicates that in the current state, we have already found a
string lexicographically greater than the prefix of the input seen so far. Similarly, e indicates
equality, and l indicates less than. For each a ∈ Σ, define

δ′([p, q, g], a) = {[δ(p, a), δ(q, b), g] : b ∈ Σ∗},

δ′([p, q, e], a) = {[δ(p, a), δ(q, b), x] : b ∈ Σ∗},

where x = g if a > b, x = e if a = b, and x = l if a < b, and

δ′([p, q, l], a) = {[δ(p, a), δ(q, b), l] : b ∈ Σ∗}.

Finally, define q′0 = [q0, q0, e] and

F ′ = {[p, q, l] : p, q ∈ F}.

We leave it to the reader to show that M ′ accepts w if and only if w ∈ L−B(L).

2See footnote 1.
3Of course, it is possible that for some n, there is no string of length n in L. These n correspond to no

string in B(L). See Eq. (3).

5



Corollary 2 If L is regular, then so is the set

S(L) =
⋃

n≥0

{x ∈ L ∩ Σn : ∀ (y ∈ L ∩ Σn) x ≤ y}

of lexicographically smallest strings of every length in L.

It is perhaps worthwhile to note that we can use the technique of Lemma 1 to answer
a question of D. Klarner (personal communication). He asked, suppose f is a recognizable
relation. (For this concept, see Eilenberg [9] or Berstel [1].) Then is it true that the set
of lexicographically smallest strings, one chosen from each nonempty equivalence class of f ,
must be regular? Using the technique above, it is easy to see that the answer is yes. For the
case of f being a rational relation, I believe the question is still open.

4 Bounded Regular Sets

In this section we prove that if L is a regular language such that the number of strings of
length n in L is bounded by a constant (independent of n), then L is the finite union of sets
of particularly simple form. More formally, we have

Lemma 3 The following two statements are equivalent:
(i) L ⊆ Σ∗ is regular and there exists a constant c such that |L ∩ Σn| ≤ c for all n ≥ 0
(ii) L is the finite union of sets of the form xy∗z, where x, y, z ∈ Σ∗.

Proof.

(ii)⇒ (i): Suppose

L =
c∑

i=1

xiy
∗
i zi.

Then for each n ≥ 0, xiy
∗
i zi contains at most one string of length n. Hence L contains at

most c strings of length n.

(i) ⇒ (ii): Let q be a non-trivial regular expression denoting L. (When it is necessary
to make the distinction, we will use the notation L(q) to represent the language denoted by
the regular expression q.)
The result is clearly true for L = ∅. Thus we may assume that the regular expression

q does not contain ∅. We will show the following two “reduction” steps (recalling that the
letters X,Y,W denote finite sets):

(a) If q contains a subexpression of the form t∗, then L(t∗) can be rewritten in the form
X + Y z∗, and

(b) If q contains a subexpression of the form s∗1ts
∗
2, where t contains no star, then L(s∗1ts

∗
2)

can be rewritten in the form Wz∗X.
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The implication (i)⇒ (ii) will then follow.

(a) Suppose r contains a subexpression of the form t∗. Clearly if |L(t)| ≤ 1, then t∗ is
already of the form X + Y z∗. Suppose |L(t)| = 2, say L(t) = {x, y}. Choose a positive
integer m sufficiently large such that the linear Diophantine equation

a|x|+ b|y| = m (4)

has ≥ c + 1 solutions (a, b) in non-negative integers. (For example, it suffices to choose
m = c lcm(|x|, |y|).) Then by the hypothesis, we must have

xayb = xa′

yb′

for some distinct pairs (a, b), (a′, b′) satisfying (4), for otherwise t∗ and hence L would contain
≥ c+ 1 strings of length n, for some n.
Without loss of generality we may assume a ≥ a′, b ≤ b′. Then

xa−a′

= yb′−b.

By [26, Prop. 1.3.1] there exists a string z and integers i, j such that x = z i, y = zj. Hence

(x+ y)∗ = (zi + zj)∗ = X + zij(zgcd(i,j))∗

for some finite set X. Thus we can replace the t∗ in q by a set of the form X + Y z∗.
If |L(t)| > 2, we can repeat the argument above on pairs to obtain that each element of

L(t) is a power of some string z. Thus, there is some (finite or infinite) set S such that

L(t) =
∑

i∈S

zai .

