
Reducing Communication to a Buffer and
Queue Model

James W. Hong and James P. Black

Department of Computer Science
University of Waterloo

March 6, 1991

Abstract

In our work, we seek to reduce the communication problem to its
critical concepts and build a simple, efficient, and general commu-
nication paradigm based on these concepts. We present the Buffer
and Queue Model, which contains a set of communication abstrac-
tions and primitives which is simple and general, rigorous and flexi-
ble, low-level and extensible. We show how this model seeks to utilize
the efficiencies of shared memory communication while providing a
universal communications interface between various types of entities
across a wide spectrum of environments. We give examples of how
various complex communication facilities may be developed from this
low-level communication system.

1



1 Introduction

As computers have grown more powerful, their capabilities have become more
complex and system software has mushroomed in response. Such growth has
been driven both by the increasing variety and sophistication of the hardware
interface, and by the devolution of application level software packages into
standard interfaces for yet higher layers of applications software [Sche86].
One consequence of this growth is that system software, like hardware, can
no longer be treated as a single monolithic entity, but rather has become a
complex network of interacting modules.
The modularization of such software was initially typified by the concept

of layered structure as embodied in the ISO-OSI Reference Model for network
protocols [Zimm80]. As the move to hardware independence and open sys-
tems became stronger, complete procedural definitions of layers and standard
interfaces have emerged, such as the System V Interface Definition [ATT85]
and similar POSIX standards [IEEE88]. More recently, a need for dynamic
flexibility in the type and arrangement of layers has suggested the concept
of a much more self-contained and independent module. AT&T STREAMS
is an example of such a concept [ATT87].
However, as system components become more modular and independent

so that even the hardware and software base of the system is being changed
regularly, the need for well-defined standards of communication between var-
ious entities and types of entities becomes an increasing problem. Moreover,
as tasks involve greater numbers of independent modules and data flow be-
tween modules becomes a more significant component of such tasks, efficiency
coupled with versatility become ever more important in such communication.
Over the years, many researchers have worked on various aspects of com-

munication, some in developing new communication paradigms or protocols,
others in attempts at improvements or performance optimizations. Recently,
there have been some attempts to provide a single consistent programming in-
terface that bridges many underlying techniques, which would reduce the pro-
grammers’ concern of dealing with the conceptual partitioning of interfaces.
AT&T STREAMS [ATT87], BSD sockets [Leff88], the x-Kernel [Hutc88],
Choices Conduits [Zwei90] and TACT [Auer90] are some such attempts. Un-
fortunately, most of these efforts have targetted a specific or limited appli-
cation area, often without a base of general communication abstractions to
start with.

2



In this paper, we present the Buffer and Queue Model, which is a specific
implementation of the generic communication model developed in [Hong91].
The Buffer and Queue Model contains a set of communication concepts and
primitives which is simple and general, rigorous and flexible, low-level and
extensible. We show how this model seeks to utilize the efficiencies of shared
memory communication while providing a universal communications inter-
face between various types of entities across a wide spectrum of environments.
Further, we show how various complex communication facilities may be de-
veloped from this low-level communication system.

2 Communication Issues in Distributed Sys-

tems

We define communication as the transfer of data between two or more entities.
The definition involves three important concepts: data, entities, and transfer
(delivery and synchronization). In this section, we identify a number of issues
associated with each concept in order to motivate our Buffer and Queue
model.

2.1 Data

Data (or messages) may be passed from one entity to another either by ref-
erence (i.e., a pointer to the data is passed) or by value (i.e., a copy of the
actual data is transmitted). Passing by reference, realized in a shared mem-
ory environment, is more efficient both in time and space since it does not
involve operations on individual bytes of data. Passing by reference also al-
lows the structure of data (no matter how complex) to be preserved through
the communication. However, the same does not necessarily hold true when
data must be copied because communication occurs between disjoint protec-
tion domains. When copying data, its structure must be understood by the
copier, which often limits such structures to a single contiguous sequence of
bytes. More elaborate schemes can require an extra protocol layer to pro-
vide a structural description of the data to be transferred, which is necessary
if a shared-memory communication paradigm is to be provided across the
system.

