

An Implementation and Evaluation of a

Hierarchical Nonlinear Planner

by

Steven G� Woods

A thesis

presented to the University of Waterloo

in ful�lment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo� Ontario� Canada� ����

c�Steven G� Woods ����

ii

I hereby declare that I am the sole author of this thesis�

I authorize the University of Waterloo to lend this thesis to other institutions

or individuals for the purpose of scholarly research�

I further authorize the University of Waterloo to reproduce this thesis by pho�

tocopying or by other means� in total or in part� at the request of other institutions

or individuals for the purpose of scholarly research�

ii

The University of Waterloo requires the signatures of all persons using or pho�

tocopying this thesis� Please sign below� and give address and date�

iii

Abstract

Planning is the process of generating sequences of actions in order to provide a

method for agents to modify the state of the world in which they exist� It is well

known that the application of abstraction can greatly reduce the search involved in

creating plans� In this talk� an empirical evaluation of several di�erent approaches

to reducing search in AbTweak� an abstract nonlinear planning system� are pre�

sented�

To solve a complex problem using abstraction� one would like to protect parts

of the abstract solution that have already been completed during the abstract plan

re�nement� However� it has not been well understood how this protection can be

done pro�tably� some subgoal protection may indeed result in a decrease in e	�

ciency� The Monotonic Property has been proposed as a form of goal protection

in abstract planning� Di�erent versions of this property are investigated with re�

spect to their e�ect on planning performance in several domains� Furthermore� a

series of empirical tests of the utility of the properties are presented� along with an

evaluation of di�erent search strategies for abstract planning�

In addition� we present a novel abstract planning control strategy known as

Left�Wedge� This strategy adds a depth��rst
avor to a complete search strat�

egy by taking advantage of the fact that less abstract solutions are generally closer

to a concrete level solution than more abstract ones� The relative bene�t of this

approach under various criticality assignments is demonstrated through compar�

isons with breadth��rst strategy� Furthermore� two subgoal selection strategies are

presented and compared empirically�

iv

Acknowledgements

First and foremost I would like to thank my supervisor� Qiang Yang for his

endless suggestions� guidance� and constructive criticism over the time I have known

him� The many hours he spent discussing planning� AI in general� and Lisp helped

me to stay focused on my topic and remain motivated through some frustrating

times� If ever someone had an open�door policy� it is Qiang�

Thank you to my readers Fahiem Bacchus and Grant Weddell for the time they

took to carefully read my thesis and o�er many constructive commments� Thank

you to Josh Tenenberg for taking the time to discuss many of the aspects of abstract

planning mentioned in this thesis� and to Bruce Spencer and Peter Van Beek for

suggestions and help on work that never made it� Thanks Keith Mah� Hamish

Macdonald� Verna Friesen and John Sellens for help when the really hard work of

getting LaTEX� Emacs� and system bugs out needed to get done�

Very special thanks to Verna Friesen for listening to my problems� making time

to talk about my work� and for her immense patience� support� love� and unfailing

ability to make every day fun�

Final thanks go to my family and friends� for much love� encouragement� and

support across quite a few miles�

Funding for this thesis was made available in part by NSERC operating grant

OGP����
�
 to Dr� Qiang Yang�

v

When you can measure what you are speaking about� and express it in

numbers� you know something about it� but when you cannot measure

it� when you cannot express it in numbers� your knowledge is of a meager

and unsatisfactory kind� it may be the beginning of knowledge but you

have scarcely� in your thoughts� advanced to the stage of science� �

For my parents Dorothy and Frank ���

�William Thompson� Lord Kelvin ��������	
�� from Popular Lectures and Addresses� �����

�����

vi

Contents

� Introduction �

��� Overview �

��� Motivation �

��� Outline �

� Background ��

��� Linear Planning ��

��� Nonlinear Planning ��

��� Tweak �

����� Background �

����� Tweak Design ��

������� Tweak Plan Representation � � � � � � � � � � � � � ��

��������� Tweak and the Frame Problem � � � � � � ��

������� Goal Achievement in Tweak � � � � � � � � � � � � � ��

��������� White Knight Operation Removal � � � � � �

vii

������� Major Tweak Limitations � � � � � � � � � � � � � � ��

��� Abstraction in Planning ��

����� Overview ��

����� A Hierarchical Planning Example � � � � � � � � � � � � � � � ��

����� AbTweak ��

������� Background ��

������� AbTweak Design ��

������� AbTweak Plan Representation � � � � � � � � � � ��

������� Goal Achievement in AbTweak � � � � � � � � � � ��

������� Search Control in AbTweak � � � � � � � � � � � � � ��

������
 Tweak Limitations a�ecting AbTweak � � � � � � � ��

����� Goal Protection in Planning � � � � � � � � � � � � � � � � � � ��

� Planner Implementation ��

��� Overview ��

��� Truth Criterion �
�

����� Plan Nonlinearity and the Truth Criterion � � � � � � � � � �
�

������� Strict Linearity �
�

������� Multiple Parallel Orderings � � � � � � � � � � � � �
�

������� Strict Parallelism � � � � � � � � � � � � � � � � � � �
�

����� Plan Con
icts �
�

����� Con
ict Resolution ��

viii

����� Successor Generation ��

��� Abstract Planning Search Strategies � � � � � � � � � � � � � � � � � � ��

����� Search Within Each Level of Abstraction � � � � � � � � � � � ��

������� The Monotonic Property � Abstract Goal Protection ��

��������� Strong and Weak Monotonic Properties � ��

��������� Two versions of the Weak Monotonic Prop�

erty ��

��������� Weak Monotonic Property Complexity � � ��

������� Goal Ordering ��

��������� Stack Goal Ordering � � � � � � � � � � � � ��

��������� Tree Goal Ordering � � � � � � � � � � � � � ��

��������� Random Goal Ordering � � � � � � � � � � ��

��������� Goal Ordering Summary � � � � � � � � � � ��

������� Operator Set Applicability based upon Primary E�ect ��

����� Search Across Abstract Search Levels � � � � � � � � � � � � � ��

������� Hierarchy selection � � � � � � � � � � � � � � � � � � ��

��������� What is a good hierarchy� � � � � � � � � ��

��������� How do we tell a good hierarchy when we

see one� � � � � � � � � � � � � � � � � � � ��

��� Aspects of Nonlinear Planning ��

����� Finite Constants ��

����� Nonlinear Chaining of Operators � � � � � � � � � � � � � � � ���

����� Loop Detection ���

ix

� Experimental Results ���

��� Introduction ���

��� Domains ���

����� Towers of Hanoi ���

����� Nilsson�s Blocks World ���

����� Sacerdoti�s Robot World ���

��� Explanation of the Figures ���

��� The Utility of The Monotonic Properties � � � � � � � � � � � � � � � ���

��� Left Wedge Re�nement Utility ���

��
 Goal Ordering Results ���

��� Comparing Tweak and AbTweak ���

��� Graphical Results ���

� Summary ���

��� Conclusions from Experiments ���

��� Future Work ���

Bibliography ���

x

List of Tables

��� Simple Hanoi Domain Criticality Assignments � � � � � � � � � � � � ��

��� Towers of Hanoi ���

��� Tower of Hanoi Criticality Groupings � � � � � � � � � � � � � � � � � ���

��� Nilsson�s Blocks World ���

��� Nilsson Domain Criticality Groupings � � � � � � � � � � � � � � � � � ���

��� Robot Domain ���

��
 Hanoi Domain� Positive� Negative Criticality Labels � � � � � � � � � ��

xi

List of Figures

��� Simple subgoal establishment structure � � � � � � � � � � � � � � � �

��� Simple Example of Subplan Interleaving � � � � � � � � � � � � � � � ��

��� Simple example of a Tweak plan ��

��� Necessary and possible plan properties� � � � � � � � � � � � � � � � � ��

��� Modal Truth Criterion ��

��� Simple Establishment ��

��
 Goal clobbering ��

��� Promotion ��

��� Separation ��

��� White Knight ��

���� Simple Hanoi Domain Operators ��

���� Initial abstract plan in Simple Hanoi � � � � � � � � � � � � � � � � � ��

���� Step � in abstract planning example � � � � � � � � � � � � � � � � � � �

���� Step � in abstract planning example � � � � � � � � � � � � � � � � � � �

���� Step � in abstract planning example � � � � � � � � � � � � � � � � � � ��

xii

���� Step � in abstract planning example � � � � � � � � � � � � � � � � � � ��

���
 Step � in abstract planning example � � � � � � � � � � � � � � � � � � ��

���� Step
�� Concrete level solution plan � � � � � � � � � � � � � � � � � ��

���� Abstract goal protection incompleteness � � � � � � � � � � � � � � � ��

��� Complexity of Chapman�s MTC �
�

��� Complexity of Simpli�ed MTC �
�

��� Linear con
ict�
�

��� Left Fork con
ict� ��

��� Right Fork con
ict� ��

��
 Parallel con
ict� ��

��� Left�Fork con
ict example ��

��� Left�Fork resolution �� Promotion ��

��� Left�Fork resolution �� Separation ��

���� Cartesian product speci�cation of plan successors � � � � � � � � � � ��

���� Representing the abstract solution search space � � � � � � � � � � � �

���� Two or more establishments of a single precondition � � � � � � � � ��

���� Necessary Weak Monotonic Violation � � � � � � � � � � � � � � � � ��

���� Possible Weak Monotonic Violation � � � � � � � � � � � � � � � � � ��

���� Pro�table �rst goal selection in Tweak � � � � � � � � � � � � � � � ��

���
 Tree goal ordering ��

���� Pathological Plan and Finite Constants � � � � � � � � � � � � � � � � ��

xiii

��� Towers of Hanoi Operators ��

��� Nilsson�s Blocks World Operators ���

��� Sacerdoti�s �modi�ed� Blocks World sample operators � � � � � � � � ���

��� Expansions� vary hierarchy ���

��� BMS expansions� vary IsPeg ���

��
 MBS expansions� vary IsPeg ���

��� SBM expansions� vary Ispeg ���

��� BF Expansions � ��IBMS� ��IMBS� ��IBSM� ��IMSB� ��ISBM�
�ISMB���

��� Summary of BF and LW expansions � � � � � � � � � � � � � � � � � � ���

���� BMS expansions� BF�LW ���

���� BSM expansions� BF�LW ���

���� SBM expansions� BF� LW ���

���� SMB expansions� BF� LW ���

���� Tweak goal ordering ���

���� AbTweak� vary hierarchy ���

���
 Expansions� vary IsPeg ���

���� Expansions� vary hierarchy ���

���� BF Expansions � Violations� varying hierarchy � � � � � � � � � � � ���

xiv

Chapter �

Introduction

��� Overview

Traditional planners attempt to create a set of ordered actions� or a plan� which

speci�es the manner in which some particular system can modify its �world� from

its existing or initial state to some desired �nal state� Robots are an example of

one class of system which possess a set of explicit executable actions or operators

which must be applied in some order in attempting to modify a given environment

in some desired manner�

There are many divergent approaches to solving planning problems� Certain

planning approaches attempt to use existing plans �plan reuse� �Kambhampati�

����� Fikes et al�� ������ to solve problems that occur� others attempt to take

action in a particular domain or world by repeatedly taking small courses of action�

re�evaluating the world� and acting again �reactive planning� �Agre and Chapman�

������� Still other approaches attempt to interleave the creation of plans and their

execution ��McDermott� �������

�

CHAPTER �� INTRODUCTION �

Traditional planning is characterized by an approach which treats every attempt

at plan creation as novel� Plans are created from only a set of action templates� an

initial state description� and a goal state description�

Planning strategies can also be divided into those that plan in either linear or

nonlinear manners� Nonlinear planners tend to avoid or postpone committing to a

total ordering of all operators in a plan as long as possible� while linear planners

commit to speci�c total orderings in an attempt to �nd a single ordering that

adequately solves the planning task in question� A nonlinear plan� which possesses

only a partially ordered operator set� represents a collection of totally ordered�

linear plan completions�

Many di�erent traditional planning approaches have been investigated in the

search for systems that can create plans e	ciently and accurately� including those

seen in Noah �Sacerdoti� ������ Strips �Fikes and Nilsson� ������ and Tweak

�Chapman� ������ Some of these approaches attempt to address the planning

problem in a very general� or domain�independent sense� with little or no spe�

ci�c reference in terms of control strategy to the characteristics of a single domain

or problem type� Other approaches attempt to utilize knowledge about speci�c

domains to improve search control through domain heuristics� and are known as

domain�dependent� These heuristics help to control the planner operation by taking

advantage of existing knowledge about problem solving in these domains� Tradi�

tional planning approaches utilize strategies with certain aspects of both domain�

independent knowledge about planning� and domain�dependent knowledge about

problem solving�

One domain�independent method of reducing search that has been suggested

is the use of abstraction in planning� In solving complex planning problems� one

would like to distinguish parts that are crucial and di	cult to solve from those

CHAPTER �� INTRODUCTION �

that are less important and easy to solve� Towards this end� research in abstract

planning has been particularly active� ranging from the exploration of di�erent

types of abstraction systems �Christensen� ����� Knoblock� ����� Sacerdoti� �����

Sacerdoti� ����� Wilkins� ������ to the formal characterization of the intuition be�

hind abstraction in planning�Knoblock� ����� Korf� ����� Tenenberg� ����� Yang

and Tenenberg� ������

This thesis presents an evaluation of an abstraction based planner known as

AbTweak� described in �Yang and Tenenberg� ������ AbTweak is an exten�

sion of Tweak� a non�abstract� nonlinear� least�commitment planner� described

in �Chapman� ������ In �Yang and Tenenberg� ������ a general property is de�

�ned which can limit the possible search paths required to �nd a goal in abstract

search� Experiments evaluating the bene�t of applying this property in abstract

search control are presented in this thesis� and a novel complete search strategy for

AbTweak is proposed and evaluated empirically�

��� Motivation

In attempting to construct AbTweak� it was �rst necessary to construct the sim�

pler� nonlinear planner� Tweak� The intent was to reconstruct Tweak and then

enhance it so that it was capable of abstract planning as described for AbTweak

by Yang and Tenenberg� Once implemented� quantitative analysis of abstract prop�

erties suggested by Yang and Tenenberg to enhance abstract planning performance

was made possible� The question of selecting a suitable abstraction hierarchy for

AbTweak soon became evident� and a correlation between the properties de�ned

in �Yang and Tenenberg� ������ the abstraction hierarchies selected� and overall

planning performance became obvious� These results o�er some insight into the

CHAPTER �� INTRODUCTION �

potential bene�t of utilizing abstraction in planning to limiting abstract search�

and of evaluating potential abstraction hierarchies�

During the course of implementing and enhancingAbTweak� two very di�erent

dimensions of control became evident�

The �rst� or highest control dimension� consists of controlling the search through

the set of all possible correct abstract plans� Multiple correct plans can exist at

various levels of abstraction� and in order for a planning system to be complete�

each of these correct plans must be viewed as being capable of leading to a concrete

solution plan� The implementation of search in AbTweak is a simple application

of a well�known breadth��rst search strategy� A� �Hart et al�� ��
�� Nilsson� ������

While searching for a more e	cient method of controlling planning search� a novel

method was devised� referred to as Left�Wedge� Experimental results presented

in this thesis contrast and compare the performance of breadth��rst AbTweak

and Left�Wedge AbTweak�

The second� lower level control dimension� consists of determining in what man�

ner an individual plan should be modi�ed in order to try and make it correct at a

particular level of abstraction� This dimension involves selecting unsatis�ed plan

subgoals to solve� and rejecting portions of the planning space that need not be

expanded en�route to a solution�

Both abstract and the individual level control strategies will be explained and

examined in this thesis� and empirical results will be presented showing what com�

binations of planning strategies and properties result in the best abstract search

performance�

In this thesis several implemented planning strategies are presented within a sin�

gle view of the planning search space� Abstract planning as de�ned in AbTweak

CHAPTER �� INTRODUCTION �

is essentially a controlled search through a space of incomplete plans� where dif�

ferent plans have di�erent corresponding levels of abstraction� The search space

continually grows as planning continues� until a correct plan is located in the space�

Within the context ofAbTweak� and throughout this thesis� abstract plans can be

pictured as �simpler� versions of plans� while concrete plans are more �complex��

Abstracted versions of concrete plans are achieved via the elimination of certain

less�important or critical preconditions� For example� if a certain incomplete plan

has an operator with the conjunctive goals onbig�Peg�� and onsmall�Peg��� and

the goal onsmall�Peg�� was somehow determined to be the least critical in some

domain� then an abstraction of this operator might possess the goal operator with

only one precondition� onbig�Peg��� Planning in an abstract fashion entails cre�

ating plans in a �top�down manner�� �rst creating a solution to a problem at the

next more abstract or �simplest� level� progressing down to the most concrete� or

�complex� level iteratively until a lowest level solution is found�

Within this search framework� there are two separate� but not unrelated aspects

of search control for an abstract planning system such as AbTweak� The �rst as�

pect of control is concerned with search within each individual level of abstraction�

and the second is related to the coordination of search across di�erent levels of ab�

straction� A non�abstract planner� such as Tweak� has only one control dimension

within this framework� control within its single �concrete� abstraction level�

Within the �rst dimension of control� choices must be made about which plans

show promise in the search for problem solutions to a problem at a particular

abstraction level� and in fact� about how to best expand the chosen plans en route

to a solution� Determination of the successors that show the most promise towards a

solution� and of the goals within selected plans that will provide successors resulting

in e	cient planning search must be made�

CHAPTER �� INTRODUCTION

The determination of promising successor plans is closely related to the for�

malization of the intuition behind successful abstraction hierarchies and systems�

When an abstract solution is formed� the contribution of each operator in the plan

as it relates to the solution of the goal can be determined by looking backward

from the goal� This precondition�e�ect chaining will be referred to as the subgoal

establishment structure of the plan� This structure� when passed down from an ab�

stract plan to more concrete plans� can serve as a constraint during plan re�nement

at lower levels� Those parts of the problem satis�ed by the abstract plan can be

protected to some degree� For example� in Figure ��� we see an abstract or high

level complete plan for opening a door� The operator OPEN�DOOR in this exam�

ple has a single precondition we will view as a subgoal� stand�at�door� This former

subgoal is accomplished by the e�ects of the operator GOTO�DOOR� After adding

this operator to accomplish stand�at�door� this plan has a subgoal establishment

structure that can be represented something like�

Establishes�GOTO�DOOR� OPEN�DOOR� stand�at�door�

where Establishes is a relation describing an establishing operator� the operator

that bene�ts from the establishment� and the established subgoal�

GOTO-DOOR

stand-at-door

OPEN-DOOR

stand-at-door

Figure ���� Simple subgoal establishment structure

Consider a descendant of the plan shown in Figure ��� at a lower level of ab�

straction� Suppose this descendant plan contains an operator corresponding to

CHAPTER �� INTRODUCTION �

OPEN�DOOR in Figure ���� This operator might have additional concrete precon�

ditions or subgoals� such as have�key� If we now attempt to solve this new subgoal�

we are constrained by the Establishes relation achieved earlier� The addition of an

operator to satisfy have�key must not interfere with stand�at�door� For example�

we cannot insert an operator between GOTO�DOOR and OPEN�DOOR if that

operator has an e�ect that opposes stand�at�door� Consider the case where he op�

erator GOTO�KEY�RACK achieves stand�at�key�rack� and has a side e�ect NOT

stand�at�door� If the key were hanging on the wall� then any attempt to insert this

GOTO�KEY�RACK operator to achieve stand�at�key�rack must be rejected�

In fact� without constraints of this nature passed down from the abstract levels�

there seems little justi�cation in using abstraction since high level subgoal establish�

ments could be destroyed� This destruction of previous establishments essentially

throws away work previously done in constructing the plan� To maintain search

e	ciency� one must make decisions regarding what subgoals to protect� how to

protect them� and when� For example� is it more advantageous to backtrack when

some previously satis�ed goals are in danger of being undone� or to simply allow

this destruction to occur� and re�plan for those goals later�

In addressing the subgoal protection problem within each abstraction level� we

investigate the utility of protecting subgoals with a nonlinear� hierarchical planner

AbTweak� Across di�erent hierarchies within various domains� we test several

di�erent implementations of the Monotonic Property �MP� �Yang and Tenenberg�

������ a property which allows for the application of goal protection within abstract

planning while not destroying the the planner�s ability to �nd a solution� The results

demonstrate that depending on the search strategies used across di�erent levels of

abstraction� protecting higher level subgoals may not always improve the e	ciency

of planning� With analysis of these results� we point out several ways of making

CHAPTER �� INTRODUCTION �

the improvement possible�

In addition to subgoal protection� the method of subgoal selection within a

particular abstract search level can dramatically a�ect search performance� The

strategy used in selecting which operator and which subgoal within an operator to

attempt to satisfy next in a planning process determines the branching factor at

each branch point in the individual level search space� Subgoal selection strategies

can be structured to re
ect casual or strict approaches to retaining the planning

e�ort expended within a level of planning� Strict selection entails selecting new

subgoals with the intent of repairing existing subplans that have become �buggy�

as planning progressed� while casual selection implies selecting the high level or

general goals� and leaving previously created subplans unrepaired until later in the

planning process� Empirical results that suggest casual approaches to goal selection

outperform strict ones are presented�

The second dimension of search control while planning with abstraction involves

search through all of the possible solutions at various levels of abstraction� Only one

solution at each abstract level is committed to at any one point in the search process�

This search must be performed carefully� in order to preserve completeness of a given

search strategy� Even though abstraction has an intuitive appeal as a result of its

straightforward� top�down nature� there is no guarantee that a complete search

with abstraction will outperform one without abstraction� Since an explanation for

this behaviour does not seem obvious� it is important to investigate various search

strategies in an attempt to explain exactly when and how abstraction can bene�t

planning�

In this thesis� a method of implementing a complete search strategy across dif�

ferent abstract levels is examined� This new search control strategy� called the

Left�Wedge strategy� exhibits some depth��rst behavior by assigning a higher

CHAPTER �� INTRODUCTION �

priority in search to a plan �prefers� that is more re�ned than others� For some

hierarchies� search using the Left�Wedge strategy is constrained to occur within

a considerably smaller search space� and as a result� search e	ciency with abstrac�

tion can be dramatically improved� Explanations for this search behaviour will be

discussed later in this thesis with speci�c references to example problems�

This thesis reports an empirical study in addressing the above two control prob�

lems� controlling search within each level of abstraction� and controlling search

across the abstract levels�

��� Outline

The organization of this thesis is as follows� Past work in linear� nonlinear� and

abstract planning will be outlined brie
y in Chapter � in order to give the reader

some insight into the factors which have driven research into the more detailed

areas of planning presented in this paper� Next� Chapter � will present the speci�c

implementations of Tweak and AbTweak with particular attention paid to the

manner in which each implementation captures the nonlinearity in Tweak� and

the abstraction in AbTweak� In addition� an outline of the strategies utilized

for search both through the space of abstract plan solutions� and within each level

of abstraction� is given� Within the context of Tweak and AbTweak� exper�

iments are described in Chapter �� and results presented� Results are evaluated

with emphasis on explaining planning behaviour under various search strategies

and applications of goal protection� The thesis concludes in Chapter � with a sum�

mary of the most interesting aspects of the experiments� and an outline of possible

directions for future investigation of nonlinear� abstract planning strategies�

Throughout this thesis� planning examples are given both graphically and within

CHAPTER �� INTRODUCTION ��

the context of discussion� In these examples� a convention is adopted of identifying

propositions in lower case� and operators in upper case� Further� an operator�s

e�ects will be placed to the right of an operator in graphical examples� while the

operator�s preconditions will be on the left of the operator� Directed arrows be�

tween operators indicate the presence in the example plan of an ordering constraint

between the two operators�

Chapter �

Background

��� Linear Planning

Domain�independent planners deal with goal interactions based upon one of two as�

sumptions� Either the assumption is made that subgoals are basically independent�

and hence the order in which they are achieved is irrelevant� or it is assumed that

solution order will matter� and commitment to any single ordering should be post�

poned as long as possible while planning� The former assumption is made by linear

planners such as Strips �Fikes and Nilsson� ����� and Hacker �Sussman� ������

the latter by nonlinear planners such as Nonlin �Tate� ������ Molgen �Ste�k�

������ and Sipe �Wilkins� ������

The linearity assumption that subgoals are independent is basically a domain�

independent heuristic for planning� Linear planners select a subgoal� apply an

operator to solve this subgoal� and then choose another subgoal to solve� thus

adding to the plan�s growing linear set of operators� If at any point the plan�s

subgoals do interact in that one operator cannot be ordered before another and

��

CHAPTER �� BACKGROUND ��

still have the plan solve both subgoals� the planner must backtrack to try solving

the subgoals in a di�erent order�

Unfortunately� many planning problems exist in which subgoals are not indepen�

dent� Some problems require a set of operators solving one subgoal completely to be

interleaved with another set of operators solving a separate subgoal� For example�

consider the problem shown in Figure ��� on page ��� where there exist � pegs� and

� di�erent sized rings� both on the �rst peg� where the small one is above the large

one� Suppose that a peg may only be stacked on an empty peg or a larger ring� If

we wish to transfer both rings from the �rst peg to the third� two subgoals might

be On�Small�Peg�� and On�Big�Peg��� A linear planner might select the On�Small

subgoal �rst� An operator to accomplish the movement of the small ring from the

�rst peg to the third would be added to the plan� say MOVE�SMALL�Peg� Peg���

The planner now selects the second subgoal� On�Big� Unfortunately� the large ring

cannot be moved to the third peg as it is larger than the small ring� The planner

would backtrack and attempt another operator ordering� The actual solution to

this problem involves interleaving the solution to the On�Small subgoal with the

On�Big subgoal solution� The small ring must be moved to the second peg as an

intermediate step� the large then to the third peg� and �nally� the second moved to

the third peg�

Linear planners are unable to solve these types of problems e	ciently� and

depending on how the operators are added to a plan� may not be able to solve them

at all� Many other problems exist� even in very simple domains which allow for only

one correct goal ordering to satisfy multiple or conjunctive subgoals� Problems

with pairs of subgoals such as Make�the�Door�Open and Stand�In�Room have a

de�nite implicit relationship that can only be reconciled by ordering the operators

OPEN�DOOR before GO�INTO�ROOM� A planner that solved each of these goal

CHAPTER �� BACKGROUND ��

Peg3

Small Ring

Peg1

Small Ring

Peg2

Move-Small
 (2 to 3)

Move-Small
 (1 to 2)

Peg2Peg1
Peg3

Move-Small
 (2 to 3)

Interleaved solution for both subgoals

Move-Small
 (1 to 2)

Small Ring

Move-Big
 (1 to 3)

Move-Big
 (1 to 3)

Big Ring

Big Ring Big Ring

Solution to the first subgoal, On(Small-Ring Peg3)

Solution to the second subgoal, On(Large-Ring Peg3)

Figure ���� Simple Example of Subplan Interleaving

CHAPTER �� BACKGROUND ��

independently� and only committed to an ordering when it became apparent that

a con
ict existed between the two is known as a nonlinear planner� A nonlinear

planner is a least�commitment planner� at least in terms of action ordering�

Just as some planners �overcommit� to operator ordering� others overcommit

to the selection of certain objects when solving subgoals� In Figure ���� the subgoal

On�Small�Ring Peg�� could be solved by an operator MOVE�SMALL��some�peg

Peg�� rather than by MOVE�SMALL�Peg� Peg�� �� The former operator is not

committed to any particular original position of the small ring� The combination of

a least�commitment approach to both operator ordering and object bindings results

in a planner� like Tweak� capable of solving problems with more complex goal

interactions than is the case with over�committed planners like Strips�

��� Nonlinear Planning

As stated previously� the nonlinear approach to planning represents a domain�

independent heuristic� The main assumption of these planners being that the or�

dering of solutions to subgoals will make a di�erence in the e	cient generation of

plans� A nonlinear planner can be viewed as an extension to the Strips approach

where a partial temporal ordering is allowed on plan operators rather than a total

ordering� and partial constraints on variable bindings of these operators are allowed

in place of commitment to particular bindings�

As early as ����� a planner �Noah� �Sacerdoti� ������ existed which allowed

plan operators to be left unordered until a need to linearize them became apparent�

Noah utilized a set of plan modi�cation operators that allowed for the resolution

�The pre
xing of a value by � such as in �X indicates X is a variable� while X alone indicates

X is a constant

CHAPTER �� BACKGROUND ��

of interactions among subgoals� Subsequent planners improved on the concepts

presented in Noah� In ���
� a planner �Nonlin� �Tate� ������ with a backtracking

top�level control structure and an improved plan modi�cation operator set emerged�

In ����� a planner �Molgen� �Ste�k� ������ was described by Ste�k� which viewed

action orderings and object instantiations as constraints on a plan� and the addition

of these in resolving plan con
icts as constraint posting� Sipe �Wilkins and Robin�

son� ����� Wilkins� ������ in a manner similar to Molgen� utilized constraints�

although Sipe also treated objects in the plan as limited resources which had to be

shared among operators�

In ���
� David Chapman �Chapman� ����� created a nonlinear planner Tweak�

which he proved to be both correct and complete� correct in that any plan it

returned solved the problem given it� and complete in that if a solution did exist� it

would eventually �nd it� Chapman�s intention in building and describing Tweak

was to clarify past planning research� and implement a planning algorithm that was

straightforward enough so that its operation and construction would be provably

correct� and comprehensive enough to encompass the goal modi�cation methods

of previous planners� He wished to use Tweak merely as the planning portion

of an integrated problem solver� and he simply wanted to use a state of the art

planner that he could use with con�dence� As a result of Chapman�s resolve to

build an understandable planning system� his description and discussion of planning

tends to give rigor and neatness to the paradigm of nonlinear planning within

the context he describes� If one is interested in examining the nature of solving

planning problems in a domain independent fashion� with emphasis on learning

about subgoal interactions� then it becomes apparent that the neatness and rigor

that the nonlinear planner Tweak possesses make it an interesting planner to

implement� examine in detail� and to base future planners upon�

CHAPTER �� BACKGROUND �

��� Tweak

This section describes Chapman�s Tweak� Tweak is a domain�independent�

conjunctive�goal planning system �DICP�� DICP describes a planning method of

achieving several goals simultaneously �conjunctive� in a generally useful or reusable

manner �domain independent�� The problem of interacting subgoals arises in this

type of planning� a classic example of which is the Sussman Anomaly� � where the

work done by a planner in achieving one goal is undone in the achievement of an�

other goal� A class of planning known as nonlinear planning �Sacerdoti� ����� has

been shown to solve this problem� it is capable of solving conjunctive goal problems

where solutions interact�

����� Background

Chapman had heard that Sacerdoti�s Noah �Sacerdoti� ����� constituted the state

of the art in planning� After several failed attempts to implement Noah from its

description in the aforementioned reference� he succeeded in creating a working

planner� Chapman points out in his paper that to use some routine as a part of

a system �in this case� the Noah based planner in his integrated problem solver��

it is important to know for certain that it works� In the course of showing that

the planner was reliable� Chapman proceeded to simplify the algorithm of Noah

to justify the plan modi�cation methods in Noah rigorously� and to integrate the

methods presented in other planners post�dating Noah�

Of concern to Chapman was both the correctness of the planner algorithm he

was to use� and its completeness� Sacerdoti states in �Sacerdoti� ����� that�

�Chapman indicates in �Chapman� ���
� that this well�known example is actually due to Allen

Brown� although popularly known as the Sussman Anomaly

CHAPTER �� BACKGROUND ��

��� it should be possible to de�ne an algebra of plan transformations���a

body of formal theory about the ways in which interacting subgoals can

be dealt with�

Chapman attempted to address this challenge directly in his construction and

description of Tweak� His solution is composed of three main parts�

�� The manner in which a plan is represented�

�� The way in which plan subgoals are achieved�

�� The method in which search through the space of all possible plans is con�

trolled�

I will discuss each of these parts in the following section on the design ofTweak�

����� Tweak Design

������� Tweak Plan Representation

Chapman �Chapman� ����� describes at some length terms and de�nitions for the

many parts of his planner� In the interest of both clarity and brevity� I will not

repeat these at the length he does in his paper� However� I will attempt to cap�

ture the essence of the plan representation he describes� Tweak makes plans by

incrementally specifying partial descriptions or constraints that the plan must �t�

This method is known as constraint posting� Constraint posting equates to a search

methodology which progressively removes portions of the search space through addi�

tion of constraints which rule them out� The advantage of this constraint approach

CHAPTER �� BACKGROUND ��

is that a reduction in the amount of strictly arbitrary choice is enjoyed� and a corre�

sponding reduction in the amount of backtracking required in planning is realized�

When Tweak is working on a problem� it maintains a speci�cation of the planning

it has done to a given point� speci�cally the incomplete plan� which is a partial

speci�cation of the eventual complete plan� Tweak keeps on adding constraints

to this plan until all of the possible completions of the plan necessarily solve the

problem� We can say that a proposition which is satis�ed in all of the possible

completions of a plan is necessarily true� and that a proposition which is satis�ed

in some possible completion of a plan is possibly true� Necessary and possible truth

are concepts that will be required to describe Tweak more fully later�

It should be noted that the addition of a constraint to an incomplete plan could

conceivably make that plan inconsistent� As an example of inconsistency� consider

constraining some variable X to bind �codesignate� with a constant A� while the

variable X is already constrained to bind to a di�erent constant B� In this case

backtracking would be invoked and other plan completion paths not constraining

X to bind to A would be pursued�

Since the number of plan completions is exponential in size� computation of the

necessary or possible truth of a proposition in a plan by searching all possible plan

completions is prohibitively expensive� However� Tweak does utilize a polynomial

time algorithm to compute possible and necessary �properties� of the incomplete

plan� This algorithm forms the �heart� of Tweak� and will be examined in some

detail in a later section of this paper�

As in other planners� a complete plan in Tweak is a total order on a �nite

set of operators� An operator� �sometimes referred to as step or action� in Tweak

consists of a set of preconditions which must be true just before an operator in

order for that action to occur� and a set of postconditions which are guaranteed to

CHAPTER �� BACKGROUND ��

be true just after the action has occurred� In each case� set elements are expressed

as propositions which are function�free atomic �i�e� emp�X���p�X�� p�X�Y � etc��

Chapman does not provide a formal de�nition of a Tweak plan� However� one

is given in �Yang and Tenenberg� ������ and this one is adopted with some slight

modi�cation for the purpose of this thesis�

De	nition ����� A plan � is a triple �A�B�NC�� where

� A��� is a set of operators� de�ned in terms of precondition and e�ect propo�

sitions�

� B��� is a partial ordering on A �� ��

� NC��� is a set of non�codesignation constraints of the form p �� q� where p

and q are both either terms or propositions in the operators of A�

A simple example of a Tweak plan is shown in Figure ��� �� In this example� the

operator set A consists of f PICKUP�BlockA�� STACK�BlockA� �some�block� g� B

consists of a single ordering relation f �PICKUP � STACK� g� and NC contains

a single non�codesignation constraint� f �BlockA �� �some�block� g� Each operator

in A possesses a set of precondition propositions� and a set of e�ect propositions�

where each proposition or e�ect is a literal�

It should be noted that Chapman describes a plan as possessing both codesig�

nation and noncodesignation constraints� For purposes of simpli�cation� the above

de�nition includes only explicit noncodesignation� Since removal of constraints is

not allowed in the plan achievement of Tweak� codesignation of a variable and a

�Note that ����� indicates non�codesignation�

CHAPTER �� BACKGROUND ��

PICKUP(BlockA)

{effects}{preconds}

{effects}{preconds}
STACK
 (BlockA, $some-block)

BlockA =/= $some-block

Figure ���� Simple example of a Tweak plan

term� or a variable and another variable is simply equated to the global replacement

of all variable references in A and NC by the assigned variable or term identi�er�

TWEAK�s plans are deemed to be incomplete in two cases only� In the �rst case�

a plan is incomplete while the time order of the plan�s operators is not completely

speci�ed through temporal constraints which require that certain operators precede

others� For instance� if a plan had three operators A� B� and C� and at some point

in planning� A was constrained before B� and C before B then a partial order is

imposed� A � B � C � B� In order for the time order of this incomplete plan to

be completely speci�ed� the relationship between A and C needs to be clari�ed�

Additionally constraining A before C gives the total order A � C � B� In the

second case� plans are incomplete when operators in the plan are not completely

speci�ed through codesignation or uni�cation constraints which determine variable

to constant �assignments� or �codesignations�� All variables must be �bound� or

�codesignated� to a speci�c constant in order for a plan to be complete�

CHAPTER �� BACKGROUND ��

Simply put� codesignation constraints can enforce either codesignation of ele�

ments �i�e� X � Y meaning variable X is constrained to codesignate to variable

Y�� or non�codesignation �i�e� X �� Y meaning variable X is constrained not to

codesignate with variable Y�� Rules for codesignation parallel those of uni�cation�

Yang and Tennenberg �Yang and Tenenberg� ����� speci�cally represent possi�

ble ���� and necessary ��� codesignation and ordering precisely for some plan ��

where a and b are operators in �� and p and q are propositions in �� A simpli�ed

version of this representation allowing for the removal of codesignation constraints

in � is shown in Figure ��� �Note� � � indicates identity� while ��� indicates

codesignation��

��a � b� �� B��� 	 �a � b��

��a � b� �� ����a � b� �� B��� �	 �b � a��

��p � q� �� A��� 	 �p q��

��p � q� �� ����p � q� �� NC��� �	 �p �� q��

��p �� q� �� NC��� 	 �p �� q��

��p �� q� �� ����p �� q� �� A��� �	 �p q��

Figure ���� Necessary and possible plan properties�

States of the world in Tweak are described through implicit �situations�� A

plan has an initial situation �before execution of any operators�� and a �nal situation

�after plan execution�� and associated with each plan operator are input �before��

and output �after� situations� Quite simply� a proposition p is true in a given

situation U if it is asserted by some operator E as an e�ect� and if that operator is

necessarily before the given situation such that no other e�ect between the e�ector

CHAPTER �� BACKGROUND ��

E and the situation U contradicts the e�ect p� Since any situation in Tweak is

arrived at as a result of operators that are only partially constrained in terms of

ordering and variable codesignation� every situation has both necessary and possible

proposition truth values� The situations just before each operator in the partially

completed plan� and the situation just after each operator in the plan consist of

propositions possibly or necessarily asserted or denied by operators constrained to

occur either possibly or necessarily previous to the operator in question� A plan is

correct only if all operators in the plan have all preconditions necessarily true in

their own input situation�

All changes in the world of Tweak must be mentioned explicitly as opera�

tor postconditions� Neither uncertainty of execution of an action� nor indirect or

implied e�ects are allowed� Uncertain action execution implies that the e�ects of

some operator are only true �usually�� or in some manner expressed in terms of

probabilities� An example might be in some domain where the stacking of blocks is

sometimes buggy� A robot might attempt to stack some BlockA on another BlockB�

with the e�ect On�BlockA� BlockB� holding usually� but with a �� percent chance

that the stacking will fail� and the result will be On�BlockA� Table� when BlockA

falls o� of BlockB� Implied e�ects occur when some operator has e�ects which hold

only under certain conditions true at the time of the operator�s execution in the

plan� For instance� a domain which allowed for the movement of the bottom block

in a stack of blocks of arbitrary height has implied e�ects� As the position of the

base block changes� so too does the position of the blocks above the base�

Tweak essentially solves problems which are composed of initial situation

propositions� the plan starting point� and �nal situation propositions� which must

be achieved in order for the plan to be complete� A complete plan solves a problem

if the plan can be executed in the initial situation or world state of the problem�

CHAPTER �� BACKGROUND ��

and the �nal situation of the problem is a correct partial description of the world

state after execution� Tweak�s aim is to produce a plan that necessarily solves the

problem it was given�

��������� Tweak and the Frame Problem Planning involves the successive

addition of operators to an incomplete plan� As operators are added to a plan�

the state of the world changes� In general terms� unless every proposition has its

truth value reasserted in every state� it is impossible to state exactly what is true

in any state� This problem is known as the Frame Problem� A simple solution to

the Frame Problem� known as the Strips Assumption �Fikes and Nilsson� ����� �

is to assume that the state of the world in terms of truth value of propositions does

not change unless subsequent operators either assert or deny these propositions�

Tweak utilizes the Strips Assumption in a nonlinear planning environment�

Chapman �Chapman� ����� de�nes his Modal Truth Criterion �MTC�� which

implies a procedural method of determining the truth of a proposition in a nonlinear

plan� The knowledge of the truth of propositions at certain points in a plan will

help us direct the construction of a plan�

Yang and Tenenberg rede�ne Chapman�s MTC� replacing the notion of loosely

de�ned plan �situations� with the more concrete notion of plan operators� This

MTC de�nition is given below� and is represented in Figure ��� ��

Proposition p is necessarily true just before operator U in plan � if and

only if two conditions hold�

�� there is an operator E
 A��� and e is in the set of e�ects of E

�e
 Eeffects�� such that ��E � U� and ��p � e�� and

�Note that ���� denotes codesignation�

CHAPTER �� BACKGROUND ��

E
e

U
p

C

W
r

Constraint: If q == p, then constrain r ==p

~q

Figure ���� Modal Truth Criterion

�� for every operator C
 A��� and q
 Ceffects� if ��C � U�� and

���q � p�� then there is an operator W
 A��� and r
 Weffects

such that ��C � W � U� and NC��� � f��q � p�g 	 �r � p��

Item � is illustrated in Figure ���� It basically states that whenever

�q codesignates with p� r is constrained to codesignate with p�

In a similar manner� possible truth can be determined by substituting possible

for necessary and vice versa in the above description�

In the implementation section of this thesis� the application of MTC as a solution

to the Frame Problem is described in detail� and the complexity of MTC in nonlinear

planning is discussed�

In the next section I will outline the way in which Tweak ensures that a plan

achieve goals� using a procedural interpretation of MTC�

CHAPTER �� BACKGROUND ��

������� Goal Achievement in Tweak

The Tweak search space consists of a set of incomplete plans� Each incomplete

plan has a set of operators that have preconditions that are not necessarily satis�

�ed� Tweak expands this space in search of a correct plan that solves all of the

preconditions of the goal state�

The basic control strategy of Tweak is to repeatedly select a plan in the search

space� select an unsatis�ed operator�precondition from this plan� and then generate

successors of this plan by modifying the incomplete plan in all ways possible such

that the selected operator�precondition is necessarily achieved�

In treating the truth criterion �MTC� as a nondeterministic algorithm� a goal

achievement procedure is created which can function as the driver for a planning

system� MTC describes all of the ways in which a proposition can be made to

hold or be necessarily true in some situation� The criterion de�nes explicitly the

constraints that need to be added to the plan de�nition to make the goal true�

Chapman�s algorithm is nondeterministic in that there are several choices to

be made in the planning process which control the search aspect of this planning

implementation� Selection of the next plan to expand is nondeterministic� Control

over plan selection is controlled by a breadth��rst search� or by some other com�

plete search strategy� Heuristic plan selection can be based on some measure of the

distance the plan is perceived as being from the goal plan� Selection of the unsat�

is�ed operator�precondition within the plan is also non�deterministic� A simplistic�

computationally inexpensive solution might just use the �rst precondition found�

while a more involved solution might be to �nd all unsatis�ed preconditions� and

select one �intelligently� according to some heuristic� Selection of this precondition

directly controls the number of successors a particular plan will have� and as a

CHAPTER �� BACKGROUND �

result directly impacts the search performance� It will be shown in �Yang et al��

����� that the arbitrary selection of preconditions to solve for successors generation

does not a�ect the completeness of the overall strategy�

Within the MTC algorithm� several choice points exist� Each choice point indi�

cates a disjunction in the possible construction of the solution plan� The choice is

simply a selection of which constraint �type� or �plan modi�cation operator� to use

in goal achievement� The planning search space consists of all possible completions

within the scope of these choices� although at any point in time� only one of these

completions is considered� Each completion represents a particular branching point

in the search space where each of several plan successors represents the selection of

one choice� A planning search strategy dictates which search path to pursue based

on certain heuristic methods or indicators within the plans themselves�

If the constraints required by the selected �operator� are inconsistent with the

existing constraints in the current incomplete plan �e�g� attempting to constrain

some operator E before some operator S when operator S has already been con�

strained before E�� then a �failure� would be signaled from the constraint mainte�

nance module of Tweak� and the control structure would backtrack� and select a

di�erent �plan modi�cation operator� path�

A description of MTC as a plan modi�cation algorithm would be useful in clear�

ing up any confusion at this point� The algorithm on page �� captures Tweak�s

usage of MTC as a plan modi�cation procedure� Notice that square bracketed titles

indicate the speci�c plan modi�cation operators� and also that ��choice pt n�� indi�

cates a choice as described previously� Additionally� references in the algorithm to

�Ops� indicate �Operators�� and references of the form �Op C� indicate �Operator

C��

It should be noted that the algorithm shown is strictly my interpretation of his

CHAPTER �� BACKGROUND ��

description� and is not included in �Chapman� ������

CHAPTER �� BACKGROUND ��

MTC Plan Modi�cation Algorithm

� Select some unsatis�ed goal proposition p in operator U�

�� Either �choose nondeterministically��

A� �Simple Establishment�

Find �Choice point �� some Op E existing� which both�

a� Is possibly before or equal to U

b� Could assert a proposition u� which could possibly � with p

Constrain E to be necessarily before or equal to U

Constrain u to necessarily � with p

B� �Operator Addition�

Add �Choice point 	� some Op E� which both�

a� Could be possibly before or equal to U

b� Could assert a proposition u� which could possibly � with p

Constrain E to be necessarily before or equal to U

Constrain u to necessarily � with p

� Insure no Clobbering occurs �

�� Loop through all Ops C�

�� Declobber either way possible �Choice point
�

A� �Promotion�

Constrain U to be necessarily before C

B� �Loop through all propositions q in Op C��

Either �Choice point ���

i� �Separation�

Constrain q to �� with p

ii� �White Knight�

Either �Choice point ���

CHAPTER �� BACKGROUND ��

a� Find �Choice point
� some EXISTING Op W which satis�es�

b� Add �Choice point �� some NEW Op W which satis�es�

��� C possibly before W

��� W possibly before U

��� W asserts r such that if p � q� p � with r

Constrain C before W

Constrain W before U

Constrain r in W such that if p � q� p � r

Chapman proves in the appendix of his paper �Chapman� ����� that the MTC

is correct in that the goals �and hence problems� solved by the goal achievement

procedure are solved correctly� As an extension of his proof of MTC�s correctness�

Chapman also proves that Tweak is complete� So� if Tweak is given a prob�

lem and terminates execution by returning a solution� the produced plan solves

the problem� Furthermore� if a solution exists� Tweak is certain to eventually

terminate by returning that solution�

I will mention each speci�c plan modi�cation operation shown in MTC goal

achievement procedure brie
y� and I will outline a simple example of each� Chap�

man claims that the MTC approach includes all possible ways of accomplishing

goals� except for allowing the removal of certain clobbering operators C� Since ev�

ery operator or action in an incomplete plan has been added to accomplish some

goal� removal of an operator would result in negative progress in every case� The

MTC control strategy guarantees that any incomplete plan solving a subgoal by

removing an operator would be reachable the MTC search space via some di�erent

choice point selection path� Further� it is never the case that the only way possible

CHAPTER �� BACKGROUND ��

to achieve some goal is remove a operator� if a goal is satis�able in a particular

domain� new operators can be added� or existing operators used to establish this

goal�

PLAN MODIFICATION OPERATIONS

The MTC approach to goal satisfaction has two main steps� The �rst is goal

establishment� and the second is establishment declobbering� Goal establishment

determines all ways that a certain goal could be asserted in this particular incom�

plete plan� Declobbering determines all ways that any parts of the incomplete plan

interfering with a goal establishment can be repaired�

A� ESTABLISHMENT Operations

In order to establish a goal in all ways possible� we can either use the e�ect of

an existing operator in our incomplete plan� or we can add a new operator to our

plan� The former option is known as simple establishment� the later as operator

addition�

�� Simple Establishment

Description� A precondition literal of an operator U is p� and an operator

E exists in the current plan asserting a proposition q� Simple Establishment

of p entails constraining q to codesignate with p� and constraining E to nec�

essarily precede U�

Example� Consider the example for three blocks A� B� and C shown in

Figure ���� where two operators UNSTACK�C� �X� and PICKUP�A� ex�

ist unordered w�r�t each other in some plan� An unsatis�ed precondition of

PICKUP�A� is clear�A�� UNSTACK asserts clear��X� as an e�ect where �X

CHAPTER �� BACKGROUND ��

is unbound� and PICKUP requires that clear�A� hold as a precondition� If we

order UNSTACK � PICKUP and constrain �X � A� then the precondition

clear�A� is established in PICKUP� by the existing establisher UNSTACK�

clear(A) clear(A)
UNSTACK(C,A) PICKUP(A)

UNSTACK(C,A) establishes clear(A) for PICKUP(A)

Figure ���� Simple Establishment

�� Operator Addition

Description� A precondition literal of an operator U is p� and an operator

E is added to the current plan such that E asserts a proposition q� Operator

Addition establishment of p entails constraining q to codesignate with p� and

constraining E to necessarily precede U�

Example� Along the lines of the previous example� say a plan exists where

UNSTACK is not in the plan at all� PICKUP�A� has an unsatis�ed precon�

dition of clear�A�� but no operator exists in the plan that could establish

Clear� If UNSTACK exists in the domain operator list� then a new operator

UNSTACK��X� �Y� could be added to the plan such that �Y � A� and UN�

STACK � PICKUP� In this case� clear�A� is established for PICKUP by the

new establisher UNSTACK�

B� DECLOBBERING Operations

CHAPTER �� BACKGROUND ��

Even though the chosen goal has now been established� it is still possible that

the goal does not necessarily hold in all completions of our incomplete plan�

Clobbering operators may be possibly constrainable between our establishing

operator E and our �user� operator U � and so may be capable of denying

our goal� In order to insure that this does not happen� the plan must be

declobbered by either moving the denying operator out of the way in the

sense of operator ordering �promotion�� constraining the denying operator

e�ects to not be uni�able with the goal �separation�� or by �repair� operator

� a �white knight� can be inserted between the clobberer and the goal operator

such that the white knight re�asserts the goal condition�

Consider this example case �Figure ��
� for declobbering� UNSTACK�C�A�

asserts clear�A�� a precondition that PICKUP�A� requires� Also in this plan is

an operator STACK�D��X� unordered w�r�t UNSTACK or PICKUP� STACK

asserts not clear��X� as an e�ect� Since STACK is possibly between the es�

tablisher �UNSTACK�� and the user �PICKUP�� and STACK asserts an e�ect

� clear��X� that possibly codesignates with clear�A�� STACK is a clobberer

of clear�A��

clear(A) clear(A)

not clear($X)

UNSTACK(C,A)

STACK(D,$X)

PICKUP(A)

Figure ��
� Goal clobbering

CHAPTER �� BACKGROUND ��

�� Promotion

Description� For all operators C possibly before U where C denies a propo�

sition q that possibly codesignates with a desired goal proposition p in U�

�promote� operator C by constraining C to be strictly after U �U before C��

Example �Figure ����� Since STACK is unordered w�r�t� PICKUP� we

can simply constrain PICKUP to � STACK� Now� even though STACK still

asserts not clear��X�� this assertion can no longer a�ect the truth of the

precondition of PICKUP� clear�A��

clear(A) clear(A)

not clear($X)

UNSTACK(C,A)

STACK(D,$X)

PICKUP(A)

Figure ���� Promotion

�� Separation

Description� For all operators C possibly before U where C denies any

proposition q that possibly codesignates with a desired goal proposition p in

U� �separate� p and q by constraining p to not codesignate with q�

Example �Figure ����� Since STACK asserts not clear��X�� where �X is

unbound� we can constrain �X to �� A� and now STACK no longer a�ects the

truth of the precondition of PICKUP� clear�A��

�� White Knight � existing establisher

CHAPTER �� BACKGROUND ��

clear(A) clear(A)

not clear($X)

Constrain $X apart from A

UNSTACK(C,A)

STACK(D,$X)

PICKUP(A)

Figure ���� Separation

Description� A goal of an operator U is p� and an operator E �necessarily

before U� exists in the current incomplete plan asserting p� Some operator C

also exists such that C possibly lies between E and U� and some proposition

q is denied in C� and possibly codesignates with p in U� Some operator W

exists in the current plan such thatW asserts a proposition r that also possibly

codesignates with p� Performing �White Knight � existing establisher� entails

constraining operatorW to necessarily follow C and also to necessarily precede

U� As well� the proposition r in W is constrained to codesignate with p if

proposition q in C codesignates with p�

Example �Figure ����� STACK asserts not clear��X�� �X unbound� and

this possibly denies clear�A� for PICKUP� STACK only denies clear�A� when

�X � A� Say another operator UNSTACK���X���Y�� exists in the plan such

that UNSTACK� asserts clear��Y��� and UNSTACK� is unordered w�r�t�

PICKUP or STACK� If we constrain STACK � UNSTACK�� �Y� � �X

whenever A � �X� whenever STACK clobbers PICKUP� UNSTACK� will

rescue PICKUP by re�establishing clear�A��

� White Knight � new establisher

CHAPTER �� BACKGROUND ��

clear(A) clear(A)

not clear($X)
clear($Y2)

UNSTACK(C,A)

UNSTACK-2($X2,$Y2)
STACK(D,$X)

PICKUP(A)

Whenever A codesignates with $X,
 constrain $X to codesignate with $Y2

Figure ���� White Knight

Description� This operation is identical to the above operation except

that the operator W �UNSTACK� in the example� would be added to the

plan from an action or operator template� rather than selected from existing

operators in the plan�

It must be noted that operator addition clearly adds new preconditions to the

incomplete plan� each of which must be achieved at some point� This additional

operator could possibly deny previously achieved goals� These two factors suggest

that the fewer the operators in a solution plan� the simpler it should be to cre�

ate� and the less the amount of work will be required by MTC to determine the

necessary or possible truth of preconditions in that plan� Quite simply� a nonlin�

ear plan�s complexity in terms of possible precondition �clobberings� grows quickly

with respect to the number of operators in the plan� Chapman states that Tweak

�prefers� constraint posting to operator addition� although he is not speci�c about

how this preference is accomplished� Our implementation achieves this preference

through the use of a plan selection heuristic in which plans with fewer operators

are preferred�

Chapman points out that since the MTC is su	cient as well as necessary�

CHAPTER �� BACKGROUND �

these operations encompass ALL the operations needed to make an incomplete

plan achieve a goal� While this result must be seen as a large accomplishment in

view of earlier planners which made little or no attempt to fully describe or justify

their operators� it is important to note that the concept of white knight operator

insertion is unnecessary�

��������� White Knight Operation Removal It can be shown that the

White Knight declobbering operation can be dropped from the goal establishment

procedure of MTC without loss of completeness� In fact� by dropping this operator�

the branching factor is decreased at each goal establishment� When a new white

knight operator is added following the addition of a new operator as establisher�

the plan can be seen to grow by two operators in solving just one goal� In gen�

eral� this is not necessary since only one operator is ultimately responsible for the

establishment of any single goal�

Chapman observed in �Chapman� ����� that White Knight did not seem to

be useful in general since its e�ect on a plan can be considered to be either a

�Separation� operation or �Establishment� operation� In fact� Chapman points out

that he did not implementWhite Knight in the original version ofTweak� A simple

derivation sketched out by a number of researchers is shown below� demonstrating

that White Knight is unnecessary in a complete Tweak planner�

From the derivation it can be seen that the �White Knight� will either turn out

to assert the goal in question directly� �and we might as well consider the output

situation of the �White Knight� operator as the actual establisher�� or it will not�

and we might as well have used the modi�cation operator �Separation� to defeat

the clobberer� The White Knight operation outlined by Chapman is of the following

form�

CHAPTER �� BACKGROUND ��

We wish to achieve some goal proposition p in an arbitrary operator

U in our incomplete plan� Some operator E necessarily before U has

asserted p� however the problemwhich exists is insuring that no operator

between E and U denies p� So� for each operator C possibly denying

some proposition q which possibly codesignates with p �thus possibly

denying p� between E and U� White Knight ensures that there exists

another operator W� asserting some proposition r� necessarily between

C and U� such that if C denies q and q codesignates with p� then r in

W codesignates with p as well�

This insurance logically reduces to �W between C and U� and if C denies q

codesignating with p in U� then r asserted byW codesignates with p in U�� We can

see this slightly more formally in the following derivation�

�� �C � W � U� � � �p � q� � �p � r� �

�� �C � W � U� � � � �p � q�
 �p � r� �

�� �C � W � U� � � �p �� q�
 �p � r� �

�� ��C � W � U� � �p �� q��
 ��C � W � U� � �p � r��

The �rst part of the derived conjunction shown in point � can be read as�

Constrain W after C and before U� and constrain p in U to not codes�

ignate with q in C�

Clearly W is extraneous� and the result is �Separation� as de�ned by Chapman�

The second part of the disjunction can be read as�

CHAPTER �� BACKGROUND ��

Constrain W after C and before U� and constrain p in U to codesignate

with r in W�

HereW is acting as the �Establisher� as de�ned by Chapman� and E is extraneous�

In this manner� we have reduced Chapman�sWhite Knight operation to be either

a case of �Separation� or of �Establishment�� and nothing else� and a simpler new

model emerges� just as su	cient and complete as Chapman�s MTC� This simpler

model forms the �heart� of my Tweak implementation�

It should be noted that the removal of White Knight in favor of Separation and

Establishment results in a planner that is more �committed�� A planning paradigm

which allowed the White Knight operator necessarily includes constraints of the

form�

If p � q becomes true� then constrain r � p�

A planner with White Knight removed essentially commits to limiting con�

straints �via Separation and Promotion� earlier than would be the case if White

Knight was left in� One very large advantage of dropping White Knight is that a

�White Knight� planner requires inferences to be made as codesignation constraints

are added to a plan� The cost of performing these inferences � is not addressed by

Chapman in �Chapman� ������ however� it could conceivably be quite large� and

could even dominate the cost of MTC if many such constraints existed�

�In fact� these inferences would be required with every constraint insertion in order to verify

the consistency of the resulting plan

CHAPTER �� BACKGROUND ��

������� Major Tweak Limitations

The following points constitute a summary of some of the major limitations pointed

out by Chapman �Chapman� ����� for his Tweak formulation� All of these limi�

tations are carried forward into the implementation of Tweak used to obtaining

experimental results in this thesis�

�� Although Tweak is complete� and will �nd a solution if one exists� it is

not the case that Tweak will always complete when attempting to �nd a

solution to a problem that cannot be solved� In fact� Tweak has three

possible outcomes�

Success by �nding a solution plan�

Failure when the search space has been exhausted� speci�cally all plans

left in the search space have subgoals remaining that cannot be satis�ed within

the constraints of the domain�

Tweak never terminates� speci�cally the use of �Operator Addition�

results in the addition of more subgoals into the plans in the search space�

and no progress is made in reducing the number of the unsatis�ed subgoals�

�� There are two major restrictions on Tweak�s action representation�

Situation dependent actions are not allowed

All actions in Tweak must have e�ects that are independent of the situation

in which they are applied� and all action e�ects must be explicitly represented

in the postconditions of the action� In the �rst case� Tweak cannot allow for

situations such as �example due to Chapman� in the blocks world where only

zero� one� or two blocks may be on a given block� A space�block� function tells

how much room is left on a block� A precondition of using a Puton�onblock�

CHAPTER �� BACKGROUND ��

baseblock� action would then be that space�baseblock� be non�zero� Hence a

situation is achieved in which the representation has postconditions �results�

that are functionally dependent on the input situation� Chapman demon�

strates that if Tweak were extended in its representation just enough to

allow for this� the Modal Truth Criterion would fail as a result of two opera�

tors acting together to deny some proposition p in some operator U� Neither

of the two individual operators �say Puton where space is decremented by � as

a result� would deny p� and so MTC would not require that they not precede

U� Clearly if not constrained� it is possible that both operators are before U�

and therefore p �say space non�zero� is denied�

Implicit Side E�ects are not allowed

The second major restriction on Tweak is that actions cannot have side

e�ects not explicitly speci�ed in the postconditions� This can be illustrated

in a blocks world example due to Chapman �Chapman� ������ Consider the

case where block a is on block b� and block b is moved somewhere� Explicitly�

block b is moved� but the sidee�ect is that block a is moved also� If Tweak

is allowed to include deduction within situations� this side e�ect action can

be represented� Once again� with this addition� MTC fails through two �or

more� operators working together to deny some proposition where none of the

o�ending operators themselves does the dirty work�

The major contribution of this demonstration of MTC�s failure in cases of exten�

sion of Tweak�s action representation is in Chapman�s explanation of the �costs�

that are necessarily incurred by modifying the MTC� Chapman �Chapman� �����

points out that the extension of action representation over that described inTweak

runs into di	culties with the Frame Problem� which is equated in Tweak to �nd�

ing an e	ciently implementable truth criterion� Chapman proved that determining

CHAPTER �� BACKGROUND ��

necessary truth in the case where action representations are extended to represent

conditional actions� dependency of e�ects on input situations� or derived side e�ects

is NP�hard

Planning is still an area of interest in AI �despite it�s nature in general�� and

Chapman suggests that we have three options for living with the NP�hard nature

of planning� We can either�

�� Invoke the �Ostrich Principle�� by assuming that plans will be produced in

the particular domain e	ciently enough to meet our planning needs�

�� Relax our correctness requirement thus producing a planner that sometimes

doesn�t quite work�

�� Relax our generality requirement and head o� into domain dependent plan�

ning�

This thesis is concerned with the improvement of nonlinear planning without

losing either correctness or generality� and so one could argue we have accepted the

Ostrich Principle as our option� Nevertheless� what is demonstrated in this thesis

is that methods exist that can improve the performance of planning in a general�

useful� domain independent fashion�

�Chapman claims this term is due to Yoav Shoham

CHAPTER �� BACKGROUND ��

��� Abstraction in Planning

����� Overview

Many AI researchers have suggested that in attempting to solve problems such as

planning or plan recognition we should consider a problem to consist of several

levels or layers of a hierarchy� It is a popular idea that di	cult problems can be

made more manageable if we break them down into certain kinds of higher level

sub�problems �rst� solve these� and then progressively descend the layers of the

hierarchy solving our problem at each layer until a solution is found that satis�es

the problem at the base layer of the abstraction hierarchy�

Abstraction based approaches similar to this have appeared in a wide range of AI

�elds� ISA�hierarchies in knowledge representation� generalizing ISA�hierarchies to

actions over abstract types in linear planning systems �Nau� ������ plan recognition

�Kautz� ����� Carberry� ������ and theorem proving �Plaisted� ������ represent but

a few�

Sacerdoti �Sacerdoti� ����� utilizes an abstraction strategy known as precondition�

elimination which is formalized by Tenenberg in �Tenenberg� ������ This strategy

basically eliminates a subset of predicates in the domain as one ascends the ab�

straction hierarchy� The predicates are partitioned� with each partition assigned a

particular integer criticality� At higher levels of abstraction� a new planning prob�

lem is derived from the lower level by elimination of preconditions having criticality

less than the current level of abstraction� Consider the Towers of Hanoi domain

for � rings �� large and � small�� and � pegs� It is only possible to move rings on

to empty pegs or on to larger rings� The operator set consists of MOVE�SMALL�

RING which can move the small ring between any start and any destination peg�

CHAPTER �� BACKGROUND ��

and MOVE�BIG�RING which can move the large ring between any two pegs� Since

we have said that it cannot be the case that the large ring can be on top of the

small ring� MOVE�SMALL�RING has a single precondition on�small�initial�peg��

MOVE�BIG�RING has three preconditions� on�big�initial�peg�� �on�small�initial�

peg�� and �on�small�destination�peg�� We can imagine an abstraction hierarchy of �

levels where on�big preconditions have a criticality of �� and on�small preconditions

have a criticality of �� If we are planning at the most abstract level �criticality ���

we ignore all on�small preconditions in the operator precondition lists� and solve

all subgoals with the �reduced� operators� Once solved� at level �� the problem

is made less abstract by adding the level � preconditions back into the plan and

operator set� and planning continues at the next more concrete level�

AbTweak extends the precondition�elimination strategy of abstraction seen

in the linear planner Abstrips �Sacerdoti� ����� to the nonlinear� least commit�

ment planning paradigm outlined by Chapman for Tweak �Chapman� ������ In

AbTweak� an attempt is made to bene�t from both Tweak�s ability to solve prob�

lems in a least�committed fashion� and from ABSTRIP�s hierarchical approach to

limiting search�

����� A Hierarchical Planning Example

As an example of how abstraction can be used as an approach to planning� consider

a simpli�ed two disk Tower of Hanoi domain� The operator set and criticality

assignments for this domain are show in Figure ���� and Table ����

Consider the initial situation as f onbig�Peg��� onsmall�Peg��g � and the goal

situation as f onbig�Peg
�� onsmall�Peg
� g � At the highest level of abstraction�

level � in this example� the abstract goal set consists of f onbig�Peg
� g � The

CHAPTER �� BACKGROUND ��

MOVEBIG �x� y�

Preconditions f�onsmall�x���onsmall�y�� onbig�x�g

E�ects f�onbig�x�� onbig�y�g

MOVESMALL �x� y�

Preconditions fonsmall�x�g

E�ects f�onsmall�x�� onsmall�y�g

Figure ����� Simple Hanoi Domain Operators

Predicate Criticality

onbig Level �

onsmall Level �

Table ���� Simple Hanoi Domain Criticality Assignments

CHAPTER �� BACKGROUND ��

abstract initial set of conditions consists of fonbig�Peg�� g � In addition� at this

abstract level� the operator set can be viewed as only involving preconditions and

e�ects at this level� speci�cally onbig� The initial plan would be formed as shown

in Figure �����

Initial
State

onbig(Peg3)onbig(Peg1) Goal
State

Initial Plan with onbig(Peg3) unsatisfied

Figure ����� Initial abstract plan in Simple Hanoi

Only a single goal or precondition is unsatis�ed at this abstract level� on�

big�Peg
�� This precondition can only be established by assertion of a new estab�

lishing operator� MOVEBIG��X� Peg
�� Insertion of this operator into the current

plan as an establisher for onbig�Peg
� would result in a partial plan as shown in

Figure ���� on page �
�

Again� this plan has only a single unsatis�ed precondition� onbig��X� in the

MOVEBIG operator� Two possible establishments exists for onbig��X�� either the

initial state operator can be constrained such that the initial condition onbig�Peg��

is constrained to codesignate with onbig��X�� or a new operator MOVEBIG��X��

�X� is added to the plan� The former establishment results in a plan with no un�

satis�ed preconditions at this level of abstraction� and thus the �rst level � solution

plan is found �Figure ����� page �
��

We now decrease the level of abstraction by one level for the level � solution and

CHAPTER �� BACKGROUND �

Initial
State

onbig(Peg1) onbig(Peg3) Goal
State

onbig(Peg3)onbig($X)

MOVEBIG establishes onbig(Peg3); onbig($X) unsatisfied

MOVEBIG
 ($X, Peg3)

Figure ����� Step � in abstract planning example

Initial
State

onbig(Peg1) onbig(Peg3) Goal
State

onbig(Peg3)onbig(Peg1)

Constrain $X & Peg1 to codesignate; Solution plan at level 1 found

MOVEBIG
 (Peg1,Peg3)

Figure ����� Step � in abstract planning example

CHAPTER �� BACKGROUND ��

operator set� and arrive at a level � plan that is shown in Figure ���� on page ���

Initial
State

onbig(Peg1) onbig(Peg3) Goal
State

onbig(Peg3)onbig(Peg1)

onsmall(Peg1)

onsmall(Peg1)

onsmall(Peg3)

Level 0 abstraction; 2 unsatisifed onsmall propositions

onsmall(Peg1)
MOVEBIG
 (Peg1,Peg3)

Figure ����� Step � in abstract planning example

This level � plan has two unsatis�ed preconditions� onsmall�Peg
� in the goal

state operator� and � onsmall�Peg�� in the MOVEBIG�Peg�� Peg
� operator� Ei�

ther one could possibly be selected� For this example� say that onsmall�Peg
� was

chosen� Only one possible establishment exists for this precondition� the addition

of aMOVESMALL����X	� Peg
� operator to the plan� The resultant plan is shown

in Figure ����� page ���

This resultant plan has several preconditions unsatis�ed� onsmall��X	� inMOVESMALL�

� and preconditions � onsmall�Peg
� and � onsmall�Peg�� in MOVEBIG� If we

choose onsmall��X	� in MOVESMALL��� the only establishment could be the in�

sertion of a new MOVESMALL operator� Move�Small�	��X
� �X	�� shown in Fig�

ure ���
 on page ���

Certain orderings of this partially ordered plan cause preconditions to be denied�

CHAPTER �� BACKGROUND ��

Initial
State

onbig(Peg1)

onsmall(Peg1)

onbig(Peg3) Goal
State

onsmall(Peg3)

onbig(Peg3)onbig(Peg1)

onsmall(Peg1)

onsmall($X2) onsmall(Peg3)

onsmall(Peg3)
MOVEBIG
 (Peg1,Peg3)

MOVESMALL-1
 ($X2, Peg3)

MOVESMALL-1 establishes onsmall(Peg3)

Figure ����� Step � in abstract planning example

Initial
State

onbig(Peg1)

onsmall(Peg1)

onbig(Peg3) Goal
State

onsmall(Peg3)

onbig(Peg3)onbig(Peg1)

onsmall(Peg1)
onsmall(Peg3)

onsmall($X2) onsmall(Peg3)

onsmall($X3) onsmall($X2)

onsmall($X3)

onsmall($X2)

MOVEBIG
 (Peg1,Peg3)

MOVESMALL-1
 ($X2,Peg3)

MOVESMALL-2
 ($X3, $X2)

MOVESMALL-2 establishes onsmall($X2)

Figure ���
� Step � in abstract planning example

CHAPTER �� BACKGROUND ��

In two more steps� establishing onsmall��X
� in MOVESMALL�	 by the existing

establishment of the initial operator causes �X	 to be codesignated with Peg��

Establishing � onsmall�Peg
� in MOVEBIG with the existing establishment of

�Move�Small�	� � onsmall��X
�� results in the codesignation of �X
 and Peg��

and the promotion of MOVESMALL�� over MOVEBIG� The �nal solution plan at

the concrete level is shown in Figure ���� on page ���

Initial
State

onbig(Peg1)

onsmall(Peg1)

onbig(Peg3) Goal
State

onsmall(Peg3)

onbig(Peg3)onbig(Peg1)

onsmall(Peg1)
onsmall(Peg3)

onsmall($X2) onsmall(Peg3)

onsmall($X2)

onsmall(Peg1)

onsmall($X2)

onsmall(Peg1)

MOVEBIG
 (Peg1,Peg3)

MOVESMALL-1
 ($X2, Peg3)

MOVESMALL-2
 (Peg1, $X2)

Figure ����� Step
�� Concrete level solution plan

It should be noted that one variable ��X�� remains unbound in this solution

plan� In the simple domain described in this example� there is no speci�c limitation

on the location to which the rings may be moved� MOVE operators only have

preconditions that insist that a ring must be to a �destination� that has no smaller

rings already on it� Essentially� the concept of pegs as individual entities is poorly

captured in the domain de�nition� If it was desired to limit the number of possible

CHAPTER �� BACKGROUND ��

Peg locations available for moving� it would be necessary to limit the destination

locations in some manner� One possible approach is to explicitly identify the subset

of all possible locations that are pegs via a �typing� constraint� Addition of a

constraint of the form �is�peg�Peg��� for each of the three pegs� and addition

of a conditions for MOVE operators that objects can only be MOVED between

locations that are characterized by �is�peg� will remove this ambiguity� In the

example of Figure ����� the location variable is unbound as a result of the fact

that no typing is made of the pegs on which rings can rest� An assumption is

captured in the domain as it exists that an in�nite number of pegs exist� while in a

correct implementation� it must be speci�ed that only a �nite number of pegs are

available� namely Peg�� Peg�� and Peg�� In this fashion� the variable �X� would

have an associated precondition for each operator that required �X� to be of some

type �Peg�� and no correct solution plan would contain unbound variables�

����� AbTweak

������� Background

The precondition�elimination approach to abstraction has been presented with lin�

ear planners� as in Abstrips �Sacerdoti� ������ AbTweak �Yang et al�� �����

Yang and Tenenberg� ����� possesses the capability to plan in a nonlinear� least

committed fashion� and thus is capable of returning partially constrained solution

plans such that any fully constrained version of the partially constrained solution

would also solve the problem� In this manner� AbTweak is a more general planner

than Abstrips�

CHAPTER �� BACKGROUND ��

������� AbTweak Design

AbTweak is based largely upon the previously described Tweak nonlinear plan�

ner� The addition of a dimension of control for the successive levels of precondition�

elimination results in the abstract� nonlinear planner AbTweak�

It is shown in �Yang and Tenenberg� ����� that not every abstract solution plan

in AbTweak is reducible to a less abstract solution plan� even though a less ab�

stract solution plan may in fact exist� This factor must be taken into account when

designing an abstract search strategy� Search at any particular level of abstraction

is accomplished by allowing Tweak to plan based only upon preconditions at the

current or higher levels of abstraction�

������� AbTweak Plan Representation

An operator in Tweak is de�ned by a set of precondition literals and e�ect literals�

A plan� �� is de�ned as a triple �A�B�NC�� where A is a set of operators� B is a

partial order on A� and NC is a set of noncodesignation constraints�

As in Tweak� a complete plan in AbTweak is a total order on a �nite set of

operators or actions� An operator in AbTweak consists of a set of preconditions

which must be true in order for an operator to occur� and a set of postconditions

which are guaranteed to be true just after the operator has occurred� In each case�

set elements are expressed as propositions which are function�free literals �i�e� p�X��

� p�X�� p�X�Y�� etc��

An incomplete plan in Tweak may be made complete by the addition of op�

erators� ordering constraints� and noncodesignation constraints to A� B� and NC

respectively� In addition to these constraints� a complete plan in AbTweak must

also be at the lowest� or concrete abstraction level� Since AbTweak plans can be

CHAPTER �� BACKGROUND ��

at various levels of abstraction� a slightly more complex plan description is neces�

sary than is the case for Tweak� Yang and Tenenberg �Yang and Tenenberg� �����

de�ne AbTweak in the following way�

A k level AbTweak system is a triple ! �L�O� crit�� where

��� L is a Tweak language�

��� O is an operator set� as in Tweak� and

��� crit is a function�

�

o�O

Po � f�� �� � � � � k � �g�

Intuitively� crit is an assignment of criticality values to each proposition appearing

in the precondition of an operator�

Let � be an operator� and let P� denote the preconditions of �� We take iP�

to be the set of preconditions of � which have criticality values of at least i�

iP� fp j p
 P� and crit�p� � ig�

and i� is operator � with preconditions iP� and e�ects E�� Let the set of all such

i� be iO� This de�nes a TWEAK system on each level i of abstraction�

i! �L� iO��

������� Goal Achievement in AbTweak

The AbTweak search space consists of a set of incomplete plans� each of which

has a particular level of abstraction between the maximum and minimum criticality

value assigned for preconditions in a given domain� Each incomplete AbTweak

plan is simply a Tweak plan with a subset of preconditions removed to re
ect

CHAPTER �� BACKGROUND ��

the abstraction level� Some of these preconditions are not necessarily satis�ed�

Tweak searches for a solution plan by successively modifying incomplete plans in

the space� and selecting unsatis�ed preconditions to establish and declobber in each

chosen plan� A plan that solves the given problem at some level of abstraction k

is expanded to generate a level k�� successors plan� and in this fashion the entire

search space is expanded in search of a correct plan at the most concrete level�

The basic control strategy of AbTweak is to repeatedly select a plan in the

search space at some level of abstraction� select an unsatis�ed operator�precondition

from this plan� and then generate successors of this plan by modifying the incom�

plete plan in all ways possible so that the selected operator�precondition is neces�

sarily achieved�

Once again� we treat the truth criterion of Tweak as a nondeterministic al�

gorithm� and obtain a goal achievement procedure which functions as the driver

for a planning system� The abstract MTC �or AB�MTC� di�ers from MTC only

in that when the criterion is applied to some plan at level k of abstraction� only

preconditions and e�ects at level k are considered in the determination of necessary

truth� Plan successors are generated in the following manner�

�� An incorrect plan at some level k� has successors as indicated by MTC� con�

sidering only preconditions of criticality of level k or higher�

�� A correct plan at level k� �k � ��� has only a single successor� the level k��

version of this plan�

�� A correct plan at the concrete level where k �� has no successors� and is a

solution plan�

CHAPTER �� BACKGROUND ��

������� Search Control in AbTweak

In this abstract search space� the selection of plans is somewhat more complicated

that is the case for the single�level planning of Tweak� Plans in the abstract space

have varying levels of abstraction� and expansions occur in a manner which inter�

leaves selection over di�erent abstraction levels� While plan selection was already a

concern for Tweak� AbTweak has an additional di	culty of chosing the correct

abstract plan under which to search for the next lower level solution� AbTweak

requires search strategies in two dimensions then� one to control the current ab�

stract solution under which to plan� and one to control the search expansion within

the selected level of abstraction�

Intuitively� less abstract plans are �closer� to the concrete level solution plan in

terms of overall abstract �depth� in the search space� however� it is not guaranteed

that any abstract level k solution plan will lead to a lower� concrete solution� Do�

mains in which multiple level k solutions exist tend to be common� For example� if

one wished to move the big ring in Towers of Hanoi from Peg� to Peg�� you could

simply move it directly from Peg� to Peg� in one move� However� a more complex

solution might be to move it from Peg� to Peg�� and then move the ring from Peg�

to Peg�� Both plans are valid solutions�

������
 Tweak Limitations a�ecting AbTweak

AbTweak retains all of the restrictions on planning that Tweak experiences�

Speci�cally�

�� Since AbTweak is based upon the control strategy of Tweak� AbTweak

has the same completion conditions as Tweak� successful completion by

CHAPTER �� BACKGROUND ��

�nding a solution plan� failure by exhausting the search space� or failure to

terminate indicating progress towards a goal is never made in the planning

process�

�� AbTweak�s plan representation� based upon that of Tweak� must�

Not allow situation dependent actions

Not allow implicit side e�ects for operators

����� Goal Protection in Planning

In goal�driven planning such as Tweak� Abstrips� or AbTweak� operators are

added to the partial plan for a particular reason� These operators have been selected

since they satisfy a particular plan goal� The addition of later operators for later

goals can have destructive side e�ects that essentially undo the work accomplished

by earlier operators� It seems likely then� that if we build plans more carefully we

can avoid this inadvertent destruction of established goals�

We can protect goals in a nonlinear� non�abstracting planning system by iden�

tifying important establishments in some fashion perhaps� or even by protecting

all establishments made previously� Further� a non�abstracting planning strategy

which protected all previous goal establishments can be show to be complete� Es�

sentially� Tweak establishes a selected goal proposition in every way possible at a

given branching point in the plan search space� So� the establishment of some goal

p for some operator U by a set of establishers f E�� E�� ��� En g results in n succes�

sors� If a rule existed in the planning strategy which insisted that each of Ei remain

establishing p for O in that particular successor plan� then a property known as the

Single Producer Property �SPP� in enforced� Say one of the establishers Ek� had

it�s establishment clobbered by some other operator C which asserted p� and was

CHAPTER �� BACKGROUND �

constrained between Ek and U � The question is� does the pruning of this successor

violating SPP make the planner incapable of reaching a solution� The answer is

no� The new establishment relation for p in the pruned plan was C establishing p

for U � Since C can assert p� we know that C must be one of the operators Ei� call

it Ec� So� if the only solution plan possible possessed the establishment of p by C�

then this solution plan is reachable as a descendant of the successor utilizing Ec to

establish p�

Goal protection in an abstract planner can be accomplished as in a linear plan�

ner within a particular level of planning� or can be done across levels of abstraction

by protecting certain work done at a high level while re�ning a plan at less ab�

stract levels� As opposed to goal protection in a non�abstract planning system�

goal protection in an abstract planner must be done carefully if one wishes to re�

tain completeness for a particular search strategy� The example in Figure ���� on

page �� shows how� in an abstract planning system� the protection of two parallel

establishing operators at level K prevents a level k�� solution from being found�

In any goal directed planning� a complete goal protection strategy will have

the result of eliminating certain branches of the search space� and will thus reduce

the branching factor of the search� While this does not necessarily imply that a

constrained search strategy will outperform an unconstrained one� it is true that the

branches removed from the space need not be traversed in order to �nd a solution�

Part of the purpose of this thesis is to evaluate the utility of various levels of goal

protection across abstraction levels� In later sections of this thesis� I will outline

properties of abstract search spaces which allow us to protect abstract search work�

and still keep our strategy complete�

CHAPTER �� BACKGROUND ��

r

Op-A
p(a)

Op-B
p(a)

p(a) Op-C

Level K

Level K-1

Op-A
p(a)

Op-B
p(a)

p(a) Op-C
~r

Only one ordering (Op-B < Op-A < Op-C) allows a solution at
 Level K-1, but this violates Est(Op-A, Op-C, p(a)).

Est(Op-A,Op-C,p(a))

Est(Op-B,Op-C,p(a))

Figure ����� Abstract goal protection incompleteness

Chapter �

Planner Implementation

��� Overview

Tweak and AbTweak have been implemented in Common Lisp� and all exper�

iments have been run on a Sun � �� The implementation has been done with

strong emphasis placed on keeping various control strategies� plan modi�cation�

and plan representation consistent between Tweak and AbTweak� and domain�

independent� In my planner implementation� AbTweak is built directly upon

a working version of Tweak� Individual level search control in AbTweak is

performed by Tweak functions� and the truth criterion AbTweak utilizes in de�

termining plan correctness is exactly a call to the Tweak truth criterion while

ignoring certain abstracted portions of the abstract plan� Similarly� the modi�ca�

tion of plans within each level of abstraction in AbTweak is performed entirely

by Tweak�

Basically� there are three levels to my implementation�

�The implementation was done jointly with Qiang Yang�

��

CHAPTER �� PLANNER IMPLEMENTATION ��

�� Search within each level

In order to compare and contrast abstract search and non�abstract search�

we must strive to keep the two implementations consistent in their control

strategies� Of particular importance is the control of search in non�abstract

search� and the corresponding search control within each abstract level in

abstract search� Both Tweak and AbTweak utilize search strategies based

upon the complete search strategy A� �Nilsson� ������ The space searched for

both Tweak and AbTweak is not reduced by checking for plan redundancy

as this is still a di	cult open problem in nonlinear planning�

Successor generation in the search space is controlled by the selection of unsat�

is�ed precondition goals in selected plans� This is an important search factor

both within each abstract search level� and in single levelTweak search� I at�

tempt to insure that neither the abstract nor the non�abstract selection gives

a particular strategy an unwarranted advantage� The implementation of goal

selection procedures and heuristics are exactly the same for the individual

level search in AbTweak� and for Tweak search�

�� Search across abstract levels

Search between levels inAbTweak is essentially a selection process for which

a correct level k plan in the space to choose next for expansion at the next

more concrete k�� level� In Tweak� there is only one level of abstraction� the

concrete� to consider� but inAbTweak the successors of many di�erent levels

are all potential plans to consider for expansion� We may wish to formulate

our global search strategy to prefer certain types of abstract solution plans

at each level of abstraction� For example at a high abstract level� we may

prefer �simpler� plans in some sense� perhaps in terms of operator set size�

CHAPTER �� PLANNER IMPLEMENTATION
�

while at lower levels of abstraction this preference may not make sense� The

challenge is to �t the strategy and the abstract plan preference to both the

nature of abstract planning and to the domain in question� Since this thesis

is concerned with domain�independent strategies� I describe an abstract level

search strategy that tends to take advantage of the nature of the abstract

search space in general� This approach will be discussed in a later section�

�� Plan representation

Plan representation is consistent from Tweak to AbTweak� with the ad�

ditional complexity for AbTweak plans of carrying an indicator of level of

abstraction� A plan in AbTweak is determined to solve the problem com�

pletely only when its level of abstraction is concrete� any other plan which

has unsatis�ed preconditions must be made less abstract by one level� and

further expanded in the search space accordingly�

Additional information is carried in the plan representation according to the

requirements of certain heuristic approaches� For example� certain pruning

heuristics require a plan�s higher level causal relations in order to determine

whether certain successors can be discarded� While this information could be

determined from the plan� it is computationally much cheaper to simply carry

this information along with the plan as it is built up� Similarly� certain other

goal selection heuristics require the goal achievement hierarchy of a particular

plan to be known� and in these cases this information is recorded and used in

successor generation�

CHAPTER �� PLANNER IMPLEMENTATION
�

��� Truth Criterion

Chapman�s MTC has been implemented as a method of determining the necessary

or possible truth of propositions in nonlinear plans� The MTC has a complexity

related to the product of the number of operators in the plan� the number of

preconditions each operator has� the number of e�ects each operator has in the

plan� and the degree of nonlinearity of the plan�

Each of the i operators Ui in a plan � is considered in turn� and within each

Ui� each of j preconditions pj � For each pj � all establishing operators Ej are found

such that Ej � Ui� and has at least one e�ect pj � Each establishment of some pj

in an operator Ui by some operator EJ can thus be represented as a relation of the

form Est�Ej� Ui� pj�� Every Est relation in � is examined� and if there is at least

one Est relation for every pj in � such that no operator C necessarily between Ej

and Ui possibly denies pj � then we can say that pj necessarily holds� A plan � is

only correct if all pj in all Ui in � necessarily hold�

The complexity of determining unsatis�ed plan preconditions directly a�ects

the performance of a planning system� In the next section� we will the cost of this

determination in plans exhibiting various degrees of nonlinearity� The worst�case

complexity of fully determining the unsatis�ed preconditions in a nonlinear plan �

is O�n��� where n indicates the number of operators U in �� Factors detailing the

average and best case complexity are discussed in the next section as well�

����� Plan Nonlinearity and the Truth Criterion

Intuitively� it would seem that the complexity of MTC varies directly as a function

of the degree of nonlinearity of a particular plan� If we look at a spectrum of possible

CHAPTER �� PLANNER IMPLEMENTATION
�

plans� from strictly linear to completely parallel� we can see to what degree this

complexity changes� Clearly� the more operators possibly between the operator

with a precondition to establish and the actual establishing operator� the greater

the number of comparisons that must be made to determine if a proposition is

necessarily true� However� does this di�erence a�ect the overall complexity of

the MTC algorithm� The following descriptions of MTC show worst case time

complexity in plans with special cases of ordering construction�

For the purposes of the following complexity analysis� the following assumptions

are made�

�� There are n operators in each of the plans considered�

�� Each of the n operators has l e�ects and l preconditions�

�� An operator Ae establishes proposition p for another operator Ai i��

Ae necessarily precedes Ai

Ae necessarily asserts p as an e�ect

For all Aj such that necessarily Ae � Aj � Ai� Aj does not necessarily

assert either p or �p�

�� An operator Ae negates proposition p for another operator Ai i��

Ae necessarily precedes Ai

Ae necessarily asserts �p as an e�ect

For all Aj such that necessarily Ae � Aj � Ai� Aj does not necessarily

assert either p or �p�

�� The MTC used for analysis is the simpli�ed version� with White Knight re�

moved�

CHAPTER �� PLANNER IMPLEMENTATION
�

Chapman�s MTC described in Chapter � and shown as a plan modi�cation

algorithm on page �� is known to require time on the order of O�n�� to determine

the truth of all preconditions in a plan� In Figure ��� the modi�cation algorithm is

presented so as to make the complexity with respect to the n clear�

For each of n plan operators Ai�

For each of l operator preconditions p�

a� Find each of n possible ESTABLISHERS Ae of p�

call the set of establishers Est�List

b� For each establisher Ae in Est�List

For each of n possible CLOBBERERs Ac of Ae�

Either�

Promote Ac over Ae� or

For all l e�ects �q� of Ac

Either�

Separate q and p� or

For all n possible White Knights�

Make a White Knight�

Figure ���� Complexity of Chapman�s MTC

With respect to the number of operators in a plan� Chapman�s algorithm can

be seen to require time�

n� �n" �n� n � n���

This complexity reduces to O�n���

CHAPTER �� PLANNER IMPLEMENTATION
�

The simpli�ed algorithm used in the implementation of AbTweak this the�

sis does not use White Knight� and as a result enjoys a saving in terms of time

complexity� This simpler algorithm can be seen in Figure ����

For each of n plan operators Ai�

For each of l operator preconditions p�

Find each of n possible ESTABLISHERS Ae of p�

a� Find each of n possible ESTABLISHERS Ae of p�

call the set of establishers Est�list

b� For each establisher Ae in Est�List�

For each of n possible CLOBBERERs Ac of Ae�

Either�

Promote Ac over Ae� or

For all l e�ects �q� of Ac

Separate q and p

Figure ���� Complexity of Simpli�ed MTC

The simpler algorithm can be seen to require time�

�n� l�� �n" �n� n� l���

This complexity reduces to O�n�l��� The complexity saving this algorithm en�

joys over Chapman�s MTC algorithm is at the cost of some �over commitment� on

behalf of the simpler algorithm� This commitment is explained in more detail in

Chapter � on page �
� The simpler algorithm is the basis of the following analysis�

CHAPTER �� PLANNER IMPLEMENTATION
�

������� Strict Linearity

A fully linearized� or fully ordered plan is of the form A� � A� � ��� � An for a

plan of n operators� Determination of the necessary truth of a precondition p in

any operator Ai involves� For each operator in A necessarily before Ai� �nd Ae such

that Ae establishes p for Ai by having p necessarily asserted or negated as an e�ect

of Ae� Note that in a linear plan� there can only be one operator Ae that establishes

or negates p�

�� If no Ae is found necessarily before Ai such that Ae asserts established or

negates p� then the proposition p does not necessarily hold just before Ai�

and the plan is incorrect�

�� If Ae negates p� then the proposition p does not necessarily hold just before

Ai� and the plan is incorrect�

�� If Ae establishes p� then the proposition p necessarily holds just before Ai�

There are at most i � � operators that necessarily precede Ai� Each operator

has l e�ects� In the worst case� Ae is found in the i � � operator comparison� In

order to �nd Ae for each of n operators and l preconditions requires time�

l �
nX

i��

f�l � �i� �� " ��� �i� ��� l��g

This complexity reduces to O�n�l���

������� Multiple Parallel Orderings

Consider a plan that has k totally ordered subplans� Each of the k subplans is of

size s� where the plan has n operators� and n s � k� In addition� each of the k

subplans follows the initial operator I� and precedes the goal operator G�

CHAPTER �� PLANNER IMPLEMENTATION

In a plan with k completely parallel �and fully ordered� subplans� the kth subplan

has a form f Ak� � Ak� � ���Akn g with an initial operator I necessarily before all

A� and a goal operator G necessarily after� The determination of the necessary

truth of a proposition p in any operator Aki is made in the following manner� For

each operator in A �nd Ake such that Ake establishes p for Ai by having p nessarily

asserted as an e�ect of Ae� or negates p� Since only those A in Ak necessarily

precede Aki � Ake must be in Ak� If fact� as in a linear plan� there can only be one