Set g = gcd(a1, a2, . . .). Then there is a finite subset of the ai, say b1 ≤ b2 ≤ . . . ≤ bk,
such that g = gcd1≤j≤k bj. Choose m sufficiently large such that eg is a non-negative integer
linear combination of the bi for all e ≥ m; by a theorem of Brauer [3, Corollary to Thm. 1],
we may in fact choose

m = (b1 − 1)(bk − 1).

Let
X = {zd ∈ L(t∗) : d < gm};

note that X is a finite set. I claim that

L(t∗) = X + zgm(zg)∗.

For let zd ∈ L(t∗); if d < gm, then zd ∈ X, by construction. Otherwise d ≥ gm; clearly d
must be a multiple of g and hence zd ∈ zgm(zg)∗.
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It remains to see that zgm(zg)∗ ⊆ L(t∗). We know that if e ≥ m, then eg is a nonnegative
integer linear combination of the bi. Hence every string zeg with e ≥ m must be in (zb1 +
zb2 + · · ·+ zbk)∗, and hence in L(t∗). This completes the proof of (a) and shows incidentally
that L is of star-height 1. Hence by a theorem of Cohen [6, Lemma 3.1], we may assume
that

L = Z1 + Z2 + · · ·+ Zj,

where each set Zi can be written in the form

w1x
∗
1w2x

∗
2 · · ·wkx

∗
kwk+1. (5)

To prove (b), suppose q contains a subexpression of the form s∗1ts
∗
2. Then by Eq. (5) we

may assume without loss of generality that L(s1) = {x}, L(s2) = {y}, and L(t) = {z}.
As above, choose m sufficiently large such that

a|x|+ b|y| = m (6)

has ≥ c + 1 solutions. Then by the hypothesis that L contains no more than c strings of
length n for all n, we must have

xazyb = xa′

zyb′

for two distinct pairs (a, b), (a′, b′) satisfying (6). We may assume without loss of generality
that a > a′ and b < b′. Then

xa−a′

z = zyb′−b.

Using [26, Prop. 1.3.4], we see that there exist strings v, w and an integer e such that

xa−a′

= vw; yb′−b = wv; z = v(wv)e = (vw)ev.

Hence
xa−a′

zyb′−b = (vw)e+2v.

Thus we see that

x∗zy∗ = (ε+ x+ x2 + · · ·+ xA−1)(vw)∗(vw)ev(wv)∗(ε+ y + y2 + · · ·+ yB−1),

where A = a− a′ and B = b′ − b. Thus we have x∗zy∗ = X(vw)∗Y for finite sets X and Y .
To complete the proof of the lemma, we apply observation (b) repeatedly to terms of the

form (5). At each stage, a term with k > 1 stars is reduced to a sum of terms with k − 1
stars. The final result is a sum of terms with one star, and the result follows.

After the author proved Lemma 3, other proofs were shown to him by S. Yu and F. Fich.
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5 Two Lemmas on Linear Recurrences

In this section we provide two useful lemmas about linear recurrences.
Suppose we are given a sequence whose even and odd-numbered terms each satisfy a

linear recurrence with integer coefficients, but not the same one, such as

A2n = 2A2n−1 + A2n−2

A2n−1 = 3A2n−2 + A2n−3 + A2n−4 − A2n−5. (7)

Can we then conclude that the sequence An itself satisfies a linear recurrence with integer
coefficients?
The answer is yes, as the following lemma shows:

Lemma 4 Let k, d be positive integers, with d ≥ k, and let M = [Mij] be a k × d matrix of
integers such that for all n sufficiently large we have

Akn = M11Akn−1 +M12Akn−2 + · · ·+M1dAkn−d

Akn−1 = M21Akn−2 +M22Akn−3 + · · ·+M2dAkn−d−1

...

Akn−k+1 = Mk1Akn−k +Mk2Akn−k−1 + · · ·+MkdAkn−k−d+1.

Then the sequence An itself satisfies a linear recurrence with constant coefficients.

Proof.

Note that d is the maximum degree of the characteristic polynomials for the subsequences
Akn, Akn+1, . . . , Akn+k−1.
By successively substituting the relations for Akn−1, Akn−2, · · · in the relation for Akn,

etc., we can find a d× d matrix P = [Pij] such that for all n sufficiently large, we have

Akn = P11Akn−k + P12Akn−k−1 + · · ·+ P1dAkn−k−d+1

Akn−1 = P21Akn−k + P22Akn−k−1 + · · ·+ P2dAkn−k−d+1

...

