

Introducing a Multi-Dimensional User Model to

Tailor Natural Language Generation

by

Jennifer Chu

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 1991

c�Jennifer Chu 1991

ii

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or indi-

viduals for the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by photocopying

or by other means, in total or in part, at the request of other institutions or individuals for

the purpose of scholarly research.

ii

The University of Waterloo requires the signatures of all persons using or photocopy-

ing this thesis. Please sign below, and give address and date.

iii

Abstract

Previous work has shown that it is important to include user modeling in question an-

swering systems in order to tailor the output. In this thesis, we develop a natural language

response generation model that handles both definitional and procedural questions, and

employs a multi-dimensional user model. The various attributes of the user recorded

in the user model include the user’s role, domain knowledge, preferences, interests, re-

ceptivity and memory capability. We also address how to represent the user’s view of a

knowledge base to then tailor generation to that user’s view, and introduce a representa-

tion for knowledge bases with property inheritance based on the Telos system.

We further specify how this multi-dimensional user model influences different stages

of McKeown style generation, on determining question type, deciding relevant knowl-

edge, selecting schema, instantiating predicates, and selecting predicates. An algorithm

is proposed to describe how the generation process can be tailored according to these

influences, and some examples are presented to show that the output is desirable.

We also address the problem of conflicts arising from the variation in response gen-

eration suggested by different user model attributes and use various weighting schemes

to resolve them. Furthermore, we include a procedure for updating the user model after

each interaction which also enables the algorithm to be used over multiple sessions, with

up-to-date information about the users.

iv

Acknowledgements

First I would like to thank my supervisor, Robin Cohen, for suggesting this topic and

for her guidance throughout my thesis work. The effort she spent on our discussions,

on reading (and re-reading) my thesis, and for suggesting a well-respected university for

continuing my studies has been greatly helpful.

I am also indebted to my second readers, Fahiem Bacchus and Paul van Arragon,

for their useful comments and pointers to related literature. Chrysanne DiMarco also

deserves my thanks for leading our group meetings, and especially for commenting on

my writing style.

Thanks also go to Keith Mah for spending the time on solving my LATEXproblems,

helping me with my English, and proofreading my thesis, to Marzena Makuta for being

a good friend, who always has time to discuss my work and to have fun, to Jun Shen

for being understanding and encouraging, and to my officemate, Paulina Chin, for her

delicious desserts and the joy we had together.

Finally, special thanks go to my parents and my best friends, Yi-Jean and Ching-Fang,

for their encouragement and emotional support, though from far away.

v

To my parents...

vi

Contents

1 Introduction 1

1.1 Motivation � 1

1.2 What is Natural Language Generation? � � � � � � � � � � � � � � � � � 3

1.3 What is User Modeling? � 6

1.4 Integrating Natural Language Generation and User Modeling � � � � � � 7

1.4.1 Limitations of Current Systems � � � � � � � � � � � � � � � � � 7

1.4.2 Our Model � 8

1.5 Overview of the Thesis � 9

2 Generating Natural Language Using ATNs 12

2.1 General Problems in Natural Language Generation � � � � � � � � � � � 12

2.2 McKeown’s Approach � 14

2.2.1 System Overview � 14

2.2.2 Using Schemata � 15

2.2.3 Implementing Schemata with ATNs � � � � � � � � � � � � � � � 17

vii

3 Developing a User Model 20

3.1 Contents of the User Model � 21

3.1.1 Goals and Plans � 21

3.1.2 Preferences and Attitudes � 23

3.1.3 Knowledge and Beliefs � 24

3.1.4 Memory Constraints � 26

3.1.5 Interests � 27

3.1.6 Receptivity � 28

3.2 Dimensions of the User Model � 29

3.2.1 Degree of Specialization � 29

3.2.2 Modifiability � 31

3.2.3 Temporal Extent � 32

3.2.4 Method of Use � 32

3.2.5 Number of Agents � 32

3.2.6 Number of Models � 33

4 Motivation for Our Design Decisions 34

4.1 McKeown’s Approach � 34

4.2 Responses with User Modeling � 40

5 User Models With McKeown-Style Generation 46

5.1 The Domain � 46

viii

5.2 Knowledge Representation � 48

5.3 The User Model � 55

5.4 The Interaction Between User Models and Generation � � � � � � � � � � 59

5.4.1 Determine Question Type � 59

5.4.2 Determine Relevancy � 61

5.4.3 Select Strategy � 65

5.4.4 Select Proposition � 65

5.4.4.1 Predicate Instantiation � � � � � � � � � � � � � � � � � 66

5.4.4.2 Predicate Selection � � � � � � � � � � � � � � � � � � 67

5.5 Updating the User Model � 68

5.5.1 What Should Be Updated? � 68

5.5.2 How to Update Them? � 69

6 The Algorithm 72

6.1 An Overview of the Algorithm � 72

6.2 Determine Question Type � 74

6.3 Determine Relevant Knowledge Pool � � � � � � � � � � � � � � � � � � 75

6.4 Select Schema � 78

6.4.1 Schemata Available � 79

6.4.2 The Procedure � 83

6.5 Instantiate Predicate � 86

6.6 Select Predicate � 96

6.7 Update the User’s Knowledge � 104

ix

7 Examples 107

8 Related Work 123

8.1 Paris’s TAILOR System � 123

8.1.1 System Overview � 123

8.1.2 The User Model � 124

8.1.3 Comparisons � 127

8.2 Sarner’s Model � 129

8.2.1 The Strategy � 130

8.2.2 The User Model � 132

8.2.3 Comparisons � 132

8.3 Moore’s PEA System � 134

8.3.1 System Overview � 134

8.3.2 The User Model � 136

8.3.3 Comparisons � 138

8.4 Wolz’s GENIE System � 139

8.4.1 System Overview � 140

8.4.2 The User Model � 141

8.4.3 Comparisons � 142

8.5 McCoy’s ROMPER System � 144

8.5.1 System Overview � 144

8.5.2 The User Model � 147

x

8.5.3 Comparisons � 148

8.6 Sarantinos and Johnson’s EXPLAIN system � � � � � � � � � � � � � � � 150

8.6.1 System Overview � 150

8.6.2 The User Model � 152

8.6.3 Comparisons � 154

8.7 Hovy’s PAULINE System � 155

8.7.1 System Overview � 156

8.7.2 Comparisons � 158

9 Conclusions 163

9.1 Summary and Contributions of the Thesis � � � � � � � � � � � � � � � � 163

9.1.1 Summary of Our Work � 163

9.1.2 Analysis of Our User Model � � � � � � � � � � � � � � � � � � � 165

9.1.3 Contributions � 166

9.2 Limitations and Future Directions � 169

A The Schemata 173

B Tracing the Algorithm in Detail 175

Bibliography 184

xi

List of Tables

3.1 Recall Percentage After Certain Time Intervals � � � � � � � � � � � � � 27

9.1 Dimensions of Attributes in Our User Model � � � � � � � � � � � � � � 166

xii

List of Figures

2.1 TEXT System Overview � 16

2.2 The Identification Schema Used in TEXT � � � � � � � � � � � � � � � � 17

2.3 ATN for Identification Schema � 18

2.4 Ordering of Preference Constraints � � � � � � � � � � � � � � � � � � � 19

3.1 Dimensions of User Models � 30

4.1 Relevant Knowledge Pool for the Question What is a Ship? � � � � � � 36

4.2 Mapping of Schemata to Question Types in TEXT � � � � � � � � � � � � 37

4.3 The Instantiated Predicates � 38

4.4 Answer to What is a Ship Generated by TEXT � � � � � � � � � � � � � � 39

4.5 User Model for User A � 41

4.6 Desired Output for User A � 42

4.7 User Model for User B � 43

4.8 Desired Output for User B � 43

4.9 User Model for User C � 45

xiii

4.10 Desired Output for User C � 45

5.1 The Cooking Database � 49

5.2 Four Entity Types � 51

5.3 Representing User’s Knowledge in a User Model � � � � � � � � � � � � 58

5.4 Relevant Knowledge Pool for the Question What is Meringue Pie? � � 62

5.5 Relevant Knowledge Pool for the Question How to Make Chocolate Pie? 63

5.6 Valued Relevant Knowledge Pool � 64

5.7 Updated Valued Relevant Knowledge Pool � � � � � � � � � � � � � � � 71

6.1 ATN for the identification schema � 80

6.2 ATN for the constituency schema � 81

6.3 ATN for the contrastive schema � 82

6.4 ATN for the procedural schema � 83

6.5 The Pre-determined Schemata for Both Question Types � � � � � � � � 84

6.6 User’s Original Knowledge Base � 105

6.7 User’s Updated Knowledge Base � 106

7.1 User Model in Example 1 � 108

7.2 Relevant Knowledge Pool in Example 1 � � � � � � � � � � � � � � � � 109

7.3 Output for Example 1 � 111

7.4 User Model in Example 2 � 112

7.5 Output for Example 2 � 112

xiv

7.6 User Model in Example 3 � 113

7.7 Output for Example 3 � 114

7.8 User Model in Example 4 � 116

7.9 Output for Example 4 � 117

7.10 User Model in Example 5 � 118

7.11 Output for Example 5 � 119

7.12 User Model in Example 6 � 120

7.13 Relevant Knowledge Pool in Example 6 � � � � � � � � � � � � � � � � 121

7.14 Output for Example 6 � 122

8.1 The TAILOR System Architecture � 125

8.2 Describing a microphone to an expert user � � � � � � � � � � � � � � � 125

8.3 Describing a microphone to a naive user � � � � � � � � � � � � � � � � 126

8.4 Definition of Travelers Checks 1 � 131

8.5 Definition of Travelers Checks 2 � 131

8.6 The PEA System Architecture � 135

8.7 Sample Dialogue with PEA � 137

8.8 Response Generated by GENIE 1 � 141

8.9 Response Generated by GENIE 2 � 141

8.10 The ROMPER System Architecture � 145

8.11 Sample Output of ROMPER 1 � 146

8.12 Sample Output of ROMPER 2 � 146

xv

8.13 The EXPLAIN System Architecture � � � � � � � � � � � � � � � � � � � 151

8.14 Sample Explanation Generated by EXPLAIN � � � � � � � � � � � � � � � 153

8.15 The PAULINE System Architecture � 157

8.16 Sample Output of PAULINE 1 � 159

8.17 Sample Output of PAULINE 2 � 160

B.1 Updated User’s Knowledge Base � 183

xvi

Chapter 1

Introduction

1.1 Motivation

Answering a question properly is not an easy task. We start off with an example, given in

[Prince, 1981], of two recipes to show how different responses should be provided to dif-

ferent users with different domain knowledge. The two recipes are both for roast suckling

pig, but with dramatically different details. The first recipe, taken from Le Repertoire de

la cuisine is used by professional French chefs. It says,

Cochon de Lait Anglaise:

Farcir farce a l’anglaise. Rôtir.

(Translation: English Suckling Pig: Stuff with English stuffing. Roast.)

The second recipe is from a standard American cookbook The Joy of Cooking. Part of its

description is shown in the following:

Roast Suckling Pig: 10 servings

Preheat oven to 450�.

Dress, by drawing, scraping and cleaning:

1

CHAPTER 1. INTRODUCTION 2

A suckling pig

Remove eyeballs and lower the lids. The dressed pig should weigh about 12 pounds.

Fill it with:

Onion Dress, page 457, or

Forcemeat, page 458

It takes 2 1
2 quarts of dressing to stuff a pig of this size. Multiply all your ingredients,

but not the seasonings. Use these sparingly until the dressing is combined, then taste

it and add what is lacking. Sew up the pig.

.

.

.

Prince claimed that the reason for such a difference between these two recipes is that

“the writer of a recipe has a certain set of assumptions about what the reader knows about

ingredients, processes, and equipment” ([Prince, 1981]). We believe that in a question

answering system, the responses should also be tailored to the users, not based on the

system’s assumptions, but, more precisely, on what the system knows about the users.

Now, let’s consider a third user who is a restaurant owner. The user is interested

in the dish English suckling pig not because he/she wants to learn how to prepare it,

but because he/she is trying to decide whether it should be included in the menu or not.

Obviously, this user has a completely different goal from the chefs, and should expect to

get a different response to a question like what is English suckling pig. In this case, the

following response will be more appropriate.

The English suckling pig is a roasted pig with English stuffing. It is a very

fancy dish which takes at least 5 hours to prepare and serves about 10 people.

CHAPTER 1. INTRODUCTION 3

We see that the responses should depend not only on the user’s domain knowledge, but

also on the user’s role, which implies the user’s possible goal (why the user asks the

question).

Thus, we believe that, in a question answering system, it is often important for re-

sponses to be tailored to specific users. They should be presented at a level that the user

can understand and should take into consideration preferences in style which the user

may have. The amount of information provided should depend on how willing the user

is to receive information and how capable he/she is to remember the details given. A-

mongst the various characteristics that might influence the content and presentation of

the response, most of the existing natural language generation systems, disappointingly,

either do not consider them at all, or cover only part of them.

In this thesis, we will propose an algorithm for combining natural language generation

and user modeling which generates natural language responses tailored to specific users.

1.2 What is Natural Language Generation?

Comprehension and generation are the two complementary aspects of natural language

processing ([Joshi, 1987]), but the latter did not receive much attention until very recent-

ly. Literally, natural language generation is the process of generating natural language

texts by computers in a written form. It is not simply making computers print out fluent

texts, since this can be easily done by using stored texts or template-filling techniques.

Instead, “it looks ahead to the time when machines will think complex thoughts and need

to communicate them to their human users in a natural way” ([McDonald, 1988]), which

means that there is some planning and reasoning involved in the process.

In early work on natural language generation, the main goal is to provide respons-

CHAPTER 1. INTRODUCTION 4

es to questions in a question answering setting. The process is simply accomplished by

using stored text, texts which are pre-stored in the system by the system designer. This

approach requires the designer to enumerate all the possible questions that might arise

and handcode all the answers to them. This causes problems when unpredicted question-

s arise, and is also inflexible. Later work involves filling in the slots of the templates

provided by the generator, which provides more varieties of texts. Templates are instan-

tiated and/or concatenated to provide different outputs, but the system never knows why

the templates are chosen. Another shortcoming is that the instantiation and juxtaposition

of templates sometimes results in awkward or ungrammatical texts. These two methods

are considered useful in applications where short response-time is required, and limited

generation capability is sufficient.

More recent work includes involving text planning strategies in the generation pro-

cess, having a separate realization component to convert the idea to natural language

text, etc. Nowadays, we are able to generate not only paragraph-length texts, but also

texts with different styles. The systems no longer blindly search for words to fill in the

slots, but actually reason and plan for achieving a certain goal so that they know how the

output is obtained and why they want to say it.

The reasoning and planning ability broadens the applications of natural language gen-

eration systems considerably. Current research in natural language generation proceeds

not only in developing systems that generate high-quality texts, but also in integrating the

generation component with other reasoning modules to fulfill more complicated tasks.

Some work has been done in developing pure tactical components which focus more

on selecting syntactic structures rather than selecting content. Given content in a partic-

ular representation, these systems generate the corresponding English text. McDonald’s

MUMBLE system ([McDonald, 1986]) and the NIGEL ([Mann, 1983a]) system, which is

the realization component of the PENMAN project at ISI ([Mann, 1983b]), both emphasize

CHAPTER 1. INTRODUCTION 5

the production of large varieties of texts that broadly cover English syntax. In this thesis,

we focus on the strategic component in the generation process (deciding the content),

rather than the tactical component.

Most current research concentrates on applications of natural language generation.

Appelt ([1985]) designed an utterance-planning system, KAMP, that satisfies multiple

goals in an utterance to accomplish a certain task. McKeown ([1985]) developed the TEXT

system that provides answers in natural language for questions about database structures

(this system will be further explained in chapter 2). Paris ([1987]) extended McKeown’s

work and investigated how a user’s domain knowledge might affect an answer. Her sys-

tem, TAILOR, is a question answering system that makes use of user models to provide

different kind and amount of information according to the user’s level of expertise. Hov-

y ([1988a]) studied how pragmatic concerns influence the generated text. His system,

PAULINE, generates texts describing events under different pragmatic constraints (such

as, to increase the hearer’s knowledge, to make the tone informal, etc.). This is the first

attempt to incorporate style into texts using a natural language generation system. Moore

([1989]) looked at the dialogues between advice-givers and advice-seekers. Her PEA sys-

tem provides a reactive approach to explanation from expert systems, one that can accept

feedback from users, answer follow-up questions taking previous explanations into ac-

count. Sarner and Carberry ([1990]) proposed a strategy for providing definitions in task-

oriented dialogues. Her method takes into account the user’s domain knowledge, possible

plans and goals, and the user’s receptivity to help decide the final utterance. Sarantinos

and Johnson ([1990]) developed a theory of explanation dialogues known as Extended

Schema based Theory (EST), which provides more powerful and complete question un-

derstanding and explanation generation. Our work will be contrasted with most of the

related research later in chapter 8.

CHAPTER 1. INTRODUCTION 6

1.3 What is User Modeling?

On the most general level, user models are regarded as forming some kind of mental

model of the user to provide sufficient information for the system to infer the user’s beliefs

and goals and provide predictive and explanatory power for understanding the interaction

of that user with the system ([Wahlster and Kobsa, 1989]).

Recently, user modeling has attracted much research interest in the field of natural

language processing, mostly in dialogue or question answering systems (see Computa-

tional Linguistics, special issue on user modeling [Computational Linguistics, 1988]).

Since these systems have a considerable amount of interaction with the users, it is im-

portant to have the users’ images in the system, just as we do when we talk to people, to

help understand the users’ utterances and to help provide the most appropriate answers

to them. As for what characteristics of the users should be recorded in the user models to

provide such an assistance, a detailed discussion will be given later in chapter 3.

There has been some work done on including user modeling in systems for various

applications. Rich ([1979]) designed a system, GRUNDY, which acts as a librarian to

suggest books to the users. It starts off by classifying the users into several stereotypes,

each with some default characteristics, until more specific knowledge about the users is

known. The UC system ([Wilensky et al., 1987]), developed at UC Berkeley, is a natural

language interface designed to help naive users learn about the UNIX operating system.

Four user categories (stereotypes) are used as reference points for inference, and explicitly

encoded information about a specific user can be added to override inheritance from the

user’s category. McCoy ([1986]) looked into the problem of the possible misconceptions

a user might have when interacting with the system. She developed a system, ROMPER,

that reasons about the possible sources of misconceptions on an individual basis, and

generates cooperative responses based on this reasoning. Cohen et al. ([1989]) proposed

CHAPTER 1. INTRODUCTION 7

a model for providing responses specific to a user’s goals and background. Their system,

ThUMS, is implemented in a domain of diagnosing a student’s learning disabilities and

models both the student and the user (who seeks a diagnosis for the student).

1.4 Integrating Natural Language Generation and User

Modeling

1.4.1 Limitations of Current Systems

Of all the generation systems mentioned in the previous two sections, some contain no

user modeling at all, therefore, providing unique output to the same input under all cir-

cumstances ([McKeown, 1985], [McDonald, 1986], [Mann, 1983b]). Some of them re-

alize the importance of tailoring responses to users, but take information about the user

as input rather than having an explicit user model, or obtain it from previous discourse

([Moore, 1989], [McCoy, 1985], [Hovy, 1988a]). In the former case, there is the problem

of annoying a user by repeatedly asking questions at the beginning of every interaction,

while in the latter case, the system might not get sufficient information.

We have mentioned that stereotyping is often used for user modeling ([Rich, 1979],

[Wilensky et al., 1987]). Since it is often difficult to strictly classify to which class a user

should belong, this method may be impractical. Some systems concentrate on only one or

two of the user’s aspects that are considered relevant to the generation process, such as the

user’s knowledge, or the user’s possible plans and goals ([Paris, 1987], [Moore, 1989],

[Sarner and Carberry, 1990]). In fact, there are many more characteristics of the user

that will influence the response from the system, and an algorithm for natural language

generation becomes much more complicated when taking all these characteristics into

account (as will be shown later in the thesis).

CHAPTER 1. INTRODUCTION 8

Some of the existing systems emphasize the tactical component either without a rea-

soning process or with a limited reasoning process for choosing the content ([McDonald,

1986], [Mann, 1983b], [Hovy, 1988a]). Thus, these systems have to be combined with

some other reasoning mechanism that can serve as the strategic component to make a

complete natural language generation system.

Updating the user model is also an important issue that has not yet been discussed suf-

ficiently. Paris ([1987]) did sketch a solution to the problem, but in her case the updated

information is kept only within the same conversation, without being recorded perma-

nently in the user model. Thus, in the next interaction, the system possesses out-of-date

information about the user.

1.4.2 Our Model

Due to the aforementioned limitations of existing systems, we propose a model of a re-

sponse generation system that includes a multi-dimensional user model, and discuss the

interactions between the user model and the generation system.

Our model is based on the TEXT generation system developed by McKeown ([1985],

to be discussed in chapter 2). It extends TEXT to handle both definitional and procedural

questions, and includes a multi-dimensional user model to capture information about the

users. In addition to the user’s knowledge and user’s goals1 that have been discussed quite

often in the past, we introduce the user’s preferences, interests, receptivity, and memory

constraints to further help make decisions in the generation process. Also, a Telos-like

representation (for Telos, see [Koubarakis et al., 1989]) for recording the user’s view of

a knowledge base has been developed. Providing these aspects in the user model, we

study how they influence different stages in the generation process, namely, determining

1This aspect is captured by the attribute user’s role in our user model.

CHAPTER 1. INTRODUCTION 9

question type, deciding relevant knowledge, selecting schema, instantiating predicate,

and selecting predicate.

From the study of the multi-dimensional user model and its interaction with the gener-

ation process, we obtain knowledge of both what should be recorded in a user model and

when and how these aspects influence the generation process. Based on this knowledge,

we propose an algorithm specifying how generation can be tailored to different users ac-

cording to the information provided in the user model. We also hand-trace the algorithm

on various examples in a cooking domain to show that it indeed generates satisfactory

responses.

1.5 Overview of the Thesis

The remaining chapters of this thesis have contents as follows. In chapter 2, we discuss

the general problems that arise in natural language generation and introduce McKeown’s

TEXT system, upon which our model is based. The basic techniques that our model in-

herits from TEXT will also be discussed.

Chapter 3 discusses how to develop a user model, emphasizing the information that

should be recorded. This is based on the general discussion of user models presented in

Kass and Finin [1988], also adding some attributes that we propose. For each attribute,

we give some examples or justification to argue that it indeed should influence the content

of the responses.

The motivation that leads us to our proposed model for natural language generation

with user modeling is described in chapter 4. We first show the output given by TEXT

in the domain of naval intelligence, for the question what is a ship, followed by three

examples with outputs tailored to individual users asking the same question. We argue

CHAPTER 1. INTRODUCTION 10

that these outputs are appropriate for each corresponding user model, and use them as

the goal to aim for — to develop a response generation model that generates high-quality

tailored responses like them.

Chapter 5 presents most of the main points in this thesis. We introduce a new applica-

tion domain of cooking, which admits definitional and procedural questions, and discuss

its characteristics. The contents proposed for the user model are introduced and a rep-

resentation for the user’s domain knowledge is presented. We also discuss how the user

model and the generation process interact at various stages, and illustrate our method of

updating the user model after every conversation.

An algorithm systematically describing the interaction discussed in chapter 5 is pre-

sented in chapter 6. We give an outline of the algorithm in the first section, and a more

detailed description of each step in the following sections.

Some examples in our cooking domain, hand-traced through the algorithm, are shown

in chapter 7. In this chapter we present examples of different users and show how the

responses generated by the algorithm differ for each user. The important decision points

for each example are shown and an explanation is given for matching the actual output

and the aspects given in the corresponding user model. A more detailed trace of the

algorithm for the first example is given in appendix B, for interested readers.

Chapter 8 discusses related work. A number of natural language generation systems

are briefly introduced and compared to our model. In summary, our model is different

from other existing systems in that we present a general framework to show how various

aspects of a user may tailor responses in a question-answering system, and develop an

algorithm describing when and how these influences take place.

CHAPTER 1. INTRODUCTION 11

Finally, in chapter 9, we give a summary of the work done in this thesis and of our

contributions, then discuss the limitations of our model and possible directions for future

research.

Chapter 2

Generating Natural Language Using

ATNs

As described in chapter 1, there are a number of natural language generation system-

s developed for various purposes, such as providing explanations in an expert system

environment and providing responses to database queries. In this chapter, I discuss the

general problems encountered in natural language generation and introduce McKeown’s

ATN-based approach, upon which my model is based.

2.1 General Problems in Natural Language Generation

One major difference between natural language generation and natural language under-

standing is that the former requires more decision-making processes while the latter in-

volves more disambiguating processes. The problems that arise in generation include:

([Hovy, 1988a],[Mann, 1987],[McKeown, 1986])

12

CHAPTER 2. GENERATING NATURAL LANGUAGE USING ATNS 13

1. What to say. This is concerned with deciding the content to be generated, while

avoiding saying what is too obvious or too complex, and yet providing sufficient

information to make the generated text comprehensible.

2. How to say it. This concerns the way of expressing the content, how to organize

sentences and how to choose words to make the text coherent. The problems in-

clude:

(a) Ordering of text

(b) Clarifying what to say by adding supporting text

(c) Determining sentence boundaries

(d) Deciding when to use anaphora (noun phrases that refer to objects mentioned

earlier in the sentence or in a previous sentence, [Allen, 1987])

(e) Choosing lexicons

3. Why it should be said. This includes the consideration of the style (also called prag-

matics in [Hovy, 1988a]) of the generated text, whether text should be enhanced or

emphasized in a particular fashion for the audience, etc.

Generally speaking, a text generation system can be divided into two stages, the s-

trategic component, which determines the content and structure of discourse, and the tac-

tical component, which uses a grammar and dictionary to realize in the target language the

message produced by the strategic component ([McKeown, 1985]). The strategic compo-

nent determines what to say and part of how to say it (e.g., (a) and (b) above, the parts of

2 which relate to content and structure), while the tactical component determines the rest

of how to say it. As for why it should be said, Hovy ([1988a]) argues that rhetorical goals

and strategies, pertaining to stylistic and opinion-based considerations, are reasons for a

CHAPTER 2. GENERATING NATURAL LANGUAGE USING ATNS 14

generator to choose one output over another. These rhetorical goals and strategies inter-

act with both the strategic component and the tactical component, and therefore influence

both what to say and how to say it.

Our proposed model emphasizes the influences of user models on the content and

structure of the generated text, i.e., how they influence the decisions made in the strate-

gic component. Therefore, in the following section, I will introduce McKeown’s TEXT

system ([McKeown, 1985]), a system which focuses on the strategic component.

2.2 McKeown’s Approach

McKeown’s TEXT system is designed to generate paragraph-length responses to simple

questions about information in a database. It uses text planning strategies to organize

text, and a focus mechanism to help make decisions.

2.2.1 System Overview

TEXT is developed within the framework of a natural language interface to a database

system that addresses the specific problem of generating answers to questions about the

database structure. Three types of questions are allowed, namely, definition, information,

and comparison, each having predefined schemata (patterns of discourse structure, for

details, see section 2.2.2) acting as templates to help generate answers.

The TEXT system consists of four decision-making components — the semantic pro-

cessor, the schema selector, the schema filler, and the tactical component. In addition

to these basic modules, it also includes a database1, which provides the necessary infor-

1We use the term database here interchangeably with knowledge base, to refer to the knowledge base

representation of the underlying database.

CHAPTER 2. GENERATING NATURAL LANGUAGE USING ATNS 15

mation for answering questions, and a set of schemata for constructing responses. The

control flow of TEXT is shown in figure 2.1. Questions are answered by first partitioning

off a subset of the knowledge base (which represents the database in question) determined

to be relevant to the given question into the relevant knowledge pool (Determine Rele-

vancy). Then, based on the question type, a schema encoding partially ordered rhetorical

predicates is chosen (Select Strategy). These predicates, together with a focus mecha-

nism, determine the selection of propositions from the relevant knowledge pool, which

constitutes the content and order of the answer (Select Propositions). This message is

then passed to the tactical component which transforms the message into English.

2.2.2 Using Schemata

TEXT uses discourse strategies, called schemata, for selecting information from the un-

derlying knowledge base and ordering it.

McKeown examined a number of expository texts, noted four different patterns and

represented them as schemata, namely, identification, attributive, constituency, and con-

trastive. The identification schema is shown in figure 2.2, where “��” indicates option-

al constituents, “/” indicates alternatives, “+” indicates that the item may appear 1 to n

times, and “�” indicates that the item may appear 0 to n times. The identification schema

captures a strategy used for providing definitions. Its characteristic techniques are rep-

resented as predicates which include identification of an item as a member of a generic

class (identification), description of an object’s constituency or attributes (constituen-

cy/attributive), analogies (analogy), and examples (particular-illustration/ evidence).

The constituency schema describes an entity in terms of its subparts. The attributive

schema is to illustrate a particular point about a concept or an object. The contrastive

schema is used to describe something by contrasting a major point against a negative

CHAPTER 2. GENERATING NATURAL LANGUAGE USING ATNS 16

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����

����

�
�

�
�
�
�

����

�
�
�
�

strategy
discourse

knowledge

possibilities
next

pool

relevant

base
knowledge

question
input

select

message

answer

component
tactical

propositions

strategy
select

relevancy
determine

focus
mechanism

Figure 2.1: TEXT System Overview

CHAPTER 2. GENERATING NATURAL LANGUAGE USING ATNS 17

Identification Schema

Identification (class & attribute / function)

�Analogy / Constituency / Attributive��

Particular-illustration / Evidence+

�Amplification / Analogy / Attributive�

Figure 2.2: The Identification Schema Used in TEXT

point. The last three schemata are shown in detail in appendix A.