3



Most communication implementations involve multiple protocol layers
with control information (i.e., headers and trailers) associated with the user
data for each protocol. Flexibility should be provided in the structure of
data so that the headers and trailers can be added and removed efficiently,
while ensuring that data can be easily passed by reference from one layer to
another. Such a structure should also allow data fragments to be reassembled
at an arbitrary layer,1 which can result in less strain on system resources.

Buffer memory management refers to management of memory resources
containing message components such as user data, protocol headers and trail-
ers, control data, and descriptors that describe any of these message compo-
nents. The low-level aspects of memory management, such as dealing with
how and when memory is allocated and deallocated should not be the con-
cern of communication software but rather of the user of the communication
subsystem. However, the communication subsystem must support memory
management conventions that allow the efficiencies of shared memory to be
exploited by avoiding copies wherever possible, and minimizing the need for
expensive dynamic memory allocation and deallocation. For example, the
communication subsystem should return control of memory to the owner
when it is no longer needed. The principle involved is that owner of the
memory should be the only entity that can destroy it and that destruction
should only take place when control is returned. This is a reasonable and
necessary restriction needed to maintain order in resource management.

2.2 Communicating Entities

Two environments are involved in most communication paradigms: a work-
ing environment and a target environment. The working environment refers
to an environment where the communications processing takes place. In the
working environment, communications processing usually takes place within
a system protection domain involving global shared memory. The target en-
vironment, on the other hand, may be either local (intra-node) or remote
(inter-node). Intra-node communication, where the working and target en-
vironments are the same, generally involves mostly software and primary
storage in a single or few layers. On the other hand, inter-node communi-

1Conventional peer-to-peer protocols require that the data fragments be reassembled
at the same layer on the receiving side as they were fragmented on the sending side.

4



cation, where the working and target environments are different, generally
involves hardware with protocol-specific device interface and more protocol
layers.
In this kind of communication environment, there is a need for a universal

interface between all entities whether in the working or target environment,
an interface that can be used by different types of partners to achieve simple
and efficient communication. In particular, there is a need for a universal in-
terface between internal communication, employing the efficiencies of shared
memory, and network communication. The interface each layer presents in
network communication should be that of internal communication. Hence,
all layers could be linked in a uniform fashion and we could easily interface
directly to any sub-layer in network communication (e.g., to TCP, IP, etc.)
from any other. Distributed communication, which may involve multiple re-
mote machines, can still enjoy some of the efficiencies of shared memory if
the internal communication interface can be naturally extended to remote
machines.
Another important aspect related to communicating entities is connec-

tivity. Connection-oriented communication (e.g., streams) involves interme-
diate entities which form a logical pipeline to transfer data between two
communicating endpoints. The construction of such pipelines should be flex-
ible so that they can be setup either at system configuration time or at
runtime. Thus, standard operations and interfaces that will connect en-
tities together and disconnect them on demand must be provided. While
these operations are not necessarily required in connection-less communi-
cation (e.g., datagram), in both types routing information is implicitly or
explicitly maintained within each endpoint. Even when no logical commu-
nication connections are present, note that there is a need for “connection”
between the different protocol layers that may be involved in providing, for
example, remote procedure call or datagram communication.

2.3 Delivery and Synchronization

Data delivery techniques vary greatly in different communication paradigms.
Some examples of delivery techniques include transmission via stacks or glob-
ally referenced variables in procedure calls, writing into and reading from
shared memory in shared memory IPC, or copying data from the source to
destination in communication between disjoint protection domains. Closely