Akn−d+1 = Pd1Akn−k + Pd2Akn−k−1 + · · ·+ PddAkn−k−d+1.

Let f(X) be the characteristic polynomial of P . Then each of the sequences

Akn, Akn−1, . . . , Akn−k+1

satisfies the same linear recurrence, namely, the one whose characteristic polynomial is f(X)
(at least for n sufficiently large). Thus for n large enough, An satisfies the linear recurrence
whose characteristic polynomial is f(Xk).
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Example.

For the recurrence specified by (7), we get







A2n

A2n−1

A2n−2

A2n−3







=








7 2 2 −2
3 1 1 −1
1 0 0 0
0 1 0 0















A2n−2

A2n−3

A2n−4

A2n−5







.

The characteristic polynomial for the matrix is X4 − 8X3 −X, so An satisfies the recur-
rence An = 8An−2 + An−6.

Our second lemma concerns integer linear recurrences with rational coefficients.

Lemma 5 Suppose the infinite integer sequence u0, u1, u2, . . . satisfies a linear recurrence
relation

un = a1un−1 + a2un−2 + · · · adun−d,

for all n ≥ 0, where each ai is a rational number. Then un satisfies a (possibly different)
linear recurrence relation where all the ai are actually integers.

Proof.

This follows immediately from the following lemma of Fatou [10] (also see [28, Part
VIII, Problem 156]): if v(z) is a rational function whose Taylor series has rational integer
coeffcients, then v(z) can be written in the form f(z)/g(z), where f and g are polynomials
with integer coefficients and g(0) = 1.

6 Proof of the Main Result

In this section, we prove the result mentioned in the introduction. The details of the proof
are a little messy, so it may be helpful to first give the proof in the case of ordinary base-3
representation. In this case, the set of representations R(u) is ε + (1 + 2)(0 + 1 + 2)∗. It is
easy to see that B(R(u)), the set of lexicographically greatest representations, is 2∗. Since

val(1

k
︷ ︸︸ ︷

00 · · · 0) = 1 + val(

k
︷ ︸︸ ︷

22 · · · 2),

it follows that
uk = 1 + 2uk−1 + 2uk−2 + · · ·+ 2u0. (8)

Similarly, we also have
uk+1 = 1 + 2uk + 2uk−1 + · · ·+ 2u0. (9)

Subtracting (8) from (9), we see
uk+1 − uk = 2uk,

and hence uk+1 = 3uk.
We now state and prove the main result of the paper:
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Theorem 6 Let u0, u1, . . . be a strictly increasing sequence of non-negative integers, and let
r be a linear numeration system based on u. Let R(u) be as in Eq. (2). Suppose that
(a) gcd(u0, u1, . . .) = g, and r(kg) is defined for all sufficiently large integers k;
(b) for all sufficiently large n, there exists a representation in R(u) of length n;
and
(c) r is order-preserving.
If R(u) is regular, then the sequence u = (un)n≥0 satisfies a linear recurrence with integer

constant coefficients.

Before we begin the proof, let us explain the role of the technical hypotheses (a)–(b). For
(a), if gcd(u0, u1, . . .) = g, then every sufficiently large multiple of g has some representation
as a non-negative integer linear combination of the ui. We wish to avoid the case where
“most” representable integers simply are not in the domain of the partial function r.
Hypothesis (b) is needed to exclude cases such as the following: suppose our numeration

system is
1, u0, 10, u1, 100, u2, . . . , (10)

where u is any sequence that does not satisfy a linear recurrence, and 10i < ui ≤ 10
i+1. If

we choose as our numeration system ordinary base-10 representation, and simply never use
the ui in any representation, we get a numeration system that is order-preserving, and a set
of representations which is regular. However, the sequence (10) clearly does not satisfy a
linear recurrence.
Note that hypothesis (b) is satisfied by both the greedy representation and the lexico-

graphically greatest representation, for in these cases we have the representation of un is 1 0
n.

In fact, if u0 = 1, then all three hypotheses are satisfied when r is the greedy representation.
Now let us begin the proof of Theorem 6.

Proof.