2.2.3 Implementing Schemata with ATNs

The four schemata are implemented in TEXT using a formalism based on a parsing strategy

called an augmented transition network (ATN) (turned around to be used for generation)

([Woods, 1970]). The corresponding ATN for the identification schema is shown in figure

2.3. Starting from the state ID/, the ATN is traversed by taking an arc at a time, which

either proceeds to the next state or remains in the same state. Note that taking an arc

corresponds to the selection of a proposition for the answer and the states correspond

to filled stages of the schema. The subroutines (e.g., subr description) each consist of a

choice of several predicates which are not shown in the diagram. The process continues

until a pop arc is chosen, which terminates the response.

Most of the states in the ATNs have more than one outgoing arc, which indicates that

there is often more than one choice for the next proposition. TEXT solves this problem

by introducing a focus mechanism, which tracks what is considered to be in focus. The

CHAPTER 2. GENERATING NATURAL LANGUAGE USING ATNS 18

��
����

��
��
��
��
��

��
��

��
��

�
�
�
�

�
�
�
�

description/
subr

pop

pop

pop

example/
subr

end-seq/
subr

jump

identification
fill

END
ID/

E-S
ID/

EX
ID/

DS
ID/

ID
ID/

ID/

subr
example/

example/
subr

Figure 2.3: ATN for Identification Schema

CHAPTER 2. GENERATING NATURAL LANGUAGE USING ATNS 19

1. Shift focus to item mentioned in previous proposition

2. Maintain focus

3. Return to topic of previous discussion

4. Select proposition with greater number of implicit links to previous proposition

Figure 2.4: Ordering of Preference Constraints

rules for focusing constrain the focus to be the object being asked, or something closely

related to it. Figure 2.4 shows a preference ordering of how the focus can be shifted or

maintained. Whenever there is more than one candidate proposition, the one with the

highest priority in the preference list is chosen.

A brief example of TEXT responding to the question what is a ship will be shown in

chapter 4. The example serves to illustrate the relevant knowledge pool (which encodes

the part of the knowledge base in focus) and how the preference for focus shifts affects

the generation process.

Chapter 3

Developing a User Model

The TEXT system, as described in chapter 2, does not include any user modeling. The

consequence is that the system provides the same answer, no matter who asks the ques-

tion. This is undesirable, since it is obvious that in our daily life we vary the content and

structure of conversations depending on our audience. For example, we explain what an

IC is to an electrical engineering student and an arts student differently, in terms of the

level of detail, the word choices, etc. In order to tailor generated text to the user’s point

of view, we need user models to record aspects of different users. However, some re-

searchers in the user interface and information retrieval community have reacted against

the idea of having a user model. They contend that it is impractical to model a user with

all sorts of ill-formed aspects of human cognition (e.g., how do we know when a user

believes that a specific fact is true?). Therefore, instead of making the system do all the

reasoning to satisfy the user’s needs, they claim that it should be the user’s own effort

to make inferences from what the system provides, and that one generic interface will

suffice ([McKeown, 1990]). In spite of this controversy, we still believe that involving

user modeling in a generation system is profitable. In this thesis, we will show that user

modeling indeed contributes to deciding the content of the response.

20

CHAPTER 3. DEVELOPING A USER MODEL 21

When dealing with a user model, there are three important issues to be considered,

namely, the representation, the content, and the usage. We will discuss all three of these

issues when presenting our proposed user model in chapter 5. The representation of a user

model mainly deals with the problems of how to record the user’s knowledge and beliefs

and his/her goals. Various people have worked on this issue, proposing methods such as

linear parameter representation ([Rich, 1979]), meta-language predicates ([Konolige,

1981]), possible-world semantics ([Appelt, 1985]), etc. In chapter 1 we gave a brief

discussion of the usage of user models, i.e., how user models can be built into other

systems to help generate responses tailored to specific users. In this chapter we will

concentrate on discussing the possible content of a user model.

3.1 Contents of the User Model

Kass and Finin ([1988, 1989]) proposed that for a system and a user to interact coopera-

tively, the information that a system needs to have about a user includes knowledge about

the user’s goals and plans, preferences and attitudes, and about the user’s knowledge and

beliefs. In addition, we maintain that the user’s interests, memory capabilities and recep-

tivity are also important factors that should influence natural language generation. I will

discuss each of these user attributes in turn in this section.

3.1.1 Goals and Plans

A user’s possible goals and plans can definitely influence the content of generated text.

In a paper by Sarner and Carberry ([1988]), when the question what is baking soda is

asked, the system infers the user’s possible goal using previous discourse and information

available in the user model. For the purpose of baking a cake, the answer will be baking

CHAPTER 3. DEVELOPING A USER MODEL 22

soda, when heated, releases carbon dioxide and makes the cake rise; for the purpose of

relieving indigestion, baking soda, when dissolved in water, produces a chemically basic

solution that will counteract acidity will be appropriate. This demonstrates that knowing

a user’s plan may be very important in deciding appropriate generation.

Although we realize that knowing the user’s plans and goals is important, it is not

an easy task. The simplest case is one where the user directly states his/her goal1. But

unfortunately, in many cases, the speaker expects the hearer to infer the implicit goals2.

In some cases, the user might have an implicit goal at a higher level than the one explic-

itly stated3. Therefore, much more additional information about the user and previous

discourse must be known to infer the most plausible goal.

Some previous work has been done on recognizing a user’s plans and goals. The most

common method for dealing with plan recognition is to have a plan library available in

the system and to find the most appropriate plan by inferring from information about the

user and past discourse. Perrault, Allen and Cohen ([Perrault et al., 1978]) used some

predefined operators to recognize speech acts and further infer the user’s actual intent

in a dialogue understanding system. Litman ([1986]) discussed the representation and

recognition of domain-independent discourse plans and domain-dependent domain plans

to understand the implicit relationships between utterances.

Carberry ([1983]) dealt with the recognition of plans and goals and used them to for-

mulate appropriate responses. The system includes a set of plans which are hierarchical

structures of component goals and actions, and constructs the user’s plan as the dialogue

1For instance, in the interaction: I’d like to major in Computer Science. What courses should I take

now?
2An example is the indirect speech act proposed by Searle in [Searle, 1975]. The question can you

reach the salt? should be interpreted as a request to perform the action of passing the salt.
3The question adapted from [Carberry, 1983], Is Professor Cohen teaching CS686 in fall term? may

require different answers according to the user’s ultimate goal (to take CS686, to take Cohen’s course, etc.).

CHAPTER 3. DEVELOPING A USER MODEL 23

progresses by inferring a lower-level goal and relating it to potential higher-level plans.

McKeown, Wish and Matthews ([McKeown et al., 1985]) proposed an approach of inte-

grating plan recognition, user modeling, and explanation generation. The user’s goal is

derived within a discourse segment, and they focus on how the content of the explana-

tion should vary according to the goal inferred. Van Beek ([1987]) employed a database

of domain dependent plans and goals, and a user model, recording various information

including the user’s immediate discourse goals and higher level domain goals. The plan

for achieving the domain goal is inferred and an appropriate response for accomplishing

the goal is provided to the user.

3.1.2 Preferences and Attitudes

Paris ([1987]) analyzed the styles of descriptive texts from a variety of sources, rang-

ing from adult encyclopaedias to high school textbooks. She found that people tend to

describe objects to experts and naive users differently, and proposed two description s-

trategies for users at different levels of expertise. The constituency schema, posited by

McKeown ([1985]), which breaks an object into subparts and describes each of them in-

dividually, is suitable for experts, while for naive users, a process trace, which describes

the procedure of how the object works is used more often. For example, in the Collier’s

Encyclopedia ([Halsey, 1962]), a telephone is described by first stating that it consists of

a transmitter and a receiver, then describing each part in turn, whereas the Britannica Ju-

nior Encyclopedia ([Britannica Junior Encyclopedia, 1963]) gives, in the first paragraph,

When one speaks into the transmitter of a modern telephone, these sound waves

strike against an aluminum disk or diaphragm and cause it to vibrate back and forth

in just the same way the molecules of air are vibrating.

CHAPTER 3. DEVELOPING A USER MODEL 24

This provides evidence that different styles of presentation are appropriate for differ-

ent people. The fact can be due to the person’s level of expertise or, simply, his/her own

preference.

A natural language generation system also has to take a user’s attitudes into account

when generating responses. The user’s attitude can be thought of as the user’s point

of view, which might sometimes be biased, i.e., the user might particularly like/dislike

a certain object. When the user’s attitude is not neutral, the system can choose to be

cooperative or uncooperative. In the former case, the system avoids mentioning what

the user dislikes, while in the latter, the system tries to correct the user’s misconceptions.

The IMP system ([Jameson, 1988]), which responds to questions from a user concerned

about evaluating an object, adopts the former approach.

3.1.3 Knowledge and Beliefs

It is obvious that what a user knows should influence the system’s responses. For a sys-

tem to provide helpful information, it should say what is to the point. To illustrate this,

Sarner and Carberry ([1988]) proposed the Principle of Usefulness, following the Grice’s

Maxims ([Grice, 1975])4. It says,

4Grice’s maxims have four categories,

1. Quantity. Make the contribution as informative as is required, but no more informative than is

required.

2. Quality. Do not say what you believe to be false or what you lack adequate evidence.

3. Relation. Be relevant, say things at an appropriate stage of the transaction.

4. Manner. Be perspicuous, avoid ambiguity, be brief and orderly.

CHAPTER 3. DEVELOPING A USER MODEL 25

1. The response should be made at a high enough level that it is meaningful to the

user.

(a) Do not say something the user will not understand.

(b) Do not give information that addresses more detailed aspects of the user’s

task-related plan than is appropriate for his current focus of attention.

2. The response should be made at a low enough level that it is helpful to the user.

(a) Do not inform the user of something he already knows.

(b) Do not give information that is unrelated to the user’s goals and task-related

plan, or is too general for his current focus of attention in the plan.

To serve this purpose, the system must know the user’s knowledge and beliefs. I use the

terms as follows: knowledge refers to the long-term knowledge that the user believes to

be true, while beliefs are short-term, applicable to the current conversation. Knowledge

can be further classified into domain knowledge, which is specific for the application

domain, and world knowledge, also called commonsense knowledge, helping the system

to interact with the user in a more appropriate manner ([Kass and Finin, 1988]).

A fair amount of work has been done in investigating how the user’s knowledge af-

fects the system’s responses. Paris ([1987]) argued that the user’s knowledge influences

not only the amount of information provided, but also the style of presentation. In fact,

in addition to influencing the generation process at the content level, it also affects the

tactical component of the generator. This comes in later work by Bateman and Paris

([1989]) on tailoring the syntactic phrasing to specific users. Cohen and Jones ([1989])

incorporated user modeling into an expert system for educational diagnosis, in which re-

CHAPTER 3. DEVELOPING A USER MODEL 26

sponses are limited by the user’s domain knowledge, and the user’s preference5. In their

later work ([Cohen et al., 1989]), they included the user’s goals to further augment the

responses, and examined the influence of the interaction between the user’s knowledge

and goals.

3.1.4 Memory Constraints

Some natural language generation systems maintain the new information that the user

learns for the duration of the conversation only ([Paris, 1987]); therefore, the user is

assumed to have forgotten what he/she has learned when interacting with the system the

next time. Other systems assume the user to be an ideal learner, one who remembers

everything forever ([Moore, 1989]). Unfortunately, neither of these views of a user is

entirely accurate.

Johnson performed an experiment to determine how well people recall material they

have read after certain time periods ([Johnson, 1970]). He had a group of students read

an article, and asked them to reproduce as much of the article as they could after retention

intervals of 15 minutes, 7 days, 21 days, or 63 days. The average recall percentage for

each of the time intervals is shown in table 3.1. Though the percentage of recall depends

on the structural importance of the article, we see that even after 15 minutes, only slightly

more than half of the material was recalled correctly. This percentage decreases as the

time interval increases, to about 16% after 63 days. This supports our claim that a memory

constraint is indeed an important factor in natural language generation, since without it,

the system will often assume the user knows what he/she has actually forgotten.

Seaman ([1980]) mentions that people recall better if cue words are used. MacLeod

5Here the attribute preference is used differently from ours. Cohen defined preference as what the user

is more concerned with, which is similar to our interest attribute.

CHAPTER 3. DEVELOPING A USER MODEL 27

time interval 15 min. 7 days 21 days 63 days

correct percentage of recall 60.0 32.3 25.5 15.8

Table 3.1: Recall Percentage After Certain Time Intervals

([1988]) also argues that people are able to re-learn what they have forgotten better than

learning something completely new. Therefore, we propose that reminder is necessary,

but that the actual content can be mentioned more briefly than the first time it was intro-

duced.

In order to capture the user’s memory capability, we can classify users into several

stereotypes, each having memory capability ranging from low to high. Each class has a

default value indicating the approximate percentage of information that will be forgotten

after a certain period of time so that a different amount of reminders can be provided to

different classes of users.

3.1.5 Interests

Another factor that should be considered is the user’s interests. Corbett ([1990]) suggests

that we can make a subject more attractive to an audience by showing that it is important,

momentous, curious or relevant to the interest of the audience.

Interests can be stated either explicitly or implicitly. The latter suggests that a us-

er’s interest can be inferred from other knowledge of the user. For example, a person

with a good deal of knowledge about the Toronto Blue Jays or the Montreal Expos will

be considered as being interested in baseball (inference from user’s knowledge), while

one who asks about recipes often might be thought of as being interested in cooking (in-

ference from user’s goals). Nonetheless, interests can also be inferred from the user’s

CHAPTER 3. DEVELOPING A USER MODEL 28

background, sex, age, etc.

To show how the user’s interests actually tailor natural language generation, suppose

the question who is Benjamin Franklin is asked. For a general answer, the system may

respond Benjamin Franklin, an 18-century American, was a scientist, politician, and

writer. However, for further information, we want to be more user-specific, by guessing

what the user might want to know. For a physics student, the answer will be he flew a

kite in the thunderstorm and proved that lightning is electrical in nature. For a political

science student, we might say that he was a member of the Constitutional Convention

of 1787, and had a hand in the writing of the Declaration of Independence of America.

In a third case, an arts student might prefer he had a number of publications, including

a series of 14 essays signed “Silence Dogood”, as well as a weekly newspaper called

“the New-England Courant” in 1921. The above, however, are obtained by inferring the

user’s interests from their background.

As mentioned earlier, Cohen et al. ([1989]) take into account the user’s preference,

which is similar to the interest attribute described here. They pre-define certain prefer-

ences for each class of users and provide responses according to them.

3.1.6 Receptivity

Hovy included in his rhetorical goals of style, the openmindedness of the hearer, indicat-

ing his/her willingness to consider new topics ([Hovy, 1988a]). Our definition of recep-

tivity is similar to Hovy’s openmindedness, but also considers the user’s ability to absorb

the information given, in order to determine how much to say.

A person with high receptivity is assumed to be eager to learn new things and to be

able to understand the newly introduced material well. Therefore, we might not only

want to say what he/she asks for, but also add more relevant information to support what

CHAPTER 3. DEVELOPING A USER MODEL 29

we say.

To illustrate how receptivity influences natural language generation, let us take the

question what is a peach for example. If it is asked by a person with low receptivity,

what we might say is peach is a kind of large fruit, usually round, with downy white or

yellow skin flushed with red, highly flavoured sweet pulp and a rough stone; for a person

with high receptivity, we can say more about a peach, or even introduce nectarines, and

compare the two fruits.

A user’s receptivity can be recorded in the user model in a way that is similar to the

one used for recording the user’s memory constraints. Several classes ranging from low

to high indicate how willing the user is to accept new concepts, which helps decide the

amount of information to be included in the responses.

3.2 Dimensions of the User Model

There are many ways of designing a user model. Kass and Finin ([1988]) analyzed six

dimensions of a user model, namely, degree of specialization, modifiability, temporal ex-

tent, method of use, number of agents and number of models, as shown in figure 3.1. In

designing a user model, one has to make choices for each of these dimensions. These

choices are based on the application domain, the number of users, and the kinds of at-

tributes included in the user model, etc. In chapter 9 we review the user model presented

in this thesis and classify it according to the dimensions listed in figure 3.1.

3.2.1 Degree of Specialization

The two extreme cases of specialization are generic and individual. The generic case

is basically making the same assumptions about all users, without actually tailoring re-

CHAPTER 3. DEVELOPING A USER MODEL 30

� �

� �

� �

� �

� �

� �

multiplesingle

Number of Models

multiplesingle

Number of Agents

prescriptivedescriptive

Method of Use

long termshort term

Temporal Extent

dynamicstatic

Modifiability

genericindividual

Degree of Specialization

Figure 3.1: Dimensions of User Models

CHAPTER 3. DEVELOPING A USER MODEL 31

sponses to individual users, while the individual case is treating every user differently,

which will become very costly if the system has a large number of users.

A compromise of these two cases is to categorize the users into several stereotypes,

with some basic assumptions associated with each type of user. A user can be classified

into one of these roughly defined stereotypes, with some additional information indicating

where the facts about the user and the default values of the type disagree. This is the model

most widely adopted in existing user modeling systems.

The degrees of specialization for all of the contents mentioned in the previous section

do not have to agree. It is best to choose the degree of specialization according to the

characteristics of the contents, so as to serve the needs of both efficiency and accuracy.

For instance, in a course-advising system, we can assume the generic goal for all users

to be to get a degree, whereas the database of what courses the user has taken can be of

several stereotypes, categorized according to the year and department the user is in. On

the other hand, preferences and receptivity tend to be more specific to individuals.

3.2.2 Modifiability

A user model can be static or dynamic. A static user model remains the same no matter

what new information about the user is learned, while a dynamic user model is updated

after each interaction or a certain period of time.

The discussion in section 3.1.4 suggests that a user model that does not update its

knowledge of the user does not make much sense. Therefore, for a system to provide the

most appropriate response to the user, its user model has to be up-to-date, i.e., dynamic.

However, part of the user model can be static, e.g., sex, some information might change

gradually over time, e.g., interests, and other information should be updated frequently,

e.g., knowledge.

CHAPTER 3. DEVELOPING A USER MODEL 32

3.2.3 Temporal Extent

The temporal extent of a user model can be either short term or long term. Short term

information refers to information that is kept only during the same conversation, but not

recorded in the user model after the interaction. This can include the user’s mood, the

conversational environment, and so on, which tend to change for every interaction. A

user model which is generic and dynamic is usually short-term. Since information about

a particular user will not be kept for long, the user model can be updated quite often.

Long term information, on the other hand, usually implies that the information is kept in

a static or individual model.

3.2.4 Method of Use

A user model can be used descriptively or prescriptively. Most of the current systems

adopt the descriptive use of a user model, which means acting passively by maintaining

a database about the user, looking up and updating the database whenever necessary.

A prescriptive use of the user model can be thought of as acting actively. Instead of

using the database as something to check up, the system uses this knowledge to antici-

pate the user’s reaction. Jameson’s IMP system ([Jameson, 1988]), for example, uses an

anticipation feedback loop to predict the user’s reaction to the system’s response.

3.2.5 Number of Agents

In most cases, the system deals with one agent at a time, providing information to the

person it is interacting with. The system keeps information on this user, from its own point

of view. But sometimes, the main role in the conversation is not the user him/herself. The

user might be a lawyer who is consulting the system to find out the best way to protect

CHAPTER 3. DEVELOPING A USER MODEL 33

his/her client, or a mother who is consulting a medical expert system to find out what

is wrong with her child. In these cases, the situation gets much more complicated. The

system must keep a model for the client (in the first case) as well as the lawyer so that it

can tailor the responses to the lawyer’s point of view of the client.

3.2.6 Number of Models

People often play multiple roles, depending on where they are, to whom they are talking,

etc. If the information for these roles is kept in the same model, conflicts might arise.

For example, a man, asking his subordinate to give him a report on the design of a new

product, might expect the report to be formal and to the point. But when asking his son

how he did at school today, he will expect the atmosphere to be more colloquial. This

shows a conflict in the person’s preference of style.

One way of solving this problem is to keep multiple models of the same agent, choos-

ing one for the conversation depending on the possible role he/she is playing, the conver-

sational atmosphere, and so on. In more complicated situations, the system will have to

decide when to switch models even during the same conversation.

Chapter 4

Motivation for Our Design Decisions

In order to see how user modeling influences natural language generation, we take a

closer look at some examples in McKeown’s TEXT system domain of naval intelligence.

We choose the typical what is a ship question, look at how the system generates the

response, then specify a few user models and create some desired responses for each of

them. By comparing the desired output and TEXT’s original output, we come up with an

algorithm that generates natural language text tailored to individual users which will be

presented in chapter 6. In this chapter, we first give an example describing how generation

is done in TEXT, then present three users with different characteristics asking the same

question, together with the desired responses. This sheds some light on what we expect

to achieve in our work.

4.1 McKeown’s Approach

We gave a brief introduction of how the TEXT system works in chapter 2. In this section,

we will give an example of how TEXT generates the answer to the question what is a ship.

34

CHAPTER 4. MOTIVATION FOR OUR DESIGN DECISIONS 35

TEXT operates in a database containing information about vehicles and destructive

devices. When the question what is a ship is asked, the first step is to construct the

relevant knowledge pool. The relevant knowledge pool in figure 4.1 is constructed by

selecting the area in the database immediately surrounding the ship (for details on how

this is done, see [McKeown, 1982]).

Next, the schema selection process is performed. In TEXT, the selection of discourse

strategy (schema) is based on a pre-defined mapping which assigns different schema-

ta to different question types, as shown in figure 4.2. Some of the question types have

more than one candidate schema. The final decision is made by consulting the relevant

knowledge pool for the amount of available information. For example, the identification

schema and the constituency schema are the two candidates for questions requesting def-

initions. If the relevant knowledge pool contains more information about the object in

focus than about the object’s children, the identification schema is chosen; otherwise, the

constituency schema will be used. This is usually done by choosing a pre-determined

level in the database hierarchy at which most of the objects appearing above that level

have more information about their children, and the ones appearing below the level have

more information about themselves.

In this example, the what question falls into the category of definitional questions.

Since the ship occurs below the pre-determined level in the hierarchy, the identification

schema is chosen.

After selecting the schema, TEXT begins traversing the ATN graph corresponding to

the schema chosen. The ATN graph for the identification schema was shown earlier in

figure 2.3. The first arc dictates that the response must begin with a proposition matching

the identification predicate. Searching through the relevant knowledge pool, the predicate

is instantiated and translated to a ship is a water going vehicle that travels on the surface.

Now, we are in the ID/ID state in the ATN. For the next sentence, we can either choose

CHAPTER 4. MOTIVATION FOR OUR DESIGN DECISIONS 36

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
� �

�
�
�

�
�
�
�

�
�
�
�
�
���

�
�
�
�
�
��� �

�
�
�
�
���

�
�
�
�
�
���

�

�
�
�
�
���

	
	
	
		

�
�
�
�
���

�
�
�
�
���

�
�
�
�
�
��

�
�
�
�
�
�
�
�
���

�
�
��

�
�

�
�
�
���

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�

�
�

���

����

�

projectiles
guided guns

whiskey

speed
submerged
maximum

have

underwater

depth
operating
maximumattrs

db-

speed dependent
dimensions
propulsion
maximum speed
official name
fuel type
fuel capacity

db-attrs

on

draft

have

displacement

have
surface

is-atype-of
type-ofis-a

submarineship

water
travel-medium

water-vehicle

aircraft
carrier frigate

destroyer

range

travel-
mode mode

travel-

echo-II

Figure 4.1: Relevant Knowledge Pool for the Question What is a Ship?

CHAPTER 4. MOTIVATION FOR OUR DESIGN DECISIONS 37

Requests for definitions

Identification

Constituency

Requests for available information

Attributive

Constituency

Requests about the differences between objects

Contrastive

Figure 4.2: Mapping of Schemata to Question Types in TEXT

the arc subroutine description, which leads us back to the same state, or choose subroutine

example and move on to the next state. Since the subroutine description includes three

choices, attributive, constituency, and analogy, and the subroutine example consists of

particular-illustration and evidence, we have five candidate predicates in total.

To choose among these candidates, TEXT first matches the predicates in the relevant

knowledge pool to instantiate them, then applies the focus constraints shown in figure

2.4, if more than one predicate is applicable. The instantiated predicates and their foci

are shown in figure 4.3, where the particular-illustration predicate is left out because there

is no information available at this point.

Now following the preferential ordering on how focus of attention should shift (figure

2.4), the evidence predicate has the highest priority since it focuses on an element that

was just introduced, the surface-going capabilities. Therefore, it is chosen as the second

proposition.

CHAPTER 4. MOTIVATION FOR OUR DESIGN DECISIONS 38

1. Analogy

The ship carries guided projectiles and guns.

focus = ship

2. Constituency

There are 5 types of ships in the ONR database: aircraft carriers, frigates,

ocean escorts, cruisers, and destroyers.

focus = ship

3. Attributive

The ship has DB attributes maximum speed, propulsion, (fuel capacity and fuel

type), dimensions, speed dependent range and official name.

focus = ship

4. Evidence

Its surface-going capabilities are provided by the DB attributes displacement

and draft.

focus = surface-going capabilities

Figure 4.3: The Instantiated Predicates

CHAPTER 4. MOTIVATION FOR OUR DESIGN DECISIONS 39

(definition SHIP)

; What is a ship?

Schema selected : Identification

1. A ship is a water-going vehicle that travels on the surface. 2. Its surface-

going capabilities are provided by the DB attributes displacement and draft.

3. Other DB attributes of the ship include maximum speed, propulsion, fuel

(fuel capacity and fuel type), dimensions, speed dependent range and official

name. 4. The DOWNES, for example, has maximum speed of 29, propulsion

of stmturgrd, fuel of 810 (fuel capacity) and bnkr (fuel type), dimensions of

25 (draft), 46 (beam), and 438 (length) and speed dependent range of 4200

(economic range) and 2200 (endurance range).

Figure 4.4: Answer to What is a Ship Generated by TEXT

TEXT continues traversing the ATN in a similar method until a pop arc is chosen,

which ends the generation process. The complete response for this question is shown in

figure 4.4, where the path taken in the ATN is,

ID/ – identification �� ID/ID

– jump �� ID/DS

– example �� ID/EX

– end-seq �� ID/E-S

– example �� END

CHAPTER 4. MOTIVATION FOR OUR DESIGN DECISIONS 40

4.2 Responses with User Modeling

The procedure and output discussed in the previous section are standard in TEXT, i.e.,

no matter who asks the questions, the system provides this unique answer. We believe

that a user-friendly system should be able to tailor the responses to different users given

the user model of each. In this section, we will look at some examples that show how

information about the user might affect the response. Note that the users in the following

examples represent real people to demonstrate that the combinations of attributes in their

user models are possible.

User A:

In this example, we present a user who is a high school student interested in aircraft, with

the user model shown in figure 4.5. Being a teenager, it is very likely that he/she has high

receptivity and a good memory. Since this user is not an expert in this domain, presenting

the information using examples might be more appropriate1. He/She knows some aspects

about a ship, its sibling submarine, and an air vehicle aircraft. Now, if the question what

is a ship is asked by this user, we will expect an answer as shown in figure 4.6.

In the desired response, we see that two schemata, identification and contrastive, are

chosen, because the user has both high receptivity and good memory. The former suggests

that the user is willing to learn more new information and the latter indicates that the user

has a higher possibility of remembering what he/she was told. Sentences one to three are

generated by the identification schema, whereas the last two are both examples, which the

user prefers. The second proposition gives the example of an aircraft carrier because of

the user’s interest in aircraft. The fourth sentence is generated by the contrastive schema,

choosing the ship’s sibling submarine, which the user knows about, for the comparison.

1This information is all taken as input in our model. Here we are just showing that this hypothetical

person makes sense as a possible real person.

CHAPTER 4. MOTIVATION FOR OUR DESIGN DECISIONS 41

1. Knowledge:

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
� �

�
���

����

�
���

� �

	
	
	
	
		

�
�
�
�

�
��

�
�
�
���

	
	
	
	
		�

�
�
�
�
�
��

!
!
!
!!"

�

�
�
��

�
�
�
�
���

�
�
�
�
�
���

�
�
�
�
�
����

�
�
�
�
���

�
�
�
�
�
���

have

have

radius
filght-

ceiling

have

have

ceiling

radius
filght-

mode
travel-

is-a
type-oftype-of

is-a

flight

airmedium
travel- medium

travel-

type-of is-a

aircraft

air-vehicle

vehicle

travel-
modemode

travel-

frigate

water-vehiclewater

ship submarine

is-a type-of
type-of is-a

surface

have

draft

db-attrs

fuel capacity
fuel type
official name underwater

2. Interest: aircraft

3. Preference: example

4. Receptivity: high

5. Memory capability: high

Figure 4.5: User Model for User A

CHAPTER 4. MOTIVATION FOR OUR DESIGN DECISIONS 42

(definition SHIP)

; What is a ship?

Schema selected : Identification, Compare and Contrast

1. A ship is a water-going vehicle that travels on the surface. 2. An aircraft

carrier, for example, is a type of ship with a displacement between 78000

and 80800 and a length between 1039 and 1063. 3. A cruiser is another type

of ship that carries between 8 and 42 torpedoes, between 4 and 98 missiles

and between 1 and 4 guns. 4. A ship is different from a submarine in that

a submarine travels under water and has a DB attribute maximum operating

depth2.

