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ABSTRACT

In current compiler-construction techniques, it is standard practice to split syntax analysis into
two phases: scanning and parsing. Some disadvantages of two-phase syntax analysis are presented.
Two-phase syntax analysis is in standard use principally due to the inadequacy of the commonly-used
metalanguages for completely, unambiguously, and concisely describing a programming language in a
single grammar, and the inadequacy of the commonly-used parser-generation techniques for process-
ing complete descriptions.

This thesis proposes a notation, called restricted context-free grammars (RCFG’s) that allows the
syntax of a programming language to be completely described by a single, succinct, and unambiguous
grammar. Such grammars are complete in the sense that even the syntax of comments and of white
space are described, and the terminal symbols are all single input characters. Parser generation tech-
niques are presented for this new notation, and since the grammars are complete, no scanner phase is
needed.

Restricted context-free grammars consist of productions, as do ordinary context-free grammars,
and of two new restrictive rules: the exclusion rule, and the adjacency-restriction rule. The intended
use of RCFG’s is to prepare a concise, but ambiguous grammar using productions, and to resolve the
ambiguities using the restrictive rules. The new rules are formally defined and their properties
analyzed.

Concise single-phase grammars require a powerful parsing scheme. The noncanonical SLR(1)
parser generation method of Tai can meet these needs. An overview of NSLR(1) parsers and parser
generation is given. A correction is presented for a known error in the published version of the parser
generator, and enhancements are described to allow the processing of the new notation.

The efficiency of single-phase parsers is evaluated, and it is shown that such parsers can have
comparable efficiency to the traditional two-phase parsers.

An NSLR(1) parser generator that accepts the new rules has been implemented and tested on a
complete single-phase grammar for ISO Pascal and for Modula-2. The grammar for Pascal is
presented as an appendix.
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Chapter 1

Introduction

Conventional wisdom tells us that when writing a compiler we should split parsing into two phases:
lexical analysis by a finite-state scanner and syntax analysis by a pushdown parser. Unfortunately
both compiler writers and compiler-compiler writers suffer in this scheme. The compiler writer suffers
in that he must partition the grammar for the programming language that he is implementing into two
interelated grammars, and he must design an interface between the two phases. In addition, it is not
always clear how much semantic analysis should be done in the scanner; specifically how much pro-
cessing of literal constants should be done. (In attribute grammars this problem corresponds to devis-
ing a way to pass attributes between the two grammars.)

To clarify the deficiencies of this approach, consider a programming environment where no sin-
gle programming language has adequate power to solve any problem. Every problem must be solved
using two different programming languages, and every programmer must keep at least two language
reference manuals at hand. Few programmers would relish such an environment, and yet compiler
writers are expected to accept it.

The designer of a compiler-compiler that uses a two-phase approach also faces difficult deci-
sions. He must choose what metalanguages are to be used by the scanner generator and the parser
generator, implement two separate automata generators, design the form of the interface between
them, and prepare user documentation for the two metalanguages and the interface.

Nevertheless, two-phase syntax analysis is in standard use principally because of two distinct
problems. The first problem is the inadequacy of the commonly-used metalanguages for completely,
unambiguously, and concisely describing a programming language in a single grammar. The second
problem is the inadequacy of the commonly-used parser-generation techniques for processing complete
grammars. It is these two problems that this thesis addresses.

~1.1. The Pervasiveness of Character-Level Grammars

The style of modern language-description manuals attests to the desirability of describing a program-
ming language with a single grammar. It is now common for programming-language definition
manuals to include a character-level grammar that describes the language being defined right down to
single input characters. A character-level grammar is characterized by EBNF rules such as:

Letter s "a" I "bn l nCn | . | uZu
Digit — non | "1" | uzn l . I u9n
- Identifier —s Letter { Letter | Digit }

DigitSequence — Digit { Digit }
UnsignedInteger — DigitSequence

UnsignedReal — Unsignedinteger "." DigitSequence | "e" ScaleFactor |
| UnsignedInteger "e" ScaleFactor

ScaleFactor — [ Sign | UnsignedInteger

Sign — l L

StringElement — """ | any_character_except_apostrophe

"nyn

CharacterString ~ — "' " StringElement { StringElement }



CHAPTER 1: INTRODUCTION 2

These sample rules were taken from a grammar for Pascal26 but similar rules can be found in gram-
mars for PL/18 Modula-25% and Adal6

1.2. Common Deficiencies of Character-Level Grammars.

Despite their apparent attention to detail, character-level grammars have a number of typical deficien-

cles:

1) They are incomplete. There are a number of syntactic features typically missing from the
character-level grammars: . :

The syntax of comments is not given.

The permitted use of white space (blanks, tabs, newlines, and comments) is not given.
For instance, the common Pascal grammars do not specify whether blanks may appear in a
record field selector. Can the selector “employee.name” appear as “employee . name,”
or split across lines? (In usual implementations it can.) Similarly they do not specify if
blanks may appear in floating constants. Can the constant “1.86e5” appear as
“1.86 e5”? (In usual implementations it cannot.)

The required use of white space is not given. For instance, white space must appear
between keywords and identifiers or the keyword is to be treated as part of the identifier.

This missing information is usually supplied in English by supplementary documentation, even
though a CFG is powerful enough to supply it.

2) They are ambiguous. An examination of the ISO grammar for Pascal shows the common kinds
of ambiguity.

The description of the nonterminal Identifier, as shown above, includes all Pascal key-
words, even though they are reserved and are supposed to be excluded.

When reserved words are embeded in identifiers, there may be more than one valid parse
of a sentence. For instance, according to the ISO grammar for Pascal, the program frag-
ment

BEGINWORKEND ;

can be parsed as either as a compound statement invoking the procedure WORK, or as a
simple statement invoking the procedure BEGINWORKEND. We call this kind of ambiguity
a longest-match ambiguity.

The grammar contains the so-called dangling-else ambiguity. The program fragment

if B1 then
if B2 then
S1
else
S2:

can be parsed so that S2 will be executed when B1 is true and B2 is false, or when B1 is
false.

3) They are unsuitable for the common automatic-parser-generation methods. They require
parsers with greater power than is available from an LL(1) or LR(1) parser. Unfortunately, the
common parser generators typically provide even less power than an LR(1) parser. The UNIX
tool YACC, for instance, generates LALR(1) parsers.

1.3. Reasons for Deficiencies of Character-Level Grammars

Why are grammars published with so many deficiencies? The three desirable properties of published
grammars are that they be:



CHAPTER 1: INTRODUCTION 3

1) correct, which implies that they be precise, complete and unambiguous,
2) human readable, so that implementors and programmers can understand them, and
3) suitable for automatic parser generation, so that reliable compilers can be easily written.

These goals often conflict. A complete and unambiguous context-free grammar would be too
long to be human readable. Similarly, the changes to a grammar needed to make a grammar
LALR(1) tend to increase the length of the grammar. Excessively long grammars also tend to
impede automatic parser generation, as most automatic parser generators produce at least one state
per rule, and thus long grammars generate large parsers. The conclusion one would draw from this
analysis is that published grammars have sacrificed correctness and machine processability for concise-
ness in order to increase readability.