Let g = gcd(u0, u1, . . .). Then by hypothesis (a), there exists an integer C such that r(n)
is defined for all n ≥ C with g | n.
If L = R(u) is regular, then by Lemma 1, the set B(L) of lexicographically greatest

strings of every length in L is also regular. By hypothesis (b) of the theorem, there exists C ′

such that B(L) exactly one string of length j for each j ≥ C ′. Thus Lemma 3 applies and so

B(L) =
k∑

i=1

xiy
∗
i zi. (11)

Similarly, by Corollary 2, the set S(L) can also be written in the form

k′

∑

i=1

x′iy
′∗
i z
′
i.
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To avoid unnecessary complication, we first show how the proof goes in the case S(L) = 1 0∗.
At the end of the proof we sketch what needs to be done when S(L) 6= 10∗. (Note that in
fact S(L) = 1 0∗ for the most common case, when r is the greedy representation.)
The main idea of the proof is as follows: let w ∈ B(L) be sufficiently long such that

val(w) > max(C,C ′). Let v ∈ S(L) be such that |v| = |w|+ 1. Then by hypothesis (c) (i.e.,
r is order-preserving), we must have val(v) = val(w) + g. Since S(L) = 10∗, we have

u|w| = val(w) + g. (12)

Now let
g′ = lcm1≤j≤k

|yj |6=0

|yj|.

By replacing yi with y
g′/|yi|
i , adding extra terms to xi and zi, and renaming, we can rewrite

(11) such that |yi| = g′ for all i for which |yi| 6= 0.
Consider a particular term of the sum in (11), say xy∗z. From (12) we have

uj|y|+|xz| = val(xy
jz) + g.

We also have
u(j+1)|y|+|xz| = val(xy

j+1z) + g.

Subtracting, we see

u(j+1)|y|+|xz| − uj|y|+|xz| = val(xy
j+1z)− val(xyjz)

= val(xy0j|y|+|z|)− val(x0j|y|+|z|),

and the last expression on the right is a linear combination of terms of u such that the smallest
coefficient which is possibly non-zero corresponds to uj|y|+|z|. Hence for j sufficiently large,
the subsequence u(j+1)g′+i can be expressed as a non-trivial integer linear combination of the
g′+ |x| previous terms of u, and the particular linear combination depends only on the value
of i (mod g′).
By Lemma 4, we can write u itself as a linear recurrence. This completes the proof in

the case where r(n) = 1 0n.
It remains to discuss what needs to be done to handle the more general case, when S(L)

is not necessarily equal to 1 0∗. The same techniques apply, except that since the leading
coefficient of the recurrence we obtain is no longer necessarily 1, we see that u is a linear
recurrence with rational coefficients. Then by Lemma 5, we see that the linear recurrence
actually has integer coefficients. This completes the proof.

7 Linear Recurrences and Non-Regular Sets

After seeing the main theorem, one immediately wonders if the converse is true. It is not,
as the following theorem shows:
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Theorem 7 Suppose uj = (j + 1)
2 for j ≥ 0. Then the set G(u) of greedy representations

is not a regular set.

Note that uj, of course, satisfies the linear recurrence uj+3 = 3uj+2 − 3uj+1 + uj for all
j ≥ 0.

Proof.

Let G(u) be the set of greedy representations, and assume it is regular. Then G(u) ∩
10∗10∗ would also be a regular set. However, it is easy to see that

G(u) ∩ 10∗10∗ = {10a10b : ub+a+2 > ub+a+1 + ub}

= {10a10b : b2 < 2a+ 4},

and this set is evidently not regular.

One would like a simple characterization of those sequence u for which G(u) is regular.
The next example shows that such a characterization based on the characteristic polynomial
of the recurrence alone will not suffice.
Let fj = 2

j +1 for j ≥ 0. In this numeration system, where the digits are bounded by 2,
every integer except 1 has some representation. Let r(n) denote the lexicographically greatest
representation for n. (Note that 4 = val(2) > val(10) = 3; hence r is not order-preserving.)
Then

R(f) ∩ 1∗0∗ = {1a0b : fb+a > fb+a−1 + fb+a−2 + · · ·+ fb}

= {1a0b : a < 2b + 1},

and this set is clearly not regular. Hence R(f) is not regular. However, fj satisfies the same
linear recurrence as the sequence uj = 2

j+1 − 1 discussed previously in Section 1 (namely
fj+2 = 3fj+1 − 2fj for j ≥ 0), for which G(u) is regular.

It is an open problem to give a sufficient condition for the regularity of R(u).
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