5



associated with data delivery is a signalling mechanism for transferring the
control of data as well as notifying the receiver of the arrival of data. This
is necessary for all delivery techniques, since the receiver must have some
indication that data has arrived and is available for access. As with delivery
techniques, there exist different signalling techniques for different communi-
cation paradigms. For example, the jump instruction is used both to transfer
control and implicitly signal the availability of data in procedure calls, while a
wakeup signal may be used to unblock a process awaiting the arrival of data
in message-passing. To handle delivery and signalling techniques for vari-
ous communication paradigms, a generic delivery and signalling technique is
desirable.
User data may flow either unidirectionally as in the send-receive IPC

paradigm or bidirectionally as in the request-receive-reply IPC paradigm. In
these and other communication paradigms, an acknowledgement or status is
expected on completion of the operation. Even when buffers (or data objects)
that carry user data and control information travel only in one direction,
owners of these data objects usually expect control of the data objects to
return to them when the operation is complete. Thus, if we can utilize the
principle of always returning (control of) data objects to their owners when
the operation is complete, the operation status can be returned at little or
no additional cost by piggybacking the status on the returning data object.
Synchronization in communication can be broken down into two aspects:

synchronization of user execution (or user blocking semantics) and synchro-
nization of data object control (or blocking semantics of data objects). That
is, when is it safe for the owner to dispose, modify or reuse the data ob-
ject? In synchronous communication the user is blocked while waiting for
the completion of the operation and return status. Since the user is blocked,
the user does not have access to the data object and hence the contents of it
are quite secure. In asynchronous communication, however, the user is not
blocked after initiating the data transfer, and thus can potentially access the
data or modify it accidentally.

6



3 The Buffer and Queue Model

3.1 The Buffer Abstraction

In this section, we present details of the Buffer abstraction and the associated
solutions to various communication problems related to data. We also de-
velop an efficient, versatile Buffer structure that all levels of communication
can use.

3.1.1 Generic Buffer

A Buffer is an abstraction of an area of memory. The simplest form of Buffer
is one that describes a single contiguous block. A Buffer object consists
of two parts: data and operations. The data portion of a Buffer object is
referred to as the Buffer descriptor or Bufd.2 It consists of four elements:
the starting address of a block of memory used by the Buffer, the size of
Buffer, and the starting and ending addresses of valid data. Having two
variables to specify the valid data as opposed to having just a single counter
is useful when the data fragments may be written and read concurrently, as
in the bounded-buffer problem [Pete83]. The basic operations common to all
Buffers write data into and read data from Buffers, and set and return Bufd
information. A generic Buffer is shown graphically in Figure 1 (a).

3.1.2 Simple Buffer

Communication based on Buffers and Queues involves transferring Buffers
among Queues. This requires extra information be maintained in Bufds in
addition to data, namely identification information and status information
related to Buffer operations. Identification fields include type, bid, owner
and returnQ. Since we envisage various types of Buffers for various types of
communication, we need to specify the type. Bid uniquely identifies the Bufd
across the system under consideration. The owner field specifies who created
the Bufd. ReturnQ specifies the Queue to which the Buffer is supposed
to return when the requested operation is complete. Status fields include

2Throughout this paper, when we use the term Buffer, we will mean the object in the
object-oriented sense, while by Bufd, we will mean only the area of memory occupied by
the data corresponding to a particular instance.

7



currentQ and return status. CurrentQ points to the present location of the
Bufd. Return status contains the status of the most recent operation on the
Bufd. The Bufd also contains a pair of pointers, q, that are used when Buffer
objects are attached to some Queue. These pointers can also be used to link
together a chain of Bufds to form a more complex Buffer, for example, to
support message fragmentation and reassembly. The structure of a simple
Buffer is given in Figure 1 (b).

3.1.3 Recursive Buffer

A data structure such as the simple Buffer presented above has been demon-
strated to be inefficient for protocol processing [Hutc88, Zwei90]. A more
desirable structure is one that can handle a hierarchy of Bufds, each Bufd
capable of describing multiple blocks of memory for header, trailer and data
(or another Bufd). Such a structure is shown in Figure 1 (c). It contains
several pointers and a flag. The first points to a protocol header field, the
second to a protocol trailer field, and the third to either data or another
Bufd (i.e., recursive Bufd structure). The flag in the Bufd indicates which
memory blocks exist and specifies whether this Bufd contains a data block
or a pointer to another Bufd.
The recursive Bufd structure and functional interface can be used as

a “standard” structure for all levels of communication. It provides all the
facilities needed to implement a communication protocol. If all levels use this
common structure, a uniform and simple software interface can be designed
for each layer that permits complex interactions without regard for details of
any of its higher or lower layer interfaces.
The framework that we have used to develop hierarchical Buffer structures

above can be used to modify existing or develop new Buffer structures as
needed. For example, Buffers for various network communication protocols
(e.g., TCP Buffers, IP Buffers) can be created by adding protocol-specific
data structures and operations to the basic recursive Bufd structure.