A compiler writer attempting to prepare a grammar that meets the three objectives given above
suffers from the constraints of context-free grammars. Context-free grammars have only one type of
rule, the production, and only one operator, the alternation bar. This simplicity has aided in the
description of the formal properties of context-free grammars, but impedes the concise description of
programming languages. Some attempts have been made to enhance the notation of context-free
grammars to facilitate programming-language description. The best known of these are the enhance-
ment of BNF notation into EBNF. EBNF has the added features of square brackets for optional
phrases and curly braces for repeated phrases. Tests by the author on grammars for Pascal, Modula-2,
and Ada have shown that due to these simple enhancements the same grammar can be expressed in
EBNF using from 20% to 43% fewer rules than BNF. These improvements, however, are not enough
for complete character-level grammars.

To avoid these difficulties, compiler writers often abandon the use of a grammar for describing
the scanner phase and code it directly in an implementation language. By doing this they lose the
benefits of using a grammar. An implementation usually expresses the syntax of a language less
clearly than does a grammar. This was one of the reasons for inventing grammars.

This thesis presents a metalanguage that allows a correct description of programming languages,
while retaining readability. This thesis also presents a parser construction algorithm that can handle
the proposed metalanguage.

1.4. Proposed Additions to CFG Notation

Currently, context-free grammars have only one rule, the production, and this rule has no negative
form. In other words, one can describe a symbol in terms of what it generates, but there is no
mechanism for describing what it does not generate, even though a negative description may be
shorter and clearer. Our proposal for a more powerful metalanguage consists of enhancing context-
free grammars with two new restrictive rules, the exclusion rule, and the adjacency restriction.

The technique proposed is to write compact but ambiguous context-free grammars, augmented
by restrictive rules that disambiguate them. Grammars that use these restrictive rules are called res-
tricted context-free grammars (RCFG’s), and in particular, a BNF grammar that uses these new rules is
called a restricted BNF (RBNF) grammar. To rewrite such grammars using only productions would
require awkward grammar transformations, often resulting in an exponential size increase (thousands
more rules for Pascal-like languages), and convolution of the grammar’s structure so as to compromise
its utility for semantic analysis and translation.

The two new rules are precisely defined, in Chapter 5, by:
1) Giving a formal description of how they affect derivations.
2) Giving grammar transformations that produce a pure CFG from a restricted CFG.

3) Giving algorithms for generating parsers from restricted CFG’s. Since the grammar transforma-
tions of item 2 tend to produce very large grammars, these parser generation algorithms work
without applying the transformations.
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The new rules have additional practical value for parser generation. Some unambiguous gram-
mars that do not use the restrictive rules may require £ symbol lookahead, where £ > 1, by an LR
parser. With the addition of the restrictive rules, even though the grammar is already unambiguous,
it may be possible to parse the language generated by the grammar using a single symbol of look-
ahead by an LR parser.

1.5. Parser Generation for Restricted Context-Free Grammars

To supply the parsmg power needed for character-level grammars a parser generator based on the
noncanonical SLR(1) method of TaidS is proposed His method generates two-stack deterministic
parsers. The greater power of his method is derived from the fact that multiple lookahead symbols
can be reduced to a higher-order nonterminal, which is then used as the lookahead symbol.

Tai’s parser-generation method cannot be used exactly as published. It requires three principal
improvements. First, an error in the computation of lookahead sets must be corrected. Second, the
handling of e-productions must be improved. This change is necessary since the grammar symbol that
generates white space is ubiquitous in a character-level grammar, and it can generate ¢. Third, the
handling of the new restrictive rules must be incorporated into the method.

1.6. Conclusions and Results

There are two principal conclusions of this thesis. The first is that restricted context-free grammars
can be used to prepare complete, concise and unambiguous descriptions of modern programming
languages, and the second is that such grammars can be processed by automatic parser generators. To
demonstrate the first conclusion RCFG grammar for Pascal is presented in an appendix. The second
conclusion is demonstrated by the algorithms given in this thesis for processing a class of RCFG gram-
mars called SE-SAR-NSLR(1) grammars (the abbreviation is explained in the next paragraph), and
the actual implementation -of the algorithms. Note that the first conclusion is independent of the
second. That is, RCFG’s are useful for describing programming languages, even if traditional
methods are used to implement the parser.

The abbreviation SE-SAR-NSLR(1) stands for simple-exclusion, simple-adjacency-restriction,
noncanonical simple LR(1). Generating parsers for grammars that make unrestricted use of exclusion
rules and adjacency-restriction rules is a very difficult problem. We have therefore proposed a set of
limitations on the use of these rules that permit the generation of parsers using the kind of simple
treatment of lookahead sets that gives simple LR parsers their name. SLR(1) parsers are called simple
because the consistency of the parser can be tested by examining each state of the parser individually
without considering the paths between states. QOur limited class of grammars still provides enough
power to prepare complete, unambiguous grammars of a reasonable length for modern programming
languages.

Appendix D presents an SE-SAR-NSLR(1) grammar for Pascal. This grammar is complete and
unambiguous, and with 563 rules is still concise enough to be readable by humans and to generate a
parser of reasonable size. Appendix F is a user’s manual for our implementation of an SE-SAR-
NSLR(1) parser generator® This parser generator was tested on numerous RCFG’s including gram-
mars for ISO Pascal and Modula-2, and the generated parsers were verified on a test suite. of Pascal
and Modula-2 programs prepared for CS-444, a compiler-construction course given at the University
of Waterloo. The Modula-2 parser was also tested on the source code of the parser generator itself.
The parser generator also provides the basis for a Modular Attribute Grammar system.18

The contents of this thesis have been summarized and presented at the SIGPLAN *89 Confer-
ence on Programming Language Design and Implementation49- 50

* This parser generator was based on an SLR(1) parser generator written by Gordon Cormack.
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1.7. Preview of Remaining Chapters

Chapter 2 gives an overview of existing work by other researchers that is related to this thesis. That
chapter has two principal topics of interest: (1) enhanced parsers and parser generators that can pro-
vide the: power needed to parse character-level grammars, and (2) methods of resolving ambiguities in
context-free grammars.

Chapter 3 describes attempts to use existing compiler-construction tools to process single-
metalanguage descriptions of the programming language Pascal. The objective of this chapter is to
show the difficulties that a compiler writer faces when taking this approach. This endeavor also
showed that single-metalanguage translators can have processing efficiencies similar to dual-
metalanguage translators.

Chapter 4 describes the noncanonical SLR(1) parsing strategy of Tai. An error in Tai’s original
parser construction algorithm is described and a correction proposed. Enhancements are also pro-
posed that permit the processing of character-level grammars.

Chapter 5 presents detailed descriptions of the two new proposed rules for context-free gram-
mars, exclusion rules and adjacency-restriction rules. Formal definitions for these new rules are
given, and strategies for incorporating them into existing LR parser generators and Tai’s Noncanoni-
cal SLR parser generator are presented.

Chapter 6 presents a summary of the results of this thesis, and proposes future research toward
accepting a larger class of restricted CFG’s and generating smaller parsers.



Chapter 2
Related Work

In this chapter, existing work related to parsing complete character-level grammars is surveyed. There
are two principal topics of interest: parsing techniques powerful enough for processing complete
character-level grammars for programming languages, and methods of disambiguating programming-
language grammars.