Ake�

�� If no Ake is found necessarily before Aki such that Ake either establishes or

negates p� then the proposition p does not hold just before Aki� and the plan

is incorrect�

�� If Ake is found necessarily before Aki such that Ake negates p� then the propo�

sition p does not hold just before Aki� and further� the plan is incorrect�

�� If Ake is found necessarily before Aki such that Ake establishes p�

For each operator Ck possibly between Ake Aki � �in this case there are at

most �n� s� such operators�� if Ck possibly denies p� then p is clobbered� and

p does not necessarily hold just before Aki� and further� the plan is incorrect�

If no Ck exists that possibly denies p� then p necessarily holds just before Aki�

There are at most i � � operators that necessarily precede Aki � Each operator

has l e�ects� In the worst case� Ake is found in the i � � operator comparison� In

addition� the e�ects of the remaining �n � s� operators possibly between Ake and

Aki must be examined in order to determine if a clobberer exists� Thus the �worst�

total cost to determine the necessary truth of a precondition in Aki is�

CHAPTER �� PLANNER IMPLEMENTATION
�

fl � �i� �� " ���� �i� ��� l� " ��� �n� s�� l��g

In order to determine that an Ake exists� and no clobberers Ck exist for each of

l preconditions in each of n operators requires�

l�
nX

i��

fl � �i� �� " ���� �i� �� � l� " �� � �n � s�� l��g

 l�n� � ��� ���k��

This complexity reduces to O�n�l���

������� Strict Parallelism

A completely parallel� or unordered plan has totally unordered operators fA�� A�� ���An

g with an initial operator I necessarily before all A� and a goal operator G necessar�

ily after� Determination of the necessary truth of a precondition p in any operator

Ai �other than G� involves� For each operator in A necessarily before Ai� �in this

case only I necessarily precedes Ai�� �nd Ae such that Ae establishes p for Ai by

having p nessarily asserted as an e�ect of Ae� or negates p�

�� If I does not either establish or negate deny p� then the proposition p does

not necessarily hold just before Ai� and the plan is incorrect�

�� If I negates p� then the proposition p is not satis�ed� and further� the plan is

incorrect�

�� If I establishes p� then the proposition p is established�

CHAPTER �� PLANNER IMPLEMENTATION
�

For each operator C possibly between I and Ai �in this case n � � such

operators exist�� if C possibly denies p� then p is clobbered� and p is not

necessarily true just before Ai� and further� the plan is incorrect�

There is only � operator �I� that necessarily precedes Ai� In the worst case� I

is found in � operator comparison� Each operator has l e�ects� In addition� the

e�ects of the remaining n � � operators �exclude I� G� and Ai� possibly between

Ae and Ai must be examined in order to determine if a clobberer exists� Thus�

the complexity of determining the necessary truth of a all l preconditions in the n

operators of the plan is�

l�
nX

i��

f�� � l� " ��� �n� �� � l�g

This complexity reduces to O�n�l���

The analysis of the three preceding types of operator orderings shows that the

computation of MTC for plans restricted to orderings in one of these classes in

simpli�ed by an order of magnitude over the larger class of nonlinear plans� In the

general case� MTC has complexity O�n�l��� However� in a totally linear plan� a

totally parallel plan� or in a plan possessing k parallel total orderings of equal size�

the complexity of MTC is only O�n�l��� The factor that makes MTC computation

for fully linear� fully parallel� or k�parallel plans an order of magnitude simpler than

the general case is the fact that in these cases only a single establisher may exist

for any particular precondition� while in the general case� there may exist many

establishers�

CHAPTER �� PLANNER IMPLEMENTATION
�

����� Plan Con�icts

In general� the truth criterion is used to create a list of con�icts that each plan

has� Each con
ict represents the manner in which some plan establishment fails

to guarantee the necessary truth of the operator precondition it establishes� Based

on the establishment relation described above� Est�Ej� Ui� pj�� a con
ict can be

described in terms of the clobbering operator Cj interfering with the establishment�

A con
ict is represented as Conf�Ej� Ui� Cj� pj � qk� where Cj is an operator possibly

between Ej and Ui� and Cj asserts qk such that qk possibly denies pj � Hertzberg

�Hertzberg and Horz� ����� shows that� based on the positional relationship of

Ej � Ui� and Cj� any con
ict can be classi�ed as one of Linear �Figure ����� Left

Fork �Figure ����� Right Fork �Figure ����� or Parallel �Figure ��
�� This con
ict

speci�cation forms part of the con
ict resolution approach of both Tweak and

AbTweak�

E (j) C (j)
p(j)

U(i)
p(j) q(k)

Figure ���� Linear con
ict�

CHAPTER �� PLANNER IMPLEMENTATION ��

p(j)

E (j)

C (j)

p(j)

q(k)

U(i)

Figure ���� Left Fork con
ict�

p(j)

E (j)

C (j)

U(i)

p(j)

q(k)

Figure ���� Right Fork con
ict�

p(j)

E (j)

C (j) q(k)

p(j)
U(i)

Figure ��
� Parallel con
ict�

CHAPTER �� PLANNER IMPLEMENTATION ��

����� Con�ict Resolution

Based upon Chapman�s �Chapman� ����� MTC formulation for goal achievement�

Yang �Yang� ����b� has speci�ed the application of MTC within the framework

of con
ict resolution� Yang�s methods in �Yang� ����b� includes a white knight

operation described as demotion�establishment� however� as explained in the MTC

outline� this operation can be left out without loss of completeness� In this manner�

each of the aforementioned con
icts types of Conflict��Ej� Ui� Cj� pj � qk� can be

resolved by imposing plan constraints T indicated by MTC as follows� �

Resolve�Linearconflict�� � T �pj �� qk��

Resolve�LeftForkconflict� � T �Cj � Ej� " �pj �� qk��

Resolve�RightForkconflict� � T �Ui � Cj� " �pj �� qk��

Resolve�Parallelconflict� � T Resolve�LeftFork� "Resolve�RightFork�

Basically� A Linear con
ict can only be resolved by �separating� the established

precondition pj and the clobbering e�ect qk �pj �� qk�� A Left�Fork con
ict can be

resolved by either separating the precondition and e�ect� or by �demoting� the

clobbering operator Cj such that it necessarily precedes the establishing operator

�Cj � Ej�� A Right�Fork con
ict can be resolved by separation� or by �promoting�

the clobbering operator such that it necessarily follows the operator containing the

established precondition �Ui � Cj�� Finally� a Parallel con
ict can be resolved in the

same way as either a Left�Fork or Right�Fork con
ict� with separation� demotion�

or promotion�

�Note that in the resolution equations� ��� indicates a logical �OR��

CHAPTER �� PLANNER IMPLEMENTATION ��

As an example� consider the case shown in Figure ��� where we have added

PICKUP �BlockA�X� as the establisher of clear�X� for the operator�precondition

STACK�BlockB�X� and clear�C��

clear($X)clear($X)

~clear($X1)

PICKUP(BlockA,$X)

STACK(BlockD,$X1)

STACK(BlockB,$X)

Figure ���� Left�Fork con
ict example

We can identify a left�fork con
ict caused by operator STACK�BlockD� �X��

which is parallel with PICKUP �BlockA�X�� and necessarily before STACK�B�X��

From the resolution methods outlined� our options for declobbering this con
ict are

to either use promotion as shown in Figure ��� or separation� as seen in Figure ����

clear($X)clear($X)

~clear($X1)

PICKUP(BlockA,$X)

STACK(BlockD,$X1)

STACK(BlockB,$X)

Figure ���� Left�Fork resolution �� Promotion

CHAPTER �� PLANNER IMPLEMENTATION ��

clear($X)clear($X)

~clear($X1) Constrain $X1 =/= $X

PICKUP(BlockA,$X)

STACK(BlockD,$X1)

STACK(BlockB,$X)

Figure ���� Left�Fork resolution �� Separation

����� Successor Generation

The generation of plan successors is a two part process in the planner implemen�

tation presented in this thesis� The �rst step involves establishing an unsatis�ed

operator precondition in all ways possible� exactly as speci�ed in the MTC goal

achievement procedure� creating a set of intermediate plans or I�plans� MTC is

then used to determine all con
icts in each I�plan which prevent the satisfaction of

the selected precondition� In order for the precondition to be necessarily satis�ed�

all of the con
icts must be resolved� Each con
ict can be classi�ed in the manner

speci�ed above� and can be resolved based upon the methods indicated by Yang�

Since each con
ict may be resolved in several ways� and there are multiple con
icts

possibly a�ecting a single precondition� we must consider all possible combinations

of con
ict resolution for each con
ict in a cartesian product of solutions�

For example� consider the case where operator U has precondition p is estab�

lished by operator E in an I�plan Iu� but Iu has � con
icts C�� C�� and C� asso�

ciated with U � E� and p� Now� if C� is classi�ed as a linear con
ict� C� a parallel

con
ict� and C� a right fork con
ict� then we see that there is � way �separation�

CHAPTER �� PLANNER IMPLEMENTATION ��

to resolve C�� � ways to resolve C� �separation� demotion and promotion�� and �

ways to resolve C� �promotion and separation�� A cartesian product of these res�

olutions would result in a set of plan modi�cation operations for generating all of

the successors possible� This cartesian product �successor enumeration� is shown

in Figure �����

P lan� C�separation" C�separation " C�promotion

P lan� C�separation" C�demotion " C�promotion

P lan� C�separation" C�promotion " C�promotion

P lan� C�separation" C�separation " C�separation

P lan� C�separation" C�demotion " C�separation

P lan� C�separation" C�promotion " C�separation

Figure ����� Cartesian product speci�cation of plan successors

Each of the six members of the cartesian product shown above would be applied

to the I�plan to which they apply� resulting in six possible successor plans for the

particular I�plan�

Yang �Yang� ����b� describes an algebra for the combination of these con
ict

resolution methods that will allow for the elimination of inconsistent combinations

of modi�cation operators� The implementation created for this thesis does not take

advantage of the pruning possible with this algebra� and notices inconsistent plans

only once the operations are actually applied to a plan�

CHAPTER �� PLANNER IMPLEMENTATION ��

��� Abstract Planning Search Strategies

In the search for a concrete level abstract solution plan� there are two major areas

of search control to address� The �rst is the selection of which abstract or high

level solutions to expand next in the search space� The second is how to expand

this selected abstract solution at level k in the search for a less abstract solution at

level k��� The planning search space can be pictured as a tree in which each node is

actually a single level search space determining a level k�� plan based upon a level k

solution� This search space representation can be better shown as a diagram� as in

Figure ����� Within each node in the �gure we are concerned with �nding a single

level solution� Within the larger search framework we are concerned with which

abstract solution to concentrate upon�

Within each dimension of search control there are various heuristic approaches

that are capable of improving planning performance� We will look at these ap�

proaches within the context of each level of control�

����� Search Within Each Level of Abstraction

Search at a single level� or at a single node in our two level search control diagram� is

basically the same search control that Tweak performs� Speci�cally� search control

within a single abstract level determines which incomplete plan and unsatis�ed

goals to attempt to solve next� The selection of a goal within a plan determines the

possible successor plans that will be generated� Within this successor plan set� it is

possible to prefer some establishment and declobbering combination in a heuristic

fashion� although any strategy must be careful in ignoring particular successors

entirely� If we were to drop some successors entirely� the possibility exists that

completeness could be lost�

CHAPTER �� PLANNER IMPLEMENTATION �

Level K

Level K - 1

Level K - 2

Abstract Solution Space Search Tree

1-1
1-2

2-1 2-2 2-3 2-4

3-13 3-14 3-15 3-16

3-123-113-103-9

3-83-73-63-5

3-1 3-2 3-3 3-4

Figure ����� Representing the abstract solution search space

CHAPTER �� PLANNER IMPLEMENTATION ��

The addition of certain plan operators into an incomplete plan can result in

con
icts with previously established and declobbered goals� As a result� some plan

successors may make less �progress� towards a solution than others� simply because

they cause con
icts to arise in the successor plan� These con
icts will have to be

resolved at a later time� and this will involve more work on the part of the planner�

The protection of previously established goals in successor plans is one way of

reducing the branching factor of search�

One heuristic that allows us to reduce the branching factor through goal pro�

tection has been suggested in �Yang and Tenenberg� ������ The next section will

outline this heuristic approach as a form of successor pruning within the context of

abstract planning�

������� The Monotonic Property � Abstract Goal Protection

The purpose of subgoal protection is to ensure that the previously achieved tasks

are not undone when completing a plan� In doing this� one would like to use subgoal

establishment structure as a constraint on search� while preserving completeness of

the systems� Towards this goal� Yang and Tenenberg �Yang and Tenenberg� �����

de�ne the Monotonic Property�

In a correct plan �� if an operator � necessarily achieves a precondition p of an

operator �� and if no other operators necessarily between � and � does so� then we

say � establishes p for �� or establishes ��� �� p��

Informally� a re�nement of an abstract plan ismonotonic� if the subgoal�establishment

structure of the abstract plan is preserved in the re�nement� More precisely� let

�a be a plan at abstract level i for solving goal G� and � be a plan at level i� �

for solving the same goal� Suppose that in both plans every operator directly or

CHAPTER �� PLANNER IMPLEMENTATION ��

indirectly achieves a goal� as given by the establishment structure� Then � is a

monotonic re�nement of �a if the abstract version of � is �a� It has been shown

that in every abstraction hierarchy based on precondition elimination� if there is

a correct plan at the base�level� then one of the abstract plans can monotonically

re�ned to a solution at the base level �Yang and Tenenberg� ������

The monotonic property imposes constraints on search by providing the ability

to backtrack on violations of protected goal establishments� A violation occurs when

another operator � is inserted between � and �� where establishes ��� �� p�� and �

necessarily asserts p� It was shown that backtracking on protection violations in

this manner retains completeness in a search strategy �Yang and Tenenberg� ������

��������� Strong and Weak Monotonic Properties Due to the nonlinear

nature of plans� it is possible that a precondition p of an operator � is established

by two or more unordered operators �� and �� in the plan �Figure ������

Alpha-1

Alpha-2

p

p

p Beta

Alpha-n p

Alpha-i all establishing p for Beta

Figure ����� Two or more establishments of a single precondition

With this in mind� two versions of monotonic property can be designed�

Strong Monotonic Property
SMP�� When re�ning an abstract plan� protect

all establishment relations� i�e� include both establishes ���� �� p�� and establishes ���� �� p��

CHAPTER �� PLANNER IMPLEMENTATION ��

Consider the case where �a is a plan at abstract level i for solving goal G�

and � is a plan at level i� � for solving the same goal� Suppose that in both

�a and �� every operator U directly or indirectly achieves G�

An operator Udirect directly achieves G if one of its e�ects p asserts G� and

an operator Uindirect indirectly achieves G if one of the e�ects of Uindirect

asserts a precondition of an some other operator Uother where Uother either

directly or indirectly achieves G� Every correct plan P has an implicit set

of i establishments Est that completely describe these achievement relations�

This set consists of relations of the form Est�Eest Uuser� p� where Eest achieves

proposition p for operator Uuser � and where each Esti is specifying either a

direct or indirect achievement of G�

� is a re�nement of �a satisfying the Strong Monotonic Property of �a if the

abstract version of � is �a� and all establishment relations at level i� Esti� in

�a exist in � at level i� ��

Weak Monotonic Property
WMP�� When re�ning an abstract plan� protect

at least one of the establishment relations� i�e�� either establishes���� �� p�� or

establishes ���� �� p�� but not both�

De	nition ����� � is a re�nement of �a satisfying the Weak Monotonic

Property of �a if the abstract version of � is �a� and at least one of the

establishment relations Est�Eest�Uuser�p� of every proposition p in �a exist in

� at level i� ��

As suggested by their names� SMP imposes a stronger constraint on search� by

backtracking on any monotonic violation� On the other hand� WMP backtracks

only when all abstract establishment relations are violated� One would be tempted

CHAPTER �� PLANNER IMPLEMENTATION ��

to conclude that the strong version is always superior� Unfortunately� SMP cannot

guarantee completeness in general� This can be shown by the following counter�

example� Suppose for a planning problem� the only solution at the base level is

a linearized plan��� ��� ��� ��� Also suppose that in the abstract plan both

��� and �� are establishers for �� Note that a nonlinear� least�committed planner

does not compute every linearization of a correct abstract plan� Thus� protecting

both establishment structures� the planner can never �nd the solution �� On the

other hand� with WMP completeness is preserved since establishes ���� �� p� is never

violated� As a result of SMP�s completeness sacri�ce� the WMP version is used in

experiments presented in this thesis�

��������� Two versions of the Weak Monotonic Property To apply WMP

in a straightforward fashion� one ensures for each abstract precondition p that�

whenever a new operator is inserted into a plan� or a set of constraints is imposed

upon a plan� at least one of the establishment relations for p still holds� More

precisely� let establishes ��� �� p� hold in a abstract plan� In its re�nement� let � be

an operator inserted necessarily between � and �� If � necessarily asserts or denies

p� then a monotonic violation occurs� This version of the WMP is called necessary

weak monotonic property� or N�WMP� An example of a violation of the N�WMP is

shown in Figure �����

With more domain knowledge� one can do better� Then a possible monotonic

violation occurs for establishes ��� �� p�� whenever an operator � is inserted neces�

sarily between � and �� such that � asserts q� and q possibly codesignates with p�

For example� suppose a robot can only hold one thing at a time� and in an abstract

plan� an operator � PICKUP�Cup� establishes the precondition holding�Cup� for

� FILL�Cup� Tea�� If the operator � PICKUP�x� is inserted between � and ��

CHAPTER �� PLANNER IMPLEMENTATION ��

Level K Solution : Alpha 1 and 2 establish p for Beta

Alpha-1

Alpha-2

p

p
p Beta

Level K-1 Successor #1

~rAlpha-1 Alpha-2
p r

p Betap
r

no violation, since Est(Alpha-2, Beta, p) still holds

Level K-1 Successor #2

~r
Alpha-1

Alpha-2
p

p

r

r
p BetaGamma

p
r

N-WMP violation: all level K Establishers of p violated at level K-1

Figure ����� Necessary Weak Monotonic Violation

CHAPTER �� PLANNER IMPLEMENTATION ��

a possible monotonic violation occurs� An example of a P�WMP violation is shown

in Figure �����

holding(Cup)
FILL(Cup, Tea)PICKUP(Cup)

holding(Cup)

Level K Solution Plan, Pickup establishing holding(Cup)

PICKUP(Cup)
holding(Cup) holding(Cup)

FILL(Cup, Tea)

Level K-1 plan, P-WMP violation since holding exhibits exclusivity

PICKUP($X)
holding($X)~holding($X)

can-carry($X)

Figure ����� Possible Weak Monotonic Violation

If certain predicates of a domain satisfy the following P�WMP exclusivity con�

dition� then prevention of possible monotonic violations guarantees completeness�

and the hierarchy is said to have the possible weak monotonic property �P�WMP��

The condition is as follows�

Let r be a predicate� For two di�erent sets of ground parameters X and

Y � r�X� and r�Y � cannot hold at the same time�

Any domain exhibiting P�WMP exclusivity for a proposition type p cannot have

CHAPTER �� PLANNER IMPLEMENTATION ��

a correct plan where two predicates p�a� and p�b� are true just before some operator

U � such that a and b are distinct�

Consider some abstract plan �a correct at level k that contains an operator U

with p�a� as a precondition of U � p�a� is established by an operator E in �a�

Consider some descendant of �a at level k��� �� A P�WMP violation of � would

exist if the establishment from level k� Est�E� U � p�a�� is destroyed� Any plan

violating this establishment possesses some operator C necessarily between E and

U �E � C � U�� and has an e�ect p�x� such that x possibly codesignates with p�

Since any complete plan must have all variables bound� x must be bound at some

point in the planning process� Any binding of x must fall into one of two categories�

�� x is bound to a

This binding thus would result in a plan which necessarily violates the es�

tablishment relation Est�E� U � p�a��� and thus constitutes a violation of the

N�WMP�

�� x is bound to a term other than a

Any binding of this nature constitutes a violation of the property of P�WMP

exclusivity for p� Speci�cally� just before U � both p�a� and p�b� are true�

where a and b distinct�

A direct consequence of this categorization is that�

In any domain possessing P�WMP exclusivity for some proposition type

p� every fully bound descendant of a plan � which contains a P�WMP

violation of a p proposition will violate N�WMP�

CHAPTER �� PLANNER IMPLEMENTATION ��

This exclusivity condition is true for many predicates� In the robot example

above� hold is one such predicate� Moreover� in the Towers of Hanoi example to be

shown later� the predicates describing the location of individual object on�small�

on�medium� and on�big are all of this type since each object can only be in one

place at any moment in time�

P�WMP has the advantage of allowing successor pruning earlier in search than

N�WMP� In fact� entire subtrees that would have been pruned one successor at

a time by N�WMP are eliminated in one pruning by P�WMP� thus foregoing the

expansion of many fruitless search paths�

��������� Weak Monotonic Property Complexity In subsection ����� on

page
�� the complexity of determining the necessary truth of operator precondi�

tions via MTC in nonlinear plans is discussed� MTC determines whether or not an

establisher exists for the precondition� and then insures that no clobberers exist for

that establishment� Determining whether a N�WMP violation occurs requires ex�

amining all existing establishment relations Est�E�U� p�� and determining whether

these relations still hold� Speci�cally� for each establishment� for each operator

between E and U the e�ects must be checked to insure that p is neither necessarily

asserted nor necessarily denied� If there are k establishments� d operators between

E and U � and l e�ects for each operator� then the complexity of checking N�WMP

violations is O�k � d� l�� Determining whether a P�WMP violation is of the same

complexity� with the only di�erence being that the e�ects are checked to insure

that p is neither possibly established nor possibly denied�

CHAPTER �� PLANNER IMPLEMENTATION ��

������� Goal Ordering

An incomplete nonlinear plan which exists in the search space while seeking a

correct solution plan is incorrect if one or more of the operators in the plan have at

least one precondition which is not necessarily true in every completion of the plan�

We know that in order to �nd all of these unsatis�ed preconditions would require

time on an order of O�N��� however� in order to continue planning we need only

�nd one unsatis�ed precondition to repair at a time� a much cheaper requirement

in the average case� Although it is true that Chapman�s approach is complete no

matter which of these preconditions are selected� it is not at all obvious how to best

choose one which will help to limit the search for a solution�

It must be noted that planning with abstraction using criticalities inAbTweak

is essentially a method of ordering goals in the plan� The �rst goals selected and

solved involve those preconditions which have been deemed more abstract or gen�

eral� Within these goals at each level of abstraction� we also must select which

to solve �rst� This selection process determines completely the branching factor

at any given point� and the order in which these successors are generated has a

profound e�ect on any search with breadth��rst characteristics�

Certain orderings within a level can create many successors that are committed

to incorrect constant bindings� yet these successors may need to be explored with

the same preference as the single successor which is actually on the solution path�

Individual level goal ordering determines the performance of individual level plan�

ning search� and since poor individual level search performance can dominate the

overall search performance of AbTweak� poor goal ordering can essentially crip�

ple any goal�driven planner� Similarly� good goal ordering can drastically improve

search performance� even to the point where a non�abstract approach outperforms

CHAPTER �� PLANNER IMPLEMENTATION �

an abstract approach in a domain well�suited to abstraction�

While examining the behaviour of Tweak� an interesting factor was discovered

which explains some of the unexpected e	ciency observed for Tweak in this do�

main� A simple implementation of Tweak might provide goal selection by simply

repeatedly selecting the �rst discovered possibly false precondition� solving it as de�

scribed by MTC� and repeating this process until a solution is found� Speci�cally�

the implementation of Tweak presented in this thesis outperforms AbTweak in

the Towers of Hanoi problem�

This unintuitive result can be explained by the tendency of Tweak to select

goals such that subplans are created which satisfy the primary goals of a particular

problem individually� In this manner� Tweak plans are built in a manner that

exploits a belief that plans tend to possess independent� noninterfering subplans�

An example of this behaviour can be seen in a simple domain where a robot

can move blocks about in a set of rooms� Consider an example where there are

two blocks� Block�� and Block�� Each of these blocks can be picked up by the

robot via a PICKUP�block� operator� The robot can move between one of two

existing rooms via a GO�ROOM�from�room� to�room� operator� and can carry a

block between rooms via a CARRY�ROOM�block� from�room� to�room� operator�

Initially� the robot is in Room�� Block� is in Room�� and Block� is in Room�� A

simplifying assumption is that there is only one door� and a robot can always go

through this door� If the primary conjunctive goal consists of the propositions in

the set f InRoom�Block�� Room��� InRoom�Block�� Room�� g� then two possible

subplans can be built� one for each goal�

The �rst subplan might be built in the following manner�

�� The primary goal InRoom�Block�� Room�� can only be accomplished by one

CHAPTER �� PLANNER IMPLEMENTATION ��

operator� CARRY�ROOM�Block�� Room��� so a partial plan is built solving

InRoom�

�� The operator CARRY�ROOM�Block�� Room�� must have a precondition

Holding�Block�� that needs to be satis�ed� Only PICKUP�Block�� can satisfy

this goal� and so PICKUP�Block�� is added to precede CARRY�ROOM�

In a similarmanner� the second subplan satisfying the primary goal InRoom�Block��

Room�� would be built such that CARRY�ROOM�Block�� Room�� Room�� is

added �rst� and then the operator PICKUP�Block�� is added�

Tweak tends to solve conjunctive problems in the following fashion� First�

each primary goal is planned for completely� and only after all are complete is the

interaction between the plans looked at and resolved� In this example� the loca�

tion initially of the robot in Room� would require that the �rst subplan precede

the second subplan in order for a total plan to solve both primary goals� Further�

more� Tweak adds operators in a very linear fashion while building each subplan�

CARRY�ROOM was added to solve the condition InRoom� and then PICKUP was

added to solve a precondition of CARRY�ROOM� Operators chain together in this

fashion� where the most recently added operator in the plan is chosen to have a

precondition satis�ed next� This chaining action captures an implicit assumption

about planning� that operators recently added to a plan will not interfere with the

goal older operators added to the plan have accomplished� Many domains exhibit

this subgoal and operator independence� and so an exploitation of this indepen�

dence via careful subgoal selection proves pro�table� AbTweak is not capable of

chaining operator linearly� primarily because the operator set is partitioned across

the criticality levels� and di�erent operators are necessarily added to a plan at

di�erent hierarchical levels� As a result� Tweak can outperform AbTweak in

CHAPTER �� PLANNER IMPLEMENTATION ��

certain problem instances� An example where Tweak pro�tably selects the �rst

discovered precondition in the most recently added operator is shown in Figure �����

The very act of separating a problem into levels of abstraction can destroy the

ability of a planner to plan for all goals at a single level� and thus eliminate the

possibility of taking advantage of the right�to�left construction assumption and the

operator independence of the domain� Stated quite simply� some domains exhibit a

large degree of linearity across a single abstraction level� Domains such as Nilsson�s

Blocks World� where there is little di�erence in the di	culty of applying various

operators� it is not at all clear what makes one operator more abstract in any

real sense� Abstracting a domain such as this �arti�cially� tends to gain little from

abstraction� and in fact removes whatever advantage would be gained from selecting

operators that can �chain� naturally�

In an attempt to more fully understand this goal ordering phenomenon� we

de�ne two approaches for subgoal ordering� each applicable to some extent in both

abstract and non�abstract planning�

��������� Stack Goal Ordering In an attempt to more accurately specify a

goal ordering approach that tends to take advantage of the aforementioned subgoal

independence� we de�ne the Stack goal ordering method� This method essentially

attempts to solve the preconditions in the �newest�� or most recently added plan

operator �rst� This approach essentially places operators in a plan �stack�� where

the most recent addition sits on top� and the oldest addition on the bottom� In

simple terms� the Stack approach equates to not bothering to try and repair any

con
icts that may arise between subgoal solutions until the very end of the planning

process� basically assuming that any unsatis�ed preconditions of �older� operators

will go away as a result of the addition of future plan constraints� In the sense of

CHAPTER �� PLANNER IMPLEMENTATION ��

A

B

B A

Initial State Goal State

Handempty

OnTable(A)
OnTable(B)select #1

Goal
#1

PutDown(B)
OnTable(B)

Initial
Holding(B)

select #2

PutDown(B) GoalUnStack(B,C)
On(B,C)

Clear(B)

C

Initial

select #3

UnStack(B,C) PutDown(B) GoalInitial
Holding(B)

select #4

The Nilsson Blocks World operators tends to select goals that
 chain operators in a linear subgoal solution. The precondition
 set of each operator basically drives the next action selection,
 and since the operator set is small, selected actions work well.

OnTable(C)

On(B,C)
On(A,B)

C

UnStack(A,B)

Figure ����� Pro�table �rst goal selection in Tweak

CHAPTER �� PLANNER IMPLEMENTATION ��

repairing con
icts that appear in previously completed subplans� this approach is

very casual� An example of Stack approach is given in Figure �����

��������� Tree Goal Ordering In contrast to the casual approach of Stack� it

is possible to attempt to repair any con
icts that do arise in the existing operators

of the partial plan as soon as they are detected� In order to achieve this �repair� of

partial plans� we could implement operator goal selection as a queue� Oldest rather

than youngest operators are selected for goal achievement �rst� Unfortunately� this

method does not quite accomplish subplan repair� since operators added as �repair�

are very young� and so any con
icts in these operators would be postponed� If we

truly wanted an approach that �repaired� subplans� we would have to recognize

the �reason� each operator was added to a plan in some hierarchical fashion� For

example� operator A� and operator A� were added to establish preconditions of

operator B� while operator B was added to establish a precondition for operator C�

In this scenario� we would �rst check the operator B establishments for C� then the

A establishments for B� etc�

One such method of �repair� could be accomplished by selecting operators by

inorder traversing a carefully built tree of operators� Operators are added to a

tree as children of the operator they are establishing for� A traversal of such a

tree in a top�down manner would essentially equate to an attempt to maintain the

establishments already made earlier in the planning process� Operators added as

�repair� to existing subplans would be placed as children of the operator they �x�

This approach� named the Tree subgoal ordering method� tends to assume that

subplans achieving previous subgoals should be continually �repaired� as planning

progresses� and in fact should be completely satis�ed before new future goals are

solved� In this respect� the Tree method embodies a more protective or strict

CHAPTER �� PLANNER IMPLEMENTATION ��

attitude towards established goals� The Tree structure grows with operators added

as children of the operator they establish a proposition for originally� Search in the

tree for the next operator to check progresses Left�Right�Node� thus attempting �rst

to build a subplan for the top level subgoal in G �Goal�� then commencing a second

subgoal� but resolving any con
ict in the �rst �left most� subgoal as soon as it

occurs� An example of the Tree operator ordering approach is given in Figure ���
�

��������� Random Goal Ordering In order to justify any claim one would

like to make about either Stack or Tree goal ordering� it would be useful to see how

planning strategies would behave if this control level were removed entirely� If we

were to select these goals randomly and see a marked decrease in performance� it

would be much more clear that either Stack or Tree are reasonable�

The importance of subgoal selection is emphasized by several experiments we

performed utilizing random subgoal selection in place of either Stack or Treemethod�

ology� While Random is capable of reaching a solution in fewer expansions than

Stack or Tree cases� the e�ective removal of a goal ordering method preformed much

worse in the average case� In fact� random is capable of causing pathologically bad

goal selection� e�ectively outweighing any search bene�ts achieved through abstrac�

tion� thus backing up our previous claim that it is not clear which �if either� of the

two search control dimensions is more important to a certain planning problem�

There is much work left to be done in determining an optimal goal selection

strategy in nonlinear planning environments� and we have touched only brie
y on

two simple� opposing approaches for the purposes of comparison�

��������� Goal Ordering Summary In attempting to compare the perfor�

mance of the abstract planner AbTweak with the non�abstract planner Tweak�

CHAPTER �� PLANNER IMPLEMENTATION ��

I

G
a a

b
G

Plan Plan Tree

select

G
a

b

I

a G

A select

b

aa

b
G

c
I

d

G

A

B

b

aa

b
G

c
I

d

d

d

d

d

e

e

e

e

e

G

A

B

C

b

c

d
A

c
B

c
B

A

A

C

In the last plan, a new top level subgoal is started by C for e.
 Rather than pursue C preconditions like STACK would, TREE
 will now check ops B then A before continuing with C. All ops
 other than G must be checked before a new top goal starts.

Figure ���
� Tree goal ordering

CHAPTER �� PLANNER IMPLEMENTATION ��

we must realize that the comparison cannot be �fair� in that the very abstract na�

ture of AbTweak restricts its ability to fully plan �at the concrete level� for each

subplan� as Tweak is capable of� While this observation� coupled with Tweak�s

superior performance in some cases� tells us something about the nature of plans

in general� it does not allow us to fairly evaluate the utility of abstraction� In order

to restrict our ��eld of view� to abstraction� we must eliminate this implementa�

tional advantage of Tweak� One way of doing this is to randomize individual goal

selection for both Tweak and AbTweak� thus removing Tweak�s advantage�

Another �more e	cient� way is to give AbTweak a similar �
avor� of advantage�

In attempting the later� the Tree approach to goal ordering was born�

������� Operator Set Applicability based upon Primary E�ect

Some approaches to planning� such as shown in �Minton� ������ have attempted

to restrict the branching factor of plan successor creation by limiting the kinds of

operators that are allowed to establish certain goals via control rules� For example�

it may be the case in some domains that certain goals should only be accomplished

via sidee�ects from existing plan operators� and that never is it necessary to actually

add a new operator to the plan to accomplish these goals� Speci�cally� in the robot

domain� an operator like PUSH�OBJECT�THROUGH�DOOR might have several

e�ects such as changing the room that a given object is in� and as well� of changing

the room that the robot is in� If a problem in this domain had an unsatis�ed goal

such as InRoom�Robot�Room��� a possible new establishing operator like ROBOT�

GO�THROUGH�DOOR could be added to the plan� Potentially� PUSH�OBJECT�

THROUGH�DOOR could also be added as a new establisher since it too can assert

InRoom�Robot� However� this addition does not make intuitive sense if one assumes

that we only want to do as much work as necessary in order to accomplish the goals

CHAPTER �� PLANNER IMPLEMENTATION ��

given� A simple plan of getting to Room� should not also involve the unnecessary

manipulation of objects in the domain� We de�ne a domain rule in order to address

this issue such that encountering a particular goal does not result in the addition

of all possible establishers in the operator set of the domain� but rather only a

certain� prede�ned subset of these operators� Speci�cally� operators are determined

to have a primary e�ect� Operators are only added to a plan in order to satisfy a

precondition corresponding to the operator�s primary e�ect�

While this approach seems to make sense intuitively� and can certainly reduce

the overall branching factor of search� it must be used carefully� since it does risk

sacri�cing completeness of the planning search strategy in general� Consider the

following example in the robot domain with the additional restriction that the robot

may only enter a room once� If we had two goals� InRoom�Robot�Room��� InRoom�

Object�Box��� and we selected InRoom�Robot�Room�� as the �rst goal from which

to create successors� we might only add ROBOT�GO�THROUGH�DOOR to the

plan as establisher� From now on� every possible plan in the space is committed

to including this operator� Now� selecting the second goal InRoom�Object�Box��

leaves us with no existing establishers in the plan for it� and we must add a new op�

erator PUSH�OBJECT�THROUGH�DOOR� The problem is that operators cannot

be merged� and both operators cannot occur at the same time� Since only a single

goal is chosen as the branching point at any one successor generation� it must be

insured that� for the domain in which operator sets are limited in this way� that the

goal chosen would always preclude missing a solution� In this example� it would

have to be the case that the goal InRoom�Object�Box�� was always chosen over

InRoom�Robot�Room���

CHAPTER �� PLANNER IMPLEMENTATION ��

����� Search Across Abstract Search Levels

We are interested in �nding complete search strategies to coordinate planning at

di�erent levels of abstraction� This is a di	cult problem because we would like

AbTweak to be both complete� and more e	cient than planning without abstrac�

tion�

It must be noted that a simple�minded application of Tweak�s search strategy

at each level of hierarchy is not complete across di�erent levels� Tweak is only

semi�decidable in the sense that termination is not guaranteed if planning for a

given problem which does not have a solution� A particular abstract solution at

level k may not be re�nable to a solution at level k � �� As a result� an abstract

strategy that is committed to only an individual level�k solution may never �nd a

concrete level solution� even if the search within each level is complete�

AbTweak�s search strategy does not overcommit in this fashion� but rather

interleaves its e�ort between expanding downwards by re�ning abstract solutions

to lower level ones� and rightwards by �nding more solutions at each particular level

of abstraction� The degree in which a search strategy tends to favor either dimension

of growth is an important aspect governing search performance� In Figure ���� an

abstract search space is presented� In this �gure� notation ��� indicates the �rst

abstract solution at the highest level of abstraction� ��� the second� and so on�

Beneath ���� abstract solutions at level k�� are found� and beneath them� solutions

at level k��� Abstract search control strategies choose which abstract plans at which

abstract levels to prefer in terms of expansion within that levels� Preferring plans on

the left of the left�to�right generation of abstract plans equates to preferring simpler

abstract plans� Later abstract plans found at a level involve more operators� and are

considered more complex� Any abstract strategy must somehow assign �weights�

CHAPTER �� PLANNER IMPLEMENTATION �

to the solutions in the plan� thus determining how �depth��rst� a strategy is with

respect to commitment to simple� abstract plans� A breadth��rst strategy through

this space might ignore abstraction level for selection� and choose based upon plan

size irrespective of depth of a particular plan in the abstract space�

An obvious control strategy for search control is to use breadth��rst search� In

the search space� a state corresponds to a plan� During each iteration� a state �

is selected for correctness check using the Modal Truth Criterion� If � is correct

at level i� then all operators in � are replaced by their corresponding i � ��level

operators� Otherwise� the plan is modi�ed according to Tweak�s plan modi�cation

procedures� The process terminates when a correct plan is found at level��� The

cost of each state in the search tree is simply the total number of operators in the

plan�

One problem with the above strictly breadth��rst search strategy is that plans

at higher levels of abstraction are preferred equally with plans at lower abstraction

levels� Another way to organize search is to prefer the selection of a lower level

plan more than an abstract one� because a less abstract plan is potentially closer

to a concrete level solution� The reason for this is that if we simply want to

obtain any concrete level solution� it may be bene�cial to progress more deeply

in the abstract space beneath existing high abstract level solutions� rather than

continue to generate more high level possibilities� Towards a more �depth��rst� yet

complete strategy� we have devised a hybrid strategy which retains the completeness

of breadth��rst� and also has the advantage of preferring less abstract solutions in

a somewhat depth��rst manner� This is called the Left�Wedge strategy� Given

two states �� and �� in the search space� such that �� is at a more abstract level

than ��� it assigns a higher priority �or less cost� to �� than ��� such that for every

plan expansion to ��� several more expansions are done for ���

CHAPTER �� PLANNER IMPLEMENTATION ��

In general� the Left�Wedge abstract search strategy is expected to work well

if a base�level solution tends to have simple� short abstractions� One can view the

search tree as organized by ordering the shortest solutions on each level in a left�to�

right way� Then search basically proceeds along the left wedge of the search tree�

the tip of the wedge being deeper towards its left side�

������� Hierarchy selection

In planning with abstraction� the construction of the hierarchy itself is of great

importance� Certain methods have been suggested for the automatic generation

of hierarchies� as in �Knoblock� ������ From the results presented this thesis� the

e�ect of chosing various good and bad hierarchies can be observed� and a relationship

becomes evident of the relative bene�t of certain hierarchies and certain indicators

that arise from the planning process itself�

In general� a hierarchy that results in a low branching factor high up in the

search space will likely outperform one that has a high branching factor� How�

ever� hierarchy selection also a�ects the goal ordering process� and this can be

a non�trivial change� The relationship between hierarchy selection and planning

performance is not well understood in general� largely because the factors that con�

trol search performance are not well understood or even identi�ed completely� In

an attempt to learn something about the relationship between hierarchy selection

and planning performance� simple ways of preferring one hierarchy over another

are shown� based upon the behaviours of various planning control strategies and

properties�

��������� What is a good hierarchy� A good hierarchy is one that allows

the planning process to proceed in a top�down manner� from most abstract to

CHAPTER �� PLANNER IMPLEMENTATION ��

least� and results in as little destruction as possible of work done at high levels

when planning at low levels�

��������� How do we tell a good hierarchy when we see one� I present

evidence in Chapter � that suggests that the comparison of violations of the mono�

tonic properties while planning indicate the relative bene�t of a given hierarchy in a

particular domain� This seems to make sense� since violations indicate an attempt

to undo planning accomplished at high levels of abstraction by planning at lower

levels� The question of identifying �good� hierarchies is dealt with more completely

by Craig Knoblock in �Knoblock� ������

��� Aspects of Nonlinear Planning

����� Finite Constants

Chapman proves in his �First Undecidability Theorem� that planning is undecid�

able provided that problems have a potentially in�nite initial state� and that the

shortest plan to solve a problem is not arbitrarily large� One area Chapman points

out that is open to discussion is whether or not planning is undecidable in the case

where problems do not have a potentially in�nite initial state�

Clearly in any real world example� the initial state �speci�ed at least� must be

�nite� We know that extending Tweak�s representation �even for �nite states�

proves to be undecidable� but there still is an open question as to whether Tweak

itself is decidable in its described form for �nite states�

At �rst glance� it would seem a desirable quality to limit the number of constants

available in the planning process� Chapman points out that this limitation make

CHAPTER �� PLANNER IMPLEMENTATION ��

the constraint computations of Tweak NP�Complete �Chapman� ������ A simple

example will also show how this limitation causes Tweak�s truth criterion to fail�

Consider a domain where only two constants A� and B exist� Any unbound variable

in this domain can therefore refer only toA or B in any fully bound plan completion�

Consider the unconstrainted variables in the plan shown in Figure �����

Op-A
p(x, y)

Op-B
p(y, x)

Goal

Constants= { A, B }

Figure ����� Pathological Plan and Finite Constants

This plan does not syntactically necessarily assert either p�A�B� or p�B�A��

However� semantically� the plan requires that both p�A�B� and p�B�A� would hold

just after execution of the second operator as a result of the range and codesignation

constraints� In any plan completion� either variable x codesignates with A and y

with B� or vice versa� In the former case� the �rst operator asserts p�A�B� and the

second operator asserts p�B�A�� In the later case� the �rst operator asserts p�B�A��

and the second p�A�B�� So� if MTC in Tweak were asked to determine the truth

value of p�A�B� or p�B�A� just after the second operator� the best it would do is

return that they are both possibly true� while in fact they are both necessarily true�

If the planner had been given the conjunctive goal in this way� it would say the

plan did not necessarily solve both goals� when in fact it does�

It is tempting to attempt to modify the truth criterion to accommodate this

CHAPTER �� PLANNER IMPLEMENTATION ���

type of counter�example� While this may be possible for certain domains� it would

seem that this general problem is a result of the NP�Complete nature of constraint

satisfaction pointed to by Chapman�

����� Nonlinear Chaining of Operators

A nonlinear� least�commitment approach to planning results in a search space that

�keeps its options open�� In the Hanoi domain� planning to move a ring from one

peg to another can be simple or complex� For example� you can move the ring

directly from Peg� to Peg�� or you can move the ring from Peg� to some inter�

mediate peg� and then to Peg�� In fact� a true least�commitment approach will

leave the intermediary pegs unbound to any real peg if possible� given the domain�

The construction of a plan by a goal�driven planner results in plans that tend

to add partially bound operators� achieving these goals in a very inde�nite man�

ner� For example� a goal like On�Ring��Peg�� might be achieved by some operator

MOVE�ring�from�to�� where �ring� indicates which ring to move between �from�

and �to� locations� Achieving On�Ring��Peg�� in least�committed fashion places

no restrictions on �from� whatsoever� and so an operator like MOVE�Ring���from

�Peg�� might be added� where ��from� is left unbound� A precondition of this

MOVE operator would have to be On�Ring���from �� and this precondition can

be achieved by adding another Move operator to the plan� this time �from� some

other unspeci�ed location� to the ��from� precondition location� So� while one

plan successor might simply bind or constrain the unbound ��from� to some exist�

ing Peg value� new operators will also be added in other sibling successors� In this

fashion� the act of adding new operators with each successor branching point in the

search space �known as �chaining�� propagates into a very complex set of plans�

each with more and more unsatis�ed preconditions� and each potentially competing

CHAPTER �� PLANNER IMPLEMENTATION ���

with other plan successors with fewer operators� Since the goal selection criteria

does not di�er from one successor point to the next� it is possible that the selection

of an unbound proposition can result in the addition to the plan of an unbound

operator to solve this proposition� On the next successor generation� an identical

unbound proposition is selected in the new operator� thus causing the addition of

yet another identical operator� In this way� the planner �loops� and causes the

number of potential plans in the search space to grow dramatically� As the size of

the search space grows� so too does the required amount of e�ort that must be ex�

pended in �nding a solution� since the cost of exploring fruitless subtree increases�

Furthermore� these subtrees do not �go away�� but rather continue to propagate

themselves into more subtrees� with more and more �looped� operators�

Other planning paradigms also su�er from this operator set growth� however� in

nonlinear� least�commitment planning� the problem is intensi�ed� The reason for

the additional concern in our nonlinear planning paradigm is that many of these

identical �chained� operators will be only partially bound and partially ordered in

each plan� These two factors contribute to the total number of possible interferences

with existing goals� as explained earlier when discussing the e�ect of nonlinearity

on MTC� While this �looping� e�ect may indeed lead to a correct solution in some

domains� it is does not seem to be a common feature of many domains that chained

multiple identical operators are required in order to solve problems in these domains�

Additionally� successor generation for propositions will require more declobber�

ing as a result of the increased number of operators possibly between the establishing

operator and the established�for operator� that have e�ects which possibly deny the

established precondition� More declobbering actions result in a larger cartestian

product set of plan successors� e�ectively increasing the branching factor of the

search space for poor goal selections�

CHAPTER �� PLANNER IMPLEMENTATION ���

����� Loop Detection

As mentioned earlier� the A� graphsearch has been used as the planning search

�engine� of my Tweak and AbTweak implementations� A� is complete� and

allows for easy application of plan selection heuristics as a result of its method of

maintaining a list of plans on the �Open� frontier� These plans in the �Open�

list are essentially leaf nodes in the search space� and the search graph growth is

partially controlled by which leaf is selected to be expanded next� A� also provides

for the maintenance of a list of plans known as the �Closed� list� essentially all plans

that have been expanded during the search� Many domain�dependent versions of

A� take advantage of the �Open� and �Closed� lists by checking current successor

plans as they are expanded to see if they have been visited before� In this way�

duplicate search trees are guaranteed not to be explored during search�

The implementation of checking successor plans against visited plans is not a

simple matter in nonlinear planning� In order for this checking to occur� a determi�

nation must be made whether two directed graphs �each representing the operator

ordering of a plan� are in fact identical� This graph problem� known as the Mini�

mumEquivalent Graph problem� is known to be NP�complete �Horowitz and Sahni�

������

As a result of the complexity of this problem� no duplicate checking is performed

in AbTweak� However� it should be noted that� based upon observations of the

search graphs produced in planning� and upon the goal�driven nature of Tweak

and AbTweak duplicate search paths do not occur frequently�

Chapter �

Experimental Results

��� Introduction

The experimental results presented in this section can be categorized as follows�

�� Results which demonstrate the bene�t of planning with abstraction inAbTweak�

as opposed to planning without abstraction in Tweak�

�� Results which show how goal protection� implemented through the Monotonic

Property� can improve abstract planning performance�

�� Results which exhibit how a causal approach to planning in terms of con�

ict correction by goal ordering outperforms a more rigid approach� This

�casualness� is motivated by subgoal independence�

�� Results which lend support to the use of a new complete planning strategy

known as Left�Wedge over the use of breadth��rst in an abstract� nonlinear�

least�commitment planner�

���

CHAPTER �� EXPERIMENTAL RESULTS ���

The results will be presented graphically where possible� and tabularly else�

where� within this framework� The results presented are obtained from the Towers

of Hanoi domain with � disks� and with � disks� from the Blocks World domain as

de�ned by Nilsson �Nilsson� ������ and from a Robot and Box domain derived from

Sacerdoti �Sacerdoti� ������

��� Domains

����� Towers of Hanoi

The � disk Hanoi domain �Hanoi��� is formulated as follows� There are three pegs

and three disks� of di�erent sizes� A disk can only be placed on a peg� or a disk

bigger than itself� Initially� all disks are on Peg�� In the goal state� all three disks

are on Peg�� The predicates used in representing the domain are listed in Table ����

Predicate Meaning

Ispeg�x� x is a peg

OnBig�x� location of the big disk

OnMedium�x� location of the medium disk

OnSmall�x� location of the small disk

Table ���� Towers of Hanoi

This domain has been extensively tested in the past with linear� abstract plan�

ners �Knoblock� ������ Most researchers have based their tests on one obvious hier�

archy� crit�ISPEG� �� crit �OnBig� �� crit�OnMedium� �� crit�OnSmall�

��

CHAPTER �� EXPERIMENTAL RESULTS ���

In complex domains� and even in quite simple ones like Hanoi� it is not obvious

what abstraction hierarchy is the best� or even which hierarchies are better than

others� The more propositions in a domain� the more di	cult this question becomes

since there are many possible groupings of propositions at any abstraction level�

In order to fully test the utility of the monotonic property� and search strategy�

it would be necessary to test all possible permutations of the hierarchies� While

this is not possible because of the incredibly large number of combinations for even

simple domains� I have chosen hierarchies that I believe constitute a representative

cross�section of the hierarchies that exist�

In the Hanoi domain� for ease of exposition� we use ibms to represent the hierar�

chy of propositions described in Table ���� such that Ispeg has the highest criticality

�is the most abstract�� and OnSmall has the lowest �is the least abstract� � Simi�

larly� smbi represents a hierarchy with the reverse order of criticality assignments�

Table ��� details how the propositions are grouped and labeled by criticality for the

purposes of experimentation� Unless otherwise noted� a negation of a proposition

has the same criticality placement as the positive version of the proposition�

Group �i� Group �s� Group �m� Group �b�

Ispeg OnSmall OnMedium OnBig

Table ���� Tower of Hanoi Criticality Groupings

The operators for moving the disks can be represented as shown in Figure ����

CHAPTER �� EXPERIMENTAL RESULTS ��

MoveBig �x� y�

Preconditions fIspeg�x�� Ispeg�y��

�OnSmall�x���OnSmall�y��

�OnMedium�x���OnMedium�y��

OnBig�x�g

E�ects f�OnBig�x�� OnBig�y�g

MoveMedium �x� y�

Preconditions fIspeg�x�� Ispeg�y��

�OnSmall�x���OnSmall�y�� OnMedium�x�g

E�ects f�OnMedium�x�� OnMedium�y�g

MoveSmall �x� y�

Preconditions fIspeg�x�� Ispeg�y�� OnSmall�x�g

E�ects f�OnSmall�x�� OnSmall�y�g

Figure ���� Towers of Hanoi Operators

CHAPTER �� EXPERIMENTAL RESULTS ���

����� Nilsson�s Blocks World

The Nilsson�s Blocks World domain is formulated in the following manner� There is

a table with blocks on it� and a robot arm which can stack and unstack� pickup and

putdown these blocks� Each block may be either on the table� on another block�

or in the robot�s hand� The number of blocks �and their names� is speci�ed in the

initial state� and is not part of the domain de�nition� In the particular case we are

interested in� there are three blocks� A� B� and C� Initially� C is on A� and B is on the

table� The goal state has A on B� and B on C� while C is on the table� The predicates

used in representing this domain are listed in Table ����

Predicate Meaning

On�x y� Block x is on y

Clear�x� Block x has nothing on it

OnTable�x� Block x is on the Table

Holding�x� Robot is holding Block x

Handempty�� Robot has an empty hand

Table ���� Nilsson�s Blocks World

The hierarchies I have tested group Clear� OnTable� and Holding together� and

leave On and Handempty separate� Thus there are three sets of predicates� each of

which can have a particular criticality assignment� I test all
 possible criticality

combinations of these� Table ��� details how the propositions are grouped by crit�

icality for the purposes of experimentation� For ease of exposition� I will refer to

the �rst grouping as c� the second as o� and the third as h� In this way� a hierarchy

ordering the Clear� OnTable� Holding set as criticality above On above Handempty

would be referred to as coh�

CHAPTER �� EXPERIMENTAL RESULTS ���

Group �c� Group �o� Group �h�

Clear On Handempty

OnTable

Holding

Table ���� Nilsson Domain Criticality Groupings

The operator set used to move the blocks contains the four operators Stack�

UnStack� Pickup� and PutDown� as detailed in Figure ����

����� Sacerdoti�s Robot World

Results are presented in �Yang et al�� ����� for a more complex domain� a mod�

i�ed version of a domain described by Sacerdoti in �Sacerdoti� ������ and again

in �Knoblock� ������ I give a brief description of this domain here in order to

demonstrate how search strategies perform in more complex domains�

In Sacerdoti�s robot and box domain� there are a number of rooms� a robot

that can travel between these rooms� and a number of boxes located at discrete

locations in various rooms� The rooms are connected by doors that can be opened

or closed� The robot can carry certain blocks� push certain blocks� open and close

doors� and move between rooms� This domain is the most complex of the three on

which AbTweak has been tested on� and in fact has a much larger operator set

than the other domains�

The large set of predicates used in this domain are shown in the Table ���� A

sample of the operator set is shown in Figure ����

The propositions which de�ne the domain objects or characteristics �such as

CHAPTER �� EXPERIMENTAL RESULTS ���

Pickup �x�

Preconditions fOnTable�x�� Clear�x��

Handempty��g

E�ects fHolding�x���OnTable�x�

�Clear�x���Handempty��g

Putdown �x�

Preconditions fHolding�x�g

E�ects fOnTable�x�� Clear�x�

Handempy����Holding�x�g

Stack �x y�

Preconditions fHolding�x�� Clear�x�g

E�ects fOn�xy�� Clear�x��

Handempty����Holding�x��

�Clear�y�g

UnStack �x y�

Preconditions fOn�xy�� Clear�x��

Handempty��g

E�ects fClear�y���Clear�x��

�Handempty���Holding�x�� g

�On�xy�g

Figure ���� Nilsson�s Blocks World Operators

CHAPTER �� EXPERIMENTAL RESULTS ���

Predicate Meaning

Armempty�� is the robot holding something�

Holding�object� object currently in the robot arm

Open�door� is the door open�

Robot�At�location� location the robot is at

Object�At�object� location� location an object is at

Robot�Inroom�room� room the robot is in

Object�Inroom�object� room� room the object is in

Is�Location�location� this entity is of type �location�

Location�Inroom�location� room� this location is in which room

Is�Door�door�room��room��r��loc�r��loc� this door is between what rooms and locs�

Pushable�object� this object can be pushed

Carriable�object� this object can be carried

Table ���� Robot Domain

CHAPTER �� EXPERIMENTAL RESULTS ���

IsPeg in Hanoi�� and which cannot be satis�ed by operator addition are grouped

into in the same criticality category� These propositions which be seen as the

most �di	cult� to achieve in this domain since they are only achievable through

one operator� the initial state operator� Moving the robot or objects into rooms

is more di	cult than simply moving within a room� since the former requires a

more complex operator subset than the later� Accordingly� achieving goals such as

holding an object� or opening a door require a quite simple operator subset to be

added to the plan�

Some examples of operators that are used to achieve the aforementioned goal

propositions are shown in Figure ��� on page ����

In addition to the operators shown in Figure ���� there are also � others�

Pickup�Object�Putdown�Object�Goto�Room�Location�Carry�Object�Push�

Thru�Door� Carry�Thru�Door� Open�Door� and Close�Door�

��� Explanation of the Figures

The experimental results can be divided into three main categories�

�� Results which demonstrate the usefulness of monotonic properties in restrict�

ing search�

�� Results which identify the bene�t of applying the Left�Wedge search strat�

egy in place of breadth��rst�

�� Results which show how the application of certain goal ordering heuristics can

dramatically improve search performance by taking advantage of the tendency

of many domains to exhibit subgoal independence�

CHAPTER �� EXPERIMENTAL RESULTS ���

Push�Object �object� room� fromLoc� toLoc�

Preconditions fPushable�object�

LocationInRoom�toLoc� room�

LocationInRoom�fromLoc� room�

ObjectInRoom�object� room�

RobotInRoom�room�

ObjectAt�object� fromLoc�

RobotAt�fromLoc�g

E�ects f�RobotAt�fromLoc�

�ObjectAt�object� fromLoc�

RobotAt�toLoc�

ObjectAt�object� toLoc�g

Go�Thru�Door �door� fromRoom� toRoom� fromLoc� toLoc�

Preconditions fIsDoor�door� fromRoom� toRoom� fromLoc� toLoc��

RobotInRoom�fromRoom��

RobotAt�fromLoc��

Open�door��

Armempty��g

E�ects f�RobotAt�fromLoc�

�RobotInRoom�fromRoom��

RobotAt�toLoc��

RobotInRoom�toRoom�g

Figure ���� Sacerdoti�s �modi�ed� Blocks World sample operators

CHAPTER �� EXPERIMENTAL RESULTS ���

Results detailing the �rst and second categories in the Towers of Hanoi domain

are presented in Figures ��� through ����� This set of tests assumes that the

assignment of criticalities for negative and positive values of a given proposition is

the same� Figures ��� to ��� and ���� to ���� show the number of state expansions

required byAbTweak to �nd a solution to Hanoi�� as a function of the abstraction

hierarchy used� Figures ��� to ��� show the number of expansions required by

breadth��rst search ��� without any monotonic property� ��� with P�WMP� and

��� with N�WMP� Figures ���� to ���� contrast breadth��rst and Left�Wedge

strategies without using monotonic properties� Figure ��� shows the number of

nodes expanded as a function of the number of monotonic violations� for both N�

WMP and P�WMP� Figure ��� compares breadth��rst and Left�Wedge with and

without monotonic properties�

Figures ���
 through ���� show results obtained in the Hanoi domain with a

slightly di�erent criticality assumption� These �gures detail a set of tests which

assign the negative versions of propositions a higher �more abstract� criticality

than the positive version� Figure ���
� like Figures ��� through ���� shows how

application of the monotonic property a�ects the number of expansions required

to solve Hanoi�� while varying the criticality of the IsPeg proposition� Figure ���

also shows search performance for these problems using breadth��rst and Left�

Wedge strategies� similar to Figures ���� through ����� Figure ���� describes

the expansions for various hierarchies� keeping IsPeg �xed at one criticality� as is

the case in Figure ���� Figure ����� like Figure ���� shows the number of nodes

expanded as a function of the number of monotonic violations for P�WMP�

Figures ���� and ���� detail Tweak and AbTweak results in Nilsson�s domain

when using Stack and Tree goal ordering� Figure ���� shows the results of applying

the two goal ordering heuristics for problem instances with solutions of various sizes�

CHAPTER �� EXPERIMENTAL RESULTS ���

Figure ���� describes the result of applying the monotonic property to abstract

search for the Sussman Anomaly problem�

��� The Utility of The Monotonic Properties

We can summarize our experimental results supporting the application of the mono�

tonic property in abstract planning as follows�

�� Using the monotonic property to constrain search is almost always advanta�

geous� for hierarchies that are intuitively good�

An intuitively good hierarchy solves a di	cult problem� such as OnBig� �rst�

and the easy parts like OnSmall the last� The better performance can be

observed from Figures ��� to ���� For example� in Figure ���� breadth��rst

search using either N�WMP or P�WMP outperforms one without MP pruning

in �ve of six cases� �ibms ibsm imbs imsb isbm� excluding ismb�� This can

be explained in two ways� First� using the MP reduces the branching factor

of search� Second� when pruning is done� it is unlikely that a branch leading

to a solution will be cut o� during breadth��rst search� The reason for the

second justi�cation is that for most problems� it is more straightforward to

�nd a base�level solution from an abstract one� without violating any abstract

causal relations�

�� Breadth��rst search is more e	cient with P�WMP than with N�WMP �see

Figures ��� to �����

We anticipated that P�WMP would perform much better than N�WMP� be�

cause the former cuts a subtree of the search space o� much earlier than the

CHAPTER �� EXPERIMENTAL RESULTS ���

latter� However� the experiments show that although there is some di�erence

between the two� the improvement is not as great as we expected�

�� Without using MP� the criticality assigned to object�type predicates such

as IsPeg is crucial in search e	ciency �see Figures ��� to ���� and ���
��

Overall� it seems better to place these types of predicates at the highest level

of abstraction� However� MP tends to stabilize the e�ect of criticalities on

search �see Figures ��� to �����

�� We can see a general rule emerging from the results in Figure ��� and Fig�

ure ����� that the fewer the number of monotonic violations� the better the

performance in search with an abstraction hierarchy� In a sense� MP measures

the number of attempts we make at a particular level of abstraction to undo

the work done at the previous level� Exceptions to this general rule can occur

when operators added into a plan have bene�cial sidee�ects� or in instances

where a simple solution can be found more quickly generating a successor

which violates the monotonic property�

�� Figure ��� summarizes the results of tests with and without the use of the

MP� The �rst column lists six hierarchies� and the rest the number of states

expanded under a particular search strategy�

From this �gure� it is clear that ibms� ibsm and imbs are three hierarchies

that demonstrate better performances than the rest� This phenomenon can

be easily explained by the fact that� for example� in ibms� the abstract solu�

tion at OnBig level corresponds the �rst abstract solution� However� in ismb�

the abstract solution re�neable� at the OnSmall level� to the base�level one ac�

tually corresponds to the fourth alternative solution at that level� As a result�

the search space with ibms has a much smaller branching factor than ismb�

CHAPTER �� EXPERIMENTAL RESULTS ��

Thus� intuitively� ibms is a good abstraction hierarchy� Similarly� hierarchies

ibsm and imbs are close to be good ones� On the other hand� the other three

are far from optimal� This is because they all solve easier problems �involving

the placement of the small disk� �rst� and solve the harder ones �involving

the placement of medium or big disks� the last�

The following conclusions can be drawn from Figure ����

�a� For good abstraction hierarchies� using the MP is clearly better than

without using the MP on average cases� For example� the average num�

ber of expansions using ibms� ibsm� and imbs under breadth��rst and

P�WMP is ���� The average for these three hierarchies under breadth�

�rst� and without using MP is ����

�b� For good abstraction hierarchies� using Left�Wedge strategy and P�

WMP is an overall winner� For example�Left�Wedge plus P�WMP for

the �rst three hierarchies gives an average of ��� number of expansions�

as opposed to ��� for breadth��rst�

�c� However� for bad hierarchies� the use of MP with either breadth��rst

search or Left�Wedge dramatically decreases search e	ciency� For ex�

ample� for ismb� either breadth��rst or Left�Wedge plus MP couldn�t

even �nish in
��� expansions�

Thus� goal�protection in abstract planning improves e	ciency only when the

hierarchy used is intuitively good�

CHAPTER �� EXPERIMENTAL RESULTS ���

��� Left Wedge Re�nement Utility

We can summarize our experimental results supporting the use of our Left�

Wedge search strategy in abstract planning as follows�

�� The results of planning using the Left�Wedge approach �Figures ��� to

����� Figure ���
 and Figure ����� indicate quite a dramatic improvement

over breadth��rst for certain criticality assignments� In Figure ���� this can be

observed under Left�Wedge without using MP for hierarchies isbm� ismb�

ibms and ibsm� However� no improvement� or even a decrease in performance

is seen for certain other criticality assignments� notably imbs and imsb�

It is also interesting to note that� for hierarchies �isbm and ismb� Figures ����

and ����� that perform very poorly with breadth��rst� the Left�Wedge

strategy achieves good results�

�� Left�Wedge tends to stabilize the e�ect of criticalities on search �see Fig�

ures ����� ����� ���� and ���
�� Although this e�ect can be easily explained

for intuitively good hierarchies �i�e�� bms�� it is still not clear why the stability

exists in bad hierarchies such as sbm and smb�

��� Goal Ordering Results

As explained earlier� the manner in which goals are selected when generating plan

successors can dramatically a�ect search performance� Two di�erent approaches

have been tested in order to demonstrate this behaviour� The primary goal of

this experimentation is to discover a reasonable� e	cient� and justi�able domain�

independent approach to goal ordering�

CHAPTER �� EXPERIMENTAL RESULTS ���

The two approaches are known as Stack and Tree� Stack and Tree represent

two attempts at a coherent strategy for selection� It is important to note that the

�best� goal to select is not something that can be exactly computed� at any cost�

since the factors that would determine the �best� selection are not well known�

Some of the factors in goal selection that have been observed to a�ect planning

search performance include�

�� Selection of a particular goal determines the branching factor at a particular

point in the search space� since di�erent goals are establishable di�erent ways�

depending on the domain de�nition �new operator additions�� and the current

plan �existing operator establishments��

�� The degree of commitment to certain codesignations that results from a cer�

tain goal selection a�ects future planning� Non�commitment can result in

larger branching factors in future goal selections as a result of more possible

establishers existing in the plan for unbound propositions than for fully bound

ones�

The experimental results for Stack and Tree ordering show the following�

�� Figure ���� demonstrates the utility of Stack and Tree for a set of problems in

the Nilsson Blocks World domain� As the complexity of the solution increases�

the number of expansions increases dramatically when using the Tree goal

ordering method�

The Stack ordering approach experiences a much slower growth curve as com�

plexity increased� This result can be explained by the ability of Stack to take

advantage of the level of independence each subgoal in this domain has over

previously satis�ed subgoals� While Tree pays close attention to �detailed�

CHAPTER �� EXPERIMENTAL RESULTS ���

interactions by constantly repairing any potential con
icts with previously es�

tablished subgoals� Stack makes the assumption that these con
icts will �go

away� on their own accord as a result of future planning� Subsequently� Stack

causes operators to be added to a plan in a very �linear� manner� where some

operator A is added to solve a precondition of the goal state� other precondi�

tions of the goal state are ignored while the �rst precondition of A is selected

and satis�ed by a new operator B�etc� This �chaining� of operator addition

allows a plan to grow quickly� and if sidee�ect establishments are rare� Stack

works well�

�� Stack has more of an advantage over Tree for problems solved by Tweak

than by AbTweak�

Figure ���� shows �for solutions of the Sussman Anomaly� that inAbTweak�

Stack outperforms Tree ordering� However� the di�erence seems to be only

a constant factor� rather than the dramatic di�erence for Tweak seen in

Figure����� This result can be explained in at least one way� If we consider

the di�erence between abstract planning and non�abstract planning� we see

that Tweak performs all of its planning at a single level� Each operator in

the plan essentially exists at the lowest level of abstraction� AbTweak plans

at various levels� creating di�erent portions of the eventual concrete plan

at di�erent abstract levels� As a result of this �splintering� of the creation

of a plan� AbTweak cannot always add operators in the �chaining� fash�

ion that bene�ts Tweak with Stack goal ordering� Essentially� AbTweak#s

abstraction�based approach is diametrically opposed to the �linear� goal ad�

dition of Tree in Tweak� and Tree in AbTweak only performs well at each

level� not across the whole planning process�

CHAPTER �� EXPERIMENTAL RESULTS ���

�� Experiments with random goal selection show that either Tree or Stack are

reasonable in that they tend to give solutions within a relatively stable number

of expansions�

It has been observed that search performance with random goal selection is

very unstable in that performance for simple problems can be very good or

extremely bad� Solutions to simple problems are found more e	ciently than

Stack or Tree in only a small percentage of test cases� These simple problems

have only a few goal selections required in the entire planning process� and few

con
icts at any point from which to chose a goal� Solutions to more complex

problems �such as the Sussman Anomaly� do not seem to be solvable in a

reasonable amount of expansions at all� It would appear that as far as goal

selection is concerned� no strategy is a bad strategy� These results can be

partially explained by the fact that repeated selections of goals with many

unbound propositions causes the addition to a plan of more operators that

are largely unbound� and this addition increases the number of con
icts in

a plan that are themselves largely unbound� and hence the future branching

factor of search�

��	 Comparing Tweak and AbTweak

In order to more fully understand abstraction by precondition elimination as im�

plemented in AbTweak� it is important to compare abstract search and the non�

abstract search of Tweak� Some experimental results indicate that abstraction as

implemented in AbTweak is not always superior to Tweak�

The following results have been observed in experiments�

CHAPTER �� EXPERIMENTAL RESULTS ���

�� Tweak expanded ��� nodes when solving the Hanoi�� problem� whileAbTweak

without application of the monotonic property performs worse� For example�

when using hierarchy ibms� AbTweak expanded ��� nodes�

�� The addition of P�WMP to AbTweak while using the hierarchy imbs results

in only ��� node expansions� more than twice as e	cient as Tweak�

�� When compared with AbTweak using Left�Wedge the di�erence is more

dramatic� With good hierarchies� e�g�� ibms� the number of nodes expanded

is only ��� more than six times more e	cient than Tweak�

�� When taking all �� hierarchical combinations of the IsPeg� OnBig� OnSmall�

and OnMedium predicates in the Hanoi domain� the Left�Wedge hierar�

chy alone performed best in �� of the hierarchies� AbTweak with P�WMP

performed best in ��� and AbTweak alone in none� With these combina�

tions� Left�Wedge was worst in � cases� AbTweak with P�WMP in �� and

AbTweak alone in ���

�� �� hierarchical combinations were tested separating the negative and positive

versions of the On predicates in Hanoi� In these cases� Left�Wedge per�

formed best in � cases� AbTweak with P�WMP best in �� and AbTweak

alone in �� With these combinations� Left�Wedge was worst in � case�

AbTweak with P�WMP in none� and AbTweak alone in ��

We have seen quite clearly in all of our results that abstract planning does not

always outperform non�abstract planning� Hierarchy selection is critical to abstract

planning� and the best hierarchy is not always easy to predict� At least one simple

and e	cient goal selection method seems to better suit non�abstract planning� and

in fact constitutes one explanation of the relatively �good� behaviour of Tweak�

CHAPTER �� EXPERIMENTAL RESULTS ���

Nonetheless� abstract planning allows for the use of certain properties such as the

monotonic property� and search strategies such as Left�Wedge which give the

abstract approach of AbTweak the capability to dramatically outperform the

non�abstract approach of Tweak�

��
 Graphical Results

These �gures refer to experiments performed using the Towers of Hanoi domain for

three pegs�

ibms ibsm imbs imsb isbm ismb

0

4000

0

500

1000

1500

2000

2500

3000

3500

4000

HIERARCHY USED

N
O
D
E
S

E
X
P
A
N
D
E
D

A

A

A

A

A

A

P
P

P

P
P

P

N

N

N

N

N

N

...
...