3.2 Queue Abstraction

In this section, we present the details of the Queue abstraction and the
solutions to various problems related to communication interfaces. We also

8



6

¾ -

Q
Q

QQk

½
½
½>

6

¾ -

6

Header Data or Bufd Trailer

Q-linkQ-link
backward

Descriptor

Status

Linkage forward

Identification

Q-linkQ-link

backward

Descriptor

Status

Linkage
forward

Data

Identification

offset
count
size

addressDesc:

Data

(b) Simple Bufd

(a) Generic Bufd

(c) Recursive Bufd

Figure 1: Buffer Structures

9



present the development of a generic interface that all communicating entities
can use.

3.2.1 Simple Queue

We use the conventional concept of the queue abstract data type. The sim-
plest queue consists of a pair of pointers, head and tail, and the operations
enqueue (to add elements) and dequeue (to remove elements). Using the com-
mon convention that elements are added to the tail of queues and are deleted
from the head (i.e., FIFO), one can order or sequence pieces of data being
delivered. Although FIFO will be the accepted access discipline in Queues,
we assume other access modes will be useful in such operations as extracting
fragments of a single message from a Queue holding interleaved fragments of
a number of messages.

3.2.2 Buffer Queue

We call the specialization of queues to a queue of Buffers a Buffer Queue (or
BufQ).
In addition to queue pointers, extra information is needed in BufQs for

system management and communication, namely identification and status
information. Identification fields include type, qid and owner. Type specifies
the type of BufQ. Qid uniquely identifies the BufQ across the system under
consideration. The owner field specifies who created the BufQ. Status fields
include flags and status. Flags can be used for setting various bit options
(such as whether a process is blocked on a dequeue operation of a Buffer
object from a Queue). The status field contains the most recent status of a
Queue operation.
In our Buffers and Queues communication paradigm, transferring a Buffer

is achieved by enqueueing a Buffer onto the BufQ that is associated with
the destination entity. Receiving a message is achieved by dequeueing a
Buffer from a BufQ. A Buffer may be enqueued on any BufQ in the system.
However, we restrict dequeue operations to the owner of a BufQ. This is a
reasonable restriction which serves to maintain order in Buffer management.
If more flexible enqueue and dequeue semantics are required, one can build
that capability on top of the current semantics. For example, multiple readers
can be handled by interposing a server process which has specific code to deal

10



with resource management, synchronization, demultiplexing of long messages
and other interference aspects. We do not see that building this code into
BufQs is necessarily appropriate with the current level of experience.

3.2.3 Network Queues

Network communication involves a Buffer being passed through multiple lay-
ers of communication protocols. At each layer, protocol-specific processing
is performed such as adding header information and updating state informa-
tion. Since the header information and the operations for manipulating it
are stored within a Buffer, it is the Buffer that gets modified as it travels
downward or upward. However, state information to manage each protocol
layer should not be stored in the transient Buffer object. In keeping with
the object-oriented design philosophy, we should store the state information
not with the protocol-specific code but in a code-independent data structure.
There is no better place to put the state information than in the Queues.
Thus, we include a protocol specific socket structure as part of the Network
Queue, which is a specialized BufQ.
Operations are required to connect protocol software modules and initiate

a pipeline so that messages can flow or to disconnect them when they are
no longer needed. Since a BufQ can represent a protocol layer, we can add
the operations, connect above, connect below, disconnect above and discon-

nect below to BufQs. Invoking any of these operations will cause the owner
of the BufQ to perform appropriate actions. For example, when responding
to connect below, the owner of a BufQ would check whether the connection
is valid (e.g., placement of TCP below IP should not be allowed), and then
complete the necessary steps. These four operations are sufficient to support
dynamic pipeline configuration.
The framework that we have used to develop hierarchical Queue struc-

tures above can be used to modify existing or develop new Queue structures
as needed. For example, Queues for various network communication pro-
tocols (e.g., TCP Queues, IP Queues) can be created by adding protocol-
specific data structures and operations.

11



3.3 Delivery and Synchronization Abstraction

In this section, we present the details of the delivery and synchronization
abstraction as well as the solutions to communication problems related to
the dynamic functionality of transporting the data.

3.3.1 Delivery

The enqueue and dequeue operations of Queues are used for delivery of
Buffers. The enqueue operation is used to transfer the control of the Buffer
to the receiver. The dequeue operation is used to accept the transfer of the
control from the sender. Unfortunately, the enqueue operation itself does
not suffice to deliver the data since the receiver has no way of knowing if the
data is available. Therefore, a Signal function must necessarily be incorpo-
rated into the enqueue operation to notify the receiver of the Buffer transfer.
The Signal function is defined as part of the Queue definition, and can be
implemented differently in different communication systems. For example,
the Signal function might simply be a call instruction in the procedure call
paradigm, or a wakeup call for a blocked process in the message-passing
paradigm. The sender (or the entity performing the enqueue operation)
should not necessarily need to know the details of the Signal function de-
fined for any receiver’s Queue.
In nested local procedure calls or RPCs, the return status travels along

with the control in the reverse direction of the calls when it returns. How-
ever, returning the status of data delivery involving multiple layers, where
an independent thread of control is involved in each layer, is not as simple or
clean. In many cases, it would be more efficient and convenient if the return
status could be returned directly to these threads. In conventional commu-
nication systems, this capability is generally difficult to achieve. However,
Buffer returnQs (the destination of returning Buffers) coupled with the ca-
pability to look through nested higher layer Bufds inside a Buffer at any level
provide an elegant solution. Any callee can either return the Bufds in the
reverse direction of the delivery path (i.e., removing the Bufd it had created
and passing the rest to its caller) or return them all directly to appropriate
returnQs. Further, returnQs are also useful for resource management and
synchronization as will be discussed below.

12



3.3.2 Synchronization

Synchronization in distributed systems can be subdivided into user synchro-
nization and buffer synchronization. User synchronization is concerned with
supporting various user blocking semantics. Buffer synchronization is con-
cerned with control of Bufds. Below, we describe how both types of synchro-
nization are handled in the Buffer and Queue model.
A Buffer is blocked (i.e., the user should not access it) when it is enqueued

on some BufQ other than the sender’s or is in the control of some other entity.
A Buffer is unblocked when it is dequeued from the sender’s returnQ. The
return of the Buffer indicates that whichever entity had control of it does not
need it any more or has completed an operation on it.
In asynchronous or non-blocking IPC, the user invokes a send or receive

operation which merely signals its intention, and then continues execution.
When it wants to discover the status of the operation it can simply check
or block on the dequeue operation of the returned Buffer from its returnQ.
The Buffer, however, is considered blocked until it is returned to the sender’s
returnQ. In synchronous or blocking IPC, the initiating user could block on
the returnQ immediately after initiating the operation.
The principle of returning the Buffer to its owner when the operation

involving the Buffer is complete also provides a basis for buffer memory
management. When the Buffer is no longer needed, the entity that used or
held it enqueues it on its returnQ, where the owner may recover and dis-
pose of or reuse it. Although this mechanism is intended mainly to assist
buffer memory management, it can be used as a vehicle for several other
useful mechanisms needed in communication. For instance, it can be used
to transport acknowledgements back to the requesting entities when the re-
quested operations are complete. Directly related to acknowledgements is
synchronization of user execution. Return of acknowledgements can be used
to unblock user entities. Another use is in synchronization of data control.
The return of a Buffer signals its availability, as discussed above.

13



4 Examples of Communication Paradigms

Using Buffers and Queues

In this section, we present several examples of how Buffers and Queues can be
used to implement different communication paradigms. We first show a sim-
ple example of internal communication, which we then extend to implement
local IPC and network communication efficiently.