2.1. Problems Parsing Character-Level Grammars

Before presenting advanced techniques suitable for parsing character-level grammars, we give an
example, taken from Pascal, of the kind of parsing problem that necessitates advanced parsing tech-
niques. Consider the following grammar rules:

VarDeclPart  — VAR VarDeclList

IdList — Identifier | IdList "," Identifier
VarDecl — IdList ":" Type

VarDeclList — VarDecl ;" | VarDeclList VarDecl ";"

and the following two fragments of Pascal code:

var var
A . Teal; A . real;
I : integer, I : integer;
procedure P (x : real); proceeds : real;

A parser processing these two program fragments from left to right would perform identical actions
until the “p” of “procedure” or the “p” of “proceeds” is encountered. Up until that point the
strings “A : real;” and “I : integer” have been recognized as variable declarations. On seeing
the “p” of “procedure” in the first program fragment, the parser should end the recognition of Var-
DeclList, and begin recognition of a procedure declaration. In the second fragment, on the other
hand, the parser should recognize that the variable declaration list has not ended, and should simply
begin the recognition of another variable declaration. Whether the parser is controlling the immedi-
ate production of code, as in one-pass syntax-directed code generation, or is controlling the construc-
tion of a parse tree, these two choices have significantly different results.

If a parsing technique is being used that uses a single symbol of lookahead information, as is the
case with LI(1) and LR(1) parsers and their derivatives, then the only lookahead information avail-
able would be the single character “p”. This is simply not enough information to make the parsing
decision for a parser generated from the given grammar fragment. A parser would actually have to
lookahead to the second “e” in “proceeds” before it could tell the two code sequences apart. In gen-
eral a parser would have to look all the way to the blank following “procedure” before it could be
sure that a ProcedureDeclaration was indeed starting, which means that ten symbols of lookahead
information would be needed.

The obvious solution of using an LR(k) parser (or LL(k) parser) with a large enough value of &
is simply not practical. The cost of increasing k grows disproportionately with the benefit. When a
parser for a character-level grammar is being constructed there are up to 128 terminal symbols, and
hence there could be up to 128* lookahead strings for each state of the parser. For k& = 10 this would
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require about 10?! bytes of storage per state, a figure that exceeds even the size of the largest existing
secondary storage devices. One may justifiably argue that it should be possible to find patterns in
these lookahead strings, and use considerably less storage by storing only some compact representation
of those patterns, and devise a machine for interpreting those patterns. In fact, the XLR and LAR
parsers described in Sections 2.3.4 an 2.3.5 below can be viewed as using this technique. Neverthe-
less, the straightforward construction of an LR(k) parser, for k as large as 10, is not practical.

In fact, it has been shown that any LR(k) grammar can be rewritten as an LR(1) grammar. In
addition, grammar rewriting is often employed and required for making published grammars accept-
able to existing parser generators. But the grammar rewriting for the above grammar segment to gen-
erate an LR(1) parser whose lookahead symbols represent a single character of input, would totally
destroy the readability of the grammar. Furthermore, the author speculates that the great width of
the LR(k) tables would simply be exchanged for LR(1) tables of great length. That is, a large
number of lookahead possibilities would be exchanged for a large number of parser states, leading to
similar parse table sizes.

2.2. Traditional Multiphase Syntax Analysis

In order to implement parsers for character-level grammars, the traditional practice has been to add
one or more preprocessing phases before the parsing phase. This technique is illustrated in Figure
2.1.

Character input

|

FSM
scanner

-- ="
|
Screener 1 Keyword
(optional) | recognition
!
— e e =

J’/ Tokens

DPDA
parser

l

Syntax tree or
intermediate language

Figure 2.1: The traditional method of implementing syntax analysis.

In the syntax-analysis* method shown in Figure 2.1, a finite-state machine preprocesses input for a
DPDA parser. In addition, some implementations use an intermediate phase called a screener to

* In the literature, it is common to call the processing done by the scanner phase lexical analysis, and to treat it as
distinct from syntax analysis. That distinction is not made here, and our use of the term syatax analysis includes lex-
ical analysis.
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recognize reserved keywords, rather than having them recognized by the scanner. The parser receives
tokens, rather than single characters, as input, where each token represents strings of one or more
input characters.

2.2.1. Advantages of Multiphase Parsing

There are reasonable arguments for using multiphase syntax analysis. By using the multiphase
method, instead of implementing a complex, multisymbol-lookahead parsing strategy and its parser
generator, the parsing problem is solved by partitioning it into two or more simpler modules. Modu-
larization of a program is generally perceived as being good.

Another perceived advantage of the multiphase method is that a finite-state preprocessor for a
DPDA parser should run more efficiently that a DPDA parser processing raw input.

2.2.2. Disadvantages of Multiphase Parsers

Unfortunately there are serious disadvantages to multiphase syntax analysis. The first is that the
grammar for the language to be implemented must be partitioned into at least two parts: a high-level
grammar for the parser and a low-level grammar for the scanner. Most modern languages are
designed so that their grammars can be partitioned in this way, but this need not be the case.

Second, if a finite-state machine is used as the scanner, the parts of the partitioned grammar
have to be written in different metalanguages. This is so because a finite-state preprocessor cannot,
in the general case, recognize a language described by a context-free grammar, and regular expres-
sions are not powerful enough to describe the syntax of the common programming language. This
fact is the reason that the UNIX scanner generator LEX, and parser generator YACC use different
metalanguages for their input grammars.

The third disadvantage to multiphase-syntax analysis is that it requires the design of an interface
between the phases. The interface can be fairly complex, since it must describe both the token being
transmitted, and the attributes of the token. Token attributes are things like the name of an identif-
ier token, and the values of string or numeric constants. A language may be required for describing
the interface. For instance, the interface between LEX and YACC is described by files in the C pro-
gramming language.

The apparent advantages of multiphase parsers can also be questioned. The first apparent
advantage was modularization. Even though a multiphase parser has been divided into modules,
these modules are usually closely coupled?* They are closely coupled in the sense that the two modules
can seldom be changed independently. Changes to one module often require corresponding changes
to the other module. When modules are closely coupled, modularization can actually increase the dif-
ficulty of maintaining the system rather than decreasing it. In addition, the modularization used can
be categorized as phase modularization, which Parnas warns against in his classic paper on modulari-
zation#4 :

It shouid be pointed out that the grammar for a programming language can be modular, even
though its parser is not. Indeed most character-level grammars presented in the programming
language manuals are highly modular. Not only do these grammars group nonterminals with similar
purposes into recognizable regions of the grammar, but also the description of each nonterminal can
itself be thought of as a subgrammar. Work by Heering, Klint, and Rekers?? on incremental genera-
tion of parsers may even lead to separate compilation of grammars modularized in this way.

The second apparent advantage was an expected increase in efficiency due to using a finite-state
preprocessor for the push-down automaton. The increase in efficiency is not necessarily realized,
either in theory or in practice. Theory tells us that an FSM and a DPDA both run in linear time on
the length of the input, so that the performances can only differ by a constant factor. Further analysis
presented in Chapter 6 shows that this constant is small, and may actually favour a single-phase
DPDA in some cases. Actual tests, presented in Chapter 3, show that a DPDA scanner, prepared
using YACC, has a similar efficiency to an FSM scanner, prepared by LEX.
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It should also be pointed out that multiphase parsers and multi-metalanguage grammars do not
resolve any of the ambiguities mentioned earlier; they solve only lookahead problems. Every ambi-
guity that existed before the grammar was partitioned will still exist after the grammar is partitioned.

2.3. Existing Work on Single-Phase Parsing or Unified Metalanguages

Other researchers have proposed methods for single-phase parsing, or for constructing parsers that
may be suitable for parser generation using an unpartitioned grammar, or at least using a single
-metalanguage. In this section we shall consider some of these. In order to keep parsing efficiency
comparable to the traditional multiphase method, only parsing methods that run in at least linear time
on the length of the input are considered.

