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I. Introduction.

In this report I will give proofs of some simple theorems concerning continued fractions
that are known to the cognoscenti, but for which proofs in the literature seem to be
missing, incomplete, or hard to locate. In particular, I will give two proofs of the following
“folk theorem”: if θ is an irrational number whose continued fraction has bounded partial
quotients, then any non-trivial linear fractional transformation of θ also has bounded
partial quotients. The second proof is of interest because it uses the connection between
continued fractions and finite automata first enunciated by G. N. Raney [R].

I will assume that the reader knows basic facts about continued fractions, at the level
of [HW, Chapter X].

Note to the reader: It is intended that this report will eventually form a part of a longer
article with the same name, written in collaboration with A. J. van der Poorten.

II. Some Notation.

In this report, θ denotes an irrational number. We let

θ = [a0, a1, a2, . . . ]

be the simple continued fraction expansion of θ. We write

pn
qn

= [a0, a1, . . . , an],

the n-th convergent. We define

a′n = [an, an+1, an+2, . . . ],

the n-th complete quotient. We also define

‖θ‖ = min(θ − bθc, dθe − θ),
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the distance between θ and the nearest integer. Finally, we define

K(θ) = sup
k≥1

ak,

the largest partial quotient in the continued fraction for θ. If K(θ) < ∞, we say θ has
bounded partial quotients.

III. Badly approximable numbers

In this section, we obtain a precise relation between K(θ) and the degree to which θ
can be approximated by rationals.

Theorem 1.

Let r ≥ 1, and suppose q‖qθ‖ ≥ 1
r
for all q ≥ 1. Then K(θ) < r.

Proof.

Let pn/qn be a convergent to θ with n ≥ 1. Since

∣
∣
∣
∣

pn
qn
− θ

∣
∣
∣
∣
<

1

an+1q2
n

,

(see, e.g. [HW, Thm. 171]), we see

qn|pn − qnθ| <
1

an+1
.

Now clearly ‖qnθ‖ ≤ |pn − qnθ|, so

1

r
≤ qn‖qnθ‖ ≤ qn|pn − qnθ| <

1

an+1
,

and thus an+1 < r for all n ≥ 0, and hence K(θ) < r.

Theorem 2.

Let r ≥ 1 and suppose K(θ) ≤ r. Then

q‖qθ‖ ≥
1

r + 2

for all q ≥ 1.

Proof.

We prove the contrapositive. Suppose there exists a q ≥ 1 such that

q‖qθ‖ <
1

r + 2
.
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Let p be an integer such that ‖qθ‖ = |qθ − p|. Then q|qθ − p| < 1
r+2 . Thus

∣
∣
∣
∣
θ −

p

q

∣
∣
∣
∣
<

1

(r + 2)q2
<

1

2q2
,

from which it follows (see, e.g. [HW, Thm. 184]) that p/q is a convergent to θ, say
p/q = pn/qn. Thus p = apn, q = aqn for some integer a ≥ 1.

Now from [HW, Thm. 163], we have

|qnθ − pn| =
1

a′n+1qn + qn−1
.

Hence

1

r + 2
> q‖qθ‖ = q|qθ − p|

= aqn|aqnθ − apn|

≥ qn|qnθ − pn|

≥
1

a′n+1 +
qn−1

qn

≥
1

(an+1 + 1) + 1
.

Thus we conclude an+1 > r and so K(θ) > r.

A weaker form of Theorem 2, with a worse constant, was given by Hardy and Wright
[HW, Thm. 187].

Theorems 1 and 2 above were essentially proved by W. M. Schmidt [S, pp. 22-23], but
the proof provided is a little vague in spots. One can also deduce the theorems by filling
in the details in [B, p. 47].

IV. Bounded partial quotients and linear fractional transformations

Definition.

We say θ is of type < r if q‖qθ‖ ≥ 1
r
for all integers q ≥ 1.

Theorem 3.

Let a, b be integers with a ≥ 1, |b| ≥ 1. If θ is of type < M , then a
b
θ is of type < |ab|M .

Proof.

We prove the contrapositive. Assume

q‖q
a

b
θ‖ <

1

|ab|M
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for some q ≥ 1.

Now there exists an integer p such that ‖q a
b
θ‖ = |q a

b
θ − p|. Thus

q
∣
∣
∣q

a

b
θ − p

∣
∣
∣ <

1

|ab|M
,

and so, multiplying by |ab|, we get

qa|qaθ − pb| <
1

M
.

Hence qa‖qaθ‖ < 1
M
.

Corollary 4.

K(a
b
θ) < |ab|(K(θ) + 2).

Theorem 5.

Let a, b be integers with |a| ≥ 1, b ≥ 1. If θ is of type < M , then θ+ a
b
is of type < b2M .

Proof.

We prove the contrapositive. Assume that

q‖q(θ +
a

b
)‖ <

1

b2M

for some q ≥ 1.

Then there exists an integer p such that

‖q(θ +
a

b
)‖ = |q(θ +

a

b
)− p|.

Thus

q
∣
∣
∣q(θ +

a

b
)− p

∣
∣
∣ <

1

b2M

and so, multiplying by b2, we get

qb|qbθ + qa− pb| <
1

M
.

Hence qb‖qbθ‖ < 1
M
.

Corollary 6.

K(θ +
a

b
) < b2(K(θ) + 2).

I have not been able to find these results given explicitly in the literature. Theorems
similar to Theorems 3 and 5 were given by Cusick and Mendès France [CMF]. Instead of
studying supq≥1 q‖qθ‖, they studied lim supq→∞ q‖qθ‖, which is somewhat more natural.
Also see Perron [P].

Chowla [C] proved in 1931 that K( a
b
θ) < 2ab(K(θ) + 1)3, a bound much weaker than

that obtained above.



SOME FACTS ABOUT CONTINUED FRACTIONS 5

Theorem 7.

K(
1

θ
) ≤







K(θ), if 0 < θ < 1

max(K(θ), bθc), if θ > 1

K(θ) + 1, if −1 < θ < 0

max(K(θ) + 2,−bθc − 2), if θ < −1.

Proof.

As in [K, Ex. 4.5.3.10], we see that

(a) If 0 < θ < 1, then θ = [0, a1, a2, . . . ] and 1/θ = [a1, a2, . . . ].

(b) If θ > 1, then θ = [a0, a1, . . . ] and 1/θ = [0, a0, a1, . . . ].

(c) If −1/2 < θ < 0, then θ = [−1, 1, a2, a3, a4] and 1/θ = [−(a2 + 2), 1, a3 − 1, a4, . . . ].
(Note: this collapses to [−(a2 + 2), a4 + 1, a5, . . . ] if a3 = 1.)

(d) If −1 < θ < −1/2, then θ = [−1, a1, a2, a3, . . . ], where a1 ≥ 2, and 1/θ = [−2, 1, a1−
2, a2, . . . ]. (Note: this collapses to [−2, a2 + 1, a3, . . . ] if a1 = 2.)

(e) If θ < −1, then θ = [a0, a1, a2, . . . ], where a0 ≤ −2, and 1/θ = [−1, 1,−(a0 +
2), 1, a1 − 1, a2, . . . ]. (Note: this collapses to [−1, 2, a1 − 1, a2, . . . ] if a0 = −2 and a1 ≥;
to [−1, 1,−(a0 + 2), a2 + 1, a3, . . . ] if a1 = 1 and a0 ≤ −3, and to [−1, a2 + 2, a3, . . . ] if
a0 = −2 and a1 = 1.)

Theorem 8.

Let a, b, c, d be integers with ad− bc 6= 0. Then θ has bounded partial quotients iff aθ+b
cθ+d

has bounded partial quotients.

Proof.

⇒: If c = 0, this follows from Corollaries 4 and 6. If c 6= 0, then

aθ + b

cθ + d
=

b− ad
c

cθ + d
+

a

c
,

and the result follows from Corollaries 4 and 6.

⇐: Let τ = aθ+b
cθ+d

. Then θ = dτ−b
−cτ+a

, and the result follows from the argument above.

I do not know any proof of Theorem 8 in the literature.

V. Another proof using Raney’s theorem.

In this section, I show how to obtain Theorem 8 directly from the continued fraction
expansion of θ, using a theorem of Raney [R]. This idea was suggested to me by J. C.
Lagarias. For those who are familiar with formal languages, the proof will recall the proof
of the so-called “pumping lemma’ for regular sets; see [HU].
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Recall the LR-expansion of an irrational number θ. If

θ = [a0, a1, a2, . . . ],

then its LR-expansion is
Ra0La1Ra2La3 · · · .

The letters L and R are shorthand for the matrices

L =

(
1 0
1 1

)

and R =

(
1 1
0 1

)

.

