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Abstract

Virtually all semantic or object-oriented data models assume objects have an identity separate from

any of their parts, and allow users to define complex object types in which part values may be any other

objects. This often results in a choice of query language in which a user can express navigating from one

object to another by following a property value path. In this paper, we consider a constraint language in

which one may express equations and functional dependencies over complex object types. The language is

novel in the sense that component attributes of individual constraints may correspond to property paths.

The kind of equations we consider are also important since they are a natural abstraction of the class

of conjunctive queries for query languages which support property value navigation. In our introductory

comments, we give an example of such a query, and outline two applications of the constraint theory to

problems relating to a choice of access plan for the query.

We present a sound and complete axiomatization of the constraint language for the case in which

interpretations are permitted to be infinite, where interpretations themselves correspond to a form of

directed labeled graph. Although the implication problem for our form of equational constraint alone over

arbitrary schema is undecidable, we present decision procedures for the implication problem for both kinds

of constraints when the problem schema satisfies a stratification condition, and when all input functional

dependencies are keys.

∗This research was supported in part by the Natural Sciences and Engineering Research Council of Canada, and by Bell-
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Figure 1: A UNIVERSITY schema graph.

1. Introduction

We consider the problem of reasoning about two kinds of constraints for data models which support the def-

inition and manipulation of complex objects [1, 2, 11, 16, 26, 31, 39]. The two kinds of constraints resemble

equations and functional dependencies, and are referred to as path equations (PEs) and path functional de-

pendencies (PFDs). The work “path” is motivated by their form; component attributes can correspond to

descriptions of property value paths in a database. We refer to these descriptions as path functions.

In contrast to the relational model, complex object models are pointer-based instead of value-based.

Essentially, this means that objects exist independently of their property values and also that property values

may in turn point to any other objects. To focus on the essential ideas, we define a simple pointer-based model

in the next section. An example schema graph characterizing information about student course enrollment at

a hypothetical university in terms of this data model is depicted in Figure 1. Each class in the schema graph

is represented by a labeled vertex, and each class property by a labeled arc. In our model, the arcs represent

functions that are total on their “from” class, and single-valued on their “to” class.

An example of a path function over the UNIVERSITY schema is the “department of the instructor”

function from course objects to department objects, denoted “Inst.In”. A number of examples of PE and

PFD constraints over the UNIVERSITY schema are listed in Table 1. Informally, the two PE constraints

are satisfied by a database only if professors teach courses offered by their own departments, and only if a

department head is responsible for all professors in the department, including herself.
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Table 1: PE and PFD constraints over the UNIVERSITY schema.

path equations path functional dependencies

Course( Inst.In = In ) Dept( Name → Id )

Prof( Boss = In.Head ) Dept( Head → Id )

Course( Num In → Id )

Course( Room Time → Id )

Enrollment( S C → Id )

Enrollment( S C.Time → C )

The first five PFD constraints mention an identity path function, “Id”, on their right-hand-side. The

identity path function is our means of referring to property value paths of zero length—of referencing object

identity directly. Thus, they express the following respective key constraints:

• no two departments have the same name (similar constraints might be given for students and professors),

• no professor is the head of more than one department,

• no two courses in the same department have the same number,

• no two courses can be given in the same room at the same time, and

• a student can enroll at most once in a given course.

The only non-key PFD constraint, occurring as the last entry in the table, is justified by virtue of a physical

limitation; it is satisfied by a database if no student is enrolled in two different courses at the same time.

PE constraints are also a natural abstraction for the join and selection conditions occurring in conjunc-

tive queries for object-oriented query languages. To illustrate, consider the following SQL-like query on the

UNIVERSITY schema graph (except for the “distinct” keyword, the query is an instance of the RELOOP

query language supported by the O2 database system [15]):
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select distinct S

from S in Student, E in Enrollment, C in Course

where S = E.S and

C.Time = E.C.Time and

C.Inst.In.Name = P1 and

C.Num = P2.

The query is parameterized by a string variable P1 and integer variable P2. Our intention is that, for a

particular binding of P1 and P2, the query returns a sequence of all distinct student objects S for which

S is enrolled in some course taught at the same time as some other course numbered P2 with an

instructor in the department named P1.

The query includes two join conditions and two selection conditions mentioning a number of path descriptions,

which in turn represent a number of functional joins [39].

Part of the intention of the query can be captured by augmenting the UNIVERSITY schema graph with

the additional Query class illustrated in Figure 2. If we think of an object in this new class as representing

a solution to the query, then the join and selection conditions can be abstracted as the collection of four PE

constraints on Query listed in Table 2. This is useful for a number of reasons relating to query optimization.

To illustrate two of these reasons, consider an access plan for the query based on the following nested-loops

strategy.
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Table 2: PE constraints on class Query.

Query( S = E.S ),

Query( C.Time = E.C.Time ),

Query( C.Inst.In.Name = P1 ), and

Query( C.Num = P2 ).

for each Course object C satisfying the last two conditions do

for each Enrollment object E satisfying the second condition do

for each Student object S satisfying the first condition do

add S to the output if not already in the output.

end

end

end

The first case concerns the detection of search conditions for complex object indices. In particular,

assume an index of all Course objects exists which is sorted according to the value of the path function

“In.Name.”1 One of our procedures given in Section 4 can determine that the PE constraint

Query( C.In.Name = P1 ) (1.1)

is a logical consequence of the PE constraints on class Query listed in Table 2 together with the PE and PFD

constraints listed in Table 1. This means that a scan of the index with search argument P1 cannot fail to

locate Course objects satisfying the two selection conditions of the query, and therefore that this scan qualifies

as one way of implementing the outer loop.

The second case relates to the “if not already in the output” part of the innermost statement. Since

such a projection operation is expensive, there is considerable incentive for a query optimizer to be able to

determine that the check is unnecessary. Another of our procedures can determine that the PFD constraint

Query( P1 P2 S → E C ) (1.2)

is also a logical consequence of the same collection of PE and PFD constraints. Since P1 and P2 are constant

1Object indexing in this manner has been considered by a number of authors [8, 9, 23, 36].
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parameters to the query, the innermost loop will never “visit” a given student object S more than once. This

implies that the “if not already in the output” check may be safely eliminated.

Another early application of functional dependency theory in query optimization involves determining

minimal covers of selection and join conditions [4]. Several authors have also suggested how they may be used

to aid in automatically inserting cut operations in access plans based on nested iteration [18, 24, 25, 38].

PFD constraints for the above data model were first introduced and studied in [38], and for a more

general model in which a user can define classes that have any number of superclasses in [37]. The problem

of reasoning about equations has been studied extensively in the context of equational logic programming.2

The implication problem for PE constraints alone is undecidable for arbitrary schema, and can be efficiently

decided by simple variations of the congruence closure algorithms in [19, 27] if a schema satisfies a stratification

condition which we introduce in Section 4. A special case of this condition is the set of so-called acyclic schema.

The applications of our theory sketched above may be viewed as semantic query optimization (SQO) in

the context of object-oriented databases. The subject of SQO, as it relates to alternative relational systems

such as Datalog [12, 33], may be found in [13, 14, 30]. Also, [29] considers specific problems of reasoning about

disequations and inequalities for the relational model.

The remainder of the paper is organized as follows. A formal definition of the above data model, of path

functions and of PE and PFD constraints is given in the next section. Following a general trend [5, 6, 17],

the semantics of our data model is based on the notion of a database as a directed labeled graph: individual

objects and property values correspond to vertices and arcs respectively. We present a sound and complete

axiomatization with respect to this graph-based model theory for both forms of constraints in Section 3. Al-

though the general problem is undecidable, Section 4 presents decision procedures for the implication problem

for PE and PFD constraints when problem schema satisfy the above-mentioned stratification condition, and

when all given functional dependencies are keys. Our summary comments follow in Section 5.

2. Definitions and basic concepts

To begin, we first present the syntax of our data model, commonly referred to as the data definition language

(DDL). An instance of the DDL defines a space of possible databases, which in our case corresponds to labeled

directed graphs.

2See [20] for a survey of the topic.
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Table 3: The UNIVERSITY schema.

class Student { Name:String }

class Prof { Name:String; In:Dept; Boss:Prof }

class Dept { Name:String; Head:Prof }

class Course { Num:Integer; In:Dept; Room:Integer; Time:Integer; Inst:Prof }

class Enrollment { S: Student; C: Course; Mark: Integer }

class Integer { }

class String { }

Definition 1: (syntax—the DDL) A class schema S consists of a finite set of complex object types of the

form

class C{P1 : C1; . . . ;Pn : Cn}

in which C is a class name, and the Pi are its properties, written Props(C). Each property Pi is unique in

a given class scheme, and its range, written Ran(C,Pi), is the name Ci of another (not necessarily distinct)

class scheme. The set of names of classes in S is denoted Classes(S), and the domain of a property P , written

Dom(P ), is defined as {C ∈ Classes(S) | P ∈ Props(C)}. 2

The declarations for the UNIVERSITY schema outlined informally in Figure 1 are formally defined in

Table 3. The schema illustrates that our model allows property names to be overloaded: a given property

name may occur in any number of class declarations. Observe that the range defined for properties such

as S or C are non-built-in classes. Also, in view of properties such as In and Head, it will be possible for a

UNIVERSITY database to contain property value cycles.

Definition 2: (semantics—a database) A database for class schema S is a possibly infinite directed graph

G(V,A) with vertex and edge labels corresponding to class and property names respectively. G must also

satisfy the following constraints, where the class name label of a vertex v is denoted Cl(v).

1. (property value integrity) If u
P
→ v ∈ A, then Cl(u) ∈ Dom(P ) and Cl(v) = Ran(Cl(u), P ).

2. (property functionality) If u
P
→ v, u

P
→ w ∈ A, then v = w.

3. (property value completeness) If u ∈ V , then there exists u
P
→ v ∈ A for all P ∈ Props(Cl(u)). 2

- 7 -



Student

Enroll-

ment

Course

Dept

StringString

Student Integer

Integer

Integer

Prof String

Prof

Integer

u

v

Name

Name
S

Mark

C

Room

Time Num

Inst

In In

Name

Head

Boss

Name

Figure 3: Part of a database for the UNIVERSITY Schema.

The directed graph of Figure 3 depicts a portion of one possible database for the UNIVERSITY schema.

Note that different Integer vertices represent different integers, although the particular integers or strings

involved are never important to our presentation. Another possible database, referred to as a schema graph

in our introductory comments, is depicted in Figure 1. In this case, a single object exists for each class C in

Classes(UNIVERSITY).

Recall that we referred to component attributes of PE and PFD constraints as path functions. A general

definition of path functions and the sense in which they describe property value paths in a database are given

by the following respective definitions.

Definition 3: A path function pf over a class schema S is either: 1) a finite sequence of property names

occurring in S which are separated by dots, or 2) the keyword Id, which we assume does not correspond to the

name of any property in S. (Remember that the identity path function Id is a means of referring to property

value paths of zero length, of referring to object identity directly.) The composition and length operators over

path functions are defined as follows.

pf1 ◦ pf2
def
=























pf1 if pf2 is Id,

pf2 if pf1 is Id,

pf1.pf2 otherwise.
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len(pf )
def
=























0 if pf is Id,

1 + len(pf1) otherwise, where pf has the form pf1 ◦ P ,

and P is a property.

Let X be the set of path functions {pf1, . . . , pfn}. We write pf ◦X to denote {pf ◦ pf1, . . . , pf ◦ pfn}. 2

Note that the composition operator is clearly associative; that is, pf1 ◦ (pf2 ◦ pf3) = (pf1 ◦ pf2) ◦ pf3.

For example, with the UNIVERSITY schema, S ◦ Name is the path function S.Name, and both Id ◦ C and

C ◦ Id denote the path function C (which is also a property). The expression Id ◦ C ◦ Room denotes either

(Id ◦ C)◦ Room or Id ◦(C ◦ Room), and in both cases is the path function C.Room. The following identity on

len is also a straightforward consequence of our definitions.

len(pf1 ◦ pf2) = len(pf1) + len(pf2)

Definition 4: A path v1 → . . . → vn−1
P
→ vn in a database G(V,A) for class schema S is described by

a path function pf if and only if either: 1) pf = Id and n = 1 (the path consists of a single vertex), or

2) v1 → . . .→ vn−1 is described by pf1, for some pf1 such that pf = pf1 ◦ P (note that pf1 = Id if n = 2; that

is, if the original path consists of a single arc). 2

For example, S.Name is a path function which describes a path from vertex u to vertex v in Figure 3.

Now consider that Name.S is also a path function according to our definitions. But in this case, no path can

ever exist in any database for the UNIVERSITY schema which is described by Name.S since none of the range

classes of property Name includes property S. The notion of path function so far presented is therefore too

general in an important sense.

In [38], it is proven that a subset of path functions for a given schema S, denoted PF (S) below, satisfies

a completeness property for databases over S: any path in any database over S can be described by a path

function in PF (S), and any path function in PF (S) describes a path in some database over S. The same

reference also proves an important sense in which the composition operator remains closed over PF (S). Both

these facts are reproduced as Lemma 1 and Lemma 2 below.

Definition 5: The set of well-formed path functions PF (S) over class schema S is the smallest set of path

functions over S satisfying the following two conditions. (Note that this extends our use of the notation Dom

and Ran to apply to well-formed path functions as well as properties.)

1. Id ∈ PF (S), where
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(a) Dom(Id)
def
= Classes(S), and

(b) Ran(C, Id)
def
= C, for all C ∈ Classes(S).

2. If pf ∈ PF (S), C ∈ Dom(pf ) and P ∈ Props(Ran(C, pf )), then pf ◦ P ∈ PF (S), where

(a) Dom(pf ◦ P )
def
= {C1 ∈ Dom(pf ) | P ∈ Props(Ran(C1, pf ))}, and

(b) Ran(C1, pf ◦ P )
def
= Ran(Ran(C1, pf ), P ), for all C1 ∈ Dom(pf ◦ P ).

Capital letters X, Y and Z are used to denote finite subsets of PF (S) for some class schema S, and XY , for

example, denotes the union of path functions mentioned in X and Y . By a slight abuse of notation, we write

PathFuncs(C) to denote all path functions pf ∈ PF (S) where C ∈ Dom(pf ), for C ∈ Classes(S). A class

schema S is cyclic if and only if there exists pf ∈ PF (S) − {Id} and C ∈ Dom(pf ) where C = Ran(C, pf ).

(A simple consequence is that S is cyclic if and only if PF (S) is infinite.) 2

Note that the subset of well-formed path functions for cyclic class schema, however, continues to be

infinite. For example, the UNIVERSITY schema has a well-formed “boss” function Boss, a “boss of the boss”

function Boss.Boss, and so on. Other UNIVERSITY path functions include

S, S.Name, C, C.Room, C.Time, C.Inst, C.Inst.In and C.Inst.In.Head.

Each of these latter path functions is in PathFuncs(Enrollment). Also, for example,

Dom(Name) = {Prof, Dept, Student}

and

Ran(Enrollment, C.Inst) = Prof.

Lemma 1: (expressiveness of well-formed path functions—from [38]) Let G(V,A) be a database for a given

class schema S. If a path v1 → . . . → vn exists in G, then there exists a unique pf ∈ PathFuncs(Cl(v1))

describing v1 → . . . → vn. Also, for every u ∈ V and pf ∈ PathFuncs(Cl(u)), there exists a path in G

described by pf . 2

As we have outlined, Lemma 1 asserts that no two distinct paths with common end vertices can be described

by the same path function, which justifies our choice of the phrase “path function” as opposed to, say, “path

description”. Thus, vertex v in Figure 3 is the unique vertex reachable from vertex u by a path described by

S.Name. By a slight abuse of notation, we write u.S.Name to denote v, and in general u.pf to denote the

unique vertex w reachable from u by a path described by pf , whenever pf ∈ PathFuncs(Cl(u)).

- 10 -



Lemma 2: (closure of composition—also from [38]) Assume C ∈ Classes(S), for some class schema S. Then

pf1 ∈ PathFuncs(C), pf2 ∈ PF (S) and Ran(C, pf1) ∈ Dom(pf2)

if and only if

pf1 ◦ pf2 ∈ PathFuncs(C). 2

The remaining definitions in this section present the syntax of PE and PFD constraints, and define

satisfaction and logical consequence as they relate to the above graph-based notion of a database.

Definition 6: The syntax of a path equation (PE) constraint over a class schema S is given by

C(pf1 = pf2).

The constraint is well-formed if: 1) pf1, pf2 ∈ PathFuncs(C), and 2) Ran(C, pf1) = Ran(C, pf2). A well-

formed PE constraint C(pf1 = pf2) is satisfied by a database G(V,A) of S if and only if for every v ∈ V where

Cl(v) = C, v.pf1 = v.pf2.

The syntax of a path functional dependency (PFD) constraint over a class schema S is given by

C(pf1 · · · pfm → pfm+1 · · · pfn).

In this case, the constraint is well-formed if: 1) 1 ≤ m < n (we disallow empty left or right-hand sides), and

2) pfi ∈ PathFuncs(C), for 1 ≤ i ≤ n. A key path functional dependency (key PFD) is any path functional

dependency with the single path function Id occurring on the right-hand side (after the arrow). A well-formed

PFD constraint C(pf1 · · · pfm → pfm+1 · · · pfn) is satisfied by a database G(V,A) of S if and only if for any

pair of vertices u, v ∈ V where Cl(u) = Cl(v) = C, u.pfi = v.pfi, 1 ≤ i ≤ m, implies u.pfj = v.pfj , m < j ≤ n.

2

Note that none of the UNIVERSITY data illustrated in either Figure 1 or Figure 3 exhibits a violation of

any of the PE or PFD constraints listed in Table 1. In the case of Figure 1, this remains true of any collection

of PE and PFD constraints since a single object exists for each class. However, Figure 3 does illustrate a

violation of the key PFD constraint

Student( Name → Id )

which would require students to have unique names. The violation happens in the top-left corner of the graph.
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Definition 7: (logical consequence) Let Σ denote a set of PE and PFD constraints over a class schema S, and

let σ denote an arbitrary PE or PFD constraint also over S. σ is a logical consequence of Σ, written Σ |=S σ,

if and only if any database G(V,A) satisfying all constraints in Σ must also satisfy σ. If S is clear from the

context, then we write Σ |= σ. 2

3. Axioms for Path Equations and Path Functional Dependencies

In this section, we prove that the six inference axioms listed in Table 4 are a sound and complete axiomatization

for PE constraints, and that six additional inferences axioms listed in Table 5 yield a sound and complete

axiomatization for PFD constraints. The results in both cases assume the above model theory based on the

graph theoretic view of databases.

The initial five entries in Table 4 are essentially a restriction to unary functions over a single variable

of Birkhoff’s rules of inference for equational logic [10], although there is a slight complication due to the

many-sorted nature of databases (a given function may not be defined for all objects in a database). A sound

and complete set of inference axioms for PFD constraints has been derived in [38], and for a more general

model permitting subclassing in [37]. The initial five entries in Table 5 are a simple variation of those given

in the latter reference. Of these, the first three generalize a set of similar inference axioms well-known to be

complete for ordinary functional dependencies. The last entry in each of the tables accounts for the interaction

between PE and PFD constraints.

Definition 8: Let Σ be a set of constraints over class schema S. We write Σ+
S , or simply Σ+ when S is

understood from context, to denote Σ together with all PE or PFD constraints derivable from Σ using the

inference axioms in Tables 4 and 5. 2

Theorem 1: (well-formedness and soundness) Let Σ denote a set of well-formed constraints over class schema

S. If σ ∈ Σ+
S , then: 1) σ is well-formed, and 2) Σ |= σ.

Proof Outline. The first part of the theorem is a direct consequence of Lemma 2. The soundness of each axiom

follows in a straightforward manner from Lemma 1 and the labeling constraints satisfied by any database.3

2

Thus, by Theorem 1 together with Lemmas 1 and 2, we may safely ignore for the remainder of the paper

any consideration of cases in which constraints are not well-formed. To illustrate the use of our inference

3A full proof may be found in [34].
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Table 4: Axioms for PE constraints.

name definition

PERef (reflexivity)
pf ∈ PathFuncs(C)

C(pf = pf )

PESym (symmetry)
C(pf1 = pf2)

C(pf2 = pf1)

PETrans (transitivity)
C(pf1 = pf2), C(pf2 = pf3)

C(pf1 = pf3)

PEAttr (attribution)
C(pf1 = pf2), pf ∈ PathFuncs(Ran(C, pf1))

C(pf1 ◦ pf = pf2 ◦ pf )

PESubst (substitution)
Ran(C, pf )(pf1 = pf2)

C(pf ◦ pf1 = pf ◦ pf2)

PEIntro (introduction)

Ran(C, pfr)(pf1 · · · pfm → Y ),

C(pfr ◦ pf1 = pfs ◦ pf1), . . . , C(pfr ◦ pfm = pfs ◦ pfm),

Ran(C, pfr) = Ran(C, pfs)

C(pfr ◦ pf = pfs ◦ pf ), where pf ∈ Y
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Table 5: Axioms for PFD constraints.

name definition

PFDRef (reflexivity)
∅ ⊂ Y ⊆ X ⊆ PathFuncs(C)

C(X → Y )

PFDTrans (transitivity)
C(X → Y ), C(Y → Z)

C(X → Z)

PFDAug (augmentation)
C(X → Y ), Z ⊆ Pathfuncs(C)

C(XZ → Y Z)

PFDAttr (attribution)
pf ∈ PathFuncs(C)

C(Id→ pf )

PFDSubst (substitution)
Ran(C, pf )(X → Y )

C(pf ◦X → pf ◦ Y )

PFDIntro (introduction)
C(pf1 = pf2)

C(pf1 → pf2)
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axioms, we return to the example UNVERSITY query outlined in our introduction. A derivation of the

PE constraint (1.1) and the PFD constraint (1.2) is given in Tables 6 and 7 as the sixth and final entries

respectively.

Theorem 2: (consistency) There is a database G(V,A) for a given class schema S satisfying any set of

constraints Σ over S where, for all C ∈ Classes(S), there exists v ∈ V such that Cl(v) = C.

Proof Outline. Let G(V,A) be a directed labeled graph consisting of a single vertex u ∈ V for each

C ∈ Classes(S), where Cl(u) is assigned C, and where u
P
→ v ∈ A if and only if P ∈ Props(Cl(u)),

and Ran(Cl(u), P ) = Cl(v). Then, since a single object exists for each class, G is a database which cannot fail

to satisfy any PE or PFD constraint σ over S. (In our introductory comments, we referred to G as a schema

graph.) 2

Our concern in the remainder of this section is with the issue of completeness. We shall see that the

inference axioms in Table 4 are complete for PE constraints, and that the addition of the six axioms in

Table 5 yield a complete axiomatization for PFD constraints. To simplify the presentation, we assume the

two additional inference axioms listed in Table 8; their derivation from PFDRef, PFDTrans and PFDAug is

well-known [32, 22].

Our proof that the six inference axioms in Table 4 are complete for PE constraints is based on the following

definition of an oriented Herbrand-like database called a C-Graph, where C is the name of a particular class

in a given schema.

Definition 9: Let Σ denote a set of constraints over class schema S. A C-Graph, where C ∈ Classes(S), is a

directed labeled graph G(V,A) constructed as follows. First, partition PathFuncs(C) into a maximal number

of subsets {P1, P2, . . .} in which C(pf1 = pf2) ∈ Σ+ implies pf1, pf2 ∈ Pi, for some 1 ≤ i. The set of vertices

and arcs are then determined as follows.

1. Create a vertex u ∈ V for each partition Pi, and assign Pf (u) (a new kind of vertex label) the set of

path functions in Pi. Also assign Cl(u) the class Ran(C, pf ), for some arbitrary pf ∈ Pf (u). The vertex

u ∈ V where Id ∈ Pf (u) is denoted as RG, or simply R when G is understood from context.

2. For every u, v ∈ V such that there exists pf ∈ Pf (u) and pf ◦ P ∈ Pf (v), add arc u
P
→ v to A. 2

Important conditions which hold on a C-Graph G(V,A) are that it satisfies the constraints of property

value integrity, functionality and completeness needed to qualify as a database, and that it contains at least
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Table 6: Derivation of (1.1) and (1.2).

1. Course( Inst.In = In ) (from Table 1)

2. Course( In = Inst.In ) (1 and PESym)

3. Query( C.In = C.Inst.In ) (2 and PESubst)

4. Query( C.In.Name = C.Inst.In.Name ) (3 and PEAttr)

5. Query( C.Inst.In.Name = P1 ) (from Table 2)

6. Query( C.In.Name = P1 ) (4, 5 and PETrans)

7. Query( P1 = C.In.Name ) (6 and PESym)

8. Query( P1 → C.In.Name ) (7 and PFDIntro)

9. Dept( Name → Id ) (from Table 1)

10. Query( C.In.Name → C.In ) (9 and PFDSubst)

11. Query( P1 → C.In ) (8, 10 and PFDTrans)

12. Query( P1 P2 → C.In P2 ) (11 and PFDAug)

13. Query( C.Num = P2 ) (from Table 2)

14. Query( P2 = C.Num ) (13 and PESym)

15. Query( P2 → C.Num ) (14 and PFDIntro)

16. Query( C.In P2 → C.Num C.In ) (15 and PFDAug)

17. Query( P1 P2 → C.Num C.In ) (12, 16 and PFDTrans)

18. Course( Num In → Id ) (from Table 1)

19. Query( C.Num C.In → C ) (18 and PFDSubst)

20. Query( P1 P2 → C ) (17, 19 and PFDTrans)

21. Query( P1 P2 E → E C ) (20 and PFDAug)

22. Course( Id → Time ) (PFDAttr)

23. Query( C → C.Time ) (22 and PFDSubst)

24. Query( P1 P2 → C.Time ) (20, 23 and PFDTrans)
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Table 7: Derivation of (1.1) and (1.2) (cont’d).

25. Query( C.Time = E.C.Time ) (from Table 2)

26. Query( C.Time → E.C.Time ) (25 and PFDIntro)

27. Query( P1 P2 → E.C.Time ) (24, 26 and PFDTrans)

28. Query( P1 P2 S → S E.C.Time ) (27 and PFDAug)

29. Query( S = E.S ) (from Table 2)

30. Query( S → E.S ) (29 and PFDIntro)

31. Query( E.C S → E.S E.C ) (30 and PFDAug)

32. Query( S E.C.Time → E.S E.C.Time ) (30 and PFDAug)

33. Query( P1 P2 S → E.S E.C.Time ) (28, 32 and PFDTrans)

34. Enrollment( S C.Time → C ) (from Table 1)

35. Query( E.S E.C.Time → E.C ) (34 and PFDSubst)

36. Query( P1 P2 S → E.C ) (33, 35 and PFDTrans)

37. Query( P1 P2 S → E.C S ) (36 and PFDAug)

38. Query( P1 P2 S → E.S E.C ) (37, 31 and PFDTrans)

39. Enrollment( S C → Id ) (from Table 1)

40. Query( E.S E.C → E ) (39 and PFDSubst)

41. Query( P1 P2 S → E ) (38, 40 and PFDTrans)

42. Query( P1 P2 S → P1 P2 E ) (41 and PFDAug)

43. Query( P1 P2 S → E C ) (42, 21 and PFDTrans)
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Table 8: Additional axioms for PFD constraints.

name definition

PFDAdd (additivity)
C(X → Y ), C(X → Z)

C(X → Y Z)

PFDProj (projectivity)
C(X → Y Z)

C(X → Y )

one C object. This and other properties needed in our proof of completeness for PE constraints are stated in

the following lemma. A proof is given in Appendix B.

Lemma 3: Let G(V,A) be the C-Graph corresponding to a set of constraints Σ over a class schema S con-

structed with respect to class C ∈ Classes(S). Then each of the following properties is true of G.

P1. If pf1 ∈ Pf (u) for some u ∈ V , then pf2 ∈ Pf (u) if and only if C(pf1 = pf2) ∈ Σ+.

P2. For any u ∈ V and pf ∈ Pf (u), Ran(C, pf ) = Cl(u).

P3. G is a database for S.

P4. For all u ∈ V , u = R.pf if and only if pf ∈ Pf (u). 2

Theorem 3: The six axioms in Table 4 are complete for PE constraints; that is, given constraints Σ∪{C(pf1 =

pf2)} over class schema S, if Σ |= C(pf1 = pf2) then C(pf1 = pf2) can be derived from Σ using these axioms

alone.

Proof. By P3, the C-Graph G(V,A) is a database for S. The theorem therefore follows if G satisfies all

constraints in Σ+, but not C(pf1 = pf2) whenever C(pf1 = pf2) 6∈ Σ+.

First, we show G does not satisfy C(pf1 = pf2). If it did, then R.pf1 = R.pf2. But then pf1, pf2 ∈ Pf (u)

for some u ∈ V by P4, and therefore C(pf1 = pf2) ∈ Σ+ by P1—a contradiction.

We now show that G must satisfy all constraints in Σ+.
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First consider PE constraints. Assume C1(pf3 = pf4) ∈ Σ+, but that there exists some v ∈ V where

Cl(v) = C1 and where v.pf3 6= v.pf4. Without loss of generality, select some pf ∈ Pf (v). Then R.pf = v by P4,

and therefore R.(pf ◦pf3) 6= R.(pf ◦pf4). Now, Ran(C, pf ) = C1 by P2, and therefore C(pf ◦pf3 = pf ◦pf4) ∈ Σ+

by the substitution axiom PESubst. Thus, pf ◦ pf3 and pf ◦ pf4 occur in the same partition Pi, and there

exists some u ∈ V such that (pf ◦ pf3), (pf ◦ pf4) ∈ Pf (u). But then R.(pf ◦ pf3) = u = R.(pf ◦ pf4) by P4—a

contradiction.

Now consider some PFD C1(X → Y ) ∈ Σ+ together with u, v ∈ V such that Cl(u) = Cl(v) = C1, and

where u.pfi = v.pfi for each pfi ∈ X. By definition of the construction of G and P2 and P4 above, there exists

pf3 ∈ Pf (u) and pf4 ∈ Pf (v) such that Ran(C, pf3) = Ran(C, pf4) = C1, u = R.pf3 and v = R.pf4. Thus

R.(pf3 ◦ pfi) = R.(pf4 ◦ pfi) for each pfi ∈ X, and therefore C(pf3 ◦ pfi = pf4 ◦ pfi) ∈ Σ+ by P4 again and P1.

But then C(pf3 ◦ pfj = pf4 ◦ pfj) ∈ Σ+ for each pfj ∈ Y by PEIntro. According to our earlier proof that G

must satisfy all PE constraints, this then implies u.pfj = v.pfj for each pfj ∈ Y , and therefore that G must

satisfy C1(X → Y ). 2

Our proof of completeness for PFD constraints resembles the above; it is also based on creating an

oriented Herbrand-like database. The construction of the database for this case starts with two copies of a

C-Graph.

Definition 10: Let Σ denote a set of constraints over class schema S, and C(X → Y ) for C ∈ Classes(S)

some choice of PFD not in Σ+. A Two-C-Graph is a directed labeled graph G(V,A) constructed from two

copies G1(V1, A1) and G2(V2, A2) of the C-Graph for class C with respect to C(X → Y ) as follows.

1. Remove any u ∈ V2 and its incident arcs in A2 whenever there exists pf ∈ Pf (u) such that C(X → pf ) ∈

Σ+. Add all vertices in V1 ∪ V2 to V and all arcs in A1 ∪A2 to A.

2. For each u ∈ V2 and P ∈ Props(Cl(u)) such that u
P
→ v 6∈ A for all v ∈ V , select an arbitrary pf ∈ Pf (u)

and add arc u
P
→ RG1

.(pf ◦ P ) to A. 2

A Two-C-Graph has the general form illustrated in Figure 4; that is, all vertices can be partitioned into

three sets S1, S2 and S3 such that areas S1 and S2 are isomorphic, and such that arcs connecting vertices in

different sets must originate in either S1 or S2 and terminate in S3. A key condition satisfied by a Two-C-

Graph is that the two subgraphs corresponding to areas S1 ∪S3 and S2 ∪S3 are both C-Graphs, and therefore

inherit many of the properties of the latter. These and additional properties of Two-C-Graphs needed in our
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S1 S2

S3

. . . . . .

Figure 4: General form of a Two-C-Graph.

proof of completeness for PFD constraints are listed in our final lemma of this section. Again, we refer the

reader to Appendix B for a proof.

Lemma 4: Let G(V,A) be the Two-C-Graph corresponding to a set of constraints Σ over class schema S

constructed with respect to class C ∈ Classes(S), and C(X → Y ) 6∈ Σ+
S . Then properties P1, P2 and P3 of

Lemma 3 remain true of G, along with each of the following.

P5. Vertex RG2
is not removed in the first step.

P6. If u ∈ V2 is removed in the first step, then all v ∈ V2 reachable from u are also removed.

P7. For all u, v ∈ V such that a path from u to v exists which is described by pf2, (pf1 ◦ pf2) ∈ Pf (v) for all

pf1 ∈ Pf (u).

P8. RG1
.pf = RG2

.pf if and only if C(X → pf ) ∈ Σ+. 2

Theorem 4: The twelve axioms in Tables 4 and 5 are complete for PFD constraints; that is, given constraints

Σ∪{C(X → Y )} over class schemes S, if Σ |= C(X → Y ) then C(X → Y ) can be derived from Σ using these

axioms alone.

Proof. By P3, the Two-C-Graph G(V,A) constructed with respect to C(X → Y ) 6∈ Σ+ is a database for S;

the theorem therefore follows if G satisfies all constraints in Σ+, but not C(X → Y ).

First, we show G does not satisfy C(X → Y ). PFDRef implies C(X → pf1) for all pf1 ∈ X, and

therefore RG1
.pf1 = RG2

.pf1 must hold by P8. Thus, if G does satisfy C(X → Y ), then RG1
.pf2 = RG2

.pf2

for all pf2 ∈ Y . But then by P8 again, C(X → pf2) ∈ Σ+, and therefore C(X → Y ) ∈ Σ+ follows by

PFDAdd—contrary to assumptions.
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What remains is to show that G does satisfy all constraints in Σ+.

With respect to PE constraints, consider C1(pf1 = pf2) ∈ Σ+ and u ∈ V such that Cl(u) = C1. In

light of our proof to Theorem 3, both u.pf1 and u.pf2 must be the same vertex v prior to the first step of

the construction. By the converse to P6, if v is not removed during the first step, then both u.pf1 and u.pf2

remain v at the end of the second step. Otherwise, if v is removed during the first step, then u must originate

in V2 (nothing in G1 is changed). Now, four uses of P4 imply there exists pf3 ∈ Pf (u) such that pf3 ◦ pf1 and

pf3 ◦ pf2 are in Pf (v). Since C(pf3 ◦ pf1 = pf3 ◦ pf2) ∈ Σ+ by P2 and PESubst, P1 implies there remains a

single vertex w (originating in V1) at the end of the second step such that (pf3 ◦ pf1), (pf3 ◦ pf2) ∈ Pf (w) at

the end of the second step. Thus by P7: u.pf1 = u.pf2 = w.

We show finally that G also satisfies all PFD constraints in Σ+. Assume C1(pf1 · · · pfm → pfm+1 · · · pfn)

is in Σ+, but is not satisfied by G. Then there must exist u, v ∈ V such that:

1. Cl(u) = Cl(v) = C1,

2. u.pfi = v.pfi for each 1 ≤ i ≤ m, and

3. u.pfj 6= v.pfj for some m < j ≤ n.

Let pfr and pfs denote an arbitrary choice of path function in Pf (u) and Pf (v) respectively. The second

condition above together with P7 imply Pf (u.pfi) contains both pfr◦pfi and pfs◦pfi, and therefore C(pfr◦pfi =

pfs◦pfi) ∈ Σ+ follows by P1, for each 1 ≤ i ≤ m. Since Ran(C, pfr) = Ran(C, pfs) = C1 by P2, axiom PEIntro

then implies C(pfr ◦ pfk = pfs ◦ pfk) ∈ Σ+ for each m < k ≤ n. Thus RG1
.(pfr ◦ pfk) = RG1

.(pfs ◦ pfk) for

each m < k ≤ n follows from our proof above that G satisfies all PE constraints in Σ+, which also implies

u.pfj = v.pfj if u and v are both reachable from the same root vertex—contrary to the third condition

above. Without loss of generality, we therefore assume RG1
.pfr = u and RG2

.pfs = v. But then the second

condition above is possible if and only if the first step of the construction removes vertex w = RG2
.(pfs ◦ pfi)

from V2. This happens if and only if there exists pf ∈ Pf (w) such that C(X → pf ) ∈ Σ+, which implies
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C(X → pfs ◦ pfi) ∈ Σ+ by the following argument:

1. pfs ◦ pfi ∈ Pf (w) (P4),

2. pf ∈ Pf (w) (by assumption),

3. C(pf = pfs ◦ pfi) (1, 2 and P1),

4. C(pf → pfs ◦ pfi) (3 and PFDIntro),

5. C(X → pf ) (by assumption), and

6. C(X → pfs ◦ pfi) (5, 4 and PFDTrans).

Now observe that

C(pfs ◦ pf1 · · · pfs ◦ pfm → pfs ◦ pfm+1 . . . pfs ◦ pfn) ∈ Σ+

is a consequence of the first condition above, P2 and PFDSubst. Therefore, for each m < k ≤ n, C(X →

pfs ◦ pfk) ∈ Σ+ by PFDAdd, PFDTrans and PFDProj. P8 then implies RG1
.(pfs ◦ pfk) = RG2

.(pfs ◦ pfk), and

since RG1
.(pfr ◦ pfk) = RG1

.(pfs ◦ pfk) (from above), u.pfk = v.pfk for each m < k ≤ n—contrary to the third

condition above. 2

4. Decision Procedures

In our introductory comments, we mentioned that the implication problem for PE constraints alone, over

arbitrary schema, is undecidable. This follows from a straightforward reduction of the decision form of the

word problem for monoids.

The latter problem takes as input a finite set of equations E ∪ {e} of the form “fi = fj ◦ fk”. An

interpretation I of the input is a domain D together with a total function over D for each symbol f occurring

in the input. The interpretation satisfies fi = fj ◦ fk if fi(d) = fj(fk(d)) for all d ∈ D. The problem is to

determine if every interpretation satisfying all equations in E must satisfy e.

Theorem 5: The implication problem for path equations alone is undecidable.

Proof. A reduction of the aforementioned word problem proceeds as follows. Letting {f1, . . . , fn} denote the

set of all symbols mentioned in either E or e, include in the class schema S a single class scheme of the form

“class C { f1:C; . . . ; fn:C }”;

and for each equation (fi = fj ◦fk) ∈ E∪{e}, include in Σ∪{σ} a corresponding PE constraint C(fi = fk.fj).

Clearly, since any domain D can be simulated by suitably populating class C with objects, Σ |=S σ if and
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Table 9: Global data for procedures ASK-PE and ASK-PFD.

data description

S A class schema.

ΣPE A set of PE constraints over S.

ΣPFD A set of PFD constraints over S.

G(V,A) A partial database for S.

Root A distinguished vertex in G.

D The current generation.

only if every interpretation I of E ∪{e} satisfying all equations in E must satisfy e. The undecidability of the

decision form of the word problem for monoids (e.g. see [21]) completes the proof. 2

Conversely, if PF (S) is finite, then one can clearly devise some procedure, based on exhaustively applying

all inference axioms, that will decide membership in Σ+ for an arbitrary set of constraints Σ. Recall that this

happens exactly when S is acyclic. The procedures we shall now present are examples that may also be used

to decide σ ∈ Σ+ for cases in which Σ contains only key PFD constraints, and in which the class mentioned

in σ is stratified over Σ (defined below). We shall also prove that they are semi-decision procedures in the

general case.

Our procedures operate by creating and modifying a finite graph corresponding to a partial database for

an input schema. We say that a graph G(V,A) is a partial database for class schema S if the only condition

not satisfied by G in order to qualify as a database for S is property value completeness; that is, we allow some

vertices in V to be missing some of their property values.

Definition 11: A partial database for class schema S is a directed graph G(V,A) with vertex and edge labels

corresponding to class and property names respectively. G must also satisfy the conditions of property value

integrity and property functionality as they apply to a (full) database. Also, in addition to its class label

Cl(v), each vertex in V is assigned a generation label, denoted Gen(v). (The generation label is used to limit

the eventual size of G.) 2

To simplify the presentation, we assume all our procedures have access to the global data listed in Table 9.

Essentially, our procedures operate by creating and manipulating the partial database included in the table.

- 23 -



Our first procedure is called ASK-PE and is listed in Figure 5. In addition to the data in Table 9, the

procedure is supplied with a class name C and a set of PE constraints Σ on C. A third parameter, n, is a

non-negative integer value which represents a limit on the number of generations of vertices which are added

to the global partial database. This ensures termination of ASK-PE since the number of vertices in any given

generation will always be finite (proven below).

ASK-PE attempts to determine if a given set of PE constraints Σ on a given class C are logical con-

sequences of the PE and PFD constraints in Table 9. This is accomplished with the use of several utility

routines given in Figures 6 and 7, which are responsible for the changes made to graph G in Table 9 follow-

ing its initialization with a single vertex in Step 1 of ASK-PE. The routines, function FIND and procedures

ADD-PROP and MERGE, are based on a dynamic version of the congruence closure algorithms in [27, 19]

which were suggested earlier in [28]. The fact that G is a partial database together with another property

of G essential to our proof of correctness of ASK-PE are stated in the following lemma. A proof is given in

Appendix B.

Lemma 5: Consider an invocation of procedure ASK-PE with class C, PE constraints Σ and integer n as

input. Let G0 be the state of G in Table 9 after initialization in Step 1 of ASK-PE, and let G1, G2, . . . be

the sequence of states of G occurring immediately after any calls from ASK-PE to procedure ADD-PROP, to

function FIND or to procedure MERGE. Then the following conditions are true of Gi, for all i.

C1. Gi is a partial database for S.

C2. A path exists from Root to all vertices v ∈ VGi
.

C3. Let pf1 and pf2 denote any two path functions describing any two (not necessarily distinct or simple)

paths in Gi from Root to some vertex v ∈ VGi
. Then C(pf1 = pf2) ∈ (ΣPE ∪ ΣPFD)+. 2

Theorem 6: (correctness of ASK-PE) Procedure ASK-PE always terminates. Also, if Σ consists of PE

constraints on class C, then there exists an integer n such that, for any invocation of ASK-PE of the form

ASK-PE(C, Σ, m, Answer)

where m ≥ n, Answer = “TRUE” if and only if Σ ⊆ (ΣPE ∪ ΣPFD)+.

Proof. Clearly, procedure FIND must always terminate after adding at most len(pf ) − 1 new vertices and

arcs to G (by calling procedure ADD-PROP). This is also true of procedure MERGE if G is finite since any
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Figure 5: Procedure ASK-PE.

procedure ASK-PE(C, Σ, n, Answer)

Input: a class name C, a set of PE constraints Σ on C and a generation bound n.

Output: Answer = “TRUE” only if Σ ⊆ (ΣPE ∪ ΣPFD)+; otherwise, Answer = “UNKNOWN”.

Step 1. (initialization) Initialize G with a single vertex u, where Cl(u) := C and Gen(u) :=

0. Root := u. D := 0.

Step 2. For each vertex u ∈ VG such that Gen(u) < D, P ∈ Props(Cl(u)) and u
P
→ v 6∈ AG

for any vertex v, invoke ADD-PROP(u, P).

Step 3. D := D + 1. If D ≤ n, then repeat from Step 2.

Step 4. (check for violation of PE constraints) For each u ∈ VG such that Gen(u) < D and

Cl(u)(pf1 = pf2) ∈ ΣPE , invoke MERGE(FIND(u, pf1), FIND(u, pf2)).

Step 5. (check for violation of PFD constraints) D := D + 1. For each u, v ∈ VG such that

u 6= v, Gen(u) < D, Gen(v) < D, C(X → Y ) ∈ ΣPFD and Cl(u) = Cl(v) = C: if

FIND(u, pfi) = FIND(v, pfi) for all pfi ∈ X, then invoke MERGE(FIND(u, pfj),

FIND(v, pfj)) for each pfj ∈ Y .

Step 6. Remove each C(pf1 = pf2) ∈ Σ such that FIND(Root, pf1) = FIND(Root, pf2).

If Σ is empty, then Answer := “TRUE”; otherwise, Answer := “UNKNOWN”.

Return.
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Figure 6: Function FIND and procedure ADD-PROP.

function FIND(u, pf )

Input: a vertex u ∈ VG and path function pf .

Output: returns a vertex v ∈ VG such that u.pf = v. (Note that FIND ensures v exists by invoking

ADD-PROP to create any missing vertices and arcs in G.)

Step 1. If pf = Id, then return u.

Step 2. (Since pf 6= Id, we may assume pf = P ◦ pf1, for some property P and path

function pf1.) If u
P
→ v 6∈ AG for some vertex v ∈ VG, then invoke ADD-PROP(u,

P ). Assuming v denotes the (possible newly created) vertex in VG such that u
P
→

v ∈ AG, return FIND(v, pf1).

procedure ADD-PROP(u, P )

Input: a vertex u ∈ VG and property P .

Effect: updates the global partial database G by creating a new vertex and arc representing a P

property value for vertex u.

Step 1. Add a new vertex v to VG and arc u
P
→ v to AG. Initialize the vertex labels for v

as follows: Cl(v) := Ran(Cl(u), P ) and Gen(v) := D. Return.

- 26 -



Figure 7: Procedure MERGE.

procedure MERGE(u, v)

Input: vertices u, v ∈ VG. and property P .

Effect: updates the global partial database G by merging the subgraphs rooted at vertices u and v.

Step 1. If u = v then return.

Step 2. If OutDegree(u) < OutDegree(v) then invoke MERGE(v, u) and return. (Note

that the notation “OutDegree(v)” represents the number of arcs originating from

vertex v.)

Step 3. If Root = v then Root := u.

Step 4. For each vertex w ∈ VG and property P such that w
P
→ v ∈ A, redirect w

P
→ v to u.

Step 5. For each vertex w ∈ VG and property P such that v
P
→ w ∈ AG do the following.

Remove v
P
→ w from AG. If there exists vertex x ∈ VG such that u

P
→ x ∈ AG, then

invoke MERGE(x, w); otherwise, add u
P
→ w to AG.

Step 6. Remove vertex v from VG and return.
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recursive calls imply at least one vertex is removed from G. Finally, the preconditions on the vertex label

Gen(v) ensure that any of Steps 2, 4 or 5 in procedure ASK-PE itself will terminate.

The “only if” part of the second assertion follows directly from Lemma 5. Now consider where no such n

exists, and let G denote the partial database obtained by taking the limit of the sequence of graphs G0, G1, . . .

resulting from the sequence of calls

ASK-PE(C, Σ, 0, Answer), ASK-PE(C, Σ, 1, Answer), . . . .

Since Answer = “UNKNOWN” for all calls, the Root vertex of G must be a C-object which fails to satisfy

some PE constraint σ ∈ Σ. Also, by taking G to be the limit of this sequence of calls, a simple inspection

of Step 2 of ASK-PE implies that G will also satisfy property value completeness, and is therefore a (full)

database for S. Since Step 4 and Step 5 of ASK-PE ensure G satisfies all constraints in ΣPE ∪ ΣPFD, the

consequent follows by Theorem 1 (soundness). 2

A simple example should help to clarify how procedure ASK-PE works. Assume the entries S and ΣPE

in Table 9 are assigned the sets

{ a{ A: b }, b{ B: b } }

and

{ a( A = A.B.B.B ), a( A = A.B.B.B.B.B ) }

respectively, and also that ΣPFD is empty. Observe that S is cyclic because of the B property of class b.

Figure 8 presents a sequence of “snapshots” of the partial database G in Table 9 which result from a call to

ASK-PE of the form

ASK-PE(a, {a( A = A.B )}, 0, Answer).

Note that the value of the generation label Gen(v), for each vertex v, appears below its class label Cl(v).

Figure 8(a) indicates the state of G at the start of Step 4, and Figure 8(f) indicates the final state of G after

ASK-PE returns in Step 6. Now consider this final state together with the function calls “FIND(Root, A)” and

“FIND(Root, A.B)”. Since the same vertex is returned for both calls, procedure ASK-PE will assign Answer

the value “TRUE” before returning in Step 6. Thus, by Theorem 6 above and Theorem 1 (soundness), we can

conclude that the PE constraint “a( A = A.B )” is a logical consequence of the two in ΣPE .

To illustrate how this final state is reached, Figure 8(b) to (e) traces the state of G immediately prior to

each of the four calls of procedure MERGE which occurs during the execution of Step 4 of ASK-PE. (Step 5
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Figure 8: A sequence of partial databases produced by ASK-PE.
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Figure 9: Procedure ASK-PFD.

procedure ASK-PFD(C, X, Y , n, Answer)

Input: a class name C, a set of path functions XY on C and a generation bound n.

Output: Answer = “TRUE” only if C(X → Y ) ∈ (ΣPE ∪ ΣPFD)+; otherwise, Answer =

“UNKNOWN”.

Step 1. Add class scheme “class Q{ A: C; B: C }” to S (assuming Q is not the name

of any existing class in S). For each pfi ∈ X, add “Q(A ◦ pfi = B ◦ pfi)” to ΣPE .

Step 2. Let Σ denote the set of all PE constraints of the form “Q(A ◦ pfj = B ◦ pfj)”, where

pfj ∈ Y . Invoke ASK-PE(Q, Σ, n+ 1, Answer), and return.

will have no effect on G since we have assumed ΣPFD is empty.) Note that the bindings of parameters u

and v for the ith call are indicated as vertices ui and vi respectively. The first two calls, Figure 8(b) and (c),

correspond to the top level calls of MERGE, directly from Step 4, which process the two PE constraints in

ΣPE , starting with the constraint a( A = A.B.B.B ). The second two calls, Figure 8(d) and (e), correspond

to the recursive calls of MERGE which result from the second of the two top level calls.

Our last procedure is called ASK-PFD, and is listed in Figure 9. ASK-PFD attempts to determine if

a given PFD constraint C(X → Y ) is in (ΣPE ∪ ΣPFD)+. Roughly, the procedure operates by creating an

additional class scheme and PE constraints, and then using ASK-PE to effectively simulate an attempt to

create a partial database containing two C objects which agree on each of their X path functions, but disagree

on one of their Y path functions. The additional class scheme, called Q, is a simple expedient to “force” the

existence of the requisite C objects. The following theorem establishes that this works correctly, and that

ASK-PFD therefore qualifies as a semi-decision procedure for PFD constraints. Since this case is a bit more

involved than the previous case relating to PE constraints, the complete proof can be found in Appendix B.

Theorem 7: (correctness of ASK-PFD) Procedure ASK-PFD always terminates. Also, if X and Y denote

two sets of path functions on class C, then there exists an integer n such that, for any invocation of ASK-PFD
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of the form

ASK-PFD(C, X, Y , m, Answer)

where m ≥ n, Answer = “TRUE” if and only if C(X → Y ) ∈ (ΣPE ∪ ΣPFD)+. 2

To illustrate how procedure ASK-PFD works, we return to the example UNIVERSITY query given in

the introduction. First, assume entry S in Table 9 is the class schema presented in Table 3 with the following

complex object type representing the query class illustrated in Figure 2 added.

class Query { P1:String; P2:Integer; S:Student; E:Enrollment; C:Course }

And second, assume entries ΣPE and ΣPFD in Table 9 are assigned the PE and PFD constraints occurring in

Tables 1 and 2. Now consider a call to ASK-PFD of the form

ASK-PFD(Query, {P1, P2, S}, {E, C}, 2, Answer).

Step 1 modifies entries S and ΣPE in Table 9 by adding the object type

class Q{ A: Query; B: Query }

to the former and the PE constraints

Q( A.P1 = B.P1 ), Q( A.P2 = B.P2 ) and Q( A.S = B.S ) (4.1)

to the latter. Procedure ASK-PFD then returns in Step 2 after a call to procedure ASK-PE of the form

ASK-PE(Q, {Q( A.E = B.E ), Q( A.C = B.C )}, 3, Answer).

Figure 10 illustrates the state of the partial database G in Table 9 subsequent to the return from this call.

Since the E and C property values for the two Query objects coincide, procedure ASK-PE assigns Answer the

value “TRUE” in Step 6. Thus, by Theorem 7, the results of the original call to ASK-PFD can be interpreted

as confirmation that PFD constraint (1.2) in the introduction is a logical consequence of the constraints in

Tables 1 and 2.

To clarify how this final state is reached, we have added tabs on eight of the vertices (i.e. the small

squares). The numbering on the tabs indicates a sequence of the most relevant calls to procedure MERGE

which eventually merges all subgraphs of the two Query objects. These calls to MERGE occur in Steps 4

and 5 of ASK-PE, and recursively from MERGE itself. We consider each of the tabbed cases in sequence.
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Figure 10: A partial database produced by ASK-PFD.

• (tabs numbered 1 to 3) At the start of Step 4 of procedure ASK-PE, all arcs outgoing from the two

Query objects point to disjoint subgraphs. The separate subgraphs for the P1, P2 and S property values

of the two Query objects are merged sometime during the execution of Step 4 because of additional PE

constraints, (4.1) above, which were added to ΣPE .

• (tab number 4) Since two Dept objects now have the same Name property value, Step 5 of ASK-PE

merges the corresponding subgraphs because of the constraint “Dept( Name → Id )” in ΣPFD.

• (tabs numbered 5 and 6) Subgraphs rooted at the separate Course objects which were the C property

values of the two Query objects are now merged because of the constraint “Course( Num In → Id )”

in ΣPFD.

• (tab number 7) Subgraphs rooted at the two other Course objects are merged because of the constraint

“Enrollment( S C.Time → C )” in ΣPFD. (According to the cases for tabs numbered 3 and 6 dis-

cussed above, their parent Enrollment objects will now agree on the values of path functions S and

C.Time.)
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• (tab number 8) Finally, the subgraphs rooted at the two Enrollment objects which were the E property

values of the two Query objects are merged because of the constraint “Enrollment( S C → Id )” in

ΣPFD.

As outlined at the start of the section, one case in which procedures ASK-PE and ASK-PFD can be used

to decide σ ∈ (ΣPE ∪ΣPFD)+ happens when the problem schema satisfies two additional conditions. The first

requires ΣPFD to consist of only key PFD constraints. The second is a stratification condition for ΣPE which

effectively limits the number of possible applications of the substitution axioms PESubst. A formal definition

of this second condition is as follows.

Definition 12: Let Σ denote a set of PE constraints over a class schema S. Then C1 ∈ Classes(S) is stratified

over Σ if there exists an integer n satisfying

pf ∈ PathFuncs(C1), Ran(C1, pf ) = C2 and C2(pf1 = pf2) ∈ Σ imply len(pf ) ≤ n.

If n is minimal, then we say that C1 is stratified over Σ with size n. 2

Note that a breadth first search of a class schema graph may be employed to efficiently decide questions

of the form: “Is class C stratified over PE constraints Σ with size n?”. Also note that our stratification

condition continues to admit some forms of cyclic schema, and that all classes necessarily satisfy the condition

for acyclic schema (regardless of the selection of PE constraints). For example, in the case illustrating the

operation of procedure ASK-PE discussed above, class a is stratified with respect to the two PE constraints

with size 0. In the subsequent case illustrating the operation of procedure ASK-PFD, class Query would satisfy

a stratification condition of size 2 were it not for the PE constraint “Prof( Boss = In.Head )” in Table 1.

Theorem 8: Assume C ∈ Classes(S) is stratified over PE constraints ΣPE with size n, and also that ΣPFD

consists only of key PFD constraints. Also let Σ denote a set of PE constraints on C, and let X and Y denotes

sets of path functions in PathFuncs(C).

1. A call to ASK-PE of the form

ASK-PE(C, Σ, n, Answer)

decides if Σ ⊆ (ΣPE ∪ ΣPFD)+; that is, Answer = “TRUE” if and only if Σ ⊆ (ΣPE ∪ ΣPFD)+.

2. A call to ASK-PFD of the form
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ASK-PFD(C, X, Y , n, Answer)

decides if C(X → Y ) ∈ (ΣPE ∪ ΣPFD)+; that is, Answer = “TRUE” if and only if C(X → Y ) ∈

(ΣPE ∪ ΣPFD)+.

Proof. Consider the first part of the theorem, letting G1 be the state of the global partial database G after

invocation of ASK-PE, and G2 the new state that results after a call to function FIND(Root, pf ), for all

pf ∈ PathFuncs(C). First observe that all three conditions of Lemma 5 continue to be satisfied by G2, in

light of its proof, and that G2 must also satisfy property value completeness by virtue of the calls to FIND.

Thus, G2 qualifies as a (full) database. Since Gen(v) > n, for all v ∈ VG2
− VG1

, and since C is stratified

over ΣPE with size n, no vertex v exists in VG2
such that Gen(v) > n, and such that Cl(v) = C1 for some

C1(pf1 = pf2) ∈ ΣPE . G2 must therefore satisfy all constraints in ΣPE , according to the fourth step of

ASK-PE.

Now consider C(X → Id) ∈ ΣPFD together with any choice of two succinct vertices u, v ∈ VG2
such

that Cl(u) = Cl(v) = C. Without loss of generality, assume Gen(u) > n+ 1. Then there are two possibilities

for when u was added: 1) u ∈ (VG2
− VG1

), or 2) u was added by virtue of a call to FIND from Step 5 of

ASK-PE. In either case, it is not possible for u and v to agree on any pf ∈ X.4 Therefore, according to Step 5

of ASK-PE, G2 satisfies all constraints in ΣPFD, and the first part of the theorem follows by Lemma 5 and

Theorem 1 (soundness).

The proof of the second part of the theorem is a simple consequence of the first and Theorem 7. 2

A number of factors affect the running time of a call to procedure ASK-PE. For example, the class

schema itself and the value of parameter n determine the size of the partial database created by the first three

steps of the procedure. In particular, is it straightforward to prove that VG will consist of one vertex for each

pf ∈ PathFuncs(C) such that len(pf ) ≤ n, and that G itself will be a tree rooted at vertex Root. Since a

class scheme will usually include more than one property in its definition, the expected running time for the

first three steps is therefore likely to remain exponential in n.

Table 10 summarizes execution time bounds for the various steps of procedure ASK-PE in terms of the

number of calls to procedure ADD-PROP, either directly in Step 3 or indirectly by virtue of a call to function

FIND, and to procedure MERGE. The formulas assume that |S| denotes the number of different property

names in a given class schema S, and that |ΣPE | (resp. |ΣPFD| and |Σ|) denote the number of property name

4This would not be the case if we permitted non-key PFD constraints.
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Table 10: Time bounds for procedure ASK-PE.

steps ADD-PROP MERGE

1, 2 and 3 O(kn) N/A

4 O(|ΣPE | · k
n) O(kn)

5 O(|ΣPFD| · (|ΣPE | · k
n)2) O(|ΣPFD| · |ΣPE | · k

n)

6 O(|Σ|) N/A

where k is O(|S|)

Table 11: A worst-case for ASK-PE.

S ΣPE ΣPFD

class R {A1:R; . . . ; Am:R; B: S} S(C1.D1 = Cm+1.D1) T(D1 → Dm+1)

class S {C1:T; . . . ; C2m:T} · · · · · ·

class T {D1:U; . . . ; D2m:U} S(Cm.Dm = C2m.Dm) T(Dm → D2m)

class U { }

occurrences in ΣPE (resp. ΣPFD and Σ). Also, the formulas for the fifth step assume (reasonably) that ΣPE

is non-empty. The bounds derive straightforwardly from two observations.

1. The number of indirect calls to procedure ADD-PROP from function FIND is bound by the sum of the

argument lengths for all top-level calls to FIND from ASK-PE.

2. Since a vertex is removed from G for each recursive call of procedure MERGE (from itself), the total

number of calls to the procedure is also bound by the number of top-level calls from ASK-PE.

Problem schema and constraints which have the pattern outlined in Table 11 are cases which demonstrate

that the bounds in Table 10 for the first five steps are all tight, given a call of the form: “ASK-PE(R, { }, n,

Answer)”.

Appendix A describes a data structure which may be employed to achieve the best possible asymptotic

execution times for the “standard” directed labeled graph access and manipulation operations. Adopting this

data structure, all calls to procedure FIND will run in time linear in the length of the argument path function,
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and procedure ADD-PROP will run in constant time.

Now let k denote the maximum number of properties included in a class definition for a given problem

schema, which is O(|S|), and let m denote the total number of vertices created in all calls to procedure ADD-

PROP during an invocation of ASK-PE. The same choice of data structure outlined in Appendix A together

with the second observation above then implies that the total run time for all calls to procedure MERGE will

be dominated by the execution time for its fourth step, and for the cases in its fifth step in which a recursive

call is not made.

First consider the latter. The second step of MERGE ensures that the “from” vertex of any given arc is

never changed more than O(log k) times. Since the number of arcs never exceeds m, a time bound for these

cases is O(m · log k).

Now consider the overhead for the fourth step. Since this step is essentially performing a disjoint set

union operation, in which the set associated with each vertex is its incoming arcs, a fast disjoint-set union

algorithm (such as Algorithm 4.3 in [3]) can be used to achieve a worst case run time of O(m · α(m)), where

α is the single-variable inverse Ackermann function.

In summary, assuming each of ΣPE and ΣPFD are non-empty, execution time for procedure ASK-PE is

bound by the number of possible indirect calls to procedure ADD-PROP from Step 5 and Step 6, which is

O(|ΣPFD| · (|ΣPE | · k
n)2 + |Σ|).

Also, we believe the expected case run-time can be considerably improved by more careful indexing of vertices

with respect to their class labels. It is straightforward, for example, to maintain a list for each class C of all

vertices v where Cl(v) = C.

5. Summary

We have presented a sound and complete axiomatization for the combination of a form of equational constraint

and functional dependency constraint for a data model supporting complex object types. Both kinds of

constraints may be considered special cases of a general category of “path constraints” in which component

attributes may correspond to descriptions of property value paths. Also presented were decision procedures

for the implication problem for both kinds of constraints when the problem schema satisfies a stratification

condition, and when all input functional dependencies are keys.

In our introductory comments, we reviewed a number of applications of our theory. Indeed, our own
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experience is that procedures like those presented in the previous section are valuable components of object-

oriented query optimizers.
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6. APPENDIX A

The technique outlined in problem 2.12 of [3] for initializing an entry in a matrix to zero the first time it is

accessed can be simply adapted to support best possible asymptotic execution times for a number of standard

directed labeled graph access and manipulation operations required by our decision procedures. Recall that

edge labels in our case correspond to property names, and that no vertex has more than one outgoing edge

with the same label.

The required operations on a graph G(V,A) are as follows.

1. Add a new vertex to V .

2. Given u, v ∈ V and property P , add a new arc u
P
→ v to A.

3. Given u ∈ V and property P , determine if there exists v ∈ V such that u
P
→ v ∈ A. Return v if this is

the case.

4. Given u ∈ V , find all properties P and v ∈ V such that u
P
→ v ∈ A.

The technique first requires that property names are mapped to a unique integer offset in the range

[1, . . . , n], for some integer n. When a vertex is first created, it is then allocated 3n+1 units of store organized

in three parallel arrays and a TOP index as suggested in [7].

offset

0 1 2 n

A

B

C

TOP

· · ·

· · ·

· · ·

· · ·

6

To add a new arc with offset i to vertex v, increment TOP, and set A[i], B[TOP] and C[i] the values TOP, i

and “pointer to v” respectively. An arc with offset j exists if: 1) 1 ≤ A[j] ≤ TOP, and 2) j = B[A[j]]. Finally,

the offset of all outgoing arcs can be found by scanning array B in the range [1, . . . ,TOP].

7. APPENDIX B

Proof of Lemma 3.
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We prove properties P1 to P4 in sequence.

(proof of P1)

(if part) Follows directly from the definition of the construction.

(only if part) Without loss of generality, consider an arbitrary u ∈ V . We prove by induction that

there exists S ⊆ Pf (u) of arbitrary size satisfying P1. For any subset S = {pf } of Pf (u), consisting of a

single path function, C(pf = pf ) ∈ Σ+ by the reflexivity axiom PERef. Now assume P1 holds for some

subset S′ = {pf1, . . . , pfn} ⊂ Pf (u) of size n. By definition of the construction, there must exist pf1 ∈ S′ and

pf2 ∈ (Pf (u) − S′) such that either C(pf1 = pf2) ∈ Σ+ or C(pf2 = pf1) ∈ Σ+ (since otherwise, we have not

created a maximum partitioning of PathFuncs(C)). In either case, by the induction assumption together

with the remaining equality axioms PESym and PETrans, the set S = S ′ ∪ {pf2} also satisfies P1.

(proof of P2)

The first step of the construction assigns Cl(u) the class Ran(C, pf1) for some arbitrary pf1 ∈ Pf (u). By

P1, C(pf1 = pf2) ∈ Σ+, for all pf2 ∈ Pf (u), and therefore Ran(C, pf1) = Ran(C, pf2) by Theorem 1. (The

inference axioms derive only well-formed constraints.)

(proof of P3)

We must show that the constraints we have imposed on a directed labeled graph in order to qualify

as an interpretation are satisfied. First consider property value integrity. If u
P
→ v ∈ A, then there exists

some pf ∈ Pf (u) where pf ◦ P ∈ Pf (v), according to the second step of the construction of G. Since

pf , (pf ◦P ) ∈ PathFuncs(C), P ∈ Props(Ran(C, pf )) by definition, Cl(u) = Ran(C, pf ) by P2, and therefore

P ∈ Props(Cl(u)). It also follows by P2, and by definition of the composition operator and of well-formed

path functions that:

Cl(v) = Ran(C, pf ◦ P ) = Ran(Ran(C, pf ), P ) = Ran(Cl(u), P ).

Now consider property functionality. If u
P
→ v, u

P
→ w ∈ A, then, according to the second step of

the construction, there exists pf1, pf2 ∈ Pf (u) such that pf1 ◦ P ∈ Pf (v) and pf2 ◦ P ∈ Pf (w). But then

C(pf1 = pf2) ∈ Σ+ by P1, and therefore C(pf1 ◦ P = pf2 ◦ P ) ∈ Σ+ by the attribution axiom PEAttr. Thus,

pf1 ◦ P and pf2 ◦ P must occur in the same partition Pi, and therefore v = w.

Finally, property value completeness is a simple consequence of the definition of path functions, of P2

and of the second step of the construction.

(proof of P4)
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We prove P4 by induction on the length of pf . If len(pf ) = 0, then pf is Id, R.Id = R and Id ∈ Pf (R).

Now consider where pf has the form pf1 ◦ P , for some property P .

(if part) Choose u, v ∈ V such that pf1 ◦ P ∈ Pf (v) and u = R.pf1. By the inductive assumption,

pf1 ∈ Pf (u), and therefore the second step of the construction adds u
P
→ v to A. But then R.(pf1 ◦P ) = v, by

P3.

(only if part) Choose u ∈ V as before, and v ∈ V such that v = R.(pf1 ◦ P ). The second step of the

construction added u
P
→ v to A, which implies there exists pf2 ∈ Pf (u) such that pf2 ◦ P ∈ Pf (v). By the

inductive assumption, pf1 ∈ Pf (u), and therefore C(pf1 = pf2) ∈ Σ+ by P1. But then C(pf1◦P = pf2◦P ) ∈ Σ+,

by the attribution axiom PEAttr. Thus, pf1 ◦ P and pf2 ◦ P occur in the same partition Pi, and therefore

pf1 ◦ P ∈ Pf (v). 2

Proof of Lemma 4.

The construction of any Two-C-Graph G starts from two C-Graphs. Since neither of the two steps modifies

any Pf labeling, the proofs of P1 and P2 for Lemma 3 apply unchanged. We prove each of the remaining

properties in sequence.

(proof of P3)

It suffices to show that property value integrity is not violated at some point during the second step. If

u
P
→ v is added in the second step, then clearly Cl(u) ∈ Dom(P ), and for some pf ∈ Pf (u), RG1

.(pf ◦P ) = v.

Since no arcs are added to any vertex originating in G1, P4 then implies pf ◦ P ∈ Pf (v), and therefore

Ran(C, pf ◦ P ) = Cl(v) by P2. Integrity follows since the definition of (well-formed) path functions and P2

(again) implies

Ran(C, pf ◦ P ) = Ran(Ran(C, pf ), P ) = Ran(Cl(u), P ).

(proof of P5)

If RG2
is removed during the first step, then there must exist pf1 ∈ Pf (RG2

) such that C(X → pf1) ∈ Σ+.

Since Id ∈ Pf (RG2
), C(pf1 = Id) ∈ Σ+ by P1, and therefore C(pf1 → Id) ∈ Σ+ by PFDIntro. But PFDAttr

and two uses of PFDTrans derive C(X → pf2) for each pf2 ∈ Y , and thus by PFDAdd: C(X → Y ) ∈ Σ+—

contrary to assumptions.

(proof of P6)

Assume u is removed in the first step since C(X → pf1) ∈ Σ+ for some pf1 ∈ Pf (u). According to

Lemma 2 and P3, if v is reachable from u, then there must exist some pf2 ∈ PathFuncs(Cl(u)) such that
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u.pf2 = v. Thus pf1 ◦ pf2 ∈ Pf (v) by two uses of P4. But then C(X → pf1 ◦ pf2) ∈ Σ+ by the following

argument:

1. Cl(u)(Id→ pf2) (PFDAttr),

2. Ran(C, pf1)(Id→ pf2) (1 and P2),

3. C(pf1 → pf1 ◦ pf2) (2 and PFDSubst),

4. C(X → pf1) (by assumption) and

5. C(X → pf1 ◦ pf2) (4, 3 and PFDTrans).

Thus v must also be removed in the first step.

(proof of P7)

We prove P7 by induction on the length of pf2. The basis case holds since len(pf2) = 0 implies pf2 is

Id, and therefore that u = v. Now assume pf2 has the form pf3 ◦ P , and that u.pf3 = w. By the inductive

assumption, pf1 ◦pf3 ∈ Pf (w) for all pf1 ∈ Pf (u). P2 and P3 together imply there exists w
P
→ v ∈ A. If w

P
→ v

was not added to A during the second step of the construction, then P5 and P6 imply that w and v originated

from the same C-Graph Thus pf1 ◦ pf3 ◦P ∈ Pf (v) follows by two uses of P4. If w
P
→ v was added to A during

the second step of the construction, then RG1
.(pf1 ◦ pf4 ◦ P ) = v for some pf1 ◦ pf4 ∈ Pf (w), and therefore

pf1 ◦ pf4 ◦ P ∈ Pf (v) by P4. Since Pf (w) contains both pf1 ◦ pf3 and pf1 ◦ pf4, C(pf1 ◦ pf3 = pf1 ◦ pf4) ∈ Σ+ by

P1, and therefore C(pf1 ◦ pf3 ◦ P = pf1 ◦ pf4 ◦ P ) follows by JCAttr. Thus pf1 ◦ pf3 ◦ P ∈ Pf (v) follows by P1.

(proof of P8)

Proof of P8 is also by induction, this time on the length of pf . The basis case follows directly from P5,

and then if pf has the form pf1 ◦ P , there are two cases to consider.

If C(X → pf1) ∈ Σ+, then C(X → pf1 ◦ P ) ∈ Σ+ by an argument entirely analogous to the proof above

of P6. Also, by the inductive assumption, RG1
.pf1 = RG2

.pf1, and therefore RG1
.(pf1 ◦ P ) = RG2

.(pf1 ◦ P )

follows by P3.

If C(X → pf1) 6∈ Σ+, then RG1
.pf1 6= RG2

.pf1 by the inductive assumption. Thus RG1
.(pf1 ◦ P ) =

RG2
.(pf1 ◦ P ) if and only if the second step of the construction adds arc RG2

.pf1
P
→ RG1

.(pf1 ◦ P ) to A. But

this happens if and only if the first step has removed vertex RG2
.(pf1 ◦ P ) from V2, which in turn can happen

if and only if there exists pf2 ∈ Pf (RG2
.(pf1 ◦ P )) such that C(X → pf2) ∈ Σ+. If such a pf2 exists and is not
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pf1 ◦ P , then C(X → pf1 ◦ P ) ∈ Σ+ by the following argument:

1. C(pf2 = pf1 ◦ P ) (P1),

2. C(pf2 → pf1 ◦ P ) (1 and PFDIntro),

3. C(X → pf2) (by assumption) and

4. C(X → pf1 ◦ P ) (3, 2 and PFDTrans).

2

Proof of Lemma 5.

Proof is by induction on the sequence of states Gi. In the basis case, G0 consists of the single Root vertex

where Gen(Root) = 0, and therefore must clearly satisfy the first two conditions. Also, since the only path

in G0 consists of the single Root vertex which can only be described by Id, condition C3 also holds since

C(Id = Id) follows by axiom PERef.

Now assume the conditions hold up to state Gi, for some i > 0. There are two general cases to consider.

Case 1: Gi occurs after a call to ADD-PROP or to FIND. The three conditions are a simple consequence

of the inductive assumption, axiom PEAttr and a simple induction on the (possibly empty) set of new vertices

and arcs created by procedure ADD-PROP by virtue of an indirect call from function FIND.

Case 2: Gi occurs after a call to MERGE from ASK-PE. A simple inspection of the body of MERGE

suffices to confirm the first two conditions. Now consider the third. We shall say that a call of MERGE is

justified if there exists C(pf1 = pf2) ∈ (ΣPE ∪ΣPFD)+ such that pf1 and pf2 describe two paths from Root to

vertices u and v respectively. First consider where a call of MERGE is justified. If MERGE returns in Step 1,

then there is no change to G. If MERGE returns in Step 2, then the recursive call to MERGE in Step 2 is also

clearly justified. If MERGE does not return in the first two steps, then axioms PESym and PETrans imply

that the second condition remains true of vertex u at the end of Step 4, and PEAttr implies this is also true

of any vertex reachable from u or v. If each of u and v have an outgoing arc with the same property label P ,

then axiom PEAttr also implies that the recursive call of MERGE in Step 5 is justified.

What remains is to prove that the original top-level call to procedure MERGE from ASK-PE when

G was in state Gi−1 is justified, of which there are two possible sites within ASK-PE itself. If this call to

MERGE occurs in Step 4 of ASK-PE, then, by the inductive assumption, there exists a path from Root to

vertex u in the partial database Gi−1 described by some path function pf ∈ PathFuncs(C), and this call of

MERGE is then justified by axiom PESubst. If the call occurs in step 5, then, by the inductive assumption,
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there exists paths from Root to vertices u and v in the partial database Gi−1 described by two path functions

pf1, pf2 ∈ PathFuncs(C) respectively, and this call of MERGE is then justified by axiom PEIntro. 2

Proof of Theorem 7.

The fact that ASK-PFD always terminates is a direct consequence of Theorem 6, while the “only if” part of

the second assertion follows from Lemma 5 and axiom PEIntro.

Now consider the “if” part of the second assertion, letting Li denote either property A or property B.

We first prove by induction on the length of derivation of a PE constraint σ of the form Q(L1 ◦ pf1 = L2 ◦ pf2)

the two conditions:

1. C(pf1 = pf2) ∈ (ΣPE ∪ ΣPFD)+, and

2. if L1 6= L2, then {C(X → pf1), C(X → pf2)} ⊆ (ΣPE ∪ ΣPFD)+.

If the derivation consists of a single step, then σ ∈ ΣPE , or σ follows by axiom PERef. In either case,

both conditions are clearly satisfied.

Now consider a derivation of σ of length n > 1. There are five cases corresponding to the five possible

axioms justifying the final step in its derivation.

Case 1: axiom PESym. Both conditions are a simple consequence of the inductive assumption.

Case 2: axiom PETrans. Assume axiom PETrans is used to derive Q(L1 ◦ pf1 = L3 ◦ pf3) from earlier

derivations of Q(L1 ◦ pf1 = L2 ◦ pf2) and Q(L2 ◦ pf2 = L3 ◦ pf3). Then both C(pf1 = pf2) and C(pf2 = pf3) can

be derived according to the inductive assumption, and C(pf1 = pf3) follows also by PETrans. Now consider

the second condition. If L1 is not the same property as L3, then either L1 6= L2 or L2 6= L3 (or both). With

loss of generality, assume the latter. Then the second condition holds by the following argument:

1. C(pf1 = pf3) (first condition),

2. C(pf3 = pf1) (1 and PESym),

3. C(pf3 → pf1) (2 and PFDIntro),

4. C(X → pf3) (inductive assumption) and

5. C(X → pf1) (4, 3 and PFDTrans).

Case 3: axiom PESubst. Assume axiom PESubst is used instead to derive σ = Q(L◦pf ◦pf1 = L◦pf ◦pf2)

from an earlier derivation of a PE constraint of the form Ran(Q, L◦pf )(pf1 = pf2). Clearly, the second condition

is satisfied, and a reuse of PESubst derives C(pf ◦ pf1 = pf ◦ pf2).
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Case 4: axiom PEAttr. Now assume σ = Q(L1 ◦pf1 ◦pf = L2 ◦pf2 ◦pf ) follows by axiom PEAttr from an

earlier derivation of Q(L1 ◦pf1 = L2 ◦pf2). Then the first condition follows simply by the inductive assumption

and a reuse of axiom PEAttr. If L1 6= L2, then we can derive C(X → pf1 ◦ pf ) by the following argument:

1. C(X → pf1) (inductive assumption),

2. Ran(C, pf1)(Id→ pf ) (PFDAttr),

3. C(pf1 → pf1 ◦ pf ) (2 and PFDPAug) and

4. C(X → pf1 ◦ pf ) (1, 3 and PFDTrans).

The case for C(X → pf2 ◦ pf ) is analogous.

Case 5: axiom PEIntro. Finally, assume σ = Q(L1 ◦ pfr ◦ pf = L2 ◦ pfs ◦ pf ) follows by axiom PEIntro

from an earlier derivation of Ran(Q, L1 ◦ pfr)(pf1 · · · pfm → Y ), where pf ∈ Y , and of m earlier derivations of

Q(L1 ◦ pfr ◦ pfi = L2 ◦ pfs ◦ pfi), 1 ≤ i ≤ m. Note that this implies:

Ran(Q, L1 ◦ pfr) = Ran(Q, L2 ◦ pfs) = Ran(C, pfr) = Ran(C, pfs).

Again, the first condition follows simply by the inductive assumption and a reuse this time of axiom PEIntro.

If L1 6= L2, then we can derive C(X → pfr ◦ pf ) as follows:

1. C(X → pfr ◦ pf1) (inductive assumption),

· · · · · · · · ·

m. C(X → pfr ◦ pfm) (inductive assumption),

· · · · · · · · ·

2m− 1. C(X → pfr ◦ pf1 · · · pfr ◦ pfm) (1 to m, and m− 1

uses of PFDAdd),

2m. Ran(C, pfr)(pf1 · · · pfm → Y ) (given),

2m+ 1. C(pfr ◦ pf1 · · · pfr ◦ pfm → pfr ◦ Y ) (2m and PFDSubst),

2m+ 2. C(X → pfr ◦ Y ) (2m− 1, 2m+ 1

and PFDTrans) and

2m+ 3. C(X → pfr ◦ pf ) (2m+ 2 and PFDProj).

And again, the case for C(X → pfs ◦ pf ) is analogous.

The “if” part of the second assertion is now a simple consequence of the second condition and axiom

PFDAdd. 2
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