2.3.1. Scannerless Parsing

One of the earliest references to scannerless parsing is given by Mavaddat3® He shows how
operator-precedence parsing can be extended to avoid the need for prescanning numeric input into
tokens. His application is in desk calculator programs, where all identifiers are single letters. His
technique could be extended to avoid the scanning of identifiers too, but operator-precedence parsing
is generally considered not to be powerful enough to parse modern programming languages.

2.3.2. Partitioned Grammars Using a Single Metalanguage

DeRemer!4 proposed that the scanner and the parser could be described by the same
metalanguage, a context-free grammar, while keeping a multiphase parse. His method uses an LR
parser generator for both phases. Since his proposal still involved multiphase syntax analysis, the
problem of interfacing the phases still exists, and he does not address this issue. His handling of
ambiguities is discussed in Section 2.4.3 below.

DeRemer’s proposal does not decrease the complexity of the parser, but it simplifies the parser
generator. The same parser generator module can be used to generate both the scanner and the
parser. It also simplifies the preparation of the partitioned grammars, since the same metalanguage is
used.

2.3.3. Automatic Grammar Partitioning

Krzemien and Lukasiewicz33 discuss the automatic extraction of the FSM scanner phase from a
unified grammar. They present an algorithm for extracting regular subgrammars from a context-free
grammar. By their method, the compiler writer prepares a single grammar for the language being
implemented, and the parser generator automatically partitions it into a regular grammar for the
scanner phase, and a context-free grammar for the parsing phase. They do not, however, discuss how
to deal with the common ambiguities in programming-language grammars.

This method simplifies the compiler writer’s task in that he now deals with a single grammar,
and a single metalanguage. The method however leads to quite a complex parser generator
comprised of at least three modules: a grammar splitter, a scanner generator and a parser generator.

2.3.4. Regular-Right-Part Grammars and Parsers

LaLonde?3,36,37 proposes the use of regular right part (RRP) grammars, parsers and parser gen-
erators. In his method, the right part of a production rule may be a regular expression. This
approach results in highly expressive grammars. Sample rules from his metalanguage would look like
the following:

A —a(Clc)
B — b|a*Be

He presents a parser generation algorithm that can accept RRP grammars and produce RRP parsers.
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An RRP parser has six actions: readahead, readback, shift back n goto, shift back n reduce,
accept, and error. The extra actions allow the parser to change state without modifying the parse
stack. In this way a finite-state machine can perform regular-expression recognition interleaved with
a DPDA parse. Thus the finite-state scanner is not eliminated, but rather is incorporated directly into
the parser.

LaLonde explicitly states that his objective is to unify the description of scanners and parsers.
He shows that his parsing method sometimes runs more efficiently than a parser generated from a
pure CFG description of the same language. He does not, however, discuss the treatment of the com-
mon ambiguities appearing in programming language grammars.

2.3.5. Extended Lookahead LLR (XLR) Parsers

Baker presents a practical parsing technique that can make use of more than a single symbol of look-
ahead. First an ordinary LALR(1) parser is constructed. If any conflicts remain that are not resolved
with a lookahead of a single terminal symbol, then a nondeterministic finite-state machine processes
additional terminal symbols of lookahead until all but one of the conflicting parser actions is elim-
inated. He postulates that a deterministic version of his conflict-resolution scheme would result in
excessively large parse tables.

Baker does not mention the parsing of character-level grammars as an objective of his parsing
method. Instead he proposes to solve difficult parsing problems in the grammars of Pascal and Ada
that are normally solved by rewriting the grammar. He also suggests that his parsing method facili-
tates error recovery. o

We postulate that Baker’s method is powerful enough to generate parsers from character-level
grammars, once a suitable treatment for the common ambiguities is devised. In such an application,
however, conflict resolution would be invoked regularly, and the nondeterministic nature of the
conflict-resolution strategy would significantly affect the efficiency of the parser, so that it would not
necessarily run in linear time. In the applications cited by Baker, on the other hand, conflicts are sig-
nificant but rare, and the efficiency of conflict resolution hardly affects total parsing efficiency.

2.3.6. LAR Parsers

Bermudez & Schimpf? present a parse-table generator for a parser that they call LAR(m)* They build
an LR(0) parser, and, like Baker, resolve any conflicts by running a finite-state automaton on the
lookahead string, but unlike Baker their FSA is deterministic.

An LAR(m) parser has seven parser actions:

(1) shift g,
(2) reducen,
(3) accept,
(4) error,

(5) lookahead-scan q’,
(6) lookahead-shift ¢, and
(7) lookahead-reduce n.

The last 2 actions are performed by a lookahead automaton when resolving a conflict. A successful
conflict resolution consists of a series of lookahead-scan ¢’ actions, representing transitions between
states of the lookahead automaton, followed by a lookahead-shift ¢ or a lookahead-reduce n. A
lookahead-shift ¢ action indicates that the parser should resolve the original conflict by shifting and
going to state ¢, and a lookahead-reduce »n action indicates that the parser should resolve the conflict
by a reduction on rule n.

The states of the lookahead automaton are computed based on the set of states that the incon-
sistent LR(0) parser could enter. As such the finite-state lookahead automaton is simulating the
action of the LR(0) parsing automaton, but with a finite stack size of m.

* The letters LAR are not an acronym; they are a pure fabrication.



CHAPTER 2: RELATED WORK 11

This parsing method is superior to Baker’s in that the lookahead automaton is deterministic;
nevertheless it does have some drawbacks. After looking ahead at an arbitrary length of input, the
lookahead automaton resolves only one parsing conflict, and after the resolution any input scanned
must be reprocessed through the actual LR(0) automaton. This rescanning wastes some parsing work
done during the lookahead parser simulation.

Another limitation of the method is that although the lookahead automaton is simulatiﬁg the
LR(0) parser, it is still only a finite-state machine. As a result the lookahead set that can resolve a
conflict is still regular. '

Another problem is that a separate lookahead automaton is built for each state in conflict. If a
lookahead symbol for state A would lead the parser to another conflicting state B then the lookahead
automaton for state B would be duplicated entirely in that of state A. Furthermore, once the conflict
in A has been resolved, the parser would be directed to state B where another conflict exists and
another conflict resolution automaton would be invoked. The conflict resolution automaton for state
B would reprocess some of the same lookahead information that was processed for state A. Bermudez
and Schimpf do not discuss how this duplication of conflict resolution automata and reprocessing of
input could be eliminated or minimized. '

These disadvantages did not concern Bermudez and Schimpf in that they were interested mostly
in grammars that are almost LR(0) consistent. The motivation for their work was in processing gram-
mars generated by automatic grammar rewriting systems where the user does not always have full
control over the grammar being processed. They give further uses for their method by showing how
their parser generator can be used to solve a difficult problem in parsing PL/I.

2.3.7. Noncanonical SLR Parsers

Szymanski and Williams®* present the theory of noncanonical bottom-up parsers that can make non-
leftmost reductions on sentential forms. Their modification can be made to almost any existing
bottom-up parser to yield a parser that can accept a larger class of languages while keeping linear time
characteristics.

Tai®® presents a parser-generation method for noncanonical SLR(1) parsers, called NSLR(1)
parsers for short, that use Szymanski’s noncanonical parsing principles. Tai’s parser uses two parsing
stacks and is schematically illustrated in Figure 2.2.

Finite-State Input 7
Automaton p I

State E Parse i

Stack i Tables I Lookahead

b o 3 Stack
N N N
S N
N N

Figure 2.2: Schematic representation of an NSLR(1) parser. The principle differences
from an SLR(1) parser are the addition of a lookahead stack, and the redefinition of the
reduce action to make use of that stack.
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The two stacks of the parser are called the state stack, which is used like a standard DPDA stack, and
the lookahead stack, which is the added stack. (Tai calls the lookahead stack the symbol stack.) The
lookahead stack initially contains the input characters, with the first character at the top of the stack.
(In actual implementations, input data can be made to appear as if it is initially loaded on the stack
without actually performing any push operations to initialize the stack.) A symbol pushed back onto
the lookahead stack, during parser execution, will appear to the parser to be the next input symbol.

Tai’s parse-table construction method method begins by constructing SLR(1) parse tables. If the
parse tables contain a conflict on some lookahead symbol, the conflict is resolved by shifting the look-
ahead symbol (and possibly further right context) onto the state stack where, using further lookahead
information, it may be reduced to a higher-level nonterminal. That reduced symbol will then be
pushed back onto the lookahead stack where it will serve as the new lookahead symbol. Since the
new lookahead symbol may have been reduced from many lower-level lookahead symbols, and since
further right context was used in its reduction, the new lookahead symbol can often resolve the origi-
nal conflict. A complete description of NSLR(1) parsing and parse-table generation is given in
Chapter 4.

The changes to an SLR(1) parser to obtain an NSLR(1) parser are minimal. An NSLR(1)
parser has only the same four parser actions of any LR parser: shift, reduce, accept, and error. The
only difference in the parser actions is that the reduce action is redefined so that it pushes the reduced
symbol back onto the lookahead stack. In addition, the parse tables are simplified by eliminating the
GOTO table. An NSLR(1) parser can directly execute any LR(1) parse tables by changing every
entry in the GOTO table into a shift action, and adding it to the action table. This is possible
because a GOTO operation actually represents a shift from a temporary location used to store a single
reduced symbol. Since the reduce action has been changed to make the reduced symbol look like the
next lookahead symbol, a shift action behaves just as a GOTO operation would have.

Since an NSLR(1) parser processes the lookahead information with a PDA, the lookahead
language, the set of lookahead strings that can resolve a conflict, can be a context-free language. In
this way NSLR(1) parsers are more powerful than any of the above methods, whose lookahead
languages are all regular sets. In fact, Tai shows that an NSLR(1) parser can recognize even some
nondeterministic context-free languages.

2.3.8. The Proposed Parser Generation Scheme

Our proposal is to describe completely the syntax of a programming language using a single
character-level grammar and to use an advanced lookahead parser to generate a single phase parser
from that grammar. We chose Tai’s Noncanonical SLR parser generation method as the basis of our
parser generator. This choice was made for several reasons:

1) The complexity of an NSLR(1) parser, and the NSLR(1) parser generator was judged to to be
the least of the other techniques described above. In some ways the complexity of an NSLR(1)
parser generator is even less than that of an SLR(1) parser, for although it has an extra stack, its
parse tables are more uniform, having no distinction between GOTO tables and action tables.

2) The set of languages accepted by an NSLR(1) parser is a proper superset of the set of languages
accepted by the other techniques described above.

3) Although the above methods can accept some grammars that are not NSLR(1), the NSLR(1)
grammars are adequate for describing real programming languages.

To make NSLR(1) parsers useful for parsing single-phase grammars, some corrections and
enhancements to Tai’s algorithm were needed.

1) The lookahead sets of all states must be computed to include nonterminals as well as terminals.
In the published algorithm, only lookahead sets for expanded states contain nonterminals, which
produced incorrect parsers for some grammars.
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2) The state expansion algorithm must be improved to include only essential e-reducing items.
Tai’s simpler algorithm generates too many items, introducing spurious conflicts.

3) Special treatment is needed for invisible symbols, symbols that cannot produce terminal symbols,
either directly or indirectly.

A complete description of the NSLR(1) parser and parser generation algorithms are presented in
Chapter 4, along with details of the correction and enhancements made to the algorithms.

2.4. Previous Work on Disambiguation

As was pointed out earlier, the traditional two-phase parsing method does not in itself resolve any
grammar ambiguities. All grammar ambiguities that existed before the grammar was partitioned will
still be present after partitioning, in either the scanner grammar or the parser grammar. Ambiguities
transferred to the parser grammar, such as the dangling-else ambiguity, are usually resolved by rewrit-
ing the grammar to resolve the ambiguity, or by doctoring the generated parser. Ambiguities
transferred to the scanner grammar usually require individual attention of the compiler writer.

2.4.1. Disambiguation by Grammar Rewriting

The traditional way of resolving ambiguities in a grammar is to rewrite the grammar to eliminate the
ambiguities without changing the language described. The problem with this approach is that
context-free grammars contain only one type of rule, the production, and this rule has no negative
form. This means that a grammar that could be described quite concisely with a negative rule such as
the statement, “The symbol Identifier does not generate any of the reserved keywords,” must be
rewritten with a larger number of rules explicitly describing what Identifier does generate.

Consider for example how a Pascal grammar would be rewritten to resolve the reserved-keyword
ambiguity. The ambiguous EBNF description of Identifier would take the form:

Identifier ~ — Letter { Letter | Digit }
To rewrite this definition unambiguously would require rules such as the following:

Identifier — UnreservedWord { Letter | Digit }

UnreservedWord ——h|jlk|q|x|y]|z
| a Digit
|aalablac|...|am
n Digit
nalanb|lanc
n d Digit
n d Letter
nelanf|..lanz
olaplagqg
r Digit

ralarblarc|..|larg

Q2 & 9 9 o a5 o v

r r Digit

a —_ nan l nAn
b — ubn | uBn
c — nCn ' ucu

This description of Identifier works by describing all initial prefixes that could not start a keyword, and
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specifying that an Identifier can be any of these prefixes optionally followed by letters or digits. Thus
any string starting with the letters &, j, k, ¢, x, y, and z must be an identifier, since no Pascal keyword
starts with one of these letters. The letter a begins the keywords and and array so the rules above
give the two letter strings starting with a that cannot start one of these keywords. Next it gives the
three letter strings that cannot start a keyword, even though they start with two letter strings that
could. '

Continuing the description in the pattern given above to avoid generating all the reserved key-
words of Pascal would lead to.a grammar for Identifier with 2,400 rules. Perhaps shorter descriptions
could be given by defining symbols that represent all letters but one, but although these descriptions
may be shorter they would still require hundreds of rules, and they would not be any clearer than the
above one. Furthermore, the method given above assumes some other method has been devised for
resolving the longest-match ambiguity. If the longest-match ambiguity were also resolved by grammar
rewriting, the grammar size would grow by another large factor.

Apart from being too long to be considered human readable, a grammar disambiguated as
above would generate enormous parsers with thousands of states, if the ordinary LR parser construc-
tion algorithms are used. The grammar would also be quite unmaintainable, since the addition or
deletion of a single reserved keyword from the grammar would require the modification of hundreds
of rules.

Even when grammar rewriting does not have such drastic effects on the size of the grammar, it
can seriously affect the clarity of the grammar. Consider for instance the common way of rewriting
grammars to eliminate the dangling-else ambiguity for Pascal illustrated by the grammar fragments in
Figures 2.3 and 2.4.

Statement — Labels ULStatement

Labels — €
| Integer ":" Labels

ULStatement  — ¢

| Id ":=" Expr
| VarExpr ":=" Expr
| Id

| 1d "(" ExprList )"

| BEGIN StarList END

| IF Expr THEN Labels ULStatement
ELSE Labels- ULStatement

CASE Expr OF CaseBody END

WHILE Expr DO Labels ULStatement

REPEAT SrarList UNTIL Expr

FOR Id ":=" Expr UpDown Expr
DO Labels ULStatement

| WITH Var DO Labels ULStatement

| GOTO Integer

Figure 2.3: A fragment of a Pascal grammar that exhibits the dangling-else ambiguity.
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Statement — Labels Matched
| Labels UnMatched

Labels — €

| Integer ":" Labels

Matched — €
’ | Id ":=" Expr
| VarExpr ":=" Expr
| 1d

| 1d "(" ExprList ")"

| BEGIN StarList END

| IF Expr THEN Labels Matched ELSE Labels Matched
| CASE Expr OF CaseBody END

| WHILE Expr DO Labels Matched

| REPEAT StatList UNTIL Expr

| FOR Id ":=" Expr UpDown Expr DO Labels Matched
| WITH Var DO Labels Matched

| GOTO Integer

UnMatched — IF Expr THEN Statement
| IF Expr THEN Labels Matched ELSE Labels UnMatched
| WHILE Expr DO Labels UnMatched
| FOR Id ":=" Expr UpDown Expr DO Labels UnMatched
| WITH Var DO Labels UnMatched

Figure 2.4: The traditional method of rewriting a Pascal grammar to resolve the dangling-else
ambiguity. ’

The grammar fragment of Figure 2.4 is only slightly longer than the equivalent ambiguous
grammar fragment of Figure 2.3. The real disadvantage of this rewriting is that it requires the dupli-
cation, with only slight modification, of a number of productions, i.e. close coupling of grammar
rules. Duplicating productions has the same bad effect on a grammar that duplicating code has on a
program: it increases the chance of error during maintenance in that changes to one production must
be carefully checked to see if the accompanying duplicate production also needs to be changed. In
addition the differences between the duplicated productions in this example are subtle and require
careful attention.

2.4.2. Disambiguation by Default Action

Wharton?7 proposes a set of rules that can be used to order all possible parses of ambiguous sentences.
He then shows how bottom-up parsers and top-down parsers can be made to generate only the first of
these parses. In other words the disambiguation of the grammar is implicit in the form and ordering
of the grammar rules. Methods similar to his are in actual use by existing translator-generating tools,
but they lead to a practical problem: Should the ambiguity be reported or not? A “no” answer leads
to a dangerous translator, and a “yes” answer leads to an unusable translator.
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The scanner generator LEX38 has implied rules for dealing with ambiguities: the longest match
and the earliest rule take precedence, in that order. This means that no ambiguities are reported to
the user, neither the intentional ones nor the unintentional ones. This strategy is not acceptable in
general, since unintentional ambiguities could only be uncovered by testing the generated scanner,
and generating a validation suite for identifying all possible errors may be difficult or impossible. On
the other hand, reporting all of the conflicts and how they were resolved, as YACC does, would gen-
erate tens or hundreds of messages that must each be carefully checked for correctness.

2.4.3. Disambiguation by a Screener Phase

DeRemer!* in his multiphase, single metalanguage parser generation system, uses a screener phase to
resolve the reserved-keyword ambiguity. The screener tests each identifier recognized by the scanner
to see if it is actually a reserved keyword. He does not give a notation for describing the screener
phase, but presumably this would require a metalanguage distinct from the other two phases. Nor
does he present a solution for the longest-match ambiguity. Since he uses an LR(1) parser for the
scanner phase, his system could resolve all longest match ambiguities by selecting the shift action in
all shift-reduce conflicts. This conflict resolution method would have the same drawbacks of the
approach used by LEX, in that unintentional conflicts would be resolved without being reported as
well as the intentional ones.

2.4.4. Explicit Disambiguation Rules

Aho, Johnson, and Ullman3 discuss parser generation for grammars with disambiguation rules.
They argue that an ambiguous grammar can be clearer and more concise than an unambiguous gram-
mar for the same language, and can lead to smaller faster parsers. They propose two types of highly-
specialized disambiguation rule. Their first type of rule is designed specifically to simplify the specifi-
cation of operator precedence in a programming language. Their second kind of rule applies specifi-
cally to the dangling-else problem. The first type of rule is available with the YACC parser generator,
and has successfully been used in generating parsers.

Aho et al. do not give a formal description of the semantics of their disambiguation rules, nor
attempt to classify the family of languages describable with their notation. Their rules are defined
only in terms of how they affect LR parser generation from a grammar containing them. Further-
more their two rules are inadequate for resolving the common ambiguities in character-level gram-
mars in any reasonable way.

2.4.5. The Proposed Disambiguation Method

The proposed method of disambiguating programmmg language grammars is to include explicit
disambiguation rules in the grammar, as is proposed by Aho, Johnson, and Ullman? but to use
disambiguation rules with a more general form. The principle of the proposed disambiguation rules is
that whenever the grammar allows more than one derivation of a sentence, the disambiguation rules
provide restrictive information that forbids all but one of those derivations. A CFG that includes one
or more of these restrictive rules is called a restricted CFG (RCFG).

We propose two restrictive rules, the exclusion rule, and the adjacency-restriction rule. The
exclusion rule takes the form
A >6 0.

It specifies that despite the other grammar rules, the symbol A may not generate sentences in the
language L(a). This rule has obvious applications in inhibiting the generation of reserved keywords
by the identifier symbol.

The adjacency-restriction rule takes the form

W £ X.
When added to a grammar G, it specifies that sentences in L{G) may not contain a sentence gen-
erated by W immediately followed by a sentence gencrated by X. This rule can be used to resolve
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longest match ambiguities, including the dangling-clse ambiguity.

A full description of these rules is given in Chapter 5. They are defined by giving formal
descriptions of how they affect derivations. Grammar transformations are also presented that convert
an RCFG containing the new disambiguation rules into a pure CFG that generates the same
language. Since the transformations tend to generate very large grammars that are unsuitable for
parser generation, parser generation methods that accept untransformed RCFG’s are presented. The
parser generation methods accept only a restricted use of the disambiguation rules, but these usages
are adequate for describing modern programming languages. '

Although these restrictive rules are proposed for disambiguating grammars, that is not their only
possible use. They can also be used to place restrictions on an unambiguous grammar. Such uses
sometimes lead to shorter, clearer grammars.



Chapter 3

Using Existing Tools to Implement
Single-Metalanguage Translators

This chapter presents two attempts to use existing parser generation tools to implement single-
metalanguage recognizers for the programming language Pascal. The first recognizer, called PRYY,
has two phases, a scanner phase and a parser phase, but both phases are described by the same
metalanguage, BNF. The second recognizer, called PROPY, attempts to implement the Pascal recog-
nizer in a single phase using BNF. The object is to illustrate the problems that one encounters when
trying to give a full description of a programming language in a consistent metalanguage without the
use of enhanced parser lookahead, or special disambiguation rules. Pascal was chosen as the test
language because it is a reasonably modern language, but at the same time represents a minimal test
case. If the approach does not work well for Pascal, then it cannot be expected to work well for larger
languages such as Ada.

The UNIX utilities YACC?’ and LEX38 were chosen as the parser implementation tools.
YACC is representative of a standard LALR parser generator and has been in use long enough to be
stable and reliable. LEX is used as an FSM scanner generator when a traditional scanner is needed
for comparison purposes. -LEX is also stable and reliable, but is not as widely used as YACC because
hand-coded scanners can be significantly more efficient than automatically generated ones.

3.1. PRLY: The Standard Recognizer

A Pascal recognizer implemented using traditional techniques was used as a standard against which to
compare the proposed recognizers. The standard recognizer, called PRLY} has a finite-state scanner
generated using LEX and a DPDA parser generated using YACC. Appendix A presents the gram-
mars for the scanner and the parser.

3.1.1. The Grammar for the Standard Scanner

The grammar for the standard scanner consists of a list of patterns, each one a regular expres-
sion. An input string is processed from left to right by attempting to match a prefix of the unpro-
cessed input with one of the patterns. Each time a match is found, the corresponding scanner action
is executed, as specified by the C-language program fragment to the right of the pattern.

The grammar may be ambiguous in that it may be possible for more than one of the patterns to
match parts of the same prefix. In this case LEX uses two disambiguation rules:

1) The pattern matching the longest prefix of the unprocessed input is preferred.

2) If two or more patterns match the same length prefix then the pattern appearing earliest in the
grammar is preferred.

In this way all ambiguities, intentional and unintentional, are resolved.

The grammar presented uses two special features of LEX: substitution strings and start states.
Substitution strings allow names to be given for frequently occurring subpatterns. The subpatterns are
be substituted in place wherever their names are used. In the grammar in Appendix A, substitution

+ The names PRLY, PRYY, and PROPY can be explained as follows: PRLY is a Pascal recognizer with a LEX
written scanner and a YACC written parser, PRYY is a Pascal recognizer with a YACC written scanner and a
YACC written parser, and PROPY is a Pascal recognizer with only one phase written by YACC.

18
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strings are defined for the symbols lerter, which represents any letter of the alphabet, digit, which
represents any digit from 0 to 9, and each letter of the alphabet, which represents either the upper- or
lower-case version of the letter. This device saves pattern repetition and thus shortens and simplifies
the grammar.

The other special feature, start states, provides the grammar writer with explicit control over the
finite state machine generated. In the standard LEX model every pattern is equally likely at the start
of pattern matching, but with start states a grammar writer can specify specific recognizer states from
which only certain patterns are active. This often allows a simpler grammar, but in our grammar start
states are used to assist in the recognition of comments. Start states are a standard method of getting
LEX to recognize unlimited length comments. Normally the string that LEX matches with a single
pattern must fall entirely inside its input buffer. This is necessary so that LEX can match a shorter
pattern should a long match fail. Since Pascal comments have no length limit, only a buffer as long as
the longest expected source file would suffice, which is not always practical.

3.1.2. The Grammar for the Standard Parser

The grammar for the standard parser is very similar to the grammar that appears in the ISO Pas-
cal definition2® The principal difference is that some nonterminals have been made into terminals.
These include the nonterminals Identifier, Label, UnsignedInteger, UnsignedReal, and Character-
String. All terminals and nonterminals that were used solely to define these new terminals have been
removed from the grammar. ’

In addition all multicharacter terminals such as the reserved keywords and multicharacter opera-
tors, have been replaced by symbol names. For instance the string “begin” was replace by the termi-
nal symbol BEGIN, and the string “<=” was replaced by the symbol LE. It is the scanner’s job to
recognize these multicharacter terminals and pass their symbol names to the parser.

Another difference of the presented grammar from the ISO standard grammar is that the
dangling-else ambiguity has been resolved by rewriting the grammar.

3.1.3. The Interface Between the Standard Scanner and Parser

The grammar for the parser contains a series of %token statements and a %union statement that
partly define the interface between the scanner and the parser. The %token statements give symbolic
names to each of the tokens that can be passed from the scanner to the parser, and may also give (in
angle brackets) the type of the token value to be passed. The %union statement gives symbolic
names to the elements of a C-language type union that contains all possible types that a token value
returned by the scanner can take. The type of the value associated with a token is specified by using
a symbolic name from this union. '

One can consider the %token and %union statements of YACC, along with the C-language type
declarations as a two-language system for describing the scanner-parser interface. Alternatively one
can think of the C-language file generated by these statements as a single-language description of the
interface. Perhaps the second view is better because the parser writer usually must augment the
YACC produced description of the interface with his own hand-written C code. In the case of the
standard recognizer, the C-language file “extern.h,” shown in Appendix A, represents just such an
augmentation.

The completed description of the interface between the standard scanner and the standard parser
is given by the two include files “tokens.h” and “extern.h” shown in Appendix A. The file tokens.h
contains C-language preprocessor definitions establishing integer values for the symbolic names of the
tokens. This mechanism establishes the link between symbolic names used for tokens in the parser
and the scanner. Tokens.h- also contains type definitions for token values transmitted from the
scanner to the parser.

The file extern.h is a manually prepared description of the shared variables that communicate

execution time parsing information between the two phases. In this case three variables are commun-
icated: the current line number in the input file (yylineno), the characters comprising the current
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token (yytext), and the value of the current token (yylval). The first two variables contain infor-
mation useful when reporting parsing errors. If a true Pascal parser were being presented, rather than
simply a Pascal recognizer, then the third variable yylval would also be useful for communicating the
value of the current token. The value of the current token would be such things as the value of
numeric and string constants, and the characters comprising an identifier.

Compulsory Compilation-Order of the Modules

In addition to the fact that the interface between the parser and the scanner needs a language
(or two) for its description, it imposes an ordering on the compilation of the modules of the recog-
nizer. A desirable feature of the modularization of a program is that any particular module need only
be recompiled if the source for that module changes or if the interface with the other modules
changes. Since the interface description file is produced by the parser generator, the parser must be
generated before the scanner. The problem is that the parser generator produces an interface descrip-
tion every time it is run, whether or not the interface has changed since the last parser generation. In
the simplest scheduling of the generation of the recognizer, the scanner would have to be recompiled
whenever either the parser or the scanner changes, thus negating some of the benefits of modulariza-
tion.

Scanner generation often requires significant processor time, and except on very fast machines,
significant real elapsed time. As a result, the simplest scheduling of the scanner generation is often
undesirable. The alternative is to always keep the previous description of the interface so that a com-
parison with the new description can be automatically performed, and scanner generation done only if
the interface has changed or the scanner description has changed since the last generation.

The makefile included in Appendix A reflects all these timing constraints imposed on the gen-
eration of the standard recognizer. The parser grammar must be checked for changes before the
scanner grammar. If the parser grammar has changed, both the parser and the interface description
are regenerated. Then the new interface description is compared to the old one. If the interface
description or the scanner grammar has changed since the last scanner generation, a new scanner is
generated. The other part of the interface description “extern.h” can be treated as any other source
file since it is generated by hand.

3.2. PRYY: A Two-Phase Single-Metalanguage Pascal Recognizer

A standard result of formal language theory is that the languages describable by regular expressions
form a proper subset of the languages describable by context free grammars. This leads to the obser-
vation that the complexity of preparing and processing the recognizer presented above could be
reduced by describing the scanner with a context-free grammar rather than with regular expressions.
The complexity of preparing the recognizer would be reduced since it would mean that the same pro-
gramming tool, YACC, could be used to generate both phases of the recognizer. This change would
in turn mean that the grammar writer would need to consult only one reference manual when prepar-
ing the two grammars.

To test this approach we designed and tested a two-phase single-metalanguage Pascal Recog-
nizer. The recognizer is two-phase in that it still has a scanner phase and a parser phase, but both
phases are described using a context-free grammar.