Raney proved that the LR-expansion of τ = aθ+b
cθ+d

can be deduced from that of θ with
the aid of a finite-state transducer. The transitions of this transducer correspond to certain
products of matrices. When we write an expression such as

(1) ARL = LR3B,

we mean that this transducer, in state A, accepts the string RL as input and outputs LR3,
and then changes to state B. The expression (1) can also be viewed simply as an identity
on 2× 2 matrices; e.g. where

A =

(
2 1
1 3

)

and B =

(
5 0
0 1

)

.

Note that all state matrices are invertible.

In what follows, we regard an expression such as LRL both as a string of length 3, and
a certain 2 × 2 matrix representing a product of the matrices L and R. In particular, we
use |W | to denote the length, or number of symbols, in the string W .

Second Proof of Theorem 8.

Consider the transducer mapping the LR-expansion of θ to that of τ . Let m denote the
maximum number of R’s in any string output by a transition. Let the transducer have s
states.

Suppose θ has partial quotients bounded by B, and ad − bc 6= 0. Assume, contrary
to what we want to prove, that τ = aθ+b

cθ+d
has unbounded partial quotients. Then its

LR-expansion must contain arbitrarily long strings of R’s or L’s (not necessarily both).
Without loss of generality, assume it contains arbitrarily long strings of R’s. Thus we may
choose a substring in the LR-expansion of τ of at least B(m + 3)(s + 1) consecutive R’s.
Partition this string into s+ 1 groups of B(m+ 3) R’s, as follows:

B(m+3)
︷ ︸︸ ︷

RR · · ·R

B(m+3)
︷ ︸︸ ︷

RR · · ·R · · ·

B(m+3)
︷ ︸︸ ︷

RR · · ·R
︸ ︷︷ ︸

s+1 groups
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Consider the first group, and the corresponding part of the LR-expansion of θ that is
transduced to get this string of B(m + 3) R’s. Partition it into sections according to the
states S1, S2, . . . , Sk+1 encountered in the transduction:

RR · · ·R
︸ ︷︷ ︸

S1 W1

RR · · ·R
︸ ︷︷ ︸

i1

S2 W2

RR · · ·R
︸ ︷︷ ︸

i2

S3

· · ·
Wk

RR · · ·R
︸ ︷︷ ︸

ik

Sk+1

RR · · ·R
︸ ︷︷ ︸

From the definition of the transducer, we have

S1W1 = Ri1S2

S2W2 = Ri2S3

...

SkWk = RikSk+1.

I claim that the words Wj cannot consist of all L’s or all R’s. For if they did, then since

|W1W2 · · ·Wk| ≥ B(m+ 1),

the LR-expansion of θ would contain at least Bm+1
m

consecutive L’s or R’s, a contradiction.

In the same manner, we can list the first state of the transducer encountered in each
of the s+ 1 groups. Since the transducer has precisely s distinct states, at least one state
(call it B1) must be repeated. Thus we have

B1X1 = Rj1B2

B2X2 = Rj2B3

...

Bs+1Xs+1 = Rjs+1B1,

and the string X1X2 · · ·Xs+1 contains at least one L and one R. Thus we see

B1X1X2 · · ·Xs+1 = Rj1B2X2 · · ·Xs+1

= Rj1Rj2B3X3 · · ·Xs+1

= · · · = Rj1Rj2 · · ·Rjs+1B1.

Let X = X1X2 · · ·Xs+1 and j = j1 + j2 + · · ·+ js+1. Considered as a string, X contains
at least one L and one R. Therefore, considered as a matrix, all of X’s entries are ≥ 1.
On the other hand,

Rj =

(
1 j
0 1

)

.
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Letting

B1 =

(
e f
g h

)

,

we have (
e f
g h

)(
x11 x12

x21 x22

)

=

(
1 j
0 1

)(
e f
g h

)

.

Hence

gx11 + hx21 = g

hx12 + hx22 = h.

Since x11, x12, x21, x22 ≥ 1, we have g = h = 0. But then det(B1) = 0, which contradicts
the fact that all the transition matrices are invertible. This contradiction (essentially)
completes the proof.

I say “essentially” because there is one small point that remains to be cleared up:
Raney’s transducer does not work for arbitrary matrices, but only for the so-called “doubly-
balanced” ones. As Raney shows, however, the general linear fractional transformation
can be mapped into the doubly-balanced case by changing a finite number of terms at
the beginning of the LR-expansion for θ. Clearly this does not change the (supposed)
unboundedness of the partial quotients for τ . Now we are really done with the proof.
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