...
.....................

...
...

....
...

...
...

...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

A A AbTweak/BF without MP
P P AbTweak/BF with P-WMP
N...........N AbTweak/BF with N-WMP

Legend:

ibms bims bmis bmsi

0

4000

0

500

1000

1500

2000

2500

3000

3500

4000

HIERARCHY USED

N
O
D
E
S

E
X
P
A
N
D
E
D

A
A

A
A

P
P

P
P

N
N

N
N

.............
....

...
...

...
...

...
.....

..........
..

A A AbTweak/BF without MP
P P AbTweak/BF with P-WMP
N...........N AbTweak/BF with N-WMP

Legend:

Figure ���� Expansions� vary hierarchy Figure ���� BMS expansions� vary IsPeg

Figures ���� and ���� refer to experiments performed using the Nilsson Blocks

World domain�

Figures ���
� ���� and ���� refer to experiments performed using the Towers of

Hanoi domain with � pegs� assigning separate criticality values for the negative and

CHAPTER �� EXPERIMENTAL RESULTS ���

imbs mibs mbis mbsi

0

4000

0

500

1000

1500

2000

2500

3000

3500

4000

HIERARCHY USED

N
O
D
E
S

E
X
P
A
N
D
E
D

A
A

A A

P
P P P

N
N N N

.............
.............................

A A AbTweak/BF without MP
P P AbTweak/BF with P-WMP
N...........N AbTweak/BF with N-WMP

Legend:

isbm sibm sbim sbmi

0

4000

0

500

1000

1500

2000

2500

3000

3500

4000

HIERARCHY USED

N
O
D
E
S

E
X
P
A
N
D
E
D

A
A

A

A

P

P
P

P

N

N
N

N

.....................................
.......

A A AbTweak/BF without MP
P P AbTweak/BF with P-WMP
N...........N AbTweak/BF with N-WMP

Legend:

Figure ��
� MBS expansions� vary IsPeg Figure ���� SBM expansions� vary Ispeg

0 14000 500 1000

0

1400

0

500

1000

MONOTONIC VIOLATIONS

N
O
D
E
S

E
X
P
A
N
D
E
D

1

2

3

3

4
4

5

5

6 6

x

x

x

x

x

x

o

o

o

o

o

o

....................
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...............

....
....

....
....

....
....

...
...

...
...

...
...

...
...

...
...

...
...

...

x x AbTweak/BF with N-WMP
o...........o AbTweak/BF with P-WMP

Legend:

Figure ���� BF Expansions � ��IBMS� ��IMBS� ��IBSM� ��IMSB� ��ISBM�
�ISMB

CHAPTER �� EXPERIMENTAL RESULTS ���

Breadth Breadth Left-Wedge Left-Wedge
P-WMSP P-WMSP

IBMS 471 471 57 57

IBSM 1112 729 828 531

IMBS 550 149 1009 78

IMSB 918 636 5170 2672

ISBM 1771 904 168 5232

ISMB 3142 >6000 963 >6000

Figure ���� Summary of BF and LW expansions

ibms bims bmis bmsi

0

5500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

HIERARCHY USED

N
O
D
E
S

E
X
P
A
N
D
E
D

x x

x
x

o o o
o

x x AbTweak/Breadth-First
o o AbTweak/Left-Wedge

Legend:

ibsm bism bsim bsmi

0

5500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

HIERARCHY USED

N
O
D
E
S

E
X
P
A
N
D
E
D

x x

x
x

o o

o

o

x x AbTweak/Breadth-First
o o AbTweak/Left-Wedge

Legend:

Figure ����� BMS expansions� BF�LW Figure ����� BSM expansions� BF�LW

CHAPTER �� EXPERIMENTAL RESULTS ���

isbm sibm sbim sbmi

0

5500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

HIERARCHY USED

N
O
D
E
S

E
X
P
A
N
D
E
D

x
x

x

x

o o o o

x x AbTweak/Breadth-First
o o AbTweak/Left-Wedge

Legend:

ismb simb smib smbi

0

5500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

HIERARCHY USED

N
O
D
E
S

E
X
P
A
N
D
E
D

x x

x

x

o o o

o

x x AbTweak/Breadth-First
o o AbTweak/Left-Wedge

Legend:

Figure ����� SBM expansions� BF� LW Figure ����� SMB expansions� BF� LW

1 2 3 4 5 6

0

250

0

50

100

150

200

250

NUMBER OF OPERATORS

A
V
G

E
X
P
A
N
S
I
O
N
S

T T
T

T

T

T

S S
S S

S

S

T T Tweak with Tree goal ordering
S S Tweak with Stack goal ordering

Legend:

och ohc hoc hco cho coh

0

100

0

10

20

30

40

50

60

70

80

90

100

HIERARCHY USED

N
O
D
E
S

E
X
P
A
N
D
E
D

A A
A

A
A A

P P
P

P P P

T T

T
T

T T

...
...
..
...
...
...
....

......
......

....
......

A A AbTweak with Stack goal ordering
P P AbTweak/BF with P-WMP & Stack goal ordering
T...........T AbTweak/BF (all) & Tree goal ordering

Legend:

Figure ����� Tweak goal ordering Figure ����� AbTweak� vary hierarchy

CHAPTER �� EXPERIMENTAL RESULTS ��

positive versions of propositions� References to criticality orderings in Figures ���

through ���� are detailed in Table ��
�

Criticality Ordering Label

IB�MM�SS I�� O�

BI�MM�SS I�

B�MIM�SS I�

B�MMI�SS I�

B�MM�SIS I�

B�MM�SSI I

IB�SS�MM O�

I�MMB�SS O�

I�MM�SSB O�

I�SSB�MM O�

I�SS�MMB O

Table ��
� Hanoi Domain� Positive� Negative Criticality Labels

CHAPTER �� EXPERIMENTAL RESULTS ���

I1 I2 I3 I4 I5 I6

0

3500

0

500

1000

1500

2000

2500

3000

3500

HIERARCHY USED

N
O
D
E
S

E
X
P
A
N
D
E
D

A
A

A

A

A

A

P
P

P

P

P
P

L L L L

L

L

....................
...

...
....

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

A A AbTweak/BF without MP
P P AbTweak/BF with P-WMP
L...........L AbTweak/Left-Wedge

Legend:

O1 O2 O3 O4 O5 O6

0

3500

0

500

1000

1500

2000

2500

3000

3500

HIERARCHY USED

N
O
D
E
S

E
X
P
A
N
D
E
D

A

A

A

A

A

A

P P
P

P

P

P

L

L

L

L

L

L

...
...
...
...
...
...................

..
..
..
..
..
..
..
..
..
..
..
..
........................

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

A A AbTweak/BF
P P AbTweak/BF with P-WMP
L...........L AbTweak/Left-Wedge

Legend:

Figure ���
� Expansions� vary IsPeg Figure ����� Expansions� vary hierarchy

0 35000 500 1000 1500 2000 2500 3000 3500

0

3500

0

500

1000

1500

2000

2500

3000

3500

MONOTONIC VIOLATIONS

N
O
D
E
S

E
X
P
A
N
D
E
D

PPP
P

P

P

P P AbTweak/BF, with P-WMP; O1-O6

Legend:

Figure ����� BF Expansions � Violations� varying hierarchy

Chapter �

Summary

��� Conclusions from Experiments

The experiences and lessons learned from our experiments can be summarized as

follows�

�� The application of the monotonic property is a form of goal protection in

abstract planning� However� if one protects too much� as in the case of SMP�

completeness is not preserved� The use of the other versions of the WMP �

including both P�WMP and N�WMP� in abstract planning with good hierar�

chies and using a breadth��rst search strategy� tend to outperform breadth�

�rst without the application of MP� This is true for most criticality assign�

ments� with only � exceptions out of �� tests� Furthermore� with a slightly

domain�dependent implementation of WMP� i�e� P�WMP� AbTweak always

outperforms the domain�independent version of WMP� i�e� N�WMP�

�� When abstract planning takes on a depth��rst
avor� as seen in the Left�

Wedge strategy� the application of MP is useful only when utilizing good ab�

���

CHAPTER �� SUMMARY ���

straction hierarchies� On the other hand� with bad hierarchies� Left�Wedge

searches more than with a breadth��rst strategy�

�� The number of monotonic violations is an indication of the relative goodness

of a hierarchy� A hierarchy is generally indicated to be better in terms of

predicted search performance if it demonstrates fewer monotonic violations

when planning under a complete search strategy�

�� Taking a range of hierarchies into account� Left�Wedge performs best the

most often of all strategies ����� but also performed worst quite often ����

AbTweak with P�WMP performed best next most often ��
�� and worst

only ���� AbTweak alone performed best in only ��� case� while performing

worst in ����� It would appear that Left�Wedge is potentially the most

e	cient� but is unstable depending upon hierarchy� AbTweak with P�WMP

performs best overall almost as often as Left�Wedge and is extremely stable

over various hierarchies�

�� A goal ordering approach in non�abstract planning which tends to be casual

in terms of protection of existing plan establishments tends to outperform

approaches which rigidly try to repair existing establishments�

� In AbTweak� the advantage of a �casual� goal ordering approach is largely

restricted to individual abstraction layers� and in fact is not as pronounced

as for non�abstract planning�

�� Non�abstract planning is not always outperformed by abstract planning� How�

ever� the use of abstraction allows for the application of certain properties

which restrict the possible search space� and of certain search strategies which

work well with abstraction for well understood hierarchies�

CHAPTER �� SUMMARY ���

AbTweak represents an approach to classical planning that demonstrates def�

inite performance improvement over Tweak� Application of the Monotonic Prop�

erty when planning with AbTweak further improved performance� A simple

search strategy that attempts to take advantage of the nature of hierarchical plans

to some extent dramatically outperforms a traditional breadth��rst approach� All

of these improvements represent domain�independent heuristics for improving the

performance of nonlinear� conjunctive goal planning� Future insights into the na�

ture of plans themselves� planning hierarchies� plan construction� and constraint

maintenance will certainly suggest further heuristics which can improve planning

performance even further� While the application of new and improved heuristics

may not change the fact that planning itself is undecidable� they may yet provide

the framework for a classical planning system� e	cient and predictable enough for

real�world problems in a variety of domains�

��� Future Work

�� Control Heuristics

Criticality assignments to precondition literals represents one type of goal or�

dering heuristic for nonlinear planning known as abstraction� Experiments

show that other factors also a�ect planning performance� such as the selec�

tion of preconditions within each layer of abstraction� While the results of

application of each of these heuristics have been examined experimentally�

a formal explanation of the relative utility of each approach has not been

given� Further investigation into de�ning hierarchies for nonlinear planners�

and for justifying various goal selection strategies would add to the general

understanding of nonlinear planning search control�

CHAPTER �� SUMMARY ���

�� Extended Search Control Strategies

WhileAbTweak as described in this paper represents one visualization of an

abstract� nonlinear planning control strategy� others surely exist� AbTweak

plans in two layers simultaneously in its search for a solution plan� the abstract

search control layer which determines which abstract solution to explore� and

the individual layer� which determines how to search for more concrete so�

lutions under a given abstract solution� Since AbTweak is only partially

committed to a given abstract solution� and is in fact expanding many ab�

stract solution simultaneously� a more parallel search strategy is suggested�

A parallel search beneath multiple abstract solutions will not decrease the

number of node expansions required to �nd a goal� however� the overall time

could potentially be reduced�

�� �Soup� approach

One simple approach to improving search performance� suggested by Qiang

Yang� is to look at all of the goals that need to be satis�ed at one time� create

a set of plans such that all combinations of operators that can satisfy these

goals are considered� These operators are added with no ordering constraints

with respect to one another� and once added� search progresses as before�

with successors generated as a result of declobbering� except new operators

are not added for the goals that motivated the �soup�� While this approach

bene�ts in reducing the depth of a potential solution in the search space by

adding more than one operator in a step� the cost in terms of potential plan

con
icts is likely to be high�

�� Explanation Closure

CHAPTER �� SUMMARY ���

The idea of Explanation Closure �EC� �Schubert� in press� is basically a re�

�nement of the �Soup� approach� where the operators added are �motivated�

in terms of the initial set of problem goals� In addition� the order of the ini�

tial operators is constrained more fully than is the case with the �Soup�

approach� A certain amount of inference is performed on the operators� thus

driving only �sensible� orderings� This method has the potential to greatly

improve search performance� once again by avoiding much of the search space

composed of �building� the plan via operator addition� however� the exact

cost of performing this explanation inferencing is unclear�

�� Plan Reuse via Macro Operators

Once a plan has been successfully built in any domain� the plan itself can be

viewed as a macro�operator which essentially changes the state of the domain

from the initial domain conditions �macro�operator preconditions� to the goal

conditions �macro�operator e�ects�� Others have investigated the application

of macro�operators �Fikes et al�� ����� and plan�reuse �Kambhampati� �����

for other forms of planners� The addition of macro�operators to the planner�s

operator library can potentially reduce subsequent search for similar or even

identical problems� For example� in the Tower of Hanoi domain� progres�

sively more di	cult hanoi problems cause search using a single operator set

to grow very fast� In fact� while a solution for � and � rings may be found

quite e	ciently� a solution for � or more rings can not be found in the space

limitations of my own implementation� However� if a solution for the � ring

problem is made into a macro�operator� the �improved� planner can solve the

� ring problem with the macro�operator and only � additional operators� In

fact� it is well�known that the hanoi problem in general has problems that can

be solved for N rings using the solution for N�� rings plus two other operators�

CHAPTER �� SUMMARY ���

There are di	culties with this approach� however� One such problem is

determining which macro�operators should remain in the operator set� and

which should not� The operator set size a�ects the branching factor of the

search directly� and so must not be allowed to grow inde�nitely� Heuristic

approaches to solving this problem could include preferring frequently used

macro�operators� or other� more domain�dependent methods�

� Problem Decomposition

If we extend our assumption of subgoal independence somewhat� so that we

�pretend� that it is possible to solve each initial goal independently� we could

simply create one plan for each of the high level goals� and attempt to merge

these solutions by declobbering via MTC goal achievement� Once again� the

concept is to skip the initial operator�addition portions of the search space�

While this method is attractive intuitively� especially in domains with goals

that are very independent �such as where a domain possess many separate

objects� each of which needs to be a�ected independently�� a very real problem

exists in keeping the search complete� Many solution potentially exist for

each subgoal� In fact� an in�nite number of solution can possibly exist for

a particular goal� For example� moving a ring between two pegs allows the

possibility that the ring can have any number of intermediate locations�

A planner described by Yang in �Yang� ����� called WATPLAN works in a

similar manner� The problem of in�nite solutions is handled heuristically�

where each of M subgoals is actually satis�ed some arbitrary number � N

� ways� and then the M subgoals $ N solutions are merged� giving a set of

plans� Search through this space of plans is completed via declobbering of the

existing con
icts as outlined by MTC and by the con
ict algebra mentioned in

�Yang� ����a�� In addition� the search space is reduced using known constraint

CHAPTER �� SUMMARY ���

satisfaction techniques �Dechter and Pearl� ����� Dechter� ������ A complete

discussion of this approach to nonlinear planning can be found in �Yang� ������

Bibliography

�Agre and Chapman� ����� P� Agre and D� Chapman� Pengi� An implementation

of a theory of activity� In Proceedings of the
th AAAI� pages �
�%���� �����

�Carberry� ����� Sandra Carberry� A new look at plan recognition in natural lan�

guage dialogue� Technical Report ������ University of Delaware� �����

�Chapman� ����� David Chapman� Planning for conjunctive goals� Arti�cial Intel�

ligence� ������%���� �����

�Christensen� ����� Jens Christensen� Pablo� A hierarchical planner that generates

its own abstraction hieararchies� Submitted for Publication� Stanford University�

�����

�Dechter and Pearl� ����� R� Dechter and J� Pearl� Network�based heuristics for

constraint�satisfaction problems� Arti�cial Intelligence� ��� �����

�Dechter� ����� R� Dechter� From local to global consistency� In Eighth Canadian

Conference on Arti�cial Intelligence� �����

�Fikes and Nilsson� ����� Richard Fikes and Nils Nilsson� Strips� A new approach

to the application of theorem proving to problem solving� Arti�cial Intelligence�

�����%���� �����

���

BIBLIOGRAPHY ��

�Fikes et al�� ����� Richard Fikes� Peter Hart� and Nils Nilsson� Learning and exe�

cuting generalized robot plans� Arti�cial Intelligence� �����%���� �����

�Hart et al�� ��
�� P� Hart� N� Nilsson� and B� Rapahael� A formal basis for the

heuristic determination of minimum cost paths� IEEE Transactions Systems

Science and Cybernetics� ��������%���� ��
��

�Hertzberg and Horz� ����� Hertzberg and Horz� Towards a theory of con
ict de�

tection and resolution in nonlinear plans� In Proceedings of the ��th IJCAI� pages

���%���� Detroit� Michigan� �����

�Horowitz and Sahni� ����� Ellis Horowitz and Sartaj Sahni� Fundamentals of

Computer Algortihms� Computer Science Press� Rockville� Maryland� �����

�Kambhampati� ����� Subbarao Kambhampati� Flexible Reuse and Modi�cation

in Hierarchical Planning� A Validation Structure Based Approach� PhD thesis�

University of Maryland� College Park� Maryland� Oct� �����

�Kautz� ����� Henry Kautz� A Formal Theory of Plan Recognition� PhD thesis�

University of Rochester� Department of Computer Science� Rochester� New York�

�����

�Knoblock� ����� Craig A� Knoblock� A theory of abstraction for hierarchical plan�

ning� In Paul Benjamin� editor� Proceedings of the Workshop on Change of

Representation and Inductive Bias� Boston� MA� ����� Kluwer�

�Knoblock� ����� Craig A� Knoblock� Learning e�ective abstraction hierarchies�

In Proceedings of Eighth National Conference on Arti�cial Intelligence� Boston�

MA� �����

BIBLIOGRAPHY ���

�Knoblock� ����� Craig A� Knoblock� Automatically generating abstractions for

problem solving� Technical Report CMU�CS�������� Carnegie Mellon University�

�����

�Korf� ����� Richard Korf� Planning as search� A quantitative approach� Arti�cial

Intelligence� ���
�%��� �����

�McDermott� ����� D�V� McDermott� Planning and action� Cognitive Science� ��

�����

�Minton� ����� S� Minton� Explanation�based learning� A problem�solving perspec�

tive� Technical Report CMU�CS�������� Carnegie Mellon University� �����

�Nau� ����� Dana Nau� Hierarchical abstraction for process planning� In Proceed�

ings of Second International Conference in Applications of Arti�cial Intelligence

in Engineering� �����

�Nilsson� ����� Nils Nilsson� Principles of Arti�cial Intelligence� Morgan Kaufmann

Publishers Inc� �����

�Plaisted� ����� D� Plaisted� Theorem proving with abstraction� Arti�cial Intelli�

gence� �
��
%���� �����

�Sacerdoti� ����� Earl Sacerdoti� Planning in a hierarchy of abstraction spaces�

Arti�cial Intelligence� �����%���� �����

�Sacerdoti� ����� E� D� Sacerdoti� The nonlinear nature of plans� Advance Papers�

IJCAI� ����
%���� �����

�Sacerdoti� ����� Earl Sacerdoti� A Structure for Plans and Behavior� American

Elsevier� �����

BIBLIOGRAPHY ���

�Schubert� in press� L� Schubert� Monotonic solution of the frame problem in the

situation calculus� In Kyburg� Loui� and Carlson� editors� Knowledge Represen�

tation and Defeasible Reasoning� Kluwer� in press�

�Ste�k� ����� Mark Ste�k� Planning with constraints� Arti�cial Intelligence�

�
�������%���� �����

�Sussman� ����� G� A� Sussman� A computational model of skill acquisition� Tech�

nical Memo AI�TR����� M�I�T� AI Lab� �����

�Tate� ����� Austin Tate� Generating project networks� In Proceedings of the �th

IJCAI� pages ���%���� �����

�Tenenberg� ����� Josh Tenenberg� Abstraction in Planning� PhD thesis� University

of Rochester� Dept� of Computer Science� Rochester� NY� May �����

�Wilkins and Robinson� ����� D�E� Wilkins and A�E� Robinson� An interactive

planning system� SRI Technical Note ���� Stanford Research Insitute� �����

�Wilkins� ����� David Wilkins� Domain�independent planning� Representation and

plan generation� Arti�cial Intelligence� ��� �����

�Yang and Tenenberg� ����� Qiang Yang and Josh Tenenberg� Abtweak� Abstract�

ing a nonlinear� least commitment planner� In Proceedings of the �th AAAI�

Boston� MA� August �����

�Yang et al�� ����� Qiang Yang� Josh Tenenberg� and Steven Woods� Abtweak�

Abstracting a nonlinear� least commitment planner� Submitted for publication�

�����

�Yang� ����a� Qiang Yang� An algebraic approach to con
ict resolution in planning�

In Proceedings of the �th AAAI� Boston� MA� August �����

BIBLIOGRAPHY ���

�Yang� ����b� Qiang Yang� Reasoning about con
icts in least�commitment plan�

ning� Technical Report CS������� University of Waterloo� �����

�Yang� ����� Qiang Yang� Understanding the essence of nonlinear� least�

commitment planning� Submitted for Publication� �����

