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ABSTRACT

In this paper we propose a circuit delay model for the propagation
of events in a digital device. We use this model to formulate
several device timing characteristics, and introduce the concept of
separation bounds to model the timing constraints specified in a
device’s waveform timing specifications. We show that even if we
know the separation bounds on two pairs of events, (u,v) and
(v, w), we cannot always deduce the correct separation bounds on
(v, w). However, we show that the method proposed in [2]—to
deduce tight constraints in a partial timing specification—is safe, in
the sense that an affirmative answer to satisfiability is trustworthy
while a negative answer may be pessimistic.



1. Background

The proper timing of digital signals is a major concern in the design of reli-
able systems, especially in the light of dramatic increases in the speed and
complexity of digital components. In essence, ‘improper’ timing occurs
when signals arrive at device inputs too early or too late to be recognized.
Surveys of work in this area are described by Hitchcock([4], who also
presents a method for verifying that circuit delays meet specified clock
requirements, and Ruehli and Ostapko[6], who give an extensive list of
references to digital timing and to physical and electrical aspects which
must be taken into consideration.

However, these works typically assume investigators have at their
disposal a comprehensive body of information related to the circuits under
study, with the capability to modify the circuitry to resolve timing prob-
lems. In a previous paper we examined the types of timing problems a sys-
tem designer encounters when connecting prefabricated components[2]. In
this case, the designer must rely on the information contained in the
manufacturer’s waveform timing specifications. Other, mathematically
less-rigorous, investigations of the waveform convention have appeared
in[1, 3, 5].

Timing specifications restrict knowledge of device behaviour to the tim-
ing of the signal behaviour at device ports. The specifications consist of a
set of digital waveform illustrations, annotated by timing parameters which
specify bounds on the timing of signal transitions. Typically, the specifica-
tions are only partial descriptions of the timing of activities at the ports.

We formulated the timing information conveyed by the waveform con-
vention as a set of linear constraints on the timing of pairs of signal transi-
tion events. A key point of the formulation is the distinction between tim-
ing constraints as produced constraints if they reflect the timing behaviour
of the device in response to proper inputs, or required constraints if they
reflect the conditions that must be met by the device’s environment in
order for the device to function properly.

We used linear optimization techniques to verify that the timing infor-
mation expressed by the waveform convention is ‘consistent’, and to test
whether the produced constraints of one device ‘satisfy’ the required con-
straints of a device connected to it, in the following sense. Let V be a set



of integer-valued variables representing waveform transition times, and let
I' be a set of linear constraints on V. A constraint 7,, €I’ is an expression
of the form

Tupt V—U Sbuv;

where u and v are transition events, and b,, is an upper bound on the tim-
ing of the transitions (a lower bound {,, < v —u can be represented as an
upper bound by reversing signs and the direction of the inequality, namely,
u—v < —l,,). We define the set I' to be consistent if the solution space of
I' is non-empty. Given two constraints 7,, and %uv:

Yuv Satisfies Yoo & byy < byy -

The test for satisfiability arises when the constraint ':y,w represents a
required constraint on (u,v) for a given device—namely, one which must be
met by the timing of devices connected to that device—and <,, represents
a constraint on (u, v) due to the other devices; ,, will either be a produced
constraint of these devices, or it is inferred from other produced constraints
in the manner discussed below.

The restricted nature of the consistency and satisfiability problems per-
mits efficient solutions using shortest-path methods. We represent V and I’
as a labelled directed graph G = (V, A), with nodes V = {1,..,n } and arcs
A = {a,, |v—u <b,, €'} where, associated with each arc a,,, oriented
from node u to node v, is an integral length b,,. We also use (u,v) to refer
to arc a,,. A path, p(u,v), between nodes v and v in G, is a sequence of
arcs p(u,v) = (u,uy), (uy, ¥g), ..., (¥, v). A cycle in G is a path p(u,u); the
length of a path is the sum of its arc lengths. A negative cycle is a cycle
p(u,u) with length < 0.

We solve the problems by computing the shortest paths between all
pairs of nodes in G. It can be shown that I' is inconsistent if G contains a
negative cycle. Let G be the final graph obtained from G after computing
the shortest paths. We refer to G" as the tightening of G, and to the label
on an arc (u,v) in G as the tightened bound on constraint 7,, in . The



method of tightening allows us to infer new information about the timing of
two events for use in a satisfiability test.

In the remainder of this paper we justify the use of the tightening
method. For the sake of convenience, we represent both lower and upper
bounds between two events using the following equivalent interval notation:

Yuv: bu_v Sv—u Sbu-tr

Moreover, we represent this information in our graphs with a single arc
oriented from ¢ to j labelled by the interval [b;7, b,-;'-']. We refer to such a
graph as an interval-labelled DAG, or ILDAG.

2. Elements of the Delay Model

A device manufacturer cannot guarantee that each instance of a device will
exhibit the same timing behaviour. The differences are due to variations in
internal delays from one instance to the next; an instance is acceptable if
the delays fall into acceptable ranges for that device. In this section we use
the well-formed interconnection of firing elements and delay elements to
model the timing of acceptable instances of a device.

Let us define a delay component, DC, as an acyclic connection of fir-
ing elements and delay elements. These elements constitute the static
aspects of DC, and we represent the static aspects as ILDAG, G¢ = (V,A),
which we refer to as DC’s delay graph, where V is a set of n nodes,
representing the firing elements of DC, and A is a set of m arcs, represent-
ing the delay elements. A distinguished source node, v,, represents DC’s
input firing element; sink nodes and a (possibly empty) subset of the inter-
nal nodes in G* represent DC’s output firing elements. We refer to these
nodes collectively as the port nodes.

Let d; and d;f denote integer bounds on the acceptable delay range of
the k-th delay element. Then, A contains an arc a,,, oriented from node u
to node v with label [d", dgt], if u is connected to v by the k-th delay ele-
ment. Let D denote the m-coordinate bounded delay space of DC, where



D = {(dy,...,d,) |dy <dp <df, k=1.m}.

We refer to a point d = (dy, ..., d, ) in this space as an instance of DC;
thus, for a given instance d, the ¢-th arc in A has a fixed delay, d;.

We now describe the dynamic aspects of DC. We partition the set of
firing elements in V—{v} into two sets: a set V° of early firing elements
and a set V* of late firing elements. Thus, V=V UV ' U{v,}. We associ-
ate with each firing element v in V a firing time (or event) at v, denoted
by ¢t,.

Let F(v) be the set of pre-neighbours of v along fan-in arcs; namely,
F(v) = {u |a,, €V}.

For a given instance, d, we define for each node v in V the firing time, t,ji,
for that instance, where

0, fv=uy,

td = uxélpi?u)(t,f+d,,,, ), if vEV® (5.1)
td+d,,), fveVt.
ey {18 A T v €Y

We represent the dynamic aspects of DC as a complete labelled DAG,
G® = (V,8), which we refer to as DC’s separation graph. Associated with
each arc s,, in S is an integer weight o,,, which we refer to as the (poten-
tial) separation of (u,v), representing the widest time between their firings
over all instances in D; namely,

Ouy = finea[))( ( t;i '—tzii) . (5'2)



We use the concepts of delay, event, and separation to model the tim-
ing of signals at device ports. The derivation of the delay intervals, typi-
cally from circuit layout information, is beyond the scope and interest of
this paper. We assume this information is available to us from circuit tim-
ing analysis or simulation.

An event occurs at an early firing element in the delay component as
soon as the element receives an event from some pre-neighbour of the ele-
ment. An event occurs at a late firing element as soon as the element has
received events from every pre-neighbour of the element. Events at late ele-
ments model the start event of a valid period of data and events at early
elements model the end event of a valid period of data. This behaviour is
modelled by (5.1).

We consider only the component’s behaviour due to a single event at a
single source vy The single source is justified by the fact that the start of
testing of a physical device can usually be traced to some initial trigger
point. A single event at the source is justified by considering all possible
instances of the device. By the definition of the delay component, a single
event at the source leads to a single event at every firing element con-
nected to the source by a delay path; thus, we refer to a node and an event
at a node interchangeably.

The efficient computation of the separation bound in (5.2) is left as an
open problem. For the examples in this thesis, we compute separations by
enumeration over delay bounds.

The separation o, of (u,v) is the upper bound on the time between
their firings, namely, their widest separation over all possible instances. Let
us use o, interchangeably with o,, to denote this. Let o,, denote the
lower bound on the separation of (u,v). To derive o, we use the well-

known result that, given any set of numbers, X,

min(X) = —max(—X). ' (5.3)

By (5.2) and (5.3) it then follows that



- + : d d
o = —0 = mm{t, —1t,; ).
uv vu deD( v ‘lt)

Let (0,;,,0,;’;) denote the range of separations, or separation-interval, of
(u,v). For the sake of clarity, we use separation-intervals to illustrate
separation graphs, and refer to these as separation-interval graphs. For
every pair of arcs s,, and s,, in the separation graph, with separations o,
and 0,,, the separation-interval graph has one arc, say s,,, with
separation-interval label <—0W,or,w>. Thus, we can represent G° as an

ILDAG.

For example, Figure 5.1 illustrates the delay graph and the separation-
interval graph of a component DC with one input and three output firing
elements. In this example, there are no internal nodes. We assume that the
delay ranges are known from circuit information. Separations were com-
puted by enumeration over the delay ranges.

Figure 5.1. Example of a delay graph and its separation-interval
graph. Early firing nodes are depicted as circles and late firing
nodes as boxes; thus, u here is a late node.

We now demonstrate that the sum of the separations along any path
between two nodes of a separation graph is at least as wide as the separa-
tion of the nodes.

Lemma 5.1. Let u; and u; be two nodes of a separation graph, and let
Ouu, be the separation of (u,u;. Without loss of generality, let
U 1 %5 Y

Suuy T Supu; be any path from wu; to uj;, with separations



. Then,

o e s U .
U Uy g TR

« e e o’ .
auluj o Uulu2+ + u’j—l"’j

Proof. By (5.2), we have

Oyu; = Mmax ( tfj —t,‘fl ).

I deD

Suppose the maximum occurs when d = M; thus,

_ M M
Uuluj - tuj _tul .

We can re-write t,f;l——t,f‘:! as

M M
L — )

M
o (M —tr ) (ar, — )+ o H(tE — 1), (549)

where z is any instance in D. But for every term (¢, —tfk_l) in the right-
hand side of (5.4), it is evident that

b d
(te —ts,_) < mag(tuk—td ) = Ouu,-

U—1! — Je Ug—1
Thus,

M M .
tuj _tul < 0u1u2+ t +qu_1uj:

which completes the proof.
]

This result depends only on the definition of separation as the maximum
distance between firing times at nodes, and not on how these times were
arrived at, namely, whether due to early or late firings. We use this result
in the following section, where we consider the relationship between separa-
tions and derived timing constraints.



3. Device Timing Specifications

In practice, a designer doesn’t know the delay intervals of a device.
Rather, we argue on the basis of the delay model presented above, that a
manufacturer’s data sheets usually provide the designer with a partial
specification of the separation intervals between port events. Figure 5.2
illustrates a partial specification of a hypothetical delay component. In
keeping with our argument, we now use the separation-interval notation to
show the timing between waveform transition events.

v Il
I pe=— (2,5) —>}<—<?,?>—>’l
3 4 DC u | 1 L
10 - {810) — =
v (I

Figure 5.2. Partial specification of event separations.

Let DC be a delay component with separation graph G° = (V,A). A
(timing) specification of DC is a subgraph of G°, G° = (V,/i), where
VCV is the set of port nodes in V, and AQA is a subset of the arcs
between port nodes in G°. Associated with each arc a,, in A is the separa-
tion 0, of (u,v). We refer to (u,v) as a speci fied pair if a,, is in A, and as
an unspectfied pair otherwise. G’isa partial specification if it contains
any unspecified pairs.

Let us now consider the satisfiability of a specification. Suppose that
the outputs of a device X are connected to inputs of a device Y. Let
84y = (64, 645] be a required constraint in Y’s timing, namely, one which
must be met by X if Y is to function properly. Let 7,, = [r,,, 7] be the
timing on (u,v) due to X. Then,

T,y Satisfies 6, & 6.7 <7 &r1}r <6§F . (5.5)

It is evident that (5.5) is equivalent to the following expression
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T, Satisfies 6, & 7,0 <6r &rF <&t . (5.5")

For the sake of convenience, we use (5.5°) in our subsequent arguments, and
assume that satisfiability has been formulated in terms of a test on upper
bounds; thus, we may drop the superscript ‘4.

Now suppose that (u,v) is an unspecified pair in X; in this case, 7, is
deduced from other constraints by using the method of tightening described
in the first section. The following theorem tells us that we cannot deter-
mine, from a specification alone, whether a deduced timing is indeed the
potential separation.

Theorem 5.1. The nformation contained in a partial specification of a
delay component ts tnsufficient for deducing the potential separation of
an unspect fied pazr.

Proof. (By counterexample). Consider the device and partial specification
of Figure 5.2; Figure 5.3 shows two delay graphs for the device. The delays
shown yield the specified separations of Figure 5.2, but different separations
for the unspecified pair (u,v).

||

This result tells us that, unless we know the underlying delays in a circuit,
we cannot guarantee that we have deduced the correct potential separation
from a partial specification alone. This result suggests that we re-examine
the methods we used to derive the timing on an unspecified pair of events.

In[2] we used the method of shortest paths to derive tight bounds on a
set of constraints. We now show that the use of this method to verify the
reliability of device connections is safe, in the sense that an affirmative
answer to reliability is trustworthy, while a negative answer may identify a
connection as unreliable when in fact it is reliable.

Let G° be a partial specification of a device X. We claim that G’ in
fact represents the set of produced constraints of a device. Let P,, be the
set of all paths from node u to node v in G°. Let Pyy be a path in P,,, and
let |p,,| denote the sum of the separations on the arcs in p,,. The shortest
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[2,5] (2,5) ~_ (38

(2,5) ~_ (87
— S
Yo v
[8.9] (,10) D
delay graph separation-interval graph

Figure 5.3. Counterexample used in the proof of Theorem 5.1.
path from u to v, sp,,, is defined as

undefined, if G’ is inconsistent

Spyy = ] unbounded, if P,, =
min ( |p,,|), otherwise .
Puy €F

The following theorem states the relationship between the length of the
shortest path between two nodes of the (timing specification) graph G° and

the potential, or widest, separation of the nodes.

Theorem 5.2. For any pair of nodes (u,v) in a partial specification G°,
the length of the shortest path from w to v is at least as large as the

potential separation; namely,

auv S spuv'
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Proof. We may assume that G° is consistent. By (5.6), it is evident that
the claim holds if there is no path from u to v. Suppose there is a path; by

Lemma 5.1, 0, is less than or equal to the length of any path from u to v.
|

The next theorem establishes the safety of bounds derived by the
method of shortest paths.

Theorem 5.3. Let G,, be the separation on (u,v) in a device X, and let
T 4 b€ the shortest path bound on (u,v). Let o0,, be the separation of (u,v)
in a device Y. Then

T 4y Salisfies 0, = 6,, satisfies 0, .

Proof. By (5.5)), (7,, satisfies o,,) & (7,,<0,,). By Theorem 5.2,
Oy < Tyy; thus, 6, < 0,,, namely, 6,, satisfies 0.
||

This result tells us that if a computed separation passes a satisfiability test
then we can be assured that the correct separation, based on the underly-
ing delays, will pass the test as well; consequently, our tightening techniques
are safe. However, since they could be wider than the potential separation,
they could also fail a satisfiability test which the potential separation might
pass. Consequently, they are pessimistic.
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4. Summary

In this paper we viewed a circuit as a network of early and late firing ele-
ments, separated by delay elements. A specific instance of the circuit,
namely, a manufacturer’s product, will exhibit its own characteristic delays.
We suggested that a manufacturer’s timing specification is a partial
description of the set of bounds on the separation between the firing times
calculated by considering all instances of the circuit; typically, these bounds
are derived from the electrical properties of the circuit, or approximated by
simulation. Theorem 5.1 states that unless we know the circuit delays, we
cannot derive these bounds with certainty. However, Theorem 5.2 indi-
cates that the method of shortest paths used to derive the separation
between firing times will compute a separation at least as wide as the
separation due to the underlying circuit delays. Finally, Theorem 5.3 states
that if the computed separation passes a satisfiability test then we can be
assured that the correct separation—the one based on the underlying
delays—will pass the test as well. Consequently, our tightening techniques
are safe; at the same time they are pessimistic, in the sense that if the satis-
fiability test fails then we might label connections as unreliable which might
nevertheless be reliable based on their ‘correct’ separations.
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