4.1 Internal Communication

As stated earlier, internal communication refers to communication between
entities within a single protection domain, where a shared memory paradigm
is applicable, where messages can be passed by reference, and where copying
of messages is avoided as much as possible. Our internal communication
example, shown in Figure 2, involves two entities, A and B. A receiveQ
associated with the entity B is a BufQ onto which incoming Buffers are
enqueued and where they remain until dequeued by the owner. A returnQ
associated with the entity A is also a BufQ, to where Buffers are returned
after completing their journey to one or more communication endpoints.

#

"

Ã

!

#

"

Ã

!¾

-

Buffer

Return

Buffer

ReturnQ

ReceiveQ

A B

Sent

Figure 2: An Example of Internal Communication

Entity A transfers a Buffer to entity B by enqueueing it onto B’s receiveQ
and, as a side effect, invoking its Signal function. Entity B retrieves the
Buffer by dequeueing it from its receiveQ. The status of the Buffer transfer
is recorded in the return status field of the Bufd and returned to the source’s
(A’s) returnQ. Entity A discovers the status of the data transfer by dequeue-

14



ing the returned Buffer from its returnQ and examining the return status

flag.
Note that so far, we have not mentioned the direction of data flow, but

only that of Buffer flow. The direction of data flow and the direction of
Buffer flow are orthogonal in the Buffer and Queue communication model.
That is, entity A can send data to entity B by transferring a full Buffer to
B’s receiveQ, and entity A can request data from entity B by transferring
an empty Buffer to B’s receiveQ. In the former case, the empty Buffer along
with the status will be returned to A’s returnQ. In the latter case, the filled
Buffer along with the status will be returned to A’s returnQ. It is also possible
to generate bidirectional data flow by having the returning Buffer filled with
the B’s user data.
This simple shared-memory use of Buffers and Queues is used as a build-

ing block in the following examples.

4.2 Local Interprocess Communication

Next, we give an example of interprocess communication between two local
processes or entities that do not share an address space. Since the communi-
cating entities do not share a common area of memory, data transfer involves
a copy operation. The copy operation is usually carried out by a third party
such as a kernel, which also acts as an agent to synchronize the transfer, and
which has access to both address spaces.
A process, A, has some data to transfer to another process, B. Process

A obtains an IPC Buffer by either creating a new one or reusing an existing
one. Since the sender has the data and knows to whom it wishes to send, it
inserts the pertinent control information in the appropriate fields of the IPC
header and links the data memory block to the IPC Buffer. Process A then
passes the IPC Buffer to the IPC layer entity or IPC server by enqueuing
the IPC Buffer to the IPC server’s BufQ as shown in Figure 3. Process B,
which wishes to receive some data from process A also ‘prepares’ an IPC
Buffer with an empty data block and passes it to the server. The IPC server
is equipped with two BufQs: a sendQ and a receiveQ. A sendQ is a BufQ,
where the Buffers that contain data to be sent are enqueued, and a receiveQ
is also a BufQ, where the Buffers that contain empty data blocks to be filled
with incoming data are enqueued.
We note here that the user memory provided by the receiver does not

15



ZZ}ZZ}
6

-

6

¾

-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . .

IPC Server

IPC
Bufd

IPC
Hdr

Data
User

Hdr
IPC

Bufd
IPC

SendQ ReceiveQ

Copy

Match

Figure 3: An Example of Local Interprocess Communication

necessarily have to be a single contiguous block. It can be in other forms
such as a scatter-gather list of memory fragments. It merely needs to be
an acceptable Buffer object. By the same token, the sender’s user memory
also only needs to be an acceptable Buffer object. The Bufd (or Bufds) in a
Buffer contain all the necessary information pertinent to the composition of
memory blocks. Thus, a novel feature of the Buffer and Queue model is that
the Buffer structure of the sender and that of the receiver do not need to be
the same. This feature was used to show the equivalence of message-passing
and streams interfaces as the IPC user interfaces in such Buffer and Queue
communication [Shew90]. Thus, user interface and basic communication are
orthogonal components in the Buffer and Queue communication model.
Returning to our example, the IPC server now has the sender’s Buffer on

its sendQ and the receiver’s Buffer in its receiveQ. The IPC server matches
the sender and receiver by examining the source and destination fields of the
IPC headers (we do not discuss any specific matching algorithm since it is a
function of the IPC protocol and outside the scope of our work) and copies the
data from process A’s Buffer to process B’s Buffer. At this time, the IPC
server records the status of the data transfer by setting the Return status

flags in each Buffer. It also records the number of bytes that have been
actually transferred to the receiver’s Buffer. The IPC server then returns
A’s Buffer to A’s returnQ and B’s Buffer to B’s returnQ. Process A obtains
the status of the data transfer by dequeueing the Buffer from its returnQ and

16



examining the Return status field. Process B, on the other hand, can retrieve
the received data by dequeueing the returned Buffer from its returnQ.
Note that in streams IPC, several Buffers may actually be used in one

half cycle to fill or empty a single Buffer in the partner cycle. A stream
is closed by flagging the last Buffer with an “end-of-data” bit, which forces
both half cycles to terminate cleanly. Also, privileged processes which have
access to shared Buffer memory need not copy data into their own memory
areas. They can simply arrange to have Buffers forwarded directly to their
own BufQs, effectively turning the IPC server into a simple router. They
would have the option of returning the Buffers themselves, or of returning
them through the IPC server.
Obviously, many systems may choose to encapsulate these Buffer and

Queue implementations of interprocess communication in library or kernel
routines for the convenience of user processes.

4.3 Network Communication

Next, we use an X11 client-server communication example to demonstrate
how Buffers and Queues can be used for efficient conventional network pro-
tocol processing. An X11 client, which wishes to send a request to a server
located on another node on the network, creates an X11 Buffer and fills it
with the appropriate information such as the request op-code and its argu-
ments. It then invokes an appropriate X Toolkit or X library routine. Recall
that in the hierarchy of X11 communication protocols, there is a thin layer
of IPC. X11 uses sockets in Berkeley UNIX and STREAMS in System V
UNIX as its underlying IPC mechanism. However, they are similar in that
both layers are responsible for connection and addressing. We also assume
the use of a stack of TCP, IP and Ethernet protocols under the IPC layer in
our example.
Presumably, the invoked X library routine constructs an IPC Buffer and

prepares it as process A did in the local IPC example above. It then passes
the IPC Buffer to the IPC server by enqueueing it on the server’s sendQ.
The server notices that the Buffer is to be transported over the network, so
it passes the Buffer to its lower layer, the transport layer, again by an enqueue
operation. Since TCP is the transport layer protocol in our example, TCP
prepares a TCP Buffer, links the IPC Buffer to it and passes the result to
the network layer. The network layer, IP, prepares an IP Buffer and passes

17



HHH

HH

©©©HH

bb

TCP
Bufd

TCP

IP

IP

Bufd

ETH

ETH E-TLR

Bufd

IPC

IPC

Bufd

X11
Bufd

Data

E-TLRX11-DataIPCTCPIPETH

Figure 4: The Internal Structure of an Ethernet Buffer and the Correspond-
ing Packet

it to the device layer. The device layer, Ethernet, then prepares an Ethernet
Buffer and notifies the Ethernet controller to transmit the data over the
Ethernet network. At this time, the Ethernet Buffer’s internal structure looks
like Figure 4. The content of the Buffer is transmitted using an algorithm
which traverses each header and transmits all the headers first, then user
data followed by trailers.
In this way, the Buffers can be passed by reference from the user layer

to the device layer, avoiding expensive copy operations as much as possible.
When the Ethernet controller transmits the packet successfully, the Bufds in
the Ethernet Buffer can be returned recursively to the previous returnQs, or
directly to individual returnQs by the Ethernet or any intermediate layer as

18



appropriately flagged.