Figure 4.6: Desired Output for User A

User B:

In this example, we demonstrate how the user’s preference and memory capability influ-

ence the response. The user in this example is a aircraft maintenance engineer who has a

poor memory. He/She has the same knowledge as the high school student (perhaps more

knowledge about aircraft, but since this does not influence the response for our question,

we will not show this part of the knowledge base for this user), and most likely is inter-

ested in aircraft. Since a maintenance engineer is an expert in a particular type of vehicle,

he/she should have high receptivity in this domain; it is also natural that he/she prefers

the response being descriptive (prefers attributes). The user model is shown in figure

4.7. It differs from user A’s model in that the preference is attributive and the memory

capability is low. For user B, the appropriate response to the question what is a ship is

shown in figure 4.8.

CHAPTER 4. MOTIVATION FOR OUR DESIGN DECISIONS 43

1. Knowledge: same as user A in figure 4.5

2. Interest: aircraft

3. Preference: attributive

4. Receptivity: high

5. Memory capability: low

Figure 4.7: User Model for User B

(definition SHIP)

; What is a ship?

Schema selected : Identification

1. A ship is a water-going vehicle that travels on the surface. 2. Its surface-

going capabilities are provided by the DB attributes displacement and draft.

3. Other DB attributes of the ship include maximum speed, propulsion, di-

mensions, speed dependent range, as well as fuel capacity, fuel type, and

official name. 4. Aircraft carriers, frigates, and cruisers, for example, are

different types of ships.

Figure 4.8: Desired Output for User B

CHAPTER 4. MOTIVATION FOR OUR DESIGN DECISIONS 44

In this example, only one schema, the identification schema, is chosen, because the

user’s memory capability is low. Also because of his/her a poor memory, some infor-

mation that appears in the user’s knowledge base shows up again in the response, for

instance, the attribute draft, and some DB attributes fuel capacity, fuel type, and offi-

cial name. Compared with the answer given to user A, this response comprises much

more attributes, but fewer details in the examples. This is due to the user’s preference in

attributive, rather than in examples.

User C:

This particular user model shows how the influences of memory capability and receptiv-

ity take place. The person presented here is an old general with the user model shown

in figure 4.9. This general is also interested in aircraft, and because of his age, it is un-

derstandable that he has low receptivity and poor memory. He happens to have the same

domain knowledge as the previous two users and also prefers attributive information.

The only difference between the general and the previous engineer is his low receptivity;

therefore, we expect the output of the question what is a ship to be as shown in figure

4.10.

Obviously, this response contains much less information than the first two. Attributes

are mentioned, but not as many as in the answer for user B. The reason is that user C has

low receptivity, proposing that he is less willing to learn new information. Also, only one

example, the aircraft carrier, is given, for the same reason.

CHAPTER 4. MOTIVATION FOR OUR DESIGN DECISIONS 45

1. Knowledge: same as user A in figure 4.5

2. Interest: aircraft

3. Preference: attributive

4. Receptivity: low

5. Memory capability: low

Figure 4.9: User Model for User C

(definition SHIP)

; What is a ship?

Schema selected : Identification

1. A ship is a water-going vehicle that travels on the surface. 2. The DB

attributes of a ship include maximum speed, propulsion, dimensions, speed

dependent range, as well as fuel capacity, fuel type, and official name. 3. An

aircraft carrier, for example, is a type of ship.

Figure 4.10: Desired Output for User C

Chapter 5

User Models With McKeown-Style

Generation

We introduced natural language generation and user modeling individually in previous

chapters, but the most important issue is how they interact, i.e., when and how the user

model influences the decisions made by the generator to provide different responses to

different users. In this chapter, we introduce a user model for recording the informa-

tion about the user mentioned in section 3.1, and discuss when and how this information

influences the generation process.

5.1 The Domain

The original ONR database used by McKeown contains information about vehicles and

destructive devices ([McKeown, 1985]). The questions that can be asked include defini-

tion, information, and comparison, the answers to which all provide static information.

Maybury ([1990]) suggests that there are four generic prose forms, description, nar-

46

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 47

ration, exposition, and argument. Description includes definition, comparison, analogy,

etc., and is used for describing people, places, and things. Narration is for writing about

events, and can be reports, stories, or biographies. Exposition conveys ideas and methods,

for example, instructions, processes, and propositions, while argument contains deduc-

tion, induction, and persuasion.

The types of questions that McKeown deals with all fall into the category of descrip-

tion, which is only a small portion of possible text forms. In order to broaden the scope,

the model we propose uses a cooking domain, in which information about various dishes

as well as the recipes for certain dishes are available. In this domain, in addition to the

definitional questions (e.g. what is X?), procedural questions can also be asked (e.g. how

is X made?), which provides dynamic information about the steps for making X.

Part of the cooking database is shown in figure 5.1. The whole database is represented

in a semantic network, with the most general concept, food, as the root. The objects in the

domain are organized in an ISA hierarchy, with the descendents inheriting the attributes of

their ancestors. There are several kinds of nodes in the tree, subclasses of food (classes),

specific dishes (tokens), subplans, and primitive actions. The higher level nodes in the

tree are more general concepts of food, while most of the nodes in the third level from

the bottom are specific dishes, along with their associated recipes. Some recipes can be

decomposed into subplans, each subplan being a child of that dish. The leaf nodes, then,

are primitive actions used in the parent subplans. Although all nodes in the hierarchical

structure inherit attributes from their ancestor nodes, there exists a particular case where

a child node has an additional value with the same attribute name as its parent’s. In

this case, we introduce a notation of an attribute value prefixed by a ‘+’ sign indicating

that the same attribute name appears in one of its ancestor nodes as well. For example,

meringue pie is a subclass of food, inheriting the attributes from its ancestors, pie, pastry,

dessert, and food. The attribute parts: + top meringue shows that in addition to the part

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 48

meringue, there are also other parts recorded in its ancestor nodes ; therefore, we search

in the node pie and find that the other parts are crust and filling. Meringue pie has two

children, namely, lemon pie and chocolate pie. To make a lemon pie, the crust, filling,

and meringue have to be prepared separately, therefore, each being a subplan of making

a lemon pie. Furthermore, for making the pie crust, we have cut shortening, make dough,

and roll dough listed as primitive actions.

5.2 Knowledge Representation

The database shown in figure 5.1 is presented at an abstract level. In order to store it in

the system, we need a formal representation for it. We use the knowledge representation

language Telos ([Koubarakis et al., 1989]) as a guideline to record both the system’s

and the user’s knowledge. Telos adopts an object-oriented representational framework,

based on ideas from semantic networks and frame-based representations. It provides a

hierarchical structure for representing the parent-child relationships and the inheritance

between parents and children.

The main objects in Telos are classes, tokens and attributes. Simple classes are de-

fined as classes with only tokens as instances. Classes other than simple classes are re-

ferred to as meta-classes. Attributes of classes are classes as well; attributes of tokens

which are instances of classes have attributes which are instances of these attribute class-

es.

Another major feature of the Telos language is the ability to specify temporal in-

formation with classes and tokens. We have not employed this feature in the examples

used in this thesis, but for future work we can examine the usefulness of recording and

tracking the time intervals during which certain objects and relationships are held in the

knowledge base.

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 49

#
#
#
#
#
##

$$$$%
�

&&&&&&&&&

�
�
�
�
�

�
�
�
�
�

'''''''''

&&&&&&

�
�
�
�
�

$$$$$$$

	
	
		

�
�
��

(((
(((

(((
(((

(()
)
))

��������

�
�
��

#
#
#
#
##

�
�
��

�

� ((((((* $$$$$$$$

��������

�

+
+
+
+
++

#
#
#
#
##

�

�
�
��

	
	
		

�
�
��

	
	
		

+
+
+
+

++

�
�
��

�
�
��

�

� ((((((* $$$$$$$$

��������

�

+
+
+
+
++

#
#
#
#
##

�

�
�
��

	
	
		

�
�
��

	
	
		

+
+
+
+

++

�
�
��

�
�
��

	
		

,
,
,,
,
, �

�
��

&&&&&

&&&&&

�
�

��

+ top meringue

add egg yolk

apple piecherry pie

chocolate lemon
filling

side-dishmain-dishappetizer

food

pie crust
filling

parts

pastryshortened paste

bake

made-of

method

cake

meringue pie fruit pie
parts parts

+ top lattice

lemon piechocolate pie

make make
meringue

pie crust
filling

parts

pastryshortened paste

bake

made-of

method

cake

meringue pie fruit pie
parts parts

+ top lattice

lemon piechocolate pie

makecombine
meringue

pie

make
Graham
wafer
crust

make

filling

icecream

dessert

meringue
top with

crust
fill

make

filling
apple

make
top

lattice

combine
fruit pie

crust
flaky
make

crust
flaky
make

dough
roll

dough
roll

dough
make
dough
make

shortening
cut

served
last in meal

tastes

served
last in meal

tastes sweet

Figure 5.1: The Cooking Database

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 50

We use the framework from Telos, but make some modifications to suit our particular

needs. We include attribute information and also consider procedural information at-

tached to tokens. There are four entity types for nodes at various levels in the hierarchy,

shown in figure 5.2.

The first entity type class serves as a more general category. The ISA slot indicates the

link between the object and its parent. The WITH slot includes all the attributes associated

with this object, the attribute names together with their values. Within the CHILDREN

slot are the links between the object and its children. Most of the nodes in the top few

levels in the hierarchy will fall in the category class. For example, the node pastry in

figure 5.1 will be represented as,

CLASS pastry

ISA dessert

WITH

made-of: shortened paste

method: bake

CHILDREN

pie

cake

END

The second type token, is used to indicate objects that cannot be further instantiated.

Subplans are attached at the token level1. For tokens INSTANCE OF slot contains the

object’s parent in the hierarchy, the most specific class to which it belongs. The PROCE-

1Note that it would be possible to have a specialization hierarchy for procedural information as well.

In this case, a procedure could be attached at a higher class level (e.g. meringue pie), and then instantiated

or augmented at the token level (e.g. lemon pie). We did not explore this option.

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 51

CLASS class name TOKEN token name

ISA parent class name INSTANCE OF parent class name

WITH PROCEDURE

list of attributes list of subplans

CHILDREN END

list of children

END

SUBPLAN subplan name PRIMITIVE ACTIONS action name

INCLUDED IN USED BY

parent token names parent subplan names

INGREDIENTS DESCRIPTION

list of ingredients descriptions

WITH END

primitive actions

PROCEDURE

actual procedures

(including primitive

actions)

END

Figure 5.2: Four Entity Types

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 52

DURE slot will include all the links to its children (subplans), if any; otherwise, it will

be a description of how to make the dish. The token lemon pie will be filled in as,

TOKEN lemon pie

INSTANCE OF meringue pie

PROCEDURE

make crust: make flaky pie crust

make filling: make lemon filling

make top: make meringue

combine: combine meringue pie

END

Note that the subplans in the PROCEDURE slot are in the format X:Y, where X is a

more general concept, being a collection of several more specific subplans, and Y is one

of the instantiated subplans within X. The purpose of this is to provide information for

the contrastive schema. With this representation we know that the make lemon filling in

lemon pie corresponds to the make chocolate filling in chocolate pie, both being in the

class make filling, so they can be listed as one of the differences between lemon pie and

chocolate pie.

The next level, subplan, covers the children of tokens. These are designed to be

a high-level decomposition of the recipes so that some of them can be shared among

several tokens. The INCLUDED IN slot gives us the links to its parents, i.e., all the

dishes that include this subplan. The INGREDIENTS slot provides us with all the basic

ingredients used in this particular subplan (in general, this slot can be used to specify

objects required in order for the procedure to be carried out). The WITH slot gives us the

links to the primitive actions that are used in this subplan. The last slot, PROCEDURE,

provides us with the detailed procedure for that part of the recipe. For the flaky pie crust

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 53

subplan, we can denote it as:

SUBPLAN flaky pie crust

INCLUDED IN

lemon pie

apple pie

INGREDIENTS

1 cup all-purpose flour

1/2 tsp salt

1/3 cup shortening

3 Tsps very cold water

WITH

cut shortening

make dough

roll dough

PROCEDURE

1. Sift flour and salt into a bowl, cut shortening into flour (cut

shortening).

2. Sprinkling water over the flour and mix until it forms a dough

(make dough).

3. Roll the dough (roll dough) to a thickness of 0.5cm.

4. Transfer the dough to pie pan and trim the edge.

5. Bake at 220C for 10-12 minutes.

END

The last entity type primitive action is a further decomposition of the subplans, which

might appear in several subplans. For instance, the primitive action make dough appears

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 54

not only in making pie crust, but also in making pizza crust, tea biscuits, etc. There are

only two slots in this entity, the USED BY and the DESCRIPTION slots. The former in-

cludes its parents, all the subplans that use this primitive action, while the latter describes

how the action is actually done. The primitive actions and subplans are used not only

because they allow for efficient storage (by using the same subplan/primitive action for

all the recipes they are included in), but also because they control the level of detail pro-

vided in the answer to a procedural question (by choosing whether to expand a subplan/

primitive action or not). The primitive action cut shortening can be expressed as,

PRIMITIVE ACTION cut shortening

USED BY

flaky pie crust

pizza crust

tea biscuits

DESCRIPTION

Cut shortening into flour with a pastry blender or

two knives until no pieces of shortening larger than

a pea appear, when the bowl is shaken.

END

To effectively search this knowledge base, we propose an implementation where any

node of the knowledge base could be indexed. These indices would be built not only on

the system knowledge base, but also on every user’s individual knowledge base. They

would be used to locate the current focus in the knowledge base and to check if an object

in the relevant knowledge pool appears in the user’s domain knowledge.

Providing these four entity types and the indices, we will be able to represent and

search through the entire system database as well as the user’s knowledge in the user

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 55

model very efficiently.

Note that extending the representation language to include subplans is particularly

useful for domains such as cooking, with questions such as how to make X. Other ex-

tensions to the representation language can be considered, when building natural lan-

guage generation systems which handle a broader range of question types. See Maybury

([1990]) for a discussion of a wider range of possible question types for natural language

generation.

5.3 The User Model

As discussed in chapter 3, a user model contains information about a particular user or

a group of users in order to make the system respond more appropriately for individual

users. We also suggested what information the user model should provide, though it

might differ slightly from domain to domain. In this cooking domain, the information

included in the user model is quite similar to that in the ship domain described in chapter

4, with an additional attribute user’s role. It consists of,

� User’s knowledge: this will be an overlay of the system database, indicating the

part the user knows about. An example is shown in figure 5.3. The nodes denote the

objects known to the user, and an arc indicates that the user knows the relationship

between the two nodes (not just the nodes themselves). Note that in the example,

the user does not know the concepts meringue pie and fruit pie; therefore, the user’s

database is structured differently from the system’s, having lemon pie and apple pie

as children of pie (we call this incomplete information). The user may know part of

the attributes of a class (e.g. dessert), and may also know a class without knowing

its relationship to other classes (e.g. icecream).

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 56

� User’s role: This provides clues for inferring the user’s possible plans and goals.

In our cooking domain, we stereotype the users as either chefs or diners, with the

assumption that a chef would like to know more about how to make the dish, i.e.,

asking for the recipe, while a diner is more concerned with what the dish consists

of, how it tastes, etc.

� User’s preferences: This concerns the style of responses the user prefers. We give

two options here, attributes or examples. The former focuses on the aspects of the

object being asked about, while the latter gives instances of it. For example, for a

user who prefers attributes, the answer to what is pastry will be pastry is a kind of

dessert which is made of shortened paste, and is often baked, while for one who

prefers examples, the response can be pastry is a kind of dessert; pies and cakes

are instances of pastry.

� User’s interests: The most important usage of user’s interests in this domain is to

help the system decide which examples to choose. The interests can be particular

dishes or flavours that the user is interested in learning. When giving an example

of meringue pie, the system will choose lemon pie if the user is interested in lemon,

or chocolate pie if he/she is interested in chocolate.

� User’s memory capability: The user’s memory capability will be indicated as ei-

ther high or low, indicating how well the user is expected to remember material

introduced, and therefore, determining whether reminders should be added to the

responses or not2.

� User’s receptivity: This is also marked as high or low, and determines the amount

of new information introduced to the user. This amount varies by the number of

2Here we assume that the user interacts with the system through keyboard and terminal only. The case

where the user writes down the system’s responses to compensate his/her poor memory is not covered.

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 57

schemata chosen and the number of predicates chosen within each schema. An

example of choosing two schemata was shown in the answer provided to user A in

section 4.2.

Conflicts exist in how the information in a user model influences generation. Memory

capability and receptivity, for example, both influence the amount of information to be

included, but sometimes contradict each other. Low memory capability implies that it is

quite unlikely that the user will remember what he is told; therefore intuitively, we will

expect the system to say less, and expect the user to remember what is said. Although

this user has a poor memory, it does not prevent him/her from being eager to learn new

things, i.e., having high receptivity. The latter suggests that the system say more in order

to satisfy the user’s desire. In this case, there is a conflict as to whether more information

should be provided or less. Our solution is to concentrate on the reminders, i.e., repeating

old information, as far as memory capability is concerned, but focus on introducing new

information with regard to receptivity. Therefore, in the previous case, reminders will

be provided because of low memory capability, and new information will be introduced

because of high receptivity.

One question here is how we obtain this kind of information about the user. There

are two possible solutions to this question. The first is to have an interview session with a

new user to find out all the necessary information. The second is to stereotype a new user

to a certain class and use the default values of that class to begin, with, then update the

parts where the default values disagree with the user’s actual characteristics during the

conversation. In our model, we assume that the information in the user model is always

correct, and the attributes, except user’s knowledge, will not be automatically updated

(for details of updating the user model, see sections 5.5 and 6.7). Hence, we make the as-

sumption that a new user will be interviewed at the beginning of the conversation in order

to initialize the user model. Note that since we do not handle the user’s misconceptions

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 58

�
�
��

	
	
		

�
�
�

-
-
-

#
#
#
#
##

+
+
+

+
++

��������

$$$$$$$$

((((((*
�

���������

�

�

$$$$$$$$

+
+
+

+
++

#
#
#
#
##

+
+
+

+
++

��������

$$$$$$$$

((((((*
�

���������

�

�

$$$$$$$$

+
+
+

+
++

.
..

/
//

pie
meringuelemon

add egg yolk

food

apple pie

cake

method

made-of

bake

shortened paste icecreampastry

served
last in mealdessert

parts

filling
crustpie

dough
roll

dough
makecut

combine
meringue

make

filling

make

lemon pie

make
flaky
crust

food

apple pie

cake

method

made-of

bake

shortened paste icecreampastry

served
last in mealdessert

parts

filling
crustpie

shortening

lemon pie

make
flaky
crust

fill
crust meringue

top with

Figure 5.3: Representing User’s Knowledge in a User Model

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 59

(assuming an incorrect relationship between two objects or associating with an object an

attribute it does not have), we have to make sure that the user’s knowledge agrees with

the system’s. This could be realistically achieved by examining the user’s knowledge

base after the interview session. If a misconception is detected, the incorrect information

will not be recorded in the user model (either the link or the attribute is omitted) 3.

5.4 The Interaction Between User Models and Generation

We briefly introduced McKeown’s TEXT system in chapter 2. As shown in figure 2.1, the

strategic component of the TEXT system includes determine relevancy, select strategy,

and select propositions, which decide what to say in the response. Adding user modeling

actually influences all three stages of this process. Furthermore, since more than one

question type is allowed in our model, the actual type that the user intends has to be

decided by consulting the user model. We will explain how these interactions take place

briefly in this section, and go into more detail when we discuss the algorithm in chapter

6.

5.4.1 Determine Question Type

We discussed earlier that there are two types of questions that can be asked in our system,

definitional questions and procedural questions. The users can ask questions in either

of the two forms what is X or how is X made, but how does the system decide whether

the question asked is intended to be a definitional or a procedural one? We claim that the

question type is closely related to the user’s possible plans and goals, and can be predicted

3Here we act passively by omitting the user’s misconceptions. A better approach can be to provide

information to the user to correct his/her misconceptions.

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 60

by the user’s role in the user model.

In our domain, we assume that the user’s role is either a chef or a diner, where the

former is interested in knowing how to prepare a dish and the latter merely wants to know

the ingredients, how it is prepared, to decide if he/she will order it or not. Knowing the

possible goals for the two types of persons, we can analyze the what and how questions

and decide which categories they fall into when being asked by users of different roles.

The how is X made question is quite obvious, because this explicitly states that the

user wants to know the procedure for making X. Thus, it is definitely classified as a

procedural question4. For the what is X question, it becomes more complicated. As

pointed out by Paris ([1988]), when a what question is asked, the answer can either be

obtained by traversing a constituency schema, giving all the subparts that constitute the

object, or by giving a process-trace, describing how the object works. In our case, we

can answer the question by giving the ingredients, its taste, and even some examples,

which the diner will prefer, or by providing a step-by-step instruction for making that

dish, which the chef will be interested in.

Note that the idea of deciding the question type according to the user’s role can be

applied to other domains, but the mapping between roles and plans is domain-dependent.

Therefore, in another domain, a different mapping of the users’ roles and their possible

goals should be developed. Once the possible goal is available, we can infer whether

definitional or procedural information will be more appropriate.

4Of course, the level of detail in a recipe provided to a chef and a diner should be different. Here the

user’s role only decides the question type since the level of detail can be determined by the user’s knowledge

which should differ considerably between a chef and a diner.

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 61

5.4.2 Determine Relevancy

In McKeown’s original model, when a question is asked, part of the knowledge base in

focus is selected to form the relevant knowledge pool. All further processing relies on the

relevant knowledge pool, and moreover, all information in the pool has equal preference

of being chosen.

We agree with McKeown on forming the relevant knowledge pool to provide con-

straints on what can be said, but we believe that some parts of the relevant knowledge

pool should have higher priorities for being said than others. Therefore, our process

of creating the relevant knowledge pool can be divided into two stages: first, selecting

relevant knowledge; and second, assigning importance values to all the nodes and arcs

selected.

The first part is done as in TEXT, by concentrating on the global focus to section off

relevant information in the knowledge base. In order to do so, the most important thing

is to determine the global focus, which is the object being asked about. For a definitional

question, we choose the relevant knowledge to be the global focus’s descendants to the

subplan level, its ancestors to the top5, its siblings and the siblings’ children. With the

cooking database shown in figure 5.1, the resulting relevant knowledge pool for the ques-

tion what is meringue pie is shown in figure 5.4. As for a procedural question, where the

object being asked about must be a token or subplan, the relevant knowledge pool will be

the subtree with the global focus as root, and the parents of all the subplans and primitive

actions of the global focus. If the question how is a chocolate pie made is asked, the

5In the cooking domain, it is more appropriate to choose the ancestors to the second level from the top,

since the class food is a very general concept in this domain, and it does not make much sense to define

an object as a kind of food. But if food is further defined as a kind of physical object, we still want to cut

all the nodes higher than food in the hierarchy. Therefore for future work, we should investigate how to

specify where to cut off the ancestor chains in various domains.

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 62

000001

�
000001

�

((((((*
� ((((((*
�

�
�
��

�
�
��

$$$$$$$$

+
+
+
+
++

	
	
		

�
�
��

	
	
		

�
�

��

�

#
#
#
#
##

+
+

+
+
++

�

�

�
�
��

�
�
��

$$$$$$$$

+
+
+
+
++

	
	
		

�
�
��

	
	
		

�
�

��

�

#
#
#
#
##

+
+

+
+
++

�

�

�
�
��

#
#
#
#
##

�
�
��

��������

+ top meringue

sweettastes

last in mealdessert
served

tastes

last in mealdessert
served

method

made-of

bake

shortened paste pastry

method

made-of

bake

shortened paste pastry

pie
meringue
combine

crust
flaky
make

crust
flaky
makemakemake

cherry pieapple piechocolate pie lemon pie

+ top lattice
partsparts

fruit piemeringue pie

parts

filling
crustpie

meringue
makemake

cherry pieapple piechocolate pie lemon pie

+ top lattice
partsparts

fruit piemeringue pie

parts

filling
crustpie

filling
lemon

make

filling
chocolate

make
Graham
wafer
crust

Figure 5.4: Relevant Knowledge Pool for the Question What is Meringue Pie?

relevant knowledge pool will look like figure 5.5.

Up to now, we have not made use of the user’s domain knowledge to help make deci-

sions in the generation process. The second step, assigning importance values, requires

the user’s knowledge recorded in the user model to be taken into account. We take the

relevant knowledge pool created in step one, and consult the knowledge base in the user

model to find out which part of the knowledge pool is already known to the user. For

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 63

222222222222222

	
	
		

�
�
��

+
+
+
+
++

�
�
��

+
+
+
+
++

�
�
��

#
#
#
#
##

�
�
��

��������

	
		

,
,
,,
,
,

lemon
filling

make

add egg yolk

pie
meringue
combine make

chocolate pie lemon pie

meringue
make

lemon pie

make

filling
chocolate

make
Graham
wafer
crust

chocolate pie

meringue
top with

crust
fill

Figure 5.5: Relevant Knowledge Pool for the Question How to Make Chocolate Pie?

every node and every arc we assign a value of either 1 or 06, indicating that it is known or

unknown to the user, respectively. This procedure helps further processes decide which

part of the relevant knowledge pool will be used as a reminder, and which will be new

information to be provided to the user.

The relevant knowledge pool shown in figure 5.4 and the user’s knowledge base in

figure 5.3 result in the valued relevant knowledge pool in figure 5.6, where the 1’s denote

the nodes and links known to the user, and the 0’s unknowns.

6It is also possible to use values between 0 and 1, indicating that the user knows part of a particular

concept. But this value is very difficult to obtain, for different users might have different standards for

these fractions, and it is also hard for the user to say how much he/she knows without obtaining complete

information about that concept. Therefore, we choose to use the two extreme values only, making the

situation easier to implement.

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 64

000001

�
000001

�

((((((*
� ((((((*
�

�
�
��

�
�
��

$$$$$$$$

+
+
+
+
++

	
	
		

�
�
��

	
	
		

�
�

��

�

#
#
#
#
##

+
+

+
+
++

�

�

�
�
��

�
�
��

$$$$$$$$

+
+
+
+
++

	
	
		

�
�
��

	
	
		

�
�

��

�

#
#
#
#
##

+
+

+
+
++

�

�

�
�
��

#
#
#
#
##

�
�
��

��������

+ top meringue

(0)
(0)

(0)(0)(0)
(0)

(0)

(0)(0)

(0)

(0)(0)

(0)

(0)

(0)

(0)

(0)(0)

(1)

(1)
(1) (1)

(1)(1)(1)
(1)

(1)(1)

(1)

(1)
(1)

(1)

(1)

(1)

(1)

(0)

(1)

sweettastes

last in mealdessert
served

tastes

last in mealdessert
served

method

made-of

bake

shortened paste pastry

method

made-of

bake

shortened paste pastry

pie
meringue
combine

crust
flaky
make

crust
flaky
makemakemake

cherry pieapple piechocolate pie lemon pie

+ top lattice
partsparts

fruit piemeringue pie

parts

filling
crustpie

meringue
makemake

cherry pieapple piechocolate pie lemon pie

+ top lattice
partsparts

fruit piemeringue pie

parts

filling
crustpie

filling
lemon

make

filling
chocolate

make
Graham
wafer
crust

Figure 5.6: Valued Relevant Knowledge Pool

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 65

5.4.3 Select Strategy

In section 4.1, the principles of how TEXT selects a particular schema for a given question

are discussed. Although the question type and the amount of information available are

the main factors for schema selection, there are still other attributes that contribute to

making the decision, such as the user’s preferences, receptivity and memory capability.

When the amount of information available is at the two extremes for the candidate

schemata of a particular question type, the decision can be easily made. Problems arise

when they have a similar amount of information. In these situations, we suggest that the

decisions are dependent on the individual users. The user’s preference for a particular

style can help make decisions when the candidates differ in discourse strategies. For ex-

ample, for definitional questions in TEXT, a person whose preference is attributive will

prefer the identification schema, while a person who prefers examples will be given the

constituency schema. In addition to preference, a user’s receptivity and memory capa-

bility are also important. A person with high receptivity and high memory capability is

expected to be willing to accept new information and to remember it for a longer period

of time. Thus, we can choose to provide more information for this type of users, even by

using two schemata.

5.4.4 Select Proposition

In TEXT, the proposition selection is done by instantiating all the candidate predicates

(all the outgoing arcs from the current state in the ATN) and applying focus constraints to

choose amongst them, as described in section 4.1. The motivation is to make the discourse

coherent, which we agree is very important in natural language generation. On the other

hand, we also believe that there are more factors that influence proposition selection than

simply focus constraints, especially when more than one predicate falls into the category

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 66

of the highest priority. In this section, we will discuss how information in the user model

interacts with the generation process by dividing the proposition selection process into

two subprocesses: predicate instantiation and predicate selection.

5.4.4.1 Predicate Instantiation

This step has to be performed before predicate selection because how the predicate is

instantiated determines how the focus will be shifted. Usually, there is more than one

way of instantiating a predicate, so this process is not as easy as searching through the

database to find information that matches the requirement. It requires more supporting

information to decide which one to choose, and this information comes from the user

model.

The user’s interest, of course, is an important factor that should be considered. This

influence takes place when, for example, we are instantiating a particular-illustration

predicate. Suppose the text generated so far is A meringue pie is a kind of pie with

meringue on top. Lemon pie and chocolate pie are instances of meringue pies. Now

we have two objects for further illustration, lemon pie and chocolate pie. If the user

knows neither of them, a good way of choosing one over the other is to choose the one

the user is interested in, if one exists.