5 Conclusion and Future Work

In this paper, we have examined various communication issues in distributed
systems as a means to identify the basic requirements for a set of communi-
cation abstractions that can form the basis for a generalized communication
paradigm. We have presented the Buffer and Queue Model, which meets
the constraints of the generic communication model developed in [Hong91].
We have demonstrated how the Buffer and Queue Model strives to provide a
uniform communications interface between various types of communicating
entities while enjoying the efficiencies of shared memory. Finally, we have
demonstrated how various types of existing communication paradigms can
be implemented using Buffers and Queues.
Although not presented in this paper, we also have simple, efficient so-

lutions using Buffers and Queues for other problems such as distributed
Buffers and Queues, bulk data (or long message) transfer [Cart89, OMal90],
distributed and conventional semaphores [Dijk65], and distributed shared
memory [Li86].
The Buffer and Queue model is intentionally simpler than previous pro-

posals for communication abstractions or objects. The advantage of this
simplicity is that the model can be applied to a wider variety of communica-
tion needs, increasing the apparent uniformity among the growing variety of
communicating entities in a complex computer system. However, a disadvan-
tage may be that less support is provided by the model for certain stylized
but important types of communication. We believe that this criticism can
be addressed by appropriate further specialization or subclassing of the basic
objects described here.

Acknowledgement

Thanks to Ross Wetmore for numerous useful discussions and comments.

References

[ATT85] AT&T, “System V Interface Definition”, AT&T Customer Infor-
mation Center, Indianapolis IN, Spring 1985.

19



[ATT87] AT&T, “UNIX System V Streams Programmer’s Guide”,
Prentice-Hall Inc., Englewood Cliffs, NJ, 1987.

[Auer90] J. Auerbach, “TACT: A Protocol Conversion Toolkit”, IEEE
Journal on Selected Areas in Communications, Vol. 8, No. 1, pp.
143–159, January 1990.

[Cart89] John. B. Carter and Willy Zwaenepoel, “Optimistic Implemen-
tation of Bulk Data Transfer Protocols”, Proc. 1989 ACM SIG-
METRICS and PERFORMANCE ’89: International Conference
on Measurement and Modeling of Computer Systems, ACM Press,
pp. 61–69, Berkeley, CA, May 23-26, 1989.

[Dijk65] E. W. Dijkstra, “Solution of a Problem in Concurrent Program-
ming Control”, Communications of the ACM, Vol. 8, No. 5, pp.
569, September 1965.

[Hong91] James W. Hong, “Communication Abstractions for Distributed
Systems”, PhD Thesis, Research Report CS-91-43, Dept. of Com-
puter Science, University of Waterloo, 1991.

[Hutc88] N. C. Hutchinson and L. L. Peterson, “Design of the x-Kernel”,
Proc. of the ACM SIGCOMM ’88 Symposium, pp. 65–75, Stanford
CA, August 1988.

[IEEE88] IEEE, “Portable Operating System Interface (POSIX) for Com-
puter Environments”, IEEE, 1988.

[Leff88] S.J. Leffler, M.K. McKusick, M.J. Karels, and J.S. Quarterman,
“Interprocess Communication”, The Design and Implementation
of the 4.3BSD Unix Operating System, Addison-Wesley, 1988.

[Li86] K. Li and P. Hudak, “Memory Coherence in Shared Virtual Mem-
ory Systems”, Proc. of 5th ACM SIGACT-SIGOPS Symp. of Prin-
ciples on Distributed Computing, pp. 229–239, Calgary Alberta,
August 1986.

[OMal90] S. W. O’Malley, M. B. Abbott, N. C. Hutchinson, and L. L. Peter-
son, “A Transparent Blast Facility”, Journal of Internetworking,
September 1990.

[Pete83] J. Peterson and A. Silberschatz, Operating System Concepts,
Addison-Wesley Publishing Company, Reading MA, 1983.

[Sche86] R. W. Scheifler and J. Gettys, “The X Window System”, ACM
Transactions on Graphics, Vol. 5, No. 2, pp. 79–109, April 1986.

20



[Shew90] Dave Shewchun, “A Streams Design for a Distributed Operating
System”, Term Report, Dept. of Computer Science, University of
Waterloo, April 1990.

[Zimm80] H. Zimmermann, “OSI Reference Model - The ISO Model of Ar-
chitecture for Open Systems Interconnection”, IEEE Trans. on
Communications, Vol. COM-28, No. 4, pp. 425–432, April 1980.

[Zwei90] J. M. Zweig and R. E. Johnson, “The Conduit: a Communication
Abstraction in C++”, Proc. of 1990 USENIX C++ Conference,
San Francisco CA, April 1990.

21