The user’s knowledge and memory capability can also aid in decision-making. In the

above case, if the user knows only lemon pie and has a good memory, we can easily decide

that we want to introduce chocolate pie to him/her, since most likely he/she remembers

what a lemon pie is, while if the user has a bad memory, we might want to re-introduce

lemon pie.

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 67

5.4.4.2 Predicate Selection

After instantiating all the possible predicates, what we have to do is to choose one that

makes the discourse coherent and suits the user’s needs well. The former is achieved

by considering McKeown’s focus constraints priority list; the latter, then, is obtained by

taking into consideration various attributes in the user model. The factors in the user mod-

el that contribute to the decision-making process at this stage of the generation process

include:

� Preferences: if a predicate is in the list of styles that the user prefers, we choose it

over the others.

� Memory capability: if the user has a bad memory, we prefer giving reminders to

introducing new material.

� Interests: if the focus of the instantiated predicate is something the user is interested

in, it has a higher probability of being chosen.

� Receptivity: if a person has high receptivity, we would like to give him/her more

information; therefore, a predicate with an arc which leads back to the current state

in the ATN is preferred.

� Knowledge: the user’s knowledge helps distinguish a reminder from new informa-

tion, hence, supporting the decision made by the user’s memory capability.

It is obvious that many of the rules above contradict each other. Here we only give the

readers an idea of how these attributes influence the generation process, and will introduce

the schemes we adopt to solve the problem later in chapter 6.

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 68

5.5 Updating the User Model

The main purpose for including user modeling in natural language generation is to tailor

the output text to individual users. In order to do so, it is very important that the infor-

mation in the user model is up to date. In Moore’s PEA system ([Moore, 1989]), the

user model is not updated as the dialogue progresses, but, instead, the utterances record-

ed in the dialogue history are used as a source of additional information that the user

may know. In this case, the system will be able to know what the user has learned in the

current conversation, but not what he/she had in previous interactions. This, of course,

is not satisfactory. What we would like to do is to have the system maintain the latest

information about the user, thus providing the most suitable responses.

5.5.1 What Should Be Updated?

By analyzing the characteristics of each of the attributes recorded in the user model, we

find that some of them are more static and others more dynamic. The most dynamic one

is the user’s knowledge, which changes every time the system provides new information

to the user. This attribute, of course, has to be updated very frequently, otherwise it is

likely that the system will repeat what was just said but has not yet been recorded in the

model.

The user’s preferences will also change, but more gradually. As pointed out by Paris

([1988]), the same object is described very differently in an adult encyclopaedia than in

a junior encyclopaedia, therefore, suggesting that things should be expressed in different

styles to expert users and to naive users (here we are not suggesting that adults are experts

and juniors are novices, but only that adults are generally more experienced than juniors).

If a user is a novice to begin with, and moves towards the expert’s extreme as he/she learns

from the system, the system can explain things to this user based on what he/she learned,

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 69

instead of describing everything from scratch as for a naive user. This causes a change

in the style of presentation, but we know that this information can be updated much less

frequently.

The other attributes recorded in the user model, the user’s role, interests, memory

capability, and receptivity, can change as well, but even less frequently than the user’s

preferences. We have no idea when these changes will take place; for example, we do not

know when a person will change jobs or when a user gets tired of his/her favourite dish.

Therefore, it is difficult for the system to know when the information should be updated.

5.5.2 How to Update Them?

First of all, we will deal with the most important issue, updating the user’s knowledge. We

believe that the information the user has learned must be recorded after each utterance,

since we do not want the system to repeat itself within the same conversation unless the

user asks it to do so. But, on the other hand, it is unnecessary and too costly to update the

user model every time the system provides the user with some information. An alternative

is to record the changes in the relevant knowledge pool and update the user’s knowledge

in the user model all at once when the topic is changed or when the conversation is over7.

Since everything mentioned is chosen from the relevant knowledge pool, we guarantee

that what should be updated in the user model also exists in the relevant knowledge pool.

With the valued relevant knowledge pool shown in figure 5.6, if the question what is

7Here we make the assumption that the user understands all the information the system provides. In

reality, this might not be true. In ThUMS ([Dent et al., 1987]), the facts in the system are classified into two

classes, simple facts, those that can be understood and used by the user if conveyed to him/her, or complex

facts, those that cannot be completely explained by the system. Updating the user model could make use

of this distinction to decide which facts should be recorded in the user model and which ones should not.

This improves the system’s ability to model the user’s domain knowledge, and is left for future work.

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 70

a meringue pie is asked, the system might answer:

Meringue pie is a kind of pie. It has meringue on top. There are two instances

of meringue pie, lemon pie and chocolate pie. Chocolate pie has the same

meringue as lemon pie, but has Graham wafer crust and chocolate filling.

Fruit pie is also a kind of pie, but it has top-lattice on top. Apple pie is an

instance of fruit pie. Meringue pie and fruit pie both have crusts and fillings,

but have different tops.

After this information is provided to the user, the system updates the valued relevant

knowledge pool by marking all the nodes and arcs mentioned in the response as known.

In this example, the updated valued relevant knowledge pool is as shown in figure 5.7.

Now if the user asks to end the conversation, the system will record all the changes

made (the nodes and arcs marked in the relevant knowledge pool) in the user model. All

the newly introduced objects will be added to the user model as classes, tokens, subplans

or primitive actions. An existing entity can also be updated if new information is provided

to the user, for instance, adding an attribute or a child link. This updating process not only

adds information to the user model, but also corrects the different hierarchical structure

in the user’s knowledge base due to his/her incomplete information. In this example,

the user originally considered lemon pie and apple pie as children of pie (figure 5.3).

After asking the above question, the user found out that lemon pie is indeed a child of

meringue pie and apple pie a child of fruit pie. Now the system has to add the two classes

meringue pie and fruit pie, which were unknown to the user, and reorganize the hierarchy

by updating the parent-child links in these classes as well.

CHAPTER 5. USER MODELS WITH MCKEOWN-STYLE GENERATION 71

000001

�
000001

�

((((((*
� ((((((*
�

�
�
��

�
�
��

$$$$$$$$

+
+
+
+
++

	
	
		

�
�
��

	
	
		

�
�

��

�

#
#
#
#
##

+
+

+
+
++

�

�

�
�
��

�
�
��

$$$$$$$$

+
+
+
+
++

	
	
		

�
�
��

	
	
		

�
�

��

�

#
#
#
#
##

+
+

+
+
++

�

�

�
�
��

#
#
#
#
##

�
�
��

��������

+ top meringue

X

X

X

X

XX
X

XX

X

X

XX

X

X

X

X

XX

X
X

(0)
(0)

(0)(0)(0)
(0)

(0)

(0)(0)

(0)

(0)(0)

(0)

(0)

(0)

(0)

(0)(0)

(1)

(1)
(1) (1)

(1)(1)(1)
(1)

(1)(1)

(1)

(1)
(1)

(1)

(1)

(1)

(1)

(0)

(1)

sweettastes

last in mealdessert
served

tastes

last in mealdessert
served

method

made-of

bake

shortened paste pastry

method

made-of

bake

shortened paste pastry

pie
meringue
combine

crust
flaky
make

crust
flaky
makemakemake

cherry pieapple piechocolate pie lemon pie

+ top lattice
partsparts

fruit piemeringue pie

parts

filling
crustpie

meringue
makemake

cherry pieapple piechocolate pie lemon pie

+ top lattice
partsparts

fruit piemeringue pie

parts

filling
crustpie

filling
lemon

make

filling
chocolate

make
Graham
wafer
crust

Figure 5.7: Updated Valued Relevant Knowledge Pool

Chapter 6

The Algorithm

In this chapter, we introduce an algorithm for generating responses used in our proposed

model. The algorithm will be presented at an abstract level in section 6.1, and in the

following sections, further details and discussions will be provided. Also, a more detailed

algorithm for each step will be presented at the end of each section.

6.1 An Overview of the Algorithm

Input: question asked by the user.

Output: response tailored to the user according to information available in the

system knowledge base and the user model.

Steps:

Repeat steps 1 - 4 until end of conversation.

1. Determine question type (see section 6.2).

72

CHAPTER 6. THE ALGORITHM 73

2. Determine relevant knowledge pool (see section 6.3).

2.1 Determine global focus.

2.2 Section off knowledge relevant to the global focus from the database.

2.3 Consult user model to assign importance value to each node and link.

3. Select Schema(ta) (see section 6.4).

3.1 Check user’s receptivity and memory,

if both high,

X = 2 (X denotes the number of schemata to be chosen);

otherwise,

X = 1.

3.2 Determine candidate schemata according to the input question type.

3.3 Choose X schema(ta) that are the most suitable, if possible (details given in

section 6.4).

4. Repeat this step until a pop arc is chosen.

4.1 Instantiate predicates (see section 6.5).

4.1.1 Determine candidate predicates : all outgoing arcs from current state in

the ATN.

4.1.2 Instantiate all the candidate predicates using the rules provided for each

predicate (rules described in section 6.5).

4.2 Select predicates (see section 6.6).

4.2.1 Rank all the instantiated predicates according to,

focus constraints

user’s knowledge

CHAPTER 6. THE ALGORITHM 74

user’s preference

user’s interest

user’s receptivity

user’s memory capability

4.2.2 Choose the first predicate in the ranked list.

4.3 Update relevant knowledge pool (see section 6.7).

5. Update the user model (see section 6.7).

6.2 Determine Question Type

In section 5.4.1, we explained how the user’s role influences what he/she expects the

answer to be, therefore helping the system decide the type of the question being asked.

A how question is obviously a procedural question, but how a what question is classified

is closely related to the global focus and the user’s role. Since a procedural answer can

only be provided for objects at certain levels in the hierarchy (those that actually have

procedures associated with them, which, in our cooking domain, are entity types token,

subplan and primitive action), if the global focus happens to be at one of those levels and

the user is a person who is more interested in knowing the procedure of the object, it will

be classified as a procedural question; otherwise, it will be considered as a definitional

question.

Algorithm:

1. How questions: procedural questions.

2. What questions:

CHAPTER 6. THE ALGORITHM 75

If user prefers procedures,

if global focus has procedures attached,

procedural questions;

otherwise,

definitional question.

else /� user prefers descriptions or user’s preference unknown �/

definitional question.

The above algorithm, when applied to our cooking domain, will be implemented as:

1. How questions: procedural questions.

2. What questions:

If user’s role is a chef,

if global focus is a token, subplan, or primitive action,

procedural questions;

otherwise,

definitional question.

else /� user is a diner or user’s role unknown �/

definitional questions.

6.3 Determine Relevant Knowledge Pool

The topic has already been discussed in section 5.4.2. The important issues here are to

determine the global focus, which is the object being asked about, and create a relevant

knowledge pool to provide information for further processing.

CHAPTER 6. THE ALGORITHM 76

The global focus can be easily located in the system’s knowledge base using the set

of indices. But as discussed earlier, the scope of the relevant knowledge pool depends on

the question type. For a definitional question, it will be the global focus’s own attributes,

its descendants to the subplan level, its ancestors to the root, its siblings and the siblings’

children. Choosing the descendants is for the use of the constituency schema, which

gives examples of the subclasses or tokens that are included in the object being asked

about. The ancestors and their attributes are included mainly for the identification schema

which identifies the object as a more specific type of another class (one of its ancestors),

and gives the attributes of the object to distinguish it from other children of the same

ancestor. The relevant knowledge pool also consists of the global focus’s siblings and

their children because the compare and contrast schema might be used. When searching

for an object to be compared with the global focus, we would like to choose something

that is similar but different, which most likely will appear as its sibling in the hierarchy.

For a procedural question, the relevant knowledge pool will be the subtree with the

global focus as root, and the parents of all the subplans and primitives actions included in

that subtree. We choose the whole subtree so that any level of detail of the recipe can be

provided. The parents of the subplans and primitive actions are also included because for

a user with a good memory, we can leave out the details of a subplan that he/she knows

by saying that the subplan is the same as the one used in another particular dish.

Once the relevant knowledge is sectioned off, the root of the relevant knowledge

pool is searched in the user’s knowledge base via the indices. If it is not found, the root

is marked as unknown and its children play the role of the roots recursively until all the

root nodes are found or the relevant knowledge pool is entirely searched. If a node in the

user’s knowledge base is found, the remaining part of the relevant knowledge pool and

the corresponding part in the user’s knowledge base will be traversed and compared. This

process is to find out which parts of the relevant knowledge pool are already known to

CHAPTER 6. THE ALGORITHM 77

the user and which are not. This information is also recorded in the relevant knowledge

pool and will be used to make decisions in later steps in the generation process.

Algorithm:

1. Determine global focus: global focus = the object being asked about in the question.

2. Determine relevant knowledge: if the question is a definitional question, do step

2.1; otherwise, go to step 2.2.

2.1 The relevant knowledge pool for a definitional question. For each node found,

the record (which represents that object, including its attributes, links, etc.)

is added to the relevant knowledge pool.

2.1.1 Search for the global focus in the system’s database through the indices.

2.1.2 For the ancestors, follow the parent links recursively until the second

level from the top1 in the hierarchy is reached (for the parent link in each

entity type, see discussion in section 5.2).

2.1.3 For the descendants, follow all the child links recursively until the sub-

plan level is reached.

2.1.4 For the siblings, search for the global focus’s parent through the parent

link and locate the siblings through the parent’s child links.

2.1.5 For the siblings’ children, search via the siblings’ child links.

2.2 The relevant knowledge pool for a procedural question. Again, for each node

visited, the record is added to the relevant knowledge pool.

2.2.1 Search for the global focus in the system’s database through the indices.

1Generally we include all the ancestors up to the root. Choosing the second level from the root is an

additional constraint for our domain as explained in chapter 5.

CHAPTER 6. THE ALGORITHM 78

2.2.2 For the subtree, follow the child links and the children’s child links re-

cursively until the primitive actions are reached.

2.2.3 For all the subplans and primitive actions included in the subtree, follow

their parent links for all the nodes (tokens and subplans for subplans and

primitive actions, respectively) that share the same action.

3. Assign importance values:

3.1 Locate the root of the relevant knowledge pool in the user’s knowledge base.

3.2 If not found, assign 0 to the root and its children links, and use its children

as roots. Repeat steps 3.1 and 3.2 until all the root nodes are found or the

relevant knowledge pool is searched through.

3.3 Traverse and compare the relevant knowledge pool from the root(s) and the

user’s knowledge base from the corresponding node(s) found in previous

steps.

3.4 For each node and link in the relevant knowledge pool, assign 1 to it if it also

appears in the user’s knowledge base. Assign 0 otherwise.

6.4 Select Schema

We inherit McKeown’s idea of using schemata as discourse patterns to help generate text

for different purposes, but apply them differently so as to generate text in a broader scope,

both in the amount and the style of the information provided. In this section, we introduce

the schemata used in our system, and discuss the criterion we use to choose amongst them.

CHAPTER 6. THE ALGORITHM 79

6.4.1 Schemata Available

The number of schemata available determines the number of styles the text can have.

Obviously, the more schemata we have, the more varieties of text can be generated.

In McKeown’s TEXT system, there are four schemata available, identification, con-

stituency, attributive, and contrastive, as mentioned in chapter 2. Though any question

can be answered in one of these four different forms, the answers all provide static in-

formation, i.e., there are no temporal relations in the information provided. This severe-

ly restricts the possible application domains for the system. In order to overcome this

problem, we add one schema that handles procedural questions, which, in our cooking

domain, are questions regarding how to make a particular dish.

We adapt three schemata used in TEXT for answering definitional questions, and mod-

ify Paris’s process-trace schema ([Paris, 1987]) for our procedural schema. Generally

speaking, the schemata are domain independent, but since the type of information varies

from domain to domain, some predicates that are applicable in one domain may not be

suitable in others. Therefore, we will make some modifications to serve the particular

needs of our domain.

Figure 6.1 shows the ATN graph for our identification schema. It first identifies the

object, describes it, then gives some examples to further explain it. The last two stages in

McKeown’s original schema, shown in figure 2.3, contain mostly predicates that appeared

in earlier stages. Since we will show some examples of tracing our algorithm later, we

leave out the last two stages in our ATN to present reasonably small illustrations. We

also omit the analogy predicate in the description subroutine since a contrastive schema

can be used together with the identification schema, which provides a similar effect with

more details.

The ATN graph for the modified constituency schema is shown in figure 6.2. This

CHAPTER 6. THE ALGORITHM 80

��
��
��
��

��
��

��
���

�
�
�

fill

fill

constituency

attributive

example

example

fill

fill

pop

jump

identification
fill

EX
ID/

DS
ID/

ID
ID/

ID/

Figure 6.1: ATN for the identification schema

CHAPTER 6. THE ALGORITHM 81

��
��

��
��

��
��

��
��

���������

(other children)

(first child)

schema
identification

schema
identification

constituency
fill

CON
CON/

fill attributive

jump

fill identificaion
CON/

CON/
ID

CON/
DS

pop

Figure 6.2: ATN for the constituency schema

version of the constituency schema is less complicated than the one used in TEXT. This

schema is based on the same schema used by Paris ([1988]), which gives a brief descrip-

tion of the object being asked about, lists its children, and describes them in turn.

We show our contrastive schema in figure 6.3, which differs considerably from the

same schema in TEXT because of the different usage of the schema. In TEXT, the con-

trastive schema is used when the user asks about the differences between two objects,

while in our system, it is chosen as a supporting schema for a definitional question2. S-

ince in our system, this schema is always instantiated after a portion of text has been

2The contrastive schema will not be used alone because question types are limited in our study. But

for questions like what is the difference between X and Y, the contrastive schema will be needed. For more

about how this schema is used alone, see [McKeown, 1985].

CHAPTER 6. THE ALGORITHM 82

��
��

��
��

��
��

��
���������

DS

ID

pop

inference
fill

INF
C&C/

schema
constituency

schema
identification

C&C/

fill introductionC&C/

C&C/

Figure 6.3: ATN for the contrastive schema

generated by either the identification schema or the constituency schema, one of the ob-

jects has already been introduced in detail. Therefore, what is left to be done for the

contrastive schema is to introduce the object to be compared with (using the identifi-

cation or constituency schema), and to include some of the similarities and differences

between the two.

The procedural schema is designed to give a description of how an object works or

how to perform a particular task. In our cooking domain, it gives a step-by-step instruc-

tion of how to make a particular dish. The ATN graph for the schema is presented in figure

6.4. It gives a brief introduction to the global focus, followed by the steps for performing

the task, with further illustrations of detailed sub-steps, if necessary.

CHAPTER 6. THE ALGORITHM 83

��
��

��
��

��
��

�������

pop
INT

fill introduction

pop

jump

details
fill

STEP
PRO/

PRO/

PRO/

fill
next-step

fill
brief-step

Figure 6.4: ATN for the procedural schema

6.4.2 The Procedure

As in TEXT, we also have some pre-determined candidate schemata associated with both

question types, listed in figure 6.5. For the definitional questions, in addition to the two

original schemata used in TEXT, we also add the contrastive schema. It is designed to

be used for people with high receptivity and a good memory, to provide them with more

information by comparing the object asked with another similar one. A constraint in using

this schema is that it can only be used as a second schema in the response, i.e., either the

identification or constituency schema has to be chosen and instantiated before it.

As shown in the algorithm, we suggest that for a person with both high receptivity

and a good memory, we will provide a richer response by using two schemata if possible.

We choose this constraint because a person with high receptivity is willing to learn more,

and a person with a good memory will be able to remember more. We predict that only

under these circumstances will the additional information provided be worthwhile3.

3We decide this based on our intuition, instead of studying actual occurring texts for the patterns. For

CHAPTER 6. THE ALGORITHM 84

Definitional questions

Identification

Constituency

Contrastive

Procedural questions

Procedural

Figure 6.5: The Pre-determined Schemata for Both Question Types

Now that we have all the candidate schemata, what we have to do is to choose ‘X’

schema(ta) among them (X determined as in the algorithm). We will discuss this issue

by dividing the situation into the following cases:

Procedural Questions:

This is the simplest case since the only choice is the procedural schema. Here, only one

schema will be used no matter what the value of X is.

Definitional Questions:

For a definitional question, there are two possibilities:

1. Choosing one schema: It will be either an identification or constituency schema.

The criteria for choosing one over the other is basically the same as the one used

in TEXT, comparing the amount of information available for each. This is done

by checking if the object in focus in the question appears above or below a pre-

determined level in the hierarchy4. In the former case, the constituency schema will

future work, it would be worthwhile to do some rigorous testing to defend our arguments in a fashion

similar to the design methodology of Paris [1987].
4In our knowledge base, we choose two levels to represent this, the token level and its parent level.

CHAPTER 6. THE ALGORITHM 85

be chosen, while in the latter, the identification schema is preferred. If the object

is at the boundary level, we will consult the user’s preference in the user model,

where attributes gives a preference to the identification schema and examples to

the constituency schema.

2. Choosing two schemata: As discussed before, the first of the two schemata must

be either identification or constituency, and the second contrastive. We choose the

first as we did in case 1, and decide if the second schema should be included by

searching through the relevant knowledge pool for an object to be used in com-

parison. The object has to be a sibling of the global focus which is known to the

user or a sibling with at least one of its children known to the user (this can now

be easily done by checking all the siblings of the focus and their children because

every node is valued either 1 or 0, according to whether the user knows it or not).

If such an object exists, we will adopt the contrastive schema as well.

Algorithm:

1. Determine number of schemata chosen.

Check user’s receptivity and memory,

if both high,

X = 2;

otherwise,

X = 1.

2. Determine candidate schemata according to the question type decided in section

6.2 and the question-schemata mapping in figure 6.5.

This is because in our cooking domain, the nodes appearing at both these levels have a similar amount of

information about themselves and their children.

CHAPTER 6. THE ALGORITHM 86

3. Choose appropriate number of schemata.

3.1 If the question type is procedural, choose procedural schema no matter what

the value of X is.

3.2 If the question type is definitional,

3.2.1 First decide whether identification or constituency schema will be used.

If the global focus appears above the pre-determined level,

choose the constituency schema;

if it appears below the pre-determined level,

choose the identification schema;

if it appears at the pre-determined level,

if the user prefers attributes,

choose the identification schema;

otherwise,

choose the constituency schema;

3.2.2 Determine if the contrastive schema will be used.

If X = 2 and there exists in the relevant knowledge pool a sibling of the

focus, either itself or one of its children is known to the user,

choose the compare and contrast schema.

6.5 Instantiate Predicate

In most cases, there is more than one outgoing arc from a state in the ATN, which indicates

that there is more than one choice for the next proposition. In order to choose amongst

them, the predicates (outgoing arcs) first have to be instantiated.

CHAPTER 6. THE ALGORITHM 87

There are nine different predicates in the four schemata used in our system, each of

them providing different styles of information and having different instantiation rules.

We will introduce the instantiation rules and give an example for each of them in the

following. The examples shown here will be the same as the one used in chapter 5 for the

question what is a meringue pie (see figures 5.1, 5.3, and 5.6 for the system’s database,

user’s knowledge base, and the valued relevant knowledge pool, respectively).

1. The identification predicate: This predicate identifies the object as a type of its

ancestor. Normally we would like to introduce it as a child of its parent, but only

if the parent is known to the user. If not, we will continue searching upwards in

the hierarchy until we meet an ancestor that the user knows. When the question

what is a meringue pie is asked, the system identifies the focus (meringue pie) and

locates its parent through the ISA link in the record for the class meringue pie. In

this case, the object pie is found, and the identification predicate is instantiated as

meringue pie is a kind of pie, as pie is known to the user5.

2. The attributive predicate: This predicate introduces the object’s attributes to the

user, which, in our domain, is suitable for the use of entity types class and token.

In our database, the attributes are associated only with the entity type class, and are

listed in the WITH slot. Note that since property inheritance is one of the important

aspects of our domain, a class includes not only attributes recorded specifically

within this class, but also those inherited from its ancestors which this class and its

sibling classes all share. In some cases, it is important to search for the attributes

associated with the ancestors to obtain the complete information. For instance, the

5If none of the ancestors of the focus are known to the user, its parent will be chosen and defined. For

example, for the same what is a meringue pie question, if none of pie, pastry, and dessert is known, the

identification predicate will still be instantiated as meringue pie is a kind of pie, followed by pie consists

of two parts, the crust and filling.

CHAPTER 6. THE ALGORITHM 88

only attribute listed under meringue pie is parts: + top meringue. The ‘+’ sign

here indicates that there are other parts recorded under its ancestors. Searching for

the attributes in its parent, we find that the other parts are crust and filling. The

ones that will actually be mentioned depends on the user’s memory capability and

his/her knowledge. Those that are already known to the user will not be repeated

if the user has a good memory. In the case where the user has a poor memory, the

attributive predicate will be instantiated as meringue pie has three parts, the crust,

the filling, and the meringue.

3. The constituency predicate: The children of the focus will be introduced when

the constituency predicate is instantiated. In our domain, it is applicable to all the

classes and tokens when a definitional question is asked. For a class, we look under

the CHILDREN slot for its children, and for a token, the PROCEDURE slot. The

number of children that will be included depends on the entity type of the focus,

the user’s receptivity, memory capability, interests, and knowledge. These factors

will be discussed in the order they should be considered.

3.1 Entity type: For an object in the class category, its children are the instances

of particular types of that class; therefore, any number of them can be men-

tioned. If the object is a token, the children are the subplans for making the

dish; therefore, all of them have to be included, otherwise the procedure will

not be complete. Hence, if the focus is a token, introduce all children; other-

wise, proceed to the next step.

3.2 User’s receptivity and memory capability: These two factors combined de-

termine the amount of information provided to the user. Obviously, the type

of users to whom we would like to provide the most information are those

having both high receptivity and a good memory; therefore, for these users,

CHAPTER 6. THE ALGORITHM 89

we will introduce three children6. The users that will be provided the least

information are those that have both low receptivity and low memory capa-

bility, and will be introduced only one child. In the other cases, two children

will be mentioned.

3.3 User’s knowledge and memory capability: These are used to decide whether

old or new information should be provided. We will assign weights, which are

all initialized to zero, to the children of the focus. These weights indicate the

priority for choosing children (the higher ones preferred). We will increase

by one the weight values of the children that are totally unknown to the user if

the user has a good memory and of those that are completely known if he/she

has a poor memory. For the children that are partially known to the user (by

partially known we mean that the child node is known, but the link between

the object and the child is unknown), we increase their weights by 0.5. The

above process indicates that new information is preferred if the user has a

good memory; otherwise, a reminder is preferred. (This will be referred to as

the memory and knowledge principle in the algorithm presented later in this

section)

3.4 User’s interests: This also contributes to deciding which children to choose

by adjusting the weight for each of them. This rule suggests that we increase

by one the weight values of each child that appears in the user’s interest list.

(This will be referred to as the interest principle in the algorithm)

Having decided upon the number of children to be included in the predicate and

having evaluated all the children, we can easily choose the number of children we

6We believe that three children is a reasonable amount to mention in one proposition because we do not

want to enumerate all the children at one time. The issue of the number of children to be mentioned under

different circumstances is still an open question, and is left for future study.

CHAPTER 6. THE ALGORITHM 90

want from the beginning of the ranked list. In the case where a tie occurs, we give

preference to the user’s memory capability (combined with the user’s knowledge),

since we believe that it is better to provide the user with information that he/she

is not particularly interested in, than to tell him what he/she is interested in but

already knows. If they happen to have the same preference according to the user’s

memory capability, we will arbitrarily pick one of them.

4. The example predicate: This predicate illustrates in detail a particular child of the

current focus. First of all, we have to decide which child to choose. A weight-

assigning strategy is used again, this time considering the user’s knowledge, inter-

ests, and memory capability.

4.1 If the user has a good memory, add one to the weight values of the children

unknown to the user.

4.2 If the user has a poor memory, add one to the ones known to the user.

4.3 Add one to the children in the user’s interest list.

Once we have the ranking of the preferences of each child, the one ranked highest

will be chosen as the focus of the example predicate. If a tie occurs, we prefer

the memory capability over interests because of the same reason given in point 3

above. Again, if this does not solve the problem, an arbitrary one will be chosen.

Since the purpose of the example predicate is to introduce an object to the user, it

can be thought of as giving a simplified answer to a new definitional question with

the new object as focus. Thus, we can choose to introduce its attributes (attributive

predicate), its children (constituency predicate), or to compare it with its siblings

(inference predicate). The preferences are given below.

4.1 In the case where the user has a good memory, if one of the new focus’s sib-

CHAPTER 6. THE ALGORITHM 91

lings is known to the user, and they share some children, then we would like to

compare the two of them since this provides the user with new knowledge by

integrating the new information with his/her old knowledge, giving him/her

a better picture of the knowledge base. In this case, the sibling will be men-

tioned and the parts that they share will be introduced, as well as the other

characteristics specific to the new focus.

4.2 If the new focus is not qualified in case 4.1, we will choose either the attribu-

tive predicate or constituency predicate according to the the user’s preference.

If there is no information available for the predicate that the user prefers, then

choose the other predicate.

In the what is a meringue pie example shown in chapter 5, the third sentence of

the sample output on page 70 is the constituency predicate, introducing the two

children of meringue pie. The following sentence, instantiating the example pred-

icate to be inference, further illustrates chocolate pie by comparing it with lemon

pie which is in the user’s knowledge base.

5. The inference predicate: This is used in the contrastive schema, concluding the

comparison of the two objects. This includes the similarities and dissimilarities

between them. The common attributes shared by the two objects can be found in

their parent node, and the different ones are listed under each of them separately.

For example, in the meringue pie example, after introducing fruit pie as another in-

stance of pie, the inference meringue pie and fruit pie both have crusts and fillings,

but have different tops is made.

6. The introduction predicate: The introduction predicate is used as the first step in the

procedural schema to provide a brief description of the object being asked about.

This is done by giving the user the outline of how the task can be performed, i.e.

CHAPTER 6. THE ALGORITHM 92

by providing all the subplans under a token or the primitive actions under a sub-

plan. For example, when the question how is a meringue pie made is asked, the

introduction predicate will be instantiated as to make meringue pie, you have to

make the crust, filling, and meringue separately, then combine them.

7. The brief-step predicate: This predicate is used to briefly introduce the next subplan

in a token. If the subplan is known to the user, the name of the subplan, as well

as an arbitrary token in the relevant knowledge pool that shares the same subplan,

will be introduced; otherwise, only the name of the subplan will be mentioned.

8. The next-step predicate: This predicate is used for describing the next step in the

process in more detail. If the focus is a token with subplans, the next-step predicate,

evoked repeatedly, describes more specifically the subplan introduced by the last

brief-step predicate. If it is a token without subplans, a subplan, or a primitive

action, it gives a description of the next step to be performed, which is recorded in

its PROCEDURE slot.

9. The details predicate: This predicate is called when the step introduced by the next-

step predicate needs to be further explained. This will be the case when a primitive

action is included in a subplan. When instantiating the next-step predicate, if the

information includes a lower-level action that can be further illustrated, the details

predicate will be instantiated, unless the lower-level action is known to the user

and the user has a good memory.

For example, when the question how is flaky pie crust made is asked, the first next-

step predicate is instantiated as sift flour and salt into a bowl, cut shortening into

flour. Since the primitive action cut shortening is included in this step, it can be

further expanded as cut shortening into flour with a pastry blender or two knives

until no pieces of shortening larger than a pea appear, when the bowl is shaken.

CHAPTER 6. THE ALGORITHM 93

Algorithm:

Check for the type of the next predicate.

Case 1: identification:

1. Search for the focus’s ancestors in a bottom-up way until one that the user knows

is found.

2. If an ancestor is found in step 1, introduce the focus as a type of that ancestor.

3. Otherwise, introduce the focus as a type of its parent and define the parent.

Case 2: attributive:

1. Search for the focus’s attributes in its own entry.

2. Search for relevant attributes in the ancestor nodes, if necessary7.

3. Choose the attributes using the memory and knowledge principle8.

4. Introduce all the attributes that have non-zero weights.

7Here the relevant attributes are defined as the attributes with the same attribute type. All the attribute

values with the same type are prefixed with a ‘+’ sign except the one occurring at the highest level in the

hierarchy. For example, the attribute parts for meringue pie has value + top meringue; therefore, its parent

will be searched where the remaining values crust and filling are found.
8The memory and knowledge principle was described in point 3.3 earlier in this section. To summarize,

it means,

Weight = 1 if either the object is unknown to the user and the user has a good memory,

or the object is known to the user and the user has a poor memory;

= 0.5 if the object is partially known to the user;

= 0 otherwise.

CHAPTER 6. THE ALGORITHM 94

Case 3: constituency:

1. Search for all the children of the current focus.

2. If the focus is of entity type token or subplan, introduce three children (X = 3).

3. If it is of type class,

3.1 If the user has receptivity and memory both high,

introduce all children;

if the user has one of them high,

introduce two children (X = 2);

otherwise,

introduce one child (X = 1).

3.2 If not all children chosen, assign weights to all children using the memory

and knowledge principle and the interest principle9.

3.3 Choose the top X child(ren) according to the evaluation scheme in step 3.2.

Case 4: example:

1. Determine which child to further illustrate.

1.1 Evaluate each child using the memory and knowledge principle and the inter-

est principle.

1.2 Choose the child ranked the highest, and let it be the new focus.

9The interest principle was described in point 3.4 earlier in this section. To summarize, it means,

Weight = 1 if the object is in the user’s interest list;

= 0 otherwise.

CHAPTER 6. THE ALGORITHM 95

2. Determine how to illustrate it.

If the new focus’s sibling is known and shares common child(ren) with the focus,

and the user has a good memory,

choose the inference predicate;

otherwise,

if the user prefers attributes,

choose the attributive predicate.

if the user prefers examples,

choose the constituency predicate.

if there is no information available for the predicate the user prefers,

choose the other predicate.

Case 5: inference:

1. Search for the similarities between two objects in their parent node.

2. Search for the dissimilarities within individual nodes.

3. Introduce both similarities and dissimilarities.

Case 6: introduction:

1. Search for the focus’s children.

2. Introduce all the children as parts of performing the procedure.

Case 7: brief-step:

If the object is a token, and has subplans associated with its procedures in the

PROCEDURE slot,

CHAPTER 6. THE ALGORITHM 96

if the next subplan is known to the user and the user has a good memory,

mention the subplan and an arbitrary token known to the user that shares the same

subplan,

otherwise,

mention the subplan briefly by name;

Case 8: next-step:

If the object is a token with subplans,

if there still exist steps to be performed in the last introduced subplan,

introduce the next step in the subplan’s PROCEDURE slot;

if the object is a token without subplans,

introduce the next step to be performed in the token’s PROCEDURE slot;

if the object is a subplan or a primitive action,

introduce the next step to be performed in the PROCEDURE slot of the

subplan or the DESCRIPTION slot of the primitive action.

Case 9: details:

1. Search for the primitive action mentioned in the last next-step predicate.

2. Illustrate that primitive action by providing the details in the DESCRIPTION slot.

6.6 Select Predicate

After the candidate predicates are instantiated, we have to decide which one of them

will be chosen as the next proposition. The predicate selection process, as discussed in

section 5.4.4.2, is influenced by a number of factors recorded in the user model, such

CHAPTER 6. THE ALGORITHM 97

as the user’s preferences, memory capability, interests, receptivity, and knowledge. In

addition to those factors, the focus constraints adopted by TEXT will also be taken into

consideration.

Obviously, some of the factors listed above contradict each other. For example, the

user’s interests suggest that we talk about something that the user is interested in, and the

user’s memory capability suggests that we mention information new to the user if he/she

has a good memory. In this case, if the user has a good memory and already knows about

what he/she is interested in, conflicts arise between the interest and memory capability

factors. Also, a user who prefers attributive informationmay have interests falling into the

category of information given by examples (the focus’s children). Here, the preference

factor suggests that attributive information be chosen, while the interest factor prefers

examples. In order to solve these problems, we adopt a weighting strategy once again,

this time using different weights for different factors, according to the importance of each

of them. Thus, the ultimate decision is made by considering the combined, rather than

the individual, effect of the six factors, in order to solve the problems of contradiction

mentioned above.

In the following passage, we discuss the factors that contribute to the predicate se-

lection process for a definitional question, both the way they influence the decision and

their importance, i.e. the amount they contribute to the total weight values. Here, we

use W(fc), W(pre), W(int), W(mc), and W(rec) to represent the weight values assigned

to a particular predicate by the factors focus constraints, preferences, interests, memory

capability, and receptivity, respectively.

1. Focus constraints: the focus constraints influence the coherence of the output text

by trying to restrict the focus shifts between sentences to a certain range. According

to the priorities in McKeown’s focus constraint list (figure 2.4), we should prefer

CHAPTER 6. THE ALGORITHM 98

either shifting the focus to something just introduced or maintaining the same focus,

where the former has a higher priority. Therefore, we let W(fc) = 1.5 if the focus

of the instantiated predicate would shift to an object just introduced, W(fc) = 1 if

the focus remains the same, otherwise, W(fc) = 0.

2. User’s preferences: this factor gives the user’s preference of the style of the pred-

icate, being either attributes or examples. The preference attributes corresponds

to the attributive predicate, while examples includes both constituency and exam-

ple predicates. For all the predicates that fall into the user’s preference list, we let

W(pre) = 1, and for the others, W(pre) = 0.

3. User’s interests: though this factor influences predicate instantiation more than

predicate selection, it still has some contribution to the selection process. It happens

especially when two predicates have equal weights for the other factors. In this

case, the predicate in the user’s interest list will be chosen, if one exists. Since this

factor makes a minor contribution, we will assign W(int) = 0.5 if the focus is in the

interest list, and W(int) = 0 if it is not.

4. User’s receptivity: this influences the amount of information provided to the user.

It is straightforward that by choosing the arcs in the ATN that lead to the states

which are already traversed longer output will result, therefore providing more

information to the user. Hence, we let W(rec) = 1 if the user has high receptivity

and the arc of a predicate in the ATN leads to a traversed state, or if the user has

low receptivity and the arc leads to a new state. Otherwise, we let W(rec) = 0.

5. User’s knowledge: the user’s knowledge itself does not influence the decision pro-

cess directly. It only determines which part of the relevant knowledge pool is al-

ready known to the user and will be used as a reminder. Therefore, it is used in

combination with the user’s memory capability attribute.

CHAPTER 6. THE ALGORITHM 99

6. User’s memory capability: in order to avoid the possible conflicts that might arise

between the user’s receptivity and memory capability, we further restrict the mem-

ory capability factor to influence the amount of reminders provided. For a person

with a good memory, we do not want to repeat old information; therefore, we let

W(mc) = 1 if the information provided is completely unknown, W(mc) = 0.5 if it

is partially known, and W(mc) = 0 if it is completely known, indicating that new

information is preferred. On the other hand, for a user with a poor memory, we

let W(mc) = 1 if the information is known, W(mc) = 0.5 if it is partially known,

and W(mc) = 0 if it is unknown, suggesting that reminders are chosen over new

information.

In the cases where ties occur, we give the preferences as:

memory constraints � receptivity � focus shifts � preferences � interests

We consider providing the user with appropriate information the most important task;

therefore, the user’s knowledge and memory constraints (combined as W(mc)) should

be at the top of the list. The user’s receptivity concerns the amount of information to be

provided which should be ranked the second, followed by the focus shifts, guaranteeing

the coherence of the output text. Between the last two attributes, preferences dominates

interests simply because the latter contributes less to the total weight than the former

(W(int) = 0.5 if focus is in the interest list).

Here we assign the weight value for a pop arc to be 1.5. Therefore, if we are at a final

state where all the outgoing arcs have values less than 1.5, the pop arc will be chosen,

which means ending the output. This is intended to prevent long and meaningless output

for users with high receptivity. Since the largest value that can be assigned to a predicate is

4.5 (all having 1’s, except interest being 0.5), and the most common values that appear are

2 and 2.5, we consider a predicate with value 1.5 as providing non-critical information.

Therefore 1.5 is chosen as the threshold value when a pop arc is encountered.

CHAPTER 6. THE ALGORITHM 100

Take the same user’s knowledge base shown in figure 5.3 as an example. Suppose

the other attributes in the user model are,

preference : attributive

interest : chocolate

receptivity : high

memory : high

role : diner

When the question what is a meringue pie is asked, the identification and contrastive

schemata are chosen according to the previous steps in the algorithm. For the identifi-

cation schema instantiation, the first predicate, identification, is instantiated as meringue

pie is a kind of pie. The second predicate, however, has three possible choices, accord-

ing to the ATN shown in figure 6.1. The three choices, the attributive, constituency, and

example predicates10, are instantiated and evaluated as,

1. Attributive

It has meringue on top

W(fc) = 1 focus = meringue pie

W(pre) = 1 user prefers attributes

W(int) = 0

W(rec) = 1 user receptivity high, and leads back to the same state

W(mc) = 1 user memory high, and attribute unknown

W(Att) = sum of all above = 4

10According to the ATN, the third choice should be the jump arc. Since it is not possible to evaluate a

jump arc, we evaluate all the outgoing arcs from the state that the jump arc leads to, which in this case is

the example predicate.

CHAPTER 6. THE ALGORITHM 101

2. Constituency

There are two instances of meringue pie, lemon pie and chocolate pie.

W(fc) = 1 focus = meringue pie

W(pre) = 0

W(int) = 0.5 user is interested in chocolate

W(rec) = 1 user receptivity high, and leads back to the same state

W(mc) = 0.5 nodes known (lemon and chocolate pies), but arcs unknown

(the relationship between meringue pies and lemon and

chocolate pies)

W(Con) = sum of all above = 3

3. Example

Chocolate pie has the same meringue as lemon pie, but has Graham wafer crust

and chocolate filling

W(fc) = 0 focus = chocolate pie

W(pre) = 0

W(int) = 0.5 user is interested in chocolate

W(rec) = 0 user receptivity high, but leads to a new state

W(mc) = 1 user memory high, and information unknown

W(Ex) = sum of all above = 1.5

From the assigned weight we find that the attributive predicate is the most preferred;

therefore, it is chosen as the second proposition.

For a procedural question, there exist fewer variations because the basic procedure

CHAPTER 6. THE ALGORITHM 102

has to be entirely introduced. We choose to vary the level of detail of the description ac-

cording to the user’s domain knowledge. According to the ATN graph for the procedural

schema shown in figure 6.4, when in the state PRO/INT, the three choices are brief-step,

next-step, and pop. Brief-step is chosen when there exists a subplan not yet introduced

(e.g. is always chosen to initially describe a subplan), next-step is selected when the cur-

rent subplan is not completely described, and pop is followed if the whole procedure is

explained. In the state PRO/STEP, there are also three candidate arcs, fill details, jump

and pop. We follow fill details when the last next-step predicate introduces a primitive

action not known to the user, we choose the jump arc if the procedure is not yet com-

pleted (in order to choose next-step again), and we select the pop arc, again, if the whole

procedure has been explained.

Algorithm: For a definitional question,

For all the candidate predicates,

1. Assign to each of them a value W(fc), where

W(fc) = 1.5, if the candidate’s focus is something newly introduced;

1, if it remains the same focus;

0, otherwise.

2. Assign to each of them a value W(pre), where

W(pre) = 1, if the predicate appears in the user’s preference list;

0, otherwise.

3. Assign to each of them a value W(int), where

W(int) = 0.5, if the focus appears in the user’s interest list;

0, otherwise.

4. Assign to each of them a value W(rec), where

CHAPTER 6. THE ALGORITHM 103

W(rec) = 1, if the user has high receptivity and the arc leads back

to the same state,

or if the user has low receptivity and the arc proceeds

in the graph;

0, otherwise.

5. Assign to each of them a value W(mc) according to the memory and knowledge

principle (see footnote 2 on page 93).

6. Add up all the values for each predicate and choose the one with the highest value

as the next proposition.

For a procedural question,

1. If in start state, follow the only outgoing arc.

2. If in PRO/INT,

choose next-step if the current subplan is only specified by name and is not

yet completely introduced;

choose brief-step if there is another subplan to be described;

choose pop otherwise.

3. If in PRO/STEP,

choose details if the last next-step predicate introduces a primitive

action not known to the user;

choose jump if the current subplan is not yet completely introduced;

choose pop otherwise.

CHAPTER 6. THE ALGORITHM 104

6.7 Update the User’s Knowledge

In section 5.5 we discussed what should be updated in the user model and how it should

be updated. We also agreed that since some of the attributes in the user model are more

dynamic and some more static, they differ in how frequently they should be updated.

The attribute that should be updated most frequently is the user’s knowledge, which

changes every time the system provides information to the user. This attribute is updated

after every conversation, when either the user asks to end the conversation or the topic is

changed to something beyond the scope of the current relevant knowledge pool. During

the conversation, all the new information provided to the user is recorded in the relevant

knowledge pool by marking the nodes and links mentioned. After the conversation, all

the changes recorded in the relevant knowledge pool will be used to update the knowl-

edge base in the user model. The changes in the user model can be adding a new node

(introducing a new object), filling in slots of an existing node (providing new attributes

or children), or even updating existing slots (correcting a user’s incomplete information).

We will give an example to show how the process works.

First, we start off with the user’s knowledge base, for example, the one shown in figure

5.3. Here the user does not know anything about meringue pie and fruit pie; therefore,

lemon pie and apple pie are considered as children of pie. This is a case of incomplete

information. In order to correct the different hierarchy in the user’s knowledge base, links

in two places should be updated. The original links pie – lemon pie and pie – apple pie

will be broken, and two sets of new links pie – meringue pie, meringue pie – lemon pie and

pie – fruit pie, fruit pie – apple pie will be added. For the question what is a meringue pie,

the relevant knowledge pool is shown in figure 5.4. By consulting the user’s knowledge

base, we get the valued relevant knowledge pool as presented in figure 5.6.

When the first proposition in the output meringue pie is a kind of pie is generated, the

CHAPTER 6. THE ALGORITHM 105

CLASS pie

ISA pastry

WITH

parts : crust, filling

CHILDREN

lemon pie

apple pie

END

Figure 6.6: User’s Original Knowledge Base

node meringue pie and the link between pie and meringue pie in the relevant knowledge

pool will be marked. After the second proposition it has meringue on top, the attribute

parts : + top meringue will be marked as known. Thus, continuing until the last propo-

sition, we get the updated valued relevant knowledge pool as shown in figure 5.7.

Now, if the user asks to end the conversation, these updated values in the relevant

knowledge pool should be recorded in the user model. We first show part of the original

knowledge base of the user (in its actual representation as discussed in section 5.2) in

figure 6.6, and the corresponding part of the updated knowledge base in figure 6.7. We

can see that in the partial knowledge base shown, one new node is added (meringue pie),

slots are filled in (CHILDREN : lemon pie, chocolate pie for meringue pie), and some

slots are updated (CHILDREN : meringue pie, fruit pie for pie).

The other attributes in the user model are much more static than the user’s knowl-

edge, and there is usually no way for the system to know when these values will change.

Therefore, the update of these attributes are passive, i.e. the system will not make any

changes to them unless the user asked it to do so.

CHAPTER 6. THE ALGORITHM 106

CLASS pie CLASS meringue pie

ISA pastry ISA pie

WITH WITH

parts : crust, filling parts : + top meringue

CHILDREN CHILDREN

meringue pie lemon pie

fruit pie chocolate pie

END END

Figure 6.7: User’s Updated Knowledge Base

Algorithm for updating the relevant knowledge pool:

1. Search via the indices in the relevant knowledge pool for all the nodes and links

mentioned in the last proposition.

2. Mark them as known.

Algorithm for updating knowledge in the user model:

1. For all the nodes and links marked in the relevant knowledge pool, search for the

corresponding entries in the knowledge base in the user model using the indices.

2. Add a new node if a new object is introduced.

3. Fill in slots of an existing node if new attributes or new children are introduced.

4. Update existing slots if the user had incomplete information before.

Chapter 7

Examples

In this chapter, we will show some predicted outputs of our proposed model. Since the

model is not implemented, the outputs are obtained by hand-tracing through the algorithm

presented in the previous chapter. In this chapter, we will only show the choices made

at major decision points because the trace processes are long and tedious. However, we

will present the details for example 1 in appendix B to further clarify the actual process

of the algorithm for interested readers.

Example 1

In this example we show how the sample output for the question what is a meringue pie

in section 5.5 is derived.

We consider the partial cooking database in figure 5.1 and a user with knowledge

shown in figure 5.3. The user’s knowledge with other attributes in the user model are

shown again in figure 7.1 for convenience.

When the question what is a meringue pie is asked by this user, the algorithm will be

traced as follows.

107

CHAPTER 7. EXAMPLES 108

1. Knowledge:

�
�
��

	
	
		

�
�
�

-
-
-

#
#
#
#
##

+
+

+
+

++

��������

$$$$$$$$

((((((*
�

���������

�

�

$$$$$$$$

+
+

+
+
++

#
#
#
#
##

+
+

+
+

++

��������

$$$$$$$$

((((((*
�

���������

�

�

$$$$$$$$

+
+

+
+
++

.
..

/
//

pie
meringuelemon

add egg yolk

food

apple pie

cake

method

made-of

bake

shortened paste icecreampastry

served
last in mealdessert

parts

filling
crustpie

dough
roll

dough
makecut

combine
meringue

make

filling

make

lemon pie

make
flaky
crust

food

apple pie

cake

method

made-of

bake

shortened paste icecreampastry

served
last in mealdessert

parts

filling
crustpie

shortening

lemon pie

make
flaky
crust

fill
crust meringue

top with

2. Interest: chocolate

3. Preference: attributes

4. Receptivity: high

5. Memory capability: high

6. Role: diner

Figure 7.1: User Model in Example 1

CHAPTER 7. EXAMPLES 109

000001

�
000001

�

((((((*
� ((((((*
�

�
�
��

�
�
��

$$$$$$$$

+
+
+
+
++

	
	
		

�
�
��

	
	
		

�
�

��

�

#
#
#
#
##

+
+

+
+
++

�

�

�
�
��

�
�
��

$$$$$$$$

+
+
+
+
++

	
	
		

�
�
��

	
	
		

�
�

��

�

#
#
#
#
##

+
+

+
+
++

�

�

�
�
��

#
#
#
#
##

�
�
��

��������

+ top meringue

(0)
(0)

(0)(0)(0)
(0)

(0)

(0)(0)

(0)

(0)(0)

(0)

(0)

(0)

(0)

(0)(0)

(1)

(1)
(1) (1)

(1)(1)(1)
(1)

(1)(1)

(1)

(1)
(1)

(1)

(1)

(1)

(1)

(0)

(1)

sweettastes

last in mealdessert
served

tastes

last in mealdessert
served

method

made-of

bake

shortened paste pastry

method

made-of

bake

shortened paste pastry

pie
meringue
combine

crust
flaky
make

crust
flaky
makemakemake

cherry pieapple piechocolate pie lemon pie

+ top lattice
partsparts

fruit piemeringue pie

parts

filling
crustpie

meringue
makemake

cherry pieapple piechocolate pie lemon pie

+ top lattice
partsparts

fruit piemeringue pie

parts

filling
crustpie

filling
lemon

make

filling
chocolate

make
Graham
wafer
crust

Figure 7.2: Relevant Knowledge Pool in Example 1

Step 1: Determine question type

This is a what question, and since the user is a diner, it is categorized as a definitional

question.

Step 2: Determine relevant knowledge pool

In this question, the global focus is meringue pie. According to the rules presented in

section 6.3 for choosing relevant information and by consulting the user’s knowledge in

the user model, we get the valued relevant knowledge pool shown in figure 7.2.

CHAPTER 7. EXAMPLES 110

Step 3: Select schemata

Since the user has both high receptivity and a good memory, the number of schemata

chosen (X) is two. In this case, the two schemata chosen are the identification schema

and the contrastive schema (details provided in appendix B).

Step 4: Select propositions (including instantiate predicates and select predicates)

The identification schema is first instantiated, followed by the contrastive schema. The

object to be compared in the contrastive schema is fruit pie since it is a sibling of meringue

pie and one of its children, apple pie, is known to the user. The states visited and the arcs

chosen in the ATNs are shown in the following (for the ATNs, see figures 6.1 and 6.3):

Identification schema:

ID/ – identification �� ID/ID

– attributive �� ID/ID

– constituency �� ID/ID

– jump �� ID/DS

– example �� ID/EX

– pop �� END

Contrastive schema:

C&C/– identification �� C&C/ID

– attributive �� C&C/DS

– constituency �� C&C/DS

– inference �� C&C/INF

– pop �� END

The final output for this question, according to the predicates chosen above, is shown in

figure 7.3.

CHAPTER 7. EXAMPLES 111

1. Meringue pie is a kind of pie. 2. It has meringue on top. 3. There are two

instances of meringue pie, lemon pie and chocolate pie. 4. Chocolate pie has

the same meringue as lemon pie but has Graham wafer crust and chocolate

filling. 5. Fruit pie is also a kind of pie. 6. It has top-lattice on top. 7. Apple

pie is an instance of fruit pie. 8. Meringue pie and fruit pie both have crusts

and fillings, but have different tops.

Figure 7.3: Output for Example 1

Example 2

Here we have a user with user model shown in figure 7.4. Note that this user has exactly

the same information in the user model as the user in example 1, except that he/she has a

poor memory.

Since the user’s role and knowledge are both the same as in example 1, the first two

steps determine question type and determine relevant knowledge pool will be the same as

presented before.

Step 3: Select schemata

The number of schemata chosen is one, because of the user’s low memory capability.

The two candidates are the identification schema and the constituency schema, where the

former is chosen because the user prefers attributes.

Step 4: Select propositions

The ATN of the identification schema will be traversed in the following order, which

generates the output shown in figure 7.5.

ID/ – identification �� ID/ID

– attributive �� ID/ID

CHAPTER 7. EXAMPLES 112

1. Knowledge: same as example 1

2. Interest: chocolate

3. Preference: attributes

4. Receptivity: high

5. Memory capability: low

6. Role: diner

Figure 7.4: User Model in Example 2

1. Meringue pie is a kind of pie. 2. In addition to the crust and filling, it has

meringue on top. 3. There are two instances of meringue pie, lemon pie and

chocolate pie. 4. Lemon pie consists of flaky pie crust, lemon filling and

meringue.

Figure 7.5: Output for Example 2

– constituency �� ID/ID

– jump �� ID/DS

– example �� ID/EX

– pop �� END

In this example, we see that much less information is provided to the user than in

example 1, due to the user’s poor memory. Also we find that, though the traversal of the

ATN for the identification schema is exactly the same is in example 1, the outputs are

different because of the influence of the memory attribute at the predicate instantiation

CHAPTER 7. EXAMPLES 113

1. Knowledge: same as example 1

2. Interest: chocolate

3. Preference: attributes

4. Receptivity: low

5. Memory capability: high

6. Role: diner

Figure 7.6: User Model in Example 3

stage. The second proposition provides more information, where the crust and filling are

used as a reminder. Moreover, the last sentence focuses on something the user already

knows, therefore ensuring that the system has a correct view of the user’s knowledge base

before any further information might be provided.

Example 3

In this example, the user model is presented in figure 7.6, where the only difference with

the one in example 1 is the user’s low receptivity.

As in example 2, the question type is still classified as a definitional question, and

the relevant knowledge pool is also the same. Furthermore, the schema chosen is the

identification schema as well, this time due to the user’s low receptivity.

Step 4: Select propositions

In this case, the ATN will be traversed differently, as presented in the following. The

output for this user is shown in figure 7.7.

CHAPTER 7. EXAMPLES 114

1. Meringue pie is a kind of pie. 2. It has meringue on top. 3. Chocolate

pie has the same meringue as lemon pie, but has Graham wafer crust and

chocolate filling.

Figure 7.7: Output for Example 3

ID/ – identification �� ID/ID

– attributive �� ID/ID

– jump �� ID/DS

– example �� ID/EX

– pop �� END

In this case, even less information is provided than in example 2. This is because

of the fact that the user has low receptivity, preventing us from providing too much new

information, and that the user has a good memory, making reminders unnecessary. The

ATN traversal is different from that in example 2 by choosing the example predicate im-

mediately after the attributive predicate. When evaluating the two predicates constituency

and example in example 2, the weights assigned to each of them are shown as follows:

Constituency : There are two instances of meringue pie, lemon pie and chocolate pie.

W(fc) = 1; focus = meringue pie

W(pre) = 0;

W(int) = 0.5; user is interested in chocolate

W(rec) = 1; user receptive high, and back to the same state

W(mc) = 0; user memory low, and information unknown

W(Con) = sum of all above = 2.5

CHAPTER 7. EXAMPLES 115

Example : Lemon pie consists of flaky pie crust, lemon filling and meringue.

W(fc) = 0; focus = lemon pie

W(pre) = 0;

W(int) = 0;

W(rec) = 0; user receptive high, but leads to a new state

W(mc) = 1; user memory low, and information known

W(Ex) = sum of all above = 1

Therefore, the constituency predicate is chosen. While in example 3, the same two pred-

icates are evaluated differently as follows:

Constituency : There are two instances of meringue pie, lemon pie and chocolate pie.

W(fc) = 1; focus = meringue pie

W(pre) = 0;

W(int) = 0.5; user is interested in chocolate

W(rec) = 0; user receptive low, but back to the same state

W(mc) = 1; user memory high, and information unknown

W(Con) = sum of all above = 2.5

Example : Chocolate pie has the same meringue as lemon pie, but has Graham

wafer crust and chocolate filling.

W(fc) = 0; focus = chocolate pie

W(pre) = 0;

W(int) = 0.5; user is interested in chocolate

CHAPTER 7. EXAMPLES 116

1. Knowledge: same as example 1

2. Interest: chocolate

3. Preference: attributes

4. Receptivity: low

5. Memory capability: low

6. Role: diner

Figure 7.8: User Model in Example 4

W(rec) = 1; user receptive low, and leads to a new state

W(mc) = 1; user memory high, and information unknown

W(Ex) = sum of all above = 2.5

Here a tie occurs. Since the two predicates also have the same weights assigned for the

first preference user’s knowledge (used together with memory constraints), according to

the second choice, user’s receptivity, we choose the example predicate over constituency.

Example 4

Now we change both the user’s receptivity and memory capability to low and examine

the result. The user model is given in figure 7.8.

Still, the schema chosen is the identification schema, and the relevant knowledge pool

is the same as shown in figure 7.2. The ATN is traversed in the following order, with the

output presented in figure 7.9.

CHAPTER 7. EXAMPLES 117

1. Meringue pie is a kind of pie. 2. In addition to the crust and filling, it has

meringue on top. 3. Lemon pie consists of flaky pie crust, lemon filling and

meringue.

Figure 7.9: Output for Example 4

ID/ – identification �� ID/ID

– attributive �� ID/ID

– jump �� ID/DS

– example �� ID/EX

– pop �� END

Though the traversal of the ATN is the same as that in the previous example, the

generated texts are very different. Little new information is provided because of the

user’s low receptivity, and both sentences two and three are instantiated to be mainly

used as reminders.

In the above examples, we showed how the user’s receptivity and memory capability

influence the behaviour of the generation process. In the next example, we demonstrate

how the user’s preference influences the output text.

Example 5

Though there are two candidate schemata for the definitional question type in examples

1 - 4, the one used is always the identification schema, because of the user’s preference

in attributes. In this example, we present a user who prefers examples and show how the

output is different from the previous ones. The user model for this example is shown in

figure 7.10.

The first two steps are still the same, since the user has the same role and knowledge.

CHAPTER 7. EXAMPLES 118

1. Knowledge: same as example 1

2. Interest: chocolate

3. Preference: examples

4. Receptivity: high

5. Memory capability: low

6. Role: diner

Figure 7.10: User Model in Example 5

The what question is still classified as a definitional question with the relevant knowledge

pool shown in figure 7.2.

Step 3: Select schema

In this case, the two candidate schemata are still the identification schema and the con-

stituency schema. Since the user’s preference is examples, the latter will be chosen.

Step 4: Select propositions

The ATN for the constituency schema (figure 6.2) will be traversed in the following order,

which generates the output text as shown in figure 7.11.

CON/– attributive �� CON/ID

– constituency �� CON/CON

– id schema �� CON/DS

– id schema �� CON/DS

– pop �� END

CHAPTER 7. EXAMPLES 119

1. Meringue pie has crust, filling, and meringue on top. 2. It has two chil-

dren, lemon pie and chocolate pie. 3. Lemon pie consists of flaky pie crust,

lemon filling and meringue. 4. Chocolate pie has the same meringue as

lemon pie, but has Graham wafer crust and chocolate filling.

Figure 7.11: Output for Example 5

In this example, we see that more examples are introduced than the previous ones

using the identification schema, because of the user’s preference in examples. The lemon

pie example is given first because it is used as a reminder, which is considered more

important than the user’s interest, chocolate pie, due to the user’s poor memory.

Example 6

In this example, we change the user’s role from a diner to a chef and see how this factor

influences the generation process. The user model is shown in figure 7.12, where the user

is a chef, and has low receptivity and a good memory.

When this user asks the question what is a chocolate pie, the algorithm works con-

siderably differently from the previous examples.

Step 1: Determine question type

Though this is also a what question, it is classified as a procedural question because the

user is a chef.

Step 2: Determine relevant knowledge pool

According to the discussion in section 6.3, the relevant knowledge pool of a procedural

question is defined to be the subtree with the global focus, in this case chocolate pie,

as root and the parents of all the subplans and primitive actions included in the subtree.

This relevant information, together with the importance values for each node and arc, are

CHAPTER 7. EXAMPLES 120

1. Knowledge: same as example 1

2. Interest: chocolate

3. Preference: examples

4. Receptivity: low

5. Memory capability: high

6. Role: chef

Figure 7.12: User Model in Example 6

shown in figure 7.13.

Step 3: Determine schema

As presented in figure 6.5, the only schema available for a procedural question is the

procedural schema.

Step 4: Select propositions

For this question, the ATN for the procedural schema is used (figure 6.4). The arcs chosen

and the states visited are shown in the following, and the output is shown in figure 7.14.

PRO/ – introduction �� PRO/INT

– brief-step �� PRO/STEP

– next-step �� PRO/STEP

– jump �� PRO/INT

– next-step �� PRO/STEP

– jump �� PRO/INT

– next-step �� PRO/STEP

CHAPTER 7. EXAMPLES 121

	
	
		

3333
3333

3333
33333

	
		

,
,
,,
,
,

�
�
��

+
+
+
+
++

�
�
��

+
+
+
+
++

�
�
��

#
#
#
#
##

�
�
��

��������
(1)

(0) (1)

(1)
filling
lemon
make

(1)
yolk
egg
add

(1)

(1)

(1)(1)

meringue
top with

crust
fill

(0)

(0)

(0)(0)(0)
(0)

(0)

(1)
(1)

(1) (1)

(1)

filling

make

crust
wafer

Graham
make

pie
meringue
combine make

chocolate pie lemon pie

meringue

chocolate pie lemon pie

chocolate

Figure 7.13: Relevant Knowledge Pool in Example 6

– jump �� PRO/INT

– brief-step �� PRO/STEP

– next-step �� PRO/STEP

– jump �� PRO/INT

– next-step �� PRO/STEP

– jump �� PRO/INT

– next-step �� PRO/STEP

– jump �� PRO/INT

– brief-step �� PRO/STEP

– brief-step �� PRO/STEP

– pop �� END

In the output text we see that the subplans for making chocolate pie are provided first,

followed by the steps in detail. The first two subplans, make Graham wafer crust and

making chocolate filling, are first introduced using the brief-step predicate, then described

by using the next-step predicate repeatedly. This is because both of the subplans are

CHAPTER 7. EXAMPLES 122

1. To make chocolate pie, you have to prepare the crust, filling, and meringue

separately, then combine them. 2. To make the crust, mix the crumbs and

sugar, add butter. Press mixture firmly into the pie plate to a thickness of 0.5

cm. Bake until lightly browned. 3. For the filling, combine flour, sugar and

cocoa, add liquid, stir and cook until thick. Beat egg yolks and add into hot

mixture. Remove from heat and add butter. 4. The meringue is prepared as

that for lemon pie. 5. Combine the crust, filling, and meringue also as for a

lemon pie.

Figure 7.14: Output for Example 6

unknown to the user. The primitive action add egg yolk1 is not explained since it is

the one used in making lemon pie which is known to the user (in the case that it is not

known to the user, the arc details, which provides further explanation for a primitive

action, will be chosen). The last two subplans, make meringue and combine meringue

pie, are mentioned using the brief-step predicate only, because they are exactly the same

as used in a lemon pie and are, again, in the user’s knowledge and not just specified by

name. In general, as we can see in this example, a recipe is given by first mentioning

its subplans, followed by describing the subplans in turn. The subplans that are already

known will be mentioned briefly using the arc brief-step only, while the ones unknown

will be expanded using next-step repeatedly. The primitive actions within the subplans

are treated in a similar way. Thus, dividing the recipes into subplans and subplans into

primitive actions prevents the system from providing too much information (describing

a subplan the user already knows), and makes the description useful and terse.

1A description of how this action is being done is attached to the node for primitive action add egg yolk,

which says Beat egg yolks and into them stir a small quantity of the hot mixture. Blend thoroughly and

return to the hot mixture; stir until thick. Descriptions are generally omitted from figure 5.1 for conciseness.

Chapter 8

Related Work

We have given an introduction to some related work in chapters 1 to 3, and have described

our work in detail in chapters 4 to 7. In this chapter, we will further discuss several related

natural language generators which are relevant to ours and compare them with our model.

8.1 Paris’s TAILOR System

Paris ([1987] and [1988]) investigated the problem of how the user’s level of expertise

can influence the generation process. She analyzed a number of texts and claimed that,

in order to provide an answer that is optimally informative, not only should the amount

of information vary, but also the kind of information provided should be different.

8.1.1 System Overview

Paris claimed that a system should provide different kinds of information depending on

the user’s level of expertise. For an expert user, the more commonly used discourse

123

CHAPTER 8. RELATED WORK 124

strategy is the constituency schema (for details, see [McKeown, 1985]), while for a naive

user, a process trace is used more often. She implemented a system, TAILOR, which

operates on this principle. From the TAILOR system architecture depicted in figure 8.1,

we can see that it takes an input question, consults the knowledge base and user model,

and generates a description of the content of the answer. This description is passed to the

dictionary and then to the surface generator to produce the actual English output.

TAILOR operates in a domain that describes complex devices such as telephones, tele-

scopes, etc. Two sample outputs of describing a microphone for expert users and naive

users are shown in figures 8.2 and 8.3, respectively. As we can see from the two exam-

ples, the response for the expert introduces the subparts of a microphone, while that for

the novice describes the process of how a microphone works. The difference is caused

by the choice of the constituency schema or the process trace for the expert and novice,

respectively. In TAILOR, the answers are provided not only for users at the two extremes,

but also for those falling anywhere on the whole spectrum. In order to generate appropri-

ate responses for users having local expertise, the two strategies have to be mixed, and

decisions have to be made within the generation process. Thus, it enables the system to

provide answers for users having an intermediate level of expertise by switching between

the constituency schema and the process trace depending on the user’s local expertise.

8.1.2 The User Model

In Paris’s TAILOR system, user modeling is introduced, but she only considers the user’s

domain knowledge, i.e. the user’s level of expertise. She records in the user model

the user’s knowledge about specific items in the knowledge base and knowledge about

various basic underlying concepts, which help determine whether a constituency schema,

a process trace, or a combination of both should be used. Note that the decisions made

CHAPTER 8. RELATED WORK 125

�

�
�

�

Dictionary Interface

Textual

object in English
Description of the

with lexical choice made
content of the description

TAILORUSER MODEL

known
List of objects

basic concepts?
Knowledge of

Request of an
object description

description
content of the

Surface Generator

(where lexical choice is made)

Base
Knowledge

Component

Figure 8.1: The TAILOR System Architecture

The microphone is a device that changes soundwaves into current. It has a

disc-shaped aluminium diaphragm and a doubly-resonant system to broaden

the response. The system has a carbon chamber and an air chamber. The

diaphragm is clamped at its edges.

Figure 8.2: Describing a microphone to an expert user

CHAPTER 8. RELATED WORK 126

A person speaking into the microphone causes the soundwaves to hit the di-

aphragm of the microphone. The diaphragm is aluminium and disc-shaped.

The soundwaves hitting the diaphragm causes the diaphragm to vibrate.

When the intensity of the soundwaves increases, the diaphragm springs for-

ward. This causes the granules of the button to be compressed. The com-

pression of the granules causes the resistance of the granules to decrease.

This causes the current to increase. Then, when the intensity decreases, the

diaphragm springs backward. This causes the granules to be decompressed.

The decompression of the granules causes the resistance to increase. This

causes the current to decrease. The vibration of the diaphragm causes the

current to vary. The current varies like the intensity varies.

Figure 8.3: Describing a microphone to a naive user

CHAPTER 8. RELATED WORK 127

in the generation process depend on the user’s domain knowledge, which is explicitly

indicated in the user model, as opposed to having default knowledge for each stereotype

as in most other existing systems.

TAILOR obtains its information about the user by making inference from various fac-

tors. User type is considered because some classes of users are more likely to be experts

and some novices. Also, classes might be useful in giving a priori information on the

possible local expertise. Memory organization plays an important role in deciding that a

part of the knowledge base is obscure. If the user is knowledgable about a part deep in

the hierarchical tree, TAILOR assumes that he/she has local expertise in that area. Ques-

tion type and misconceptions contribute to deciding the user’s level of expertise as well.

By examining the way the user asks a question, TAILOR infers whether the user knows

that concept or not. TAILOR also uses some inference rules to determine the user’s radius

of expertise. Particularly, when the user model indicates local expertise about an object,

TAILOR assumes that the superordinate and subparts of the object are also known. The

last strategy TAILOR uses is to ask the user questions to begin with, and update the user

model as the dialogue progresses.

8.1.3 Comparisons

Paris’s work is also based on McKeown-style generation, inheriting the idea of using

schemata as discourse strategies, and implementing them using ATNs. She added the

process trace schema which is similar to our procedural schema, but for the definitional

questions, only the constituency schema is used. In our model, we provide more vari-

eties of text for a definitional question by including the identification, constituency, and

contrastive schemata.

The major difference between TAILOR and our proposed model is the factors taken into

CHAPTER 8. RELATED WORK 128

account in the user model. Paris only looked into the problem of how user’s knowledge

influences the content of the description, which is a subset of the factors we consider

in our model. We agree with Paris that user’s knowledge plays an important role in the

generation process, but we claim that other aspects also have considerable influence on

choosing what to say. Consider the case of a man (not a mechanic) who wants to replace a

door lock on his front door. If he asks for a description about door locks, the information

he expects to get is what the subparts of a door lock are, instead of how a door lock works.

But since this person is not a mechanic, he might be classified as a naive user. In this case,

the process trace schema will be chosen, providing him with inappropriate information.

In order to solve this problem, we include the user’s role in the user model as a clue of

the user’s possible goal, and the user’s preference indicating the kind of information the

user prefers. Finally we use the user’s knowledge to decide the amount of information

to be presented. However, we do not consider the influence of user’s knowledge on the

style of presentation, as was done in TAILOR.

In TAILOR’s user model, the user’s knowledge is represented by pointers pointing to

the objects that the user knows about in the knowledge base. It deals with the objects

in general, without a detailed indication of which attributes of the object the user knows

about. In our model, we have a separate knowledge base indicating the user’s domain

knowledge in which we include all the nodes and links the user knows about. Therefore,

every attribute and subpart of an object will be taken into account, giving a more detailed

picture of the user’s knowledge.

One important aspect of user modeling in a question answering system is that it should

be a long-term process, i.e. it should be able to model a user over a long period of time,

instead of a short time interval, such as a single conversation. TAILOR does not address

the issue of updating the user model, but focuses on how the user’s level of expertise may

influence the response. However, it does keep track of the objects just introduced during

CHAPTER 8. RELATED WORK 129

a conversation and assumes that the user has the local expertise of these objects from then

on. The major problem is that this information is only kept during the same conversa-

tion, and not recorded permanently. Therefore, when a user consults the system later, the

system forgets what the user has learned before. This is impractical for a question an-

swering system, since the system doesn’t keep an exact record of the user’s knowledge.

In order to improve this situation, we not only mark off in the relevant knowledge pool

all the nodes and links mentioned during the conversation, but also copy this information

to the user model after the interaction. Therefore, our user model is able to operate over

multiple sessions.

In general, Paris’s work is quite similar to ours except that we consider different as-

pects in the user model and look at the effect of the user’s domain knowledge differently.

Also Paris combines the two strategies for expert and naive users for a whole range of

possible users, which can perhaps be applied to our cooking domain to provide a combi-

nation of definitional and procedural information for users having an intermediate level

of expertise. Since the approaches that both systems take are quite similar and there do

not exist conflicts in the ways attributes in the user models affect the generation process,

we believe that these two approaches can be combined to build a more powerful system.

8.2 Sarner’s Model

Sarner ([Sarner and Carberry, 1990]) presented a computational strategy for generating

definitions tailored to the user’s needs in a task-oriented dialogue. A system that adopts

this strategy will provide the user with a definition of an object that is most appropriate

for the task the user intends to perform in the dialogue.

CHAPTER 8. RELATED WORK 130

8.2.1 The Strategy

Sarner’s model contains a knowledge base system and a multifaceted user model. The

knowledge base consists of a generalization hierarchy, a plan library, and a lexicon. The

plan library contains a set of domain goals and plans for accomplishing them. The plans

are built hierarchically so that plans can be decomposed into subplans to reach any level

of detail.

The user model covers the user’s plans and goals, domain knowledge and receptivity1,

where the knowledge avoids giving the user information he/she already knows and helps

choose the terms that are familiar to the user, the plans and goals help construct expla-

nations that address the user’s needs, and the receptivity helps provide information in a

form compatible with the user’s style of learning.

Sarner argues that the appropriate content of a definition should guide selection of

a rhetorical strategy, instead of having the choice of a rhetorical strategy determining

content. In order to do so, she adopted a strategy as follows:

1. Weigh all the candidate predicates that might comprise a definition according to

the user’s receptivity.

2. Evaluate all possible instantiations of each predicate according to its familiarity

and relevancy, which yields the significance value for that proposition.

3. Divide the propositions into categories of importance according to the weight of

the predicate and the significance value of the proposition.

4. Construct the definition using the more important information, and using the less

important information as supporting material.

1Note that Sarner uses the term receptivity differently from us. Here receptivity indicates the style of

presentation the user prefers, which is very similar to the preference attribute in our user model.

CHAPTER 8. RELATED WORK 131

USER: I am going to visit Paris. What must I have to pay for my hotel?

SYSTEM: You will need to have a major credit card, travelers checks, or French

currency.

USER: Travelers checks?

SYSTEM: Travelers checks are money instruments which you purchase at a bank.

Figure 8.4: Definition of Travelers Checks 1

USER: I am going to visit Paris. I am afraid of carrying a lot of cash.

SYSTEM: You can carry a major credit card or travelers checks.

USER: Travelers checks?

SYSTEM: Carrying travelers checks lets you have convertible funds in a safe form.

Figure 8.5: Definition of Travelers Checks 2

Two examples are shown in figure 8.4 and 8.5 to illustrate how the definition of travel-

ers checks can vary depending on the user’s knowledge and past discourse (which implies

the user’s plans and goals). The two responses are different because of the evaluation of

usefulness to the user in different circumstances determined by previous discourse (for

details, see [Sarner and Carberry, 1990]).

CHAPTER 8. RELATED WORK 132

8.2.2 The User Model

As discussed earlier, there are three components in Sarner’s user model. The first com-

ponent, the user’s domain knowledge, is a copy of the system’s generalization hierarchy

and plans in the plan library with each node and link weighted either 1 or 0, indicating

whether it is known to the user or not, respectively.

The second component records the user’s task-related plans and goals and focus of

attention from the system’s point of view. The plans and goals are represented in a context

tree which is construct by the TRACK system ([Carberry, 1988]) as the dialogue progress-

es. The focus of attention and the most recently considered subgoal are also marked in

the context tree.

The third part of the user model indicates the user’s receptivity to various predicates,

which plays the same role as the preference attribute in our model. Several clues can be

used to obtain information on this issue. It can depend on the type of predicates the user

responds favourably to, or the type of predicates the user uses.

8.2.3 Comparisons

Sarner’s model has a much narrower scope than ours. She looks at definitional questions

only, and provides single-sentence responses, which eliminate the use of schemata to

organize sentences into paragraphs. Generating single-sentence responses is easier than

generating multi-sentence ones since there will not be problems such as organizing the

sentences, keeping the discourse coherent, etc.

The user’s knowledge is also explicitly recorded in Sarner’s model. But in contrast to

our approach, it is a copy of the entire knowledge base with each node and link marked

with a belief factor of either 0 or 1. This is inefficient when the system has a large knowl-

CHAPTER 8. RELATED WORK 133

edge base and a large number of users, especially when many users have only a small

portion of the domain knowledge (in which case a considerable amount of space is saved

in our model, since we record only the part of the knowledge base that the user knows

about).

The basic idea for choosing the appropriate proposition in Sarner’s model is similar

to ours. Both the candidate predicates and their instantiations are evaluated, but the ap-

proaches adopted are not the same. Sarner first chooses among the predicates depending

on the user’s receptivity, then considers all the possible instantiations of the chosen pred-

icate and chooses the most suitable one. Our approach is to instantiate all the predicates

first, choose the best one for each predicate and then evaluate the predicates with their

most appropriate instantiations. We evaluated the predicates and the propositions in a

different order because we claim that the way a predicate is instantiated influences its

chance of being chosen as the most suitable one.

In addition to the evaluation order, the weighting schemes differ considerably. In

Sarner’s model, the predicates are weighed depending on the user’s receptivity, and the

propositions are evaluated according to a familiarity value and relevance value. The

proposition having the highest combined weight will be chosen as the next utterance.

The familiarity value used here is similar to the attribute user’s knowledge in our

model, indicating how familiar the user is with a particular concept. The relevance value

has the same idea as our focus of attention, which also measures how relevant a concept

is to the current focus.

Sarner uses the equations

� =
�6�(2��) � 1
�6 � 1

CHAPTER 8. RELATED WORK 134

and

� = ��(�4)2

to calculate the familiarity and relevance values, where f is the familiarity rating, b the

belief factor, r the relevance rating and d the number of focus shifts.

We believe that although these equations serve to show the relationships between cer-

tain factors, and may be capable of capturing the features of the familiarity and relevance

values, the approach is somewhat unclear. It is easier to see what the familiarity and

relevance values would be, with a method like the one we use, where there are separate

weighting functions for every factor that influences the generation process, and where

these influences are explained more clearly.

8.3 Moore’s PEA System

Moore ([1989], [Moore and Swartout, 1989]) investigated a different area in natural lan-

guage generation, in providing responses and explanations to advice-seekers. Her work

emphasizes clarifying misunderstood explanations, elaborating on previous explanation-

s, and responding to follow up questions, which other previous explanation systems have

never dealt with.

8.3.1 System Overview

In order to provide a reactive approach to explanation, Moore built a Program Enhance-

ment Advisor (PEA) ([Neches et al., 1985]) using the Explainable Expert Systems (EES)

framework ([Neches et al., 1985]) as a testbed for her work on explanation generation.

PEA is an advice-giving system intended to help users improve their Lisp program styles.

CHAPTER 8. RELATED WORK 135

�
�
�
�

�

�

�

�

query/response

SPL plan

goal
discourse

model
user

EXPLANATION GENERATOR

text plan
interface
grammar

operators
plan

goal
discourse

planner
text

analyzer
query/response

dialogue
history

expert system
(PEA)

user

English

generation system
PENMAN text

Figure 8.6: The PEA System Architecture

The architecture of the explanation generation facility and its relation to the PEA expert

system is shown in figure 8.6.

As we can see from the system architecture, the user’s question or response is first

analyzed to form a discourse goal. The text planner then consults the expert system and

the user model to create a text plan which is passed on to a grammar interface to pro-

duce input form for the PENMAN ([Mann and Matthiessen, 1983]) text generation system.

PENMAN then generates the desired English text as response from the expert system.

The text-planner uses a top-down hierarchical expansion planning mechanism. In

order to satisfy a discourse goal, the planner searches in the strategy library for strategies

that can achieve the goal. The strategy is further expanded into subgoals which have to

be achieved separately. Throughout the planning process, the system keeps track of all

CHAPTER 8. RELATED WORK 136

the assumptions made about the user’s knowledge and the alternative plans that can be

chosen. When the user indicates that explanation or clarification is needed, the dialogue

history is examined, so that either alternative plans can be provided or knowledge that

was previously assumed to be known to the user will be further illustrated.

A sample dialogue with PEA is shown in figure 8.7. In this example, most of the

follow up questions are ambiguous, such as why and huh. In these cases, the system has

to disambiguate them by first finding out all the candidate interpretations and choosing

amongst them. The criteria for resolving the ambiguity include past discourse, user’s

goal, and so forth.

8.3.2 The User Model

PEA includes a user model, which itself includes information about the user’s goals, the

concepts the user is familiar with, and facts the user believes, from the system’s point of

view.

Moore models the user’s knowledge in a similar way as we do, by assuming that the

user’s knowledge is a subset of the system’s knowledge. PEA acquires information in the

user model from a variety of sources. Some basic concepts are assumed to be known by

all the users, and the top-level goal of enhancing a program is assumed to be true for

every user. Another rich source of information comes from the input program the user

provides to enhance. PEA analyzes the program and finds out what Lisp structures the user

knows. Based on its own knowledge about the Lisp structures and the information previ-

ously obtained, PEA uses its inference rules to infer what other properties the user might

know. However, the inference rules employed in PEA are too simplistic, and may cause

the system to attribute too much or too little to the user’s knowledge state. Moore claims

that, since PEA has the ability to answer follow up questions and give further explanation,

CHAPTER 8. RELATED WORK 137

SYSTEM : What characteristics of the program would you like to enhance?

USER : Maintainability.

.

.

.

SYSTEM : You should replace (setq x 1) with (setf x 1).

USER : Why?

SYSTEM : I’m trying to enhance the maintainability of the program by applying

transformations that enhance maintainability. Setq-to-setf is a transformation

that enhances maintainability.

USER : Why?

SYSTEM : Transformations that enhance maintainability are defined as transformations

whose right-hand-side’s use is more general than its left-hand-side’s use. Setf

can be used to assign a value to any generalize-variable. Setq can only be used

to assign a value to a simple-variable.

USER : What is a generalized-variable?

SYSTEM : Simple-variables are storage locations named by symbols. This concept can be

generalized to a storage location that can be named by any accessor function.

These storage locations are called generalized-variables.

USER : Huh?

SYSTEM : For example, the car and cdr of a cons are generalized-variables, named by the

the accessor functions car and cdr. Other examples are an element of an array

or a component of a structure.

Figure 8.7: Sample Dialogue with PEA

CHAPTER 8. RELATED WORK 138

these errors are not critical.

Although PEA employs a user model, Moore argues that requiring a detailed user mod-

el is unrealistic. Therefore, PEA is designed to be not critically dependent on information

in the user model. Instead as much information as possible is obtained from the input

program, the question, and the dialogue history. It is still able to operate properly even if

no extra information is known about the user or the information does not correctly reflect

the user’s knowledge.

8.3.3 Comparisons

Moore’s work looks at a considerably different aspect of natural language generation.

She emphasizes providing explanations and disambiguating follow up questions which

are not discussed in our work.

Her use of the user model is also very different from ours in the sense that we consider

information in the user model to be a very important source of deciding what to say in the

response. Moore, on the other hand, does not consult the user model to give an appropriate

answer, but allows PEA to provide a more general first-shot answer and expects the user

to ask follow up questions if he/she does not understand it. We believe that a user will be

more pleased if he/she can understand the first answer the system provides. Consulting the

user model for the user’s domain knowledge prevents the system from giving information

that is either too difficult or too obvious for the user. In the example given in figure 8.7,

the term generalized-variable would not be used if a user model indicating that the user

does not know this term is consulted beforehand.

The discourse history is not explicitly recorded in our model, but we use a different

approach with a similar effect. In our model, all the nodes and links in the relevant knowl-

edge pool corresponding to information in the proposition are tagged after each utterance.

CHAPTER 8. RELATED WORK 139

In selecting later utterances, we have an indication of which part of the relevant knowl-

edge pool has been mentioned in this session so that it will not be chosen again unless the

user asks for further illustration. Our method lacks the ordering of the information pro-

vided. In other words, Moore’s approach can be thought of as being implemented with a

stack and ours using a set. But since we do not emphasize reasoning about the previous

discourse to provide explanations, it is sufficient just to keep track of the information in

an unordered fashion.

As with TAILOR, PEA lacks the ability to update the user model as the dialogue pro-

gresses. Though this is not an essential point in PEA and Moore claims that “when things

should migrate from the dialogue history to the user model is an open question”, we ar-

gue that losing track of the user’s newly obtained knowledge greatly decreases the value

of maintaining a user model. Therefore we propose a solution of keeping track of the

past discourse and record new information into the user model after the conversation.

Although this solution is not ideal, it provides the system with the ability to work over

multiple sessions with the same user.

8.4 Wolz’s GENIE System

Paris ([1987]) showed how the user’s level of expertise can be used to tailor the descrip-

tion of complex objects. Wolz ([1990a], [1990b]) extended her work to the description

of tasks and introduced a richer user model. Her system, GENIE, emphasizes how the user

model impacts content planning in a task-centred question answering system.

CHAPTER 8. RELATED WORK 140

8.4.1 System Overview

GENIE’s goal is to provide an answer that responds informatively to the user’s question

and that opportunistically enriches the user’s expertise. It operates in the Berkeley Unix

Mail domain, and accepts five types of questions. The questions are all task-related in

which a goal, a plan, or both are provided.

In GENIE, the question answering process is divided into three stages, understanding

the user’s question, selecting a course of action to suggest, and formulating the answer

in a manner appropriate to the user’s background. In order to accomplish the task, the

system is divided into four components:

1. An observational expertise that includes the mechanisms for understanding the

user’s queries.

2. A domain expertise that includes knowledge of the functionality of the system.

3. An analytic expertise that reasons about the consequences of executing tasks with

a particular functionality.

4. An explanatory expertise that provides information appropriate for the user, with-

out being too succinct or too verbose.

The five basic question types are all about how to do tasks. Associated with each

question type, there is a relationship between a computational goal and a plan of action,

along with a set of expectations about what the answer will contain. The answer may

consist of introduction, reminder, distinction clarification, or misconception elucidation,

which can be used either to respond to the user’s question or to enrich the user’s knowl-

edge. GENIE reasons using past discourse and information in the user model to generate

CHAPTER 8. RELATED WORK 141

Question 1 : Will “mail kathy” let me send a message to Kathy?

Situation : User in read mode, new mail exists.

Yes. Also, you can send mail from Unix. Type “mail kathy” at the Unix prompt.

Figure 8.8: Response Generated by GENIE 1

Question 2 : Why doesn’t “mail mckeown” let me send a message to Kathy?

Situation : User in read mode, new mail exists.

Kathy’s email address is not mckeown. Kathy’s email address is kathy.

Figure 8.9: Response Generated by GENIE 2

a single first-shot answer and expects follow up questions which are handled in the same

way as was done by Moore ([Moore and Swartout, 1989]).

The responses GENIE generates to the questions will “mail kathy” let me send a mes-

sage to Kathy and why doesn’t “mail mckeown” let me send a message to Kathy are shown

in figures 8.8 and 8.9.

8.4.2 The User Model

In order to provide sufficient information to decide what is the best answer for a particular

user, GENIE has a three part user model:

CHAPTER 8. RELATED WORK 142

1. A situational context provides information about the current conversational envi-

ronment.

2. A discourse context provides details about the user’s goal in asking the question.

3. A model of the user’s domain knowledge includes knowledge of intention (how to

accomplish certain domain tasks) and causality (the results of the actions).

Part of the user model is constructed by the system experts discussed earlier. The

observational expert analyzes the user’s question and constructs the discourse and situ-

ational contexts. The domain expert models the user’s domain knowledge from GENIE’s

point of view, in which the user’s goals, plans, and the user initiated actions are included.

Other experts consult the user model to construct the most appropriate plan and response.

The analytic expert reasons about the relationships between the entities under consid-

eration and provides relevant information for the explanatory expert, which filters the

information to generate an answer that meets the user’s needs.

8.4.3 Comparisons

Wolz’s work is more similar to Moore’s than to ours in the sense that they both provide

first-shot information and accept follow up questions for explanation or further illustra-

tion.

In GENIE, the user model consists of three parts, the situational context, the discourse

context, and the user’s domain knowledge. We argue that the user model should contain

long-term information; therefore, it should not include information about the conversa-

tional environment and the topic. However, the situational context in GENIE contains

information about the current interactive environment and the discourse context includes

information about the on-going dialogue; hence, we maintain that they should not be

CHAPTER 8. RELATED WORK 143

recorded in the user model. In our model, we do not take the conversational setting in-

to account, but the previous discourse, which is also specific to the interaction, is kept

within the relevant knowledge pool and discarded after the conversation, instead of being

recorded in the user model.

Wolz claims that the explanatory expert in GENIE performs an important task, filtering

or revision, which is not done in other systems using schemata or Rhetorical Structure

Theory (RST) ([Mann and Thompson, 1987]) based planning. In the generation process,

the potential answer is formed by the analytic expert, and the explanatory expert consults

the user’s domain knowledge in the user model to decide which part of the answer should

be included, and which should be excluded. In our model, we use a different strategy

by consulting the user model before forming the potential answer. In this way we aim

to select information appropriate for that particular user, therefore saving the effort of

revising the answer.

As shown in figure 8.8, in addition to the response the user expects, extra information

is provided for sending mail messages in the Unix environment. This idea of opportunis-

tically enriching the user’s expertise is quite similar to our approach of choosing more

than one schema in an answer. In GENIE, there is no information in the user model to

indicate whether the user is willing to learn more or not; the system provides extra infor-

mation whenever it is possible. We argue that additional information should be provided

only if the user has the ability to learn more and remember it. Therefore, in our model,

the user’s receptivity and memory constraints are recorded to help decide if this extra

information should be included or not.

CHAPTER 8. RELATED WORK 144

8.5 McCoy’s ROMPER System

McCoy ([1985],[1986],[1988]) dealt with the problem of the user’s misconceptions2. Her

goal was to generate responses similar to the responses of human conversational partners

to correct the user’s misconceptions by reasoning on a highlighted model of the user to

identify possible sources of the error.

8.5.1 System Overview

Through a transcript study, McCoy discovered that a response to a misconception usually

contains three parts: a denial of the incorrect information, a statement of denial and

correction given, and a justification for the misconception. In order to find out the cause

of the misconception, she introduced a new notion of object perspective, which acts to

filter the user model, highlighting those aspects which are made important by previous

exchanges. This perspective helps to reason for possible support for the misconception.

McCoy implemented a system called ROMPER (Responding to Object-related Miscon-

ceptions using PERspective) to deal with misconceptions in a financial securities domain.

ROMPER takes a specification of the information that is inconsistent with the system’s

model of the world, the current perspective, and a record of past focus as input, and by

consulting its knowledge and perspective library, it generates a response specification

which is passed on to McDonald’s MUMBLE system ([McDonald, 1986]) to produce the

actual English output. The ROMPER system architecture is presented in figure 8.10.

As shown in the system diagram, two types of misconceptions are handled in ROMPER,

misclassification (classifying an object wrongly) and misattribution (giving an object

an attribute it does not have). Associated with each kind of misconception, there are

2Here, misconception is defined as the discrepancy between system beliefs and user beliefs.

CHAPTER 8. RELATED WORK 145

	

��

�

base

similarity
object

misattribution

perspectives

functions
filtering

perspective

knowledge

access functions
knowledge base

misclassification
user model
analysis analysis

user model

response request
(with discourse
information) information)

(with discourse
response request

instantiated
schema schema

instantiated

Figure 8.10: The ROMPER System Architecture

CHAPTER 8. RELATED WORK 146

U : I am interested in investing in some securities to use as savings instruments.

I want something short-term and I don’t have a lot of money to invest so the

instrument must have small denominations. I am a bit concerned about the

penalties for early withdrawal. What is the penalty on a T-Bill?

R : T-Bills don’t have a penalty. Were you thinking of Money Market Certificates?

Figure 8.11: Sample Output of ROMPER 1

U : I am interested in investing in some securities. Safety is very important to

me, so I would probably like to get something from the government. I am a bit

concerned about the penalties for early withdrawal. What is the penalty on a

T-Bill?

R : T-Bills don’t have a penalty. Were you thinking of T-Bonds?

Figure 8.12: Sample Output of ROMPER 2

a few response strategies, represented as response schemata. Depending on the current

perspective taken as input by ROMPER, it calculates the similarity values between the

object in focus (the one mentioned in the question) and all the possible objects for causing

the misconception (for details, see [McCoy, 1988]). The object with the highest similarity

value is assumed to have caused the confusion and a proper response schemata will be

chosen to generate an explanation for clarification.

In figures 8.11 and 8.12 we show how ROMPER acts differently to the same user having

the same misconception under different contextual situations.

CHAPTER 8. RELATED WORK 147

8.5.2 The User Model

The ROMPER system does not actually do its reasoning on a separate user model. Instead,

it performs a user model analysis which is actually done on the system representation.

McCoy contends that, when the user exhibits a misconception and the system does not

have a good model of what the user knows, it is reasonable for the system to do reasoning

on its own knowledge base and attribute the knowledge involved to the user. In other

words, ROMPER uses the processing done for correcting misconceptions to help build the

user model.

As mentioned earlier, there are two types of user model analyses used by ROMPER,

the misclassification user model analysis and the misattribution user model analysis. The

misclassification user model analysis decides which correct schema to follow when a

misclassification occurs. Three schemata can be chosen, like-super, like-some-super, and

no support. Like-super is used when the user model shows that a possible reason for the

misconception is because the user classified the object as a superordinate to which it does

not belong. Like-some-super is chosen when the user thinks that the object is similar to

a superordinate’s subtype. Finally, if no reason can be found for the misconception, the

system simply chooses no support to inform the user with his/her misconception without

an explanation.

The misattribution user model analysis, on the other hand, decides which schema to

choose when a misattribution arises. Again, there are three candidate schemata, wrong

object, wrong attribute, and no support. The wrong object schema is chosen when the

user wrongly attributed a property to an object and the wrong attribute schema is used

when there is an evidence that the user has confused an attribute with another similar

attribute of the same object.

Thus, by building a dynamic user model while making an analysis on the system’s own

CHAPTER 8. RELATED WORK 148

knowledge base, ROMPER is able to find out the possible causes of the misconception and

provide the user with a correction and an explanation.

8.5.3 Comparisons

McCoy looked at a very different area of user modeling from ours, concentrating on

dealing with the user’s misconceptions. In our system, we only handle the cases where

the user has incomplete information. In these cases the user is not aware of the existence

of some intermediate level objects; therefore, he/she has a different hierarchical structure

from the system’s knowledge base. Though both systems can be used as natural language

interfaces to a database system or an expert system, we believe that ROMPER is more

suitable to serve as a subsystem that is evoked by, say, a question answering system when

a user’s misconception is detected during the system’s interaction with the user. When a

misconception arises, the main system passes the information to ROMPER, including the

detected misconception, past discourse (which is usually recorded in most recent natural

language interface systems), and the current perspective (this might have to be added

to the main system, or be inferred by ROMPER. For a discussion of how to choose an

active perspective, see [McCoy, 1988]). Thus, ROMPER corrects the user’s misconception

and returns control to the main system from which the user continues the interrupted

conversation with the system.

An important issue in ROMPER is to decide the similarity between objects. Most ex-

isting systems determine object similarities depending on the distance between the two

objects in the hierarchical structure, which is the approach adopted in our model. Mc-

Coy claims that the similarity between two objects is highly dependent on the perspec-

tive, especially when an object has more than one parent. Therefore she uses the current

perspective to highlight the attributes that should be considered, and employs Tversky’s

CHAPTER 8. RELATED WORK 149

metric ([Tversky, 1977]) to calculate the similarity values. We agree with McCoy that

two objects may be considered similar under some circumstances, but different in other

cases. Since we do not choose to work in a domain where there exists many views to

an object, perspective is not as critical in our model as in ROMPER. We believe that sim-

ply calculating the distance between two objects provides us with sufficient information

needed in our model. But we do realize that to apply our model in a more complicat-

ed domain with different views on an object, a similarity-calculating strategy similar to

ROMPER’s should be developed.

The current perspective is McCoy’s method of capturing the user’s view of the knowl-

edge base. Our method is to store a model of the user’s knowledge explicitly, and to

project this information into the relevant knowledge pool constructed for generation. M-

cCoy’s perspective allows the user’s knowledge to be represented as something other than

a simple subset of the system’s knowledge (as in our model). In other words, McCoy has

a different representation of the user’s knowledge, which may be useful for certain users

(with misconceptions) or certain domains (where multiple views of the knowledge can

be easily categorized).

As mentioned before, there are some schemata associated with each user model an-

alyzer. Here, the schemata are in fact a collection of predicates that might be chosen as

output. They do not specify the order in which the propositions should be given. In our

approach using the ATNs, the order of the propositions is semi-fixed, which has a disad-

vantage of lack of flexibility. In the method ROMPER used, more varieties of text can be

produced, but also a more powerful sentence organizer must be developed to guarantee

the coherence of the generated text.

CHAPTER 8. RELATED WORK 150

8.6 Sarantinos and Johnson’s EXPLAIN system

Sarantinos and Johnson ([1990], [forthcoming]) examined the nature of explanation di-

alogues and designed an explanation system to provide appropriate responses and ex-

planations to the questions posed by different users. They also developed a theory of

explanation called Extended Schema based Theory (EST) to provide powerful and com-

plete question understanding and explanation generation in an efficient computational

form.

8.6.1 System Overview

Sarantinos and Johnson extended McKeown’s schemata to work in an explanation gen-

eration environment. Instead of choosing one schema for a question according to its

question type, each question is analyzed depending on the a classification of the user’s

knowledge (e.g. novice, expert, and partial expert) and previous discourse to construct a

question path. The question path is a list of question types which can be instantiated by

different schemata or predicates. The overall structure of their system EXPLAIN is similar

to TEXT, as shown in figure 8.13.

EXPLAIN operates in a facial skin care domain. We see that the input question is

first analyzed and the question path determined. The question path reflects the question’s

semantics and its relation to previous discourse and is passed on to the explanation plan

selector which selects appropriate schemata/predicates and generates a final explanation

plan. The schemata are then instantiated in a way similar to the process in TEXT except

that previous discourse and information about the user are taken into account. Note that

the knowledge base and the input question together create a relevant knowledge pool

which provides information for matching the predicates. After an explanation is given,

EXPLAIN stores the various knowledge elements used in the question and explanation to

CHAPTER 8. RELATED WORK 151

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

					

�
�
�
�
�
�

�
�
�
�
�
�
�

�����

		
		
	

����������

�������

����

��

��

construct

predicate
schema or

filled explanation plan

information

question

explanation strategy
determine

explanation plan
generate

Explanation plan selector

pool
knowledge
relevant

base
knowledgerelevant

knowledge
pool

question path
determinedialogue

planner input question

no

update

possible
propositions

update

match predicate

focus constraints
immediate

user constraints

end of plan?

explanation
generated

model
user

discourse
current

Figure 8.13: The EXPLAIN System Architecture

CHAPTER 8. RELATED WORK 152

keep track of how the global focus of the conversation shifts from one topic to another.

This process helps make decisions in further question type instantiations.

Through an analysis of natural dialogues between experts, novices, and partial ex-

perts, Sarantinos and Johnson identified 28 question types, including identification, eval-

uation, feature analysis, and so forth. The relations between question types and question

paths are studied, and the explanation schemata are associated with each question type.

In figure 8.14 we show an example of the explanation generated by EXPLAIN. The

question path and explanation plan inferred by EXPLAIN are shown, followed by the ex-

planation generated.

8.6.2 The User Model

Through empirical observations, Sarantinos and Johnson claim that potential variations

exist between novice and partial expert users of an explanation system. In order to tailor

the explanations to users of various levels of expertise, they include in their system a user

model which keeps track of the user’s domain knowledge.

The user model employed in EXPLAIN serves to provide the system with information

about the user’s underlying knowledge. To acquire knowledge about the user, the im-

plicit knowledge acquisition rules described in [Kass, 1987] are adopted. An example of

these rules is the concept generalization rule which says: “If the user model indicates that

the user knows several concepts that are specializations of a common, more general con-

cept in the domain model, the user modeling module may conclude that the user knows

the more general concept, and the subsumption relationship between the more general

concept and the more specialized concepts as well”.

Some knowledge is assumed to be known to the user, including information men-

tioned in previous discourse and concepts mentioned in the user’s question. Using this

CHAPTER 8. RELATED WORK 153

Question : What is a scrub; how do I use it?

The question path is:

identification =� concept-completion =� frequency, timing, contents, place

order

The explanation plan is:

identification predicate

attributive schema

Generated explanation:

The scrub is an exfoliating product whose purpose is to exfoliate the skin

without drying. The scrub is usually referred to as facial scrub or exfoliating

cream. The scrub contains grains. You apply the scrub with your finger-tips

by doing circular movements. How frequently you use it depends on your

skin type. For oily skin types you use it twice a week whereas for dry skin

types once a week. Use it all over the face avoiding the eye-area. It costs

about $2.5 and it is best not to use it if you are not 25 years old or more. The

exfoliating scrub is very good for sensitive skins.

Figure 8.14: Sample Explanation Generated by EXPLAIN

CHAPTER 8. RELATED WORK 154

information and the knowledge acquisition rules mentioned above, EXPLAIN is able to

make inferences as to which entities are known to the user and which are not. The list is

then updated dynamically as the dialogue progresses to prevent repetitions and redundant

information.

The primary use of user models for varying the explanation is in the process of se-

lecting the question type intended by the user. Then, focus constraints control the actual

generation. The user’s knowledge is also mentioned as an influence in the selection pro-

cess during generation, but how to employ that user knowledge to tailor the output is not

explicitly stated and no general algorithm is provided.

8.6.3 Comparisons

The EXPLAIN system, though also based on the schema based theory used in McKeown’s

TEXT system, looks into aspects considerably different from ours. Sarantinos and Johnson

emphasize understanding the question, providing explanations and handling follow-up

questions, while we stress the generation phase of a question answering system and study

how various aspects in a user model influence this process.

First of all, Sarantinos and Johnson looked into the problem of determining question

types more carefully than we did. In our model, we determine the question type using

the user’s role and the default value associated with each role. In EXPLAIN, a question is

interpreted in terms of a path of classified question types which is further processed to

select the appropriate explanation plan. The selection of question types depends on the

user’s domain knowledge and previous discourse, which results in explanations tailored

to different users.

The updating mechanism used in EXPLAIN is also different from ours. Inherited from

TEXT, both EXPLAIN and our model create a relevant knowledge pool based on the system

CHAPTER 8. RELATED WORK 155

knowledge base and the input question to restrict the scope of the information in the re-

sponses. Furthermore, the two systems both keep track of previous discourse to prevent

repetitions within the same conversation. In our model, this is done by tagging the cor-

responding nodes and links in the relevant knowledge pool after each utterance, while in

EXPLAIN, the user model is updated as the dialogue progresses. Our algorithm is designed

to improve efficiency of processing. Since information is stored in the relevant knowl-

edge pool, the system does not have to consult the user model every time it comes to a

decision point and does not have to update the user model after each utterance. We argue

that the interaction between the system and the user is a real-time process; therefore, the

time spent on updating the user model after each utterance is noticeable to the user, while

updating after the conversation is more agreeable to the user.

Although EXPLAIN does not consider many different aspects of the user in the user

model, the effort spent in studying the question types and question paths in order to con-

struct a explanation plan is beneficial. Since both EXPLAIN and our model are based on

the TEXT system, we believe it is possible to adopt the question analysis phase of EXPLAIN

(modified to work in a question answering system) in our model to process a wider range

of question types and to be more sensitive to ongoing dialogue.

8.7 Hovy’s PAULINE System

Hovy ([1988a],[1988b],[1990]) looked into the question of how and why people say the

same thing differently to different people or even to the same person in different circum-

stances. He is the first researcher to investigate the issue of building pragmatic goals into

a text generation system.

CHAPTER 8. RELATED WORK 156

8.7.1 System Overview

Unlike the other systems described above as question-answering systems, Hovy’s PAULINE

(Planning And Uttering Language In Natural Environments) system produces stylistical-

ly appropriate texts that describe an event according to the various settings that model

pragmatic circumstances.

The architecture of PAULINE is depicted in figure 8.15. The entire planning process

consists of three stages, namely, topic collection, topic organization, and realization. The

input topic3, is first passed to the topic collection module which collects from the input

elements additional representation elements and determines which aspects of them to

say. There are three plans available in PAULINE, the describe plan which finds descriptive

aspects of objects, the relate plan which relates events and state-changes, and the convince

plan that selects topics that will help convince the hearer of some opinion.

Once the plan is chosen, the topic organization module performs the task of find-

ing appropriate groupings and interpretations of the candidate topics, finding appropriate

ways to juxtapose them in multi-predicate phrases, and finding ways of expressing rela-

tionships amongst them. At this stage, the outline of the output text is decided, including

the topics to be included, how they are ordered, and so on. This information is further

passed on to the realization module, which determines the organizations within sentences,

and selects appropriate clauses and words.

In addition to the input topic, PAULINE also takes as input a set of pragmatic goals4

3There are three sets of examples, i.e. three topics, that PAULINE can operate on, the shantytown affair,

a fictitious presidential election, and a model of the behaviour of a judge (for details, see [Hovy, 1988a]).
4There are thirteen pragmatic goals used in PAULINE, including access knowledge, make the hearer

like/dislike the speaker, etc., These pragmatic goals are represented by some interpersonal goals and con-

versation settings. For more details, see [Hovy, 1988a].

CHAPTER 8. RELATED WORK 157

��
�
��

�	
	
	

� � � �

�

�

conversation
aspects of
pragmatic

Input:

strategies
and

goals
rhetorical

text

input topics

realization

organization

topic
collection

topic

Figure 8.15: The PAULINE System Architecture

CHAPTER 8. RELATED WORK 158

which activate a number of intermediate rhetorical goals5 that control the style and slant

of text. All three stages in the text planning process interact with the derived rhetori-

cal goals, since the goals influence not only the topics to be included and how they are

organized, but also the sentence structures and lexical choices.

Note that the output from the realization component provides feedback for both the

topic collection and topic organization components. Hovy contends that when people

start speaking, they usually have a vague idea of what topics they will cover but leave the

details for later consideration. Therefore, he suggested that content planning should be

performed only when necessitated by the realizer.

To show how PAULINE generates different styles of texts depending on different prag-

matic goals, two sample outputs describing the shantytown affair, together with their

pragmatic goals, are shown in figures 8.16 and 8.17. Note that the first example is in-

tended to be output by a passerby describing the issue, and the second one a newspaper

article.

8.7.2 Comparisons

Unlike our use of schemata as discourse strategies inherited from TEXT, Hovy introduced

a different approach by using a limited-commitment planning paradigm. The most impor-

tant aspect of limited-commitment planning is that the planning (deciding what to say)

and realization (deciding how to say it) components are interleaved, which allows plan-

ning to take into account unexpected syntactic opportunities and inadequacies. However,

in our approach, the content is completely decided before the realization component per-

forms its task. Though Hovy’s approach guarantees that the realizer will be able to fulfill

the planner instruction (if it cannot realize the instruction, the planner will be asked to

5Twelve rhetorical goals are used in PAULINE, e.g. formality, simplicity, haste, and openmindedness.

CHAPTER 8. RELATED WORK 159

- Time : some

- Tone of interaction : informal

- Speaker’s opinions : neutral

- Depth of acquaintance : strangers

- Goal to affect hearer’s opinions : none

Yale University punished a number of students for building a shantytown on

Beinecke plaza by arresting 76 students and tearing the shantytown down

one morning in April. The students wanted Yale to divest from companies

doing business in South Africa. Finally, the University gave in and allowed

the students to rebuild the shantytown.

Figure 8.16: Sample Output of PAULINE 1

CHAPTER 8. RELATED WORK 160

- Time : much

- Tone of interaction : formal

- Speaker’s opinions : neutral

- Depth of acquaintance : strangers

- Goal to affect hearer’s opinions : none

In early April, a shantytown – named Winnie Mandela City – was constructed

on Beinecke plaza by several students, so that Yale University would divest

from companies doing business in South Africa. At 5:30AM on April 14, it

was destroyed by officials; also, at that time, the police arrested 76 students.

The students requested that Yale give them permission to reassemble the

shantytown while several local politicians and faculty members expressed

criticism of Yale’s action. Finally, the University permitted the students to

reconstruct it and, concurrently, Yale University announced that a commis-

sion would go to South Africa in July to examine the system of apartheid.

Figure 8.17: Sample Output of PAULINE 2

CHAPTER 8. RELATED WORK 161

replan), they also come at a cost. Since our work does not emphasize the style of the

response, the feedback from the realization component is not as critical. Therefore, a

traditional top-down planning method will be sufficient to serve our needs.

PAULINE does not have a long-term user model, but takes the pragmatic goals as in-

put. The pragmatic goals involved in PAULINE can be categorized into information about

the speaker, information about the hearer, the speaker-hearer relationship, the conver-

sational atmosphere, and the interpersonal goals between the speaker and the hearer.

Among those categories, the information about the hearer will be considered similar to

our user model, but the rest are not discussed in our work. There are several reasons for

this. In our system, the speaker is not considered a person with affection as in PAULINE,

but is what we refer to as the system, a machine simulating an expert. Therefore, it is

supposed to be knowledgable in its domain, to be very patient, and so forth, which give

fixed-values to the aspects considered in the information about the speaker. Since the

speaker is not considered a person, the speaker-hearer relationship and the interpersonal

goals between the speaker and the hearer do not exist. As for the conversational atmo-

sphere, there also do not exist as many variables as in PAULINE (being on the street, in a

quiet place, etc.). We assume that the learning environment is quiet and the hearer has

lots of time to learn from the system.

PAULINE uses twelve rhetorical goals to realize the pragmatic settings. Some of them

are related to the information of the hearer, and are similar to the attributes recorded in

our user model. The rhetorical goal simplicity indicates the complexity of the sentence

structure as well as the phrases and words chosen, while the rhetorical goal detail controls

the level of detail of topics generated. Both of them are used in a way that is similar to the

idea of stereotyping the users according to their domain knowledge (since PAULINE only

has three values for each goal). The rhetorical goal openmindedness, which indicates

the user’s willingness to consider new topics, represents the same idea as the receptivity

CHAPTER 8. RELATED WORK 162

attribute in our user model.

Hovy also discusses the usage of reminders in PAULINE, but it is applied somewhat

differently from ours. Hovy’s inclusion of reminders is done at the topic collection stage,

deciding whether related situations that happened in the past can be used as examples

in the text. He does not consider whether the user knows that topic or not, or if he/she

has a good or poor memory. Reminding in PAULINE is treated as an issue of related topic

inclusion.

The idea of PAULINE and our model can be integrated to build a natural language

interface to a database system that responds according to the system’s and user’s aspects

and the conversational settings. By extending our user model, we can provide PAULINE

with the necessary information about the speaker, the hearer, and their relationships. Also,

our user’s knowledge base can compensate for PAULINE’s deficiency in stereotyping the

users according to their expertise in the domain. But because of the different strategies

used in the generation process (schemata in our model and limited-commitment planning

in PAULINE), some problems in the planning stage remain to be solved. By including more

of PAULINE’s pragmatic goals in our model, greater variation in determining how to say

it can be achieved.

Chapter 9

Conclusions

9.1 Summary and Contributions of the Thesis

9.1.1 Summary of Our Work

In this thesis, we developed a multi-dimensional user model with the following content:

� User’s role: In our model the role captures the user’s possible goals, and is used to

interpret the question type (whether it is definitional or procedural).

� User’s knowledge: This is the user’s view of the knowledge base, used to record

what the user knows and does not know. It is taken as a subset of the system’s

knowledge base, but can contain incomplete information.

� User’s preferences: The style of presentation the user prefers, used to help choose

schemata and predicates.

� User’s interest: the user’s general interest, mostly helpful in predicate instantiation.

163

CHAPTER 9. CONCLUSIONS 164

� User’s receptivity: This indicates how willing the user is to accept new information.

It contributes to deciding the number of schemata and the amount of information

to be provided.

� User’s memory constraints: A classification of users with good/poor memory. It

also helps decide the number of schemata, but more importantly, whether reminders

should be provided.

We also proposed a Telos-like knowledge representation for recording the user’s view

of the knowledge base. Using this representation, each node is recorded as a frame, to-

gether with pointers to its parent(s) and child(ren). The hierarchical structure uses prop-

erty inheritance to record what the user knows generally about a node, and also allows

for properties to be attached directly to the node explained to the user.

Given the content and representation of the user model, we studied when and how

the attributes in the user model influence McKeown-style natural language generation.

The whole generation process is divided into five stages : determine question type, cre-

ate relevant knowledge pool, select schema, instantiate predicate, and select predicate.

One or more user model attributes help to make decisions at each stage. They can be

summarized as follows:

� Determine question type: user’s role.

� Create relevant knowledge pool: user’s knowledge.

� Select schema: user’s receptivity, memory constraints, and preferences.

� Instantiate predicates: user’s interests, receptivity, and memory constraints1.

1In fact, the user’s knowledge affects this stage and the predicate selection stage indirectly. Since this

influence is recorded in the relevant knowledge earlier, we will not repeat it here.

CHAPTER 9. CONCLUSIONS 165

� Select predicate: user’s preferences, memory constraints, receptivity, and interests.

Based on the study of these influences, we proposed an algorithm that explicitly de-

scribes how they take place at different stages in the generation process. We also realized

that, at some stages, there may exist conflicts amongst the choices various attributes sug-

gest, so we used different weighting schemes to solve this problem. Also, in order to

prevent the system from repeating itself, the corresponding nodes and links are marked

off in the relevant knowledge pool after each utterance, and the user’s knowledge base is

updated after each conversation.

9.1.2 Analysis of Our User Model

In this section, we will compare the attributes we include in our user model with the

contents we proposed in chapter 3, and analyze them in terms of their dimensions (also

discussed in chapter 3).

Contents:

1. Goals and plans: This is captured by the attribute user’s role in our user model.

In our cooking domain, the users are classified into two classes, chef or diner, and

there is a default goal for each class.

2. Preferences and attitudes: The user’s preferences of style is included in our model.

The aspect attitude is partly captured by our attribute interests, indicating what the

user particularly likes.

3. Knowledge and beliefs: We consider the user’s domain knowledge. The user’s be-

liefs, additional short-term knowledge specific to the conversation, are not handled

here.

CHAPTER 9. CONCLUSIONS 166

Table 9.1: Dimensions of Attributes in Our User Model

4. Memory constraints: Included in our model.

5. Interests: Explicitly recorded in our model.

6. Receptivity: Also in our user model.

Dimensions:

The dimensions of each attribute included in our user model are shown in table 9.1. For an

explanations of the dimensions, refer to section 3.2. From the analysis of our user model

we conclude that it is in fact a model which is single agent, single model, descriptive,

with some dynamic, short-term modifiability and some individual specialization.

9.1.3 Contributions

In this section we discuss the main contributions of our work, including how it is different

from previous work, and why it is important.

� Richer information in the user model: Of the six attributes included in our user

model, the user’s knowledge and goals have gained much attention in the past.

CHAPTER 9. CONCLUSIONS 167

The user’s preferences and interests were addressed slightly before, but applied

differently. The user’s receptivity was mentioned in PAULINE ([Hovy, 1988a]), but

not discussed in detail, while the attribute memory constraints is original in our

work. We have discussed in previous chapters why these attributes are important

and have shown that they indeed influence the choice of content in the responses2.

� Deciding how to make use of the user’s knowledge: Existing systems have taken

a user’s knowledge into account to help tailor the output. It has been quite contro-

versial to decide what to say or not to say, given what the user knows. Some people

argue that we should not say what is in the user’s knowledge, therefore using that

information to filter out the material the user knows. Others claim that we should

also mention something the user knows as an introduction to the new information

provided. We maintain that this depends highly on individuals, or more specifical-

ly, on their memory constraints. For people who have a good memory, repeating

what they already know is unnecessary. For those with a poor memory, a reminder

might be expected before new information is provided to make sure that they can

fully understand it. For this purpose, we introduce the new attribute memory con-

straints to the user model.

� A formal representation of the user’s view of a knowledge base: We proposed a

representation suitable for all domains with property inheritance. It extends Telos

([Koubarakis et al., 1989]) to record both definitional and procedural information.

Such a representation is important in developing man-machine interfaces, espe-

cially in knowledge base studies. With this formal representation, we can easily

2Although we included several attributes in our user model, the proposals for tailoring generation based

on each of these attributes are not very sophisticated. This thesis aims to investigate the interaction of user

model attributes with respect to tailoring natural language generation, and more detailed analysis of each

attribute can be done separately to replace the preliminary proposals used in this thesis.

CHAPTER 9. CONCLUSIONS 168

update the relevant knowledge pool to indicate the parts of the relevant knowledge

pool which are known to the user, given the question and the user’s knowledge.

This valued relevant knowledge pool can then be used for the generation process.

� An algorithm describing the interaction between the user model and the gen-

eration process: This is an extension of McKeown-style generation which covers

both definitional and procedural questions, and tailors the responses to specific

users. We clearly specify where in the generation process the influences of the user

model take place. We discuss at each decision point, how various attributes affect

the choices and how these decisions change the output. We claim the importance

of being able to handle both definitional and procedural questions, as these are both

common questions appearing in many domains. The importance of an explicit al-

gorithm is that it clearly shows when and how the user model interacts with the

generation process. Also, when new attributes are added to the user model, only

the decision points and, possibly, the weighting schemes in the algorithm would

need to change.

� Combining various aspects in the user model: Although people have dealt with

combining user modeling and natural language generation in the past, they con-

sidered only a small number of the user’s attributes. In our work, we show how

generation could make use of various aspects of the user simultaneously. It is not

surprising that when handling these attributes altogether, the situation becomes

much more complicated, and in some cases, conflicts amongst the attributes arise.

We have simplified this problem by dividing the generation process into several

stages and discussing which attributes influence these stages individually. As for

conflict resolution, we proposed various weighting schemes for different stages ac-

cording to the attributes involved and their importance at that particular stage. The

advantages of using these weighting schemes is that they are easy to understand,

CHAPTER 9. CONCLUSIONS 169

systematic, and easy to modify when new attributes are added or when a particular

attribute is emphasized.

� Updating the user model: In order to choose the most appropriate response for a

user, the system must have a correct view of the user, i.e. have correct information

in the user model. Therefore, it is very important to keep the information up-to-date

by updating the user model. As shown in table 9.1, we consider the modifiability

of all attributes in our user model, except the user’s knowledge, as static. Hence,

we concentrate on updating the user’s knowledge. We choose to tag the new infor-

mation introduced in the relevant knowledge pool after each utterance and record

the changes in the relevant knowledge pool to the user’s knowledge base after each

conversation. This guarantees that the system has a correct view of the user’s do-

main knowledge at any point, without spending too much time on recording the

changes during the conversation. Although our approach of updating the user’s

knowledge is simple, we argue that it is valuable because it enables the system to

work over multiple sessions with the same user. This is an important issue for sys-

tems actually interacting with users, but has not been considered adequately in the

natural language generation systems to date.

9.2 Limitations and Future Directions

Research in integrating user modeling and natural language generation is still far from

being satisfactory. There are many open questions, but we only a few in this thesis. In

this section, we discuss some questions that, based on our solution, look promising for

future research.

CHAPTER 9. CONCLUSIONS 170

� Extend the user’s receptivity and memory constraints to include a wider spec-

trum of values: In our solution, we stereotype the user’s receptivity and memory

constraints into two classes each, being either high or low. In fact, this is a superfi-

cial classification. In order to capture these two aspects of the users more precisely,

a different measurement should be developed to cover a wider spectrum.

� Include a plan recognition mechanism: Again, we stereotyped the users accord-

ing to their roles, with a default goal for each class. To infer the user’s goal more

accurately, a plan recognition mechanism should be included.

� Include Hovy’s rhetorical goals and conversational settings: In Hovy’s setting,

both the speaker and hearer, their relationship, and the conversational environment

are taken into account, while in ours, only the hearer is considered. An enhance-

ment to our solution would be to include Hovy’s rhetorical goals in the user model,

so that the response is tailored not only to the user but also to the speaker and the

particular conversation. The conversational setting can be thought of as part of the

information in the user’s beliefs, which is the user’s short-term knowledge for a

specific interaction. This might sound unnecessary when the speaker is regarded

as a system, rather than a real person (as in our case), but will be helpful when the

system is applied to simulate conversation between two persons.

� Look into how user modeling influences other levels of generation: As men-

tioned earlier, this thesis emphasizes the influences of user modeling on the content

of the generated text. There are other levels in the generation process that can be

also be influenced, such as syntactic structures and lexical choices. Bateman and

Paris ([1989]) investigated how the user’s knowledge influences these stages, and

we believe it will be worthwhile to see how the other attributes affect them.

CHAPTER 9. CONCLUSIONS 171

� Infer the user model: In this thesis, we do not deal with how the user model is

obtained. We have an interview with every new user to find out the necessary

information in the user model. An ideal situation would be one where the system

has the ability to infer all the information itself so that the user will not even notice

the existence of the user model. This requires much more research on knowledge

acquisition and might be very difficult, however.

� Apply the same principles of the algorithm to other generation methodologies:

In our solution, we focus on McKeown-style generation, which uses schemata as

discourse strategies. However, there are many other strategies used in various gen-

eration systems, and it will be interesting to see if the principles used in our solution

can be applied to other generation methodologies.

� Decide the cut-off point of the relevant knowledge pool: In chapter 5, we dis-

cussed the scope of the relevant knowledge pool for a definitional question. When

choosing the focus’s ancestors and children, it is difficult to decide how far to go.

When the ancestor becomes too general or the child too specific, it becomes less

relevant. We believe that it is worthwhile to develop a general algorithm to decide

when to cut off the chains in various domains since the size of the relevant knowl-

edge pool directly influences the response time of the system. This is generally

related to the question of the most appropriate level of detail to present to a user.

� Increase the range of possible questions to address: In McKeown’s TEXT system,

three types of definitional questions can be asked, namely, requests for definitions,

requests for available information, and requests about the difference between ob-

jects. In our model, the definitional questions are restricted to the first type, asking

about the definition of a certain object. In TEXT, the requests for available informa-

tion are handled by either the constituency schema or the attributive schema and

CHAPTER 9. CONCLUSIONS 172

requests about the difference between objects are answered using the contrastive

schema. The constituency schema is used in our model for the definitional ques-

tions and the contrastive schema used in TEXT is similar to the combination of the

identification schema and contrastive schema in our model. The only schema left is

the attributive schema which uses predicates similar to the ones used in the identifi-

cation schema and constituency schema. Therefore, we believe that the attributive

schema can be easily included in our model to cover all three types of definitional

questions addressed in the TEXT system.

Appendix A

The Schemata

The constituency, attributive, and contrastive schemata used in McKeown’s TEXT system

are listed below.

Constituency Schema

�Attributive / Identification�

Constituency

(Identification+

Evidence) / Attributive

�Attributive / Evidence��

�Attributive / Analogy�

173

APPENDIX A. THE SCHEMATA 174

Attributive Schema

Attributive

Amplification

Particular-Illustration�

�Classification / Attributive�

Analogy

�Explanation�

Contrastive Schema

�Identification Schema�

(Identification Schema

Identification Schema) /

(Attributive Schema

Attributive Schema) /

Constituency Schema

Inference

Appendix B

Tracing the Algorithm in Detail

In this appendix we show the details of deriving the output of example 1 in chapter 7.

The user has user model as shown in figure 7.1, and asks the question what is a

meringue pie. The algorithm is traced through, and the details are shown in the following.

1. Determine question type: first of all we check the user model for the user’s role,

which is a diner. From the rules given in section 6.2, we find that for a what ques-

tion, if the user is a diner, it is considered as a definitional question.

2. Determine relevant knowledge pool:

2.1 Determine global focus: the global focus is the object being asked about in

the question, which in this case is meringue pie.

2.2 Determine relevant knowledge: according to the discussion given in section

6.3, the relevant knowledge for a definitional question is defined to be the

global focus, its descendants to the subplan level, its ancestors to the sec-

ond level from the top, its siblings and the siblings’ children. In this case it

includes,

175

APPENDIX B. TRACING THE ALGORITHM IN DETAIL 176

global focus : meringue pie

descendants : lemon pie — make flaky crust

make lemon filling

make meringue

combine meringue pie

chocolate pie — make Graham wafer crust

make chocolate filling

make meringue

combine meringue pie

ancestors : pie, pastry, dessert

siblings : fruit pie

siblings’ children : apple pie, cherry pie

2.3 Assign importance values: by consulting the user’s knowledge base in the

user model, assign 1’s to all the nodes and arcs in the relevant knowledge

pool that are known to the user and 0’s to the ones unknown. The valued

relevant knowledge pool is shown in figure 7.2.

3. Select schemata:

3.1 Determine candidate schemata: according the pre-determined schemata for

definitional questions in figure 4.2, the candidates are identification schema,

constituency schema, and contrastive schema.

3.2 Determine number of schemata: since the user has both high receptivity and

good memory, X = 2.

3.3 Choose X schemata: since the global focus, meringue pie, falls on one of the

pre-determined levels, we need the user’s preference to help decide which

schema to choose. In this case, since the user prefers attributes, the identifi-

APPENDIX B. TRACING THE ALGORITHM IN DETAIL 177

cation schema is chosen. For the contrastive schema, we check in the relevant

knowledge pool and find that apple pie, a child of fruit pie which is a sibling

of meringue pie, is known to the user. Therefore, the contrastive schema is

included as well.

4. Select propositions:

4.1 Instantiate predicates:

4.1.1 Determine candidate predicates: we are now at the state ID/ (see figure

6.1), and the only outgoing arc is the identification predicate.

4.1.2 Instantiate candidate predicates: according the rule for instantiating an

identification predicate in section 6.5, the object will be introduced as the

closest ancestor known to the user. Searching upwards in the hierarchical

structure, we find that the parent of meringue pie, pie, is known to the

user. Therefore, the predicate is instantiated as meringue pie is a kind of

pie.

4.2 Select predicate: since the identification predicate is the only one applicable

at this point, it is chosen as the first proposition.

4.3 Update relevant knowledge pool: after the first proposition is provided to the

user, the node meringue pie and the link pie – meringue pie will be marked

as known.

4.1 Instantiate predicates:

4.1.1 Determine candidate predicates: we are now at the state ID/ID, and the

outgoing arcs are the attributive predicate, constituency predicate, and

example predicate (by taking the jump arc to ID/DS).

APPENDIX B. TRACING THE ALGORITHM IN DETAIL 178

4.1.2 Instantiate candidate predicates: the predicates will be instantiated and

evaluated as follows1. Note that the example predicate is instantiated to

illustrate chocolate pie, and is expressed using the inference predicate

which gives the similarities and differences between chocolate pie and

lemon pie.

1. Attributive

It has meringue on top

W(fc) = 1 focus = meringue pie

W(pre) = 1 user likes attributes

W(int) = 0

W(rec) = 1 user receptivity high, and leads back to the

same state

W(mc) = 1 user memory high, and attribute unknown

W(Att) = sum of all above = 4

2. Constituency

There are two instances of meringue pie, lemon pie and chocolate pie.

W(fc) = 1 focus = meringue pie

W(pre) = 0

W(int) = 0.5 user likes chocolate

W(rec) = 1 user receptivity high, and leads back to the

same state

W(mc) = 0.5 nodes known (lemon and chocolate pies), but

1The evaluation process should be done in step 4.2. Here we list both the instantiationand the evaluation

in the same figure for convenience.

APPENDIX B. TRACING THE ALGORITHM IN DETAIL 179

arcs unknown (the relationship between

meringue pie and lemon and chocolate pies)

W(Con) = sum of all above = 3

3. Example

Chocolate pie has the same meringue as lemon pie, but has Graham

wafer crust and chocolate filling

W(fc) = 0 focus = chocolate pie

W(pre) = 0

W(int) = 0.5 user likes chocolate

W(rec) = 0 user receptivity high, but leads to a new state

W(mc) = 1 user memory high, and information unknown

W(Ex) = sum of all above = 1.5

4.2 Select predicate: from the weights assigned above, we choose the attributive

predicate which is instantiated as it has meringue on top.

4.3 Update relevant knowledge pool: this proposition causes the attribute parts:

+ top meringue to be marked as known.

4.1 Instantiate predicates: since we are in the same state, ID/ID, the candidate

predicates and their instantiations are the same as shown before except that

there is no information for the attributive predicate.

4.2 Select predicate: between the constituency predicate and the example pred-

icate, we choose the former, being there are two instances of meringue pie,

lemon pie and chocolate pie.

APPENDIX B. TRACING THE ALGORITHM IN DETAIL 180

4.3 Update relevant knowledge pool: in this sentence, two nodes and two links

are introduced. The nodes lemon pie and chocolate pie, and the links meringue

pie – lemon pie and meringue pie – chocolate pie will be marked as known.

4.1 Instantiate predicates: still, we are at the state ID/ID. Now, the only choice is

the jump arc which leads us to the state ID/DS, where the only outgoing arc

is the example predicate.

4.2 Select predicate: the unique choice for the next proposition is chocolate pie

has the same meringue as lemon pie but has Graham wafer crust and choco-

late filling.

4.3 Update relevant knowledge pool: this proposition introduces the subplans

make Graham wafer crust, make chocolate filling and make meringue, as well

as the links between these subplans and chocolate pie.

4.1 Instantiate predicates: now, being at the state ID/EX, the two possible choices

are the example predicate and pop. The example predicate will be instantiated

and evaluated as,

Example

Lemon pie has flaky crust, lemon filling, and meringue.

W(fc) = 0 focus = lemon pie

W(pre) = 0

W(int) = 0

W(rec) = 1 user receptivity high, and leads back to the same state

W(mc) = 0 user memory high, and information known

W(Ex) = sum of all above = 1

APPENDIX B. TRACING THE ALGORITHM IN DETAIL 181

4.2 Select predicate: with W(Ex) = 1 and W(Pop) = 1.5 (default value), the pop

arc is chosen, therefore, ending the identification schema.

4.1 Instantiate predicates: since the last proposition brought the identification

schema to an end, we are now at the beginning state of the contrastive schema,

C&C/. The only choice here is the identification predicate, and is instantiated

to identify the new object as, fruit pie is also a kind of pie.

4.2 Select predicate: the only predicate mentioned above is chosen.

4.3 Update relevant knowledge pool: the new focus fruit pie and the link pie –

fruit pie are marked as known.

4.1 Instantiate predicates: the two choices here at the state C&C/ID are both

schemata, the identification schema and the constituency schema. Hence, no

instantiation is required.

4.2 Select predicates: since fruit pie is at the same level as meringue pie, the

decision process is the same as in step 3. Therefore, the identification schema

is chosen. Here the identification schema is called again, with the global focus

being fruit pie. The process will be similar to the one presented above for

global focus meringue pie, and will not be repeated. The output generated

for introducing fruit pie is “It has top-lattice on top. Apple pie is an instance

of fruit pie”.

4.3 Update relevant knowledge pool: the above two sentences introduce the at-

tribute parts: + top-lattice, the node apple pie and the link fruit pie – apple

pie.

4.1 Instantiate predicates: after traversing the identification schema, we are at

the state C&C/DS, with the only outgoing arc the inference predicate. This is

APPENDIX B. TRACING THE ALGORITHM IN DETAIL 182

instantiated by searching for the similarities between the two objects in their

parent node and the dissimilarities in the corresponding slots in individual

nodes. The inference predicate will be instantiated as meringue pie and fruit

pie both have crusts and fillings, but have different tops.

4.2 Select predicate: again, the only inference predicate is chosen.

4.1 Instantiate predicates: now at the state C&C/INF, the only choice is the pop

arc, which does not require any instantiation process.

4.2 Select predicate: the pop arc is chosen, and completes the answer to the ques-

tion what is a meringue pie.

5. Update the user model: summarizing all the changes made in the relevant knowl-

edge pool discussed above, we get the overall updated relevant knowledge pool as

shown in figure 5.7. This has to be integrated with the original user’s knowledge

base in the user model to indicate the up-to-date user’s knowledge, which is shown

in figure B.1.

APPENDIX B. TRACING THE ALGORITHM IN DETAIL 183

��������

�
�
��

#
#
#
#
##

�

� ((((((* $$$$$$$$

��������

�

+
+
+
+
++

#
#
#
#
##

�

�
�
��

	
	
		

	
	
		

+
+
+
+

++

$$$$$$$$

�
�
��

�
�
��

�

� ((((((* $$$$$$$$

��������

�

+
+
+
+
++

#
#
#
#
##

�

�
�
��

	
	
		

	
	
		

+
+
+
+

++

$$$$$$$$

�
�
��

�
�
��

&&&&&

�
�

��

&&&&&

�
�

��

��

	
		

,
,
,,
,
,

+ top meringue

apple pie

chocolate lemon
filling

pie crust
filling

parts

pastryshortened paste

bake

made-of

method

cake

meringue pie fruit pie
parts parts

+ top lattice

lemon piechocolate pie

make make
meringue

pie crust
filling

parts

pastryshortened paste

bake

made-of

method

cake

meringue pie fruit pie
parts parts

+ top lattice

lemon piechocolate pie

make make make
flaky
crust

make
flaky
crust

combine
meringue

pie

dough
roll

dough
make

shortening
cut

dough
roll

dough
make

shortening
cut

make
Graham
wafer
crust

make

filling

icecream

served
dessert last in meal

served
dessert last in meal

food

meringue
top with

crust
fill

Figure B.1: Updated User’s Knowledge Base

Bibliography

[Allen, 1987] James Allen. Natural Language Understanding. The Benjamin/ Cum-

mings Publishing Company, Inc., Menlo Park, California, 1987.

[Appelt, 1985] Douglas E. Appelt. Planning English Sentences. Cambridge University

Press, New York, 1985.

[Bateman and Paris, 1989] John A. Bateman and Cecile L. Paris. Phrasing a text in terms

the user can understand. In Proceedings of the 11th International Joint Conference on

Artificial Intelligence, pages 1511–1517, Detroit, Michigan, August 1989.

[Britannica Junior Encyclopedia, 1963] Britannica Junior Encyclopedia. Encyclopedia

Britannica Inc., William Benton Publisher, 1963.

[Carberry, 1983] Sandra Carberry. Tracking user goals in an information-seeking envi-

ronment. In Proceedings of the National Conference on Artificial Intelligence, pages

59–63, Washington, D.C., August 1983.

[Carberry, 1988] Sandra Carberry. Modeling the user’s plans and goals. Computational

Linguistics, 14(3):23–37, 1988.

[Cohen and Jones, 1989] Robin Cohen and Marlene Jones. Incorporating user models

into expert systems for educational diagnosis. In Alfred Kobsa and Wolfgang Wahlster,

184

BIBLIOGRAPHY 185

editors, User Models in Dialog Systems, chapter 11, pages 313–333. Springer-Verlag,

Berlin, 1989.

[Cohen et al., 1989] Robin Cohen, Marlene Jones, Amar Sanmugasunderam, Bruce

Spencer, and Lisa Dent. Providing responses specific to a user’s goals and background.

International Journal of Expert Systems, 2(2):135–162, 1989.

[Computational Linguistics, 1988] Computational Linguistics. Special issue on user

modeling. 14(3), 1988.

[Corbett, 1990] Edward P.J. Corbett. Classical Rhetoric for the Modern Student. Oxford

University Press, New York, 1990.

[Dent et al., 1987] Lisa Dent, Amar Sanmugasumderam, and Bruce Spencer. Using user

models for explanation: Introducing thums. Technical Report CS-87-38, Department

of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, June 1987.

[Grice, 1975] H. Paul Grice. Logic and conversation. In Peter Cole and Jerry L. Morgan,

editors, Syntax and Semantics 3: Speech Acts, pages 41–58. Academic Press, Inc.,

New York, 1975.

[Halsey, 1962] William Halsey, editor. Collier’s Encyclopedia. The Crowell-Collier

Publishing Company, 1962.

[Hovy, 1988a] Eduard H. Hovy. Generating Natural Language Under Pragmatic Con-

straints. Lawrence Erlbaum Associates, Inc., Hillsdale, New York, 1988.

[Hovy, 1988b] Eduard H. Hovy. Two types of planning in language generation. In Pro-

ceedings of the 26th Annual Meeting of the Association for Computational Linguistics,

pages 179–186, Buffalo, New York, 1988.

BIBLIOGRAPHY 186

[Hovy, 1990] Eduard H. Hovy. Pragmatics and natural language generation. Artificial

Intelligence, 43(2):153–197, 1990.

[Jameson, 1988] Anthony Jameson. But what will the listener think? belief ascription

and image maintenance in dialog. In Alfred Kobsa and Wolfgang Wahlster, editors,

User Models in Dialog Systems. Springer Verlag, Berlin-New York, 1988.

[Johnson, 1970] Ronald E. Johnson. Recall of prose as a function of the structural im-

portance of the linguistic units. Journal of Verbal Learning and Verbal Behavior,

9(1):12–20, 1970.

[Joshi, 1987] Aravind K. Joshi. Generation - a new printier of natural language process-

ing? In TINLAP-3, pages 202–205, 1987.

[Kass and Finin, 1988] Robert Kass and Tim Finin. Modeling the user in natural lan-

guage systems. Computational Linguistics, 14(3):5–22, 1988.

[Kass and Finin, 1989] Robert Kass and Tim Finin. The role of user models in cooper-

ative interactive systems. International Journal of Intelligence Systems, 4(1):81–112,

1989.

[Kass, 1987] Robert Kass. Implicit acquisition of user models in cooperative advisory

systems. Technical Report MS-CIS-87-05, Department of Computer and Information

Science, University of Pennsylvania, Philadelphia, Pennsylvania, 1987.

[Konolige, 1981] K. Konolige. A first-order formalisation of knowledge and action for a

multi-agent planning system. In J.E. Hayes, D. Michie, and Y.H. Pao, editors, Machine

Intelligence 10. Chichester: Ellis Horwood, 1981.

BIBLIOGRAPHY 187

[Koubarakis et al., 1989] Manolis Koubarakis, John Mylopoulos, Martin Stanley, and

Alex Borgida. Telos: features and formalization. Knowledge representation and rea-

soning 4, University of Toronto, February 1989.

[Litman, 1986] Diane J. Litman. Linguistic coherence: a plan-based alternative. In Pro-

ceedings of the 24th Annual Meeting of the Association for Computational Linguistics,

pages 215–223, New York, 1986.

[MacLeod, 1988] Colin M. MacLeod. Forgotten but not gone: savings for pictures and

words in long-term memory. Journal of Experimental Psychology: Learning, Memory

and Cognition, 14(2):195–212, 1988.

[Mann and Matthiessen, 1983] William C. Mann and Christian Matthiessen. Nigel: A

systemic grammar for text generation. Technical Report RR-83-105, Information Sci-

ences Institute, Marina del Rey, California, 1983.

[Mann and Thompson, 1987] William C. Mann and Sandra A. Thompson. Thetorical

structure theory: A theory of text organization. In Livia Polanyi, editor, The Structure

of Discourse. Ablex Publishing Corporation, Norwood, New Jersey, 1987.

[Mann, 1983a] William C. Mann. An overview of the nigel text generation grammar.

In Proceedings of the 21st Annual Meeting of the Association for Computational Lin-

guistics, pages 79–84, Cambridge, Massachusetts, June 1983.

[Mann, 1983b] William C. Mann. An overview of the penman text generation system.

In Proceedings of the National Conference on Artificial Intelligence, pages 261–265,

Washington D.C., August 1983.

[Mann, 1987] William C. Mann. What is special about natural language generation re-

search? In TINLAP-3, pages 227–231, 1987.

BIBLIOGRAPHY 188

[Maybury, 1990] Mark T. Maybury. The four forms of explanation presentation: descrip-

tion, narration, exposition, and argument. In Proceedings of the AAAI-90 Workshop

on Explanation, Boston, Massachusetts, 1990.

[McCoy, 1985] Kathleen F. McCoy. Correcting object-related misconceptions. PhD

thesis, University of Pennsylvania, Philadelphia, Pennsylvania, 1985.

[McCoy, 1986] Kathleen F. McCoy. The romper system: responding to object-related

misconceptions using perspective. In Proceedings of the 24th Annual Meeting of the

Association for Computational Linguistics, pages 97–105, New York, 1986.

[McCoy, 1988] Kathleen F. McCoy. Reasoning on a highlighted user model to respond

to misconceptions. Computational Linguistics, 14(3):52–63, 1988.

[McDonald, 1986] David D. McDonald. Description directed control: its implications

for natural language generation. In Barbara J. Grosz, Karin Sparck Jones, and Bon-

nie L. Webber, editors, Readings in Natural Language Processing, pages 519–537.

Morgan Kaufmann Publishers, Inc., Los Altos, California., 1986.

[McDonald, 1988] David D. McDonald, editor. Natural Language Generation Systems.

Springer-Verlag, New York, 1988.

[McKeown et al., 1985] Kathleen R. McKeown, Myron Wish, and Kevin Matthews.

Tailoring explanations for the user. In Proceedings of the 9th International Joint Con-

ference on Artificial Intelligence, pages 794–798, Los Angeles, California, 1985.

[McKeown, 1982] Kathleen R. McKeown. Generating Natural Language Responses

to Questions About Database Structure. PhD thesis, University of Pennsylvania,

Philadelphia, 1982.

BIBLIOGRAPHY 189

[McKeown, 1985] Kathleen R. McKeown. Text Generation : Using Discourse Strate-

gies and Focus Constraints to Generate Natural Language Text. Cambridge Univer-

sity Press, New York, 1985.

[McKeown, 1986] Kathleen R. McKeown. Discourse strategies for generating natural-

language text. In Barbara J. Grosz, Karin Sparck Jones, and Bonnie L. Webber, editors,

Readings in Natural Language Processing, pages 479–499. Morgan Kaufmann Pub-

lishers, Inc., Los Altos, California., 1986.

[McKeown, 1990] Kathleen R. McKeown. User modeling and user interfaces. In Pro-

ceedings of the 8th National Conference on Artificial Intelligence, pages 1138–1139,

Boston, Massachusetts, July 1990.

[Moore and Swartout, 1989] Johanna D. Moore and William R. Swartout. A reactive

approach to explanation. In Proceedings of the 11th International Joint Conference

on Artificial Intelligence, pages 1504–1510, Detroit, Michigan, August 1989.

[Moore, 1989] Johanna D. Moore. A reactive approach to explanation in expert and

advice-giving systems. PhD thesis, University of California, Los Angeles, 1989.

[Neches et al., 1985] Robert Neches, William R. Swartout, and Johanna D. Moore. En-

hanced maintenance and explanation of expert systems through explicit models of their

development. IEEE Transactions on Software Engineering, SE-11(11), 1985.

[Paris, 1987] Cecile L. Paris. The use of explicit user models in text generation: Tailoring

to a user’s level of expertise. PhD thesis, Columbia University, 1987.

[Paris, 1988] Cecile L. Paris. Tailoring object descriptions to a user’s level of expertise.

Computational Linguistics, 14(3):64–78, 1988.

BIBLIOGRAPHY 190

[Perrault et al., 1978] C. Raymond Perrault, James F. Allen, and Philip R. Cohen. Speech

acts as a basis for understanding dialogue coherence. In TINLAP-2, pages 125–132,

University of Illinois at Urbana-Champaign, Illinois, July 1978.

[Prince, 1981] Ellen F. Prince. Toward a taxonomy of given – new information. In Peter

Cole, editor, Radical Pragmatics, pages 223–255. Academic Press Inc., New York,

1981.

[Rich, 1979] Elaine A. Rich. User modeling via stereotypes. Cognitive Science,

3(4):329–354, 1979.

[Sarantinos and Johnson, 1990] Efstratios Sarantinos and Peter Johnson. Explanation

dialogues: a computational model of interpreting questions and generating tailored

explanations. In Proceedings of the 5th Workshop on Explanations, Manchester Uni-

versity, April 1990.

[Sarantinos and Johnson, forthcoming] Efstratios Sarantinos and Peter Johnson. Expla-

nation dialogues: a theory of how experts provide explanations to novices and partial

experts. Artificial Intelligence, forthcoming.

[Sarner and Carberry, 1988] Margaret H. Sarner and Sandra Carberry. A new strategy for

providing definitions in task-oriented dialogues. In Proceedings of the International

Conference on Computational Linguistics, pages 567–572, Budapest, Hungary, 1988.

[Sarner and Carberry, 1990] Margaret H. Sarner and Sandra Carberry. Tailoring expla-

nations using a multifaceted user model. In Proceedings of the Second International

Workshop on User Models, Honolulu, Hawaii, March 1990.

[Seamon, 1980] John G. Seamon. Memory and Cognition. Oxford University Press,

New York, 1980.

BIBLIOGRAPHY 191

[Searle, 1975] John R. Searle. Indirect speech acts. In Peter Coles and Jerry L. Morgan,

editors, Syntax and Semantics 3: Speech Acts, pages 59–82. Academic Press, Inc.,

New York, 1975.

[Tversky, 1977] A. Tversky. Features of similarity. Psychological Review, 84:327–352,

1977.

[van Beek, 1987] Peter G. van Beek. A model for generating better explanations. In Pro-

ceedings of the 25th Annual Meeting of the Association for Computational Linguistics,

pages 215–220, Stanford, CA, 1987.

[Wahlster and Kobsa, 1989] Wolfgang Wahlster and Alfred Kobsa. User models in dia-

log systems. In Alfred Kobsa and Wolfgang Wahlster, editors, User Models in Dialog

Systems, chapter 1, pages 4–34. Springer-Verlag, Berlin, 1989.

[Wilensky et al., 1987] Robert Wilensky, James Mayfield, Anthony Albert, David Chin,

Charles Cox, Marc Luria, James Martin, and Dekai Wu. Uc - a progress report. Tech-

nical Report 303, Computer Science Division, University of California at Berkeley,

1987.

[Wolz, 1990a] Ursula Wolz. The impact of user modeling on text generation in task-

centered settings. In Proceedings of the Second International Workshop on User Mod-

els, Honolulu, Hawaii, March 1990.

[Wolz, 1990b] Ursula Wolz. An object oriented approach to content planning for text

generation. In Proceedings of the Fifth International Workshop on Natural Language

Generation, pages 95–104, Dawson, Pennsylvania, June 1990.

[Woods, 1970] W.A. Woods. Transition network grammars for natural language analy-

sis. Communication of the ACM, 13(10):591–606, 1970.