3.2.1. The Grammar for YaccScn

Appendix B presents a context-free grammar for a scanner called YaccScn. YaccScn is designed to
replace the scanner in the standard Pascal recognizer. An examination of the grammar shows that it
has a great deal of similarity to the grammar for the standard scanner, even though they are written
in different metalanguages. Each regular expression for a token recognized by the standard scanner
has at least one rule in the context-free grammar for YaccScn.

Each substitution string, of the grammar for the standard scanner, is also replaced by context-
free productions. Thus there are productions for the nonterminals letzer and digir, as well as produc-
tions for each letter of the alphabet to get case-insensitive symbols ¢ to z representing each letter.
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This change is gratifying, since it represents a replacement of a LEX extension to regular expression
notation, by ordinary rules of a context-free grammar.

3.2.1.1. Resolving Ambiguities in YaccScn

LEX uses the simple scheme described above, in Section 3.1.1, for resolving ambiguities in input .
grammars. How are ambiguities resolved in the grammar for YaccScn? YACC has disambiguation
rules similar to those of LEX. All ambiguities in a grammar input to YACC result in shift-reduce or
reduce-reduce conflicts during the generation of the LALR(1) parse tables. (Grammars that are not
ambiguous may also generate such conflicts if they are not LALR(1).)

When YACC encounters a shift-reduce conflict, it resolves the conflict in favour of a shift
action. This disambiguation rule has a similar effect to the longest match rule of LEX. Rather than
reducing a string to some nonterminal, Yacc shifts more symbols onto the parsing stack in the hopes
of reducing a longer string.

When YACC encounters a reduce-reduce conflict, in which any of two or more rules can be
used to reduce a string of stack symbols, YACC resolves the conflict in favour of the earliest rule in
the grammar. This disambiguation strategy has an effect similar to LEX’s strategy of using the earli-
est pattern in the grammar when two or more patterns match the same input prefix.

The main difference between the strategies of LEX and YACC for resolving ambiguities is that
YACC reports all ambiguities no matter how they are resolved, whereas LEX reports none. This
means that all unintentional ambiguities are reported, but it also means that the grammar writer must
examine dozens or hundreds of messages about intentional ambiguities to find any about uninten-
tional ones. The grammar for YaccScn, for instance, generates 265 intentional shift-reduce conflicts.

The grammar for YaccScn is a large segment of a grammar for Pascal, and as such it contains
many of the ambiguities and deficiencies common to Pascal grammars as listed in Section 1.2. In par-
ticular it has the problems of distinguishing reserved words from identifiers, and recognizing the long-
est match possible for identifiers and numeric constants. In addition, since the grammar for a scanner
is a subset of a full Pascal grammar, it has many additional ambiguities that are normally resolved by
the full grammar. For instance the strings “:”, “=", and “:=" are all valid Pascal tokens. As a result,
a scanner does not know whether to report the string “:=" as two tokens or one. The full grammar
for Pascal, however, does not permit a colon token to be followed by an equal-sign token; the two
must be recognized as an assignment token when appearing together. Similar problems occur with the
strings “(.”, “.)”, “..”, “=", “>="_and “<>”. In addition, the scanner grammar does not have the
information contained in a full Pascal grammar, that an identifier never immediately follows another
identifier, or a numeric constant never immediately follows another numeric constant. Thus a naive
scanner grammar could equally well break up a multiple-character identifier or numeric constant, into
many identifiers or numeric constants. Fortunately all these ambiguities are correctly resolved by
favouring a shift action over a reduce action in a shift-reduce conflict, and thus constitute some of the
ambiguities that were intentionally left in the grammar.

Reserved-Keyword Ambiguities

In the parser generated for YaccScn, a conflict arises as soon as the first letter of a keyword appears
on the parsing stack. Identifiers are described as sequences of the nonterminals letter or digit,
whereas keywords are described as sequences of individual letters themselves. Thus after pushing the
first letter of a keyword onto the parsing stack the parser must decide whether to reduce that letter to
the symbol lerter, or leave it unreduced and push on the next letter hoping that a complete keyword is
forthcoming. YACC resolves this conflict by shifting, which means that there must be some way to
correct this decision should it turn out that the remainder of the input did not in fact provide a com-
plete keyword. To do this, the grammar for YaccScn provides the symbol partial_keyword that
matches all possible prefixes of the Pascal reserved keywords. In this way, if the decision to recognize
a keyword was the wrong one, the parser can correct the error by recognizing a partial keyword
instead, and reduce this partial keyword to an identifier. If a full keyword is recognized, no reduce-
reduce conflict arises because the grammar does not provide a way to reduce full keywords to
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identifiers, only partial keywords, or full keywords followed by an alpha-numeric character. This
technique has added considerably to the length of the grammar, and to the difficulty of maintaining
the grammar to reflect language modifications should any arise.

Transferring Information from the Complete Grammar

Some information about the complete grammar for Pascal has been artificially injected into the
grammar for YaccScn. The grammar for YaccScn actually recognizes a language consisting of a
stream of Pascal tokens (more on this in the next section). The parser recognizes one token at a time,
and iteratively combines it with the token stream recognized so far, allowing optional white space to
appear between the tokens. The grammar, however, remembers the kind of the last token recognized
and does not allow certain kinds of tokens to be immediately followed by other tokens. Using the
nonterminals an_token_stream, num_token_stream, and token_stream, the grammar remembers three
kinds of previous tokens, alpha-numeric tokens (such as keywords and identifiers), numeric tokens
(such as integer and real constants), and any other type of token. The grammar specifies that an
alpha-numeric token cannot be followed by another alpha-numeric token or by a numeric token,
unless they are separated by actual (not optional) white space. If an alpha-numeric token were
immediately followed by another alpha-numeric token, then the two should have been combined into
a single longer identifier token. The grammar applies a similar restriction to numeric tokens. This
strategy is used to significantly reduce the total number of shift-reduce conflicts generated by the
parse-table generator, thus reducing the effort of checking all conflicts for errors.

3.2.1.2. Deficiéncies of the Grammar for YaccScen

The grammar for YaccScn presented in Appendix B is not correct for ISO Pascal; it has two deficien-
cies. The first deficiency is that the grammar for YaccScn accepts only braces, “{” and “}”, as com-
ment delimiters, whereas ISO Pascal allows the alternate delimiters “(*” and “x)”. The problem is
that comments can appear anywhere that white space is permitted, and that the open parenthesis is
also a common Pascal delimiter, thus many shift reduce conflicts are generated. Since white space
can occur in so many places, it is not reasonable to factor out the recognition of “(x” as was done for
keywords.

Accepting only one form of comment delimiter simplifies the grammar for YaccScn, and hence
may give it an unfair advantage in a comparison with a LEX generated scanner. To eliminate this
possibility, the LEX scanner grammar for the standard recognizer was rewritten, and simplified, so
that it too accepts only braces as a comment delimiter.

The second deficiency of the grammar for YaccScn is that it has an ambiguity between the
descriptions of real constants and of integer constants that precede a range designator “..”. Thus the
Pascal range type “1..10” will be rejected. The problem is that after reading the first integer con-
stant and looking ahead at the dot, the scanner must decide whether to recognize an integer constant
and pass it on to the parser, or to shift on the dot hoping for a real constant. YACC resolves the con-
flict by shifting, which is the incorrect action if it really is a range constant. To use range constants
with this recognizer, the first integer constant must be separated from the dot-dot range token by real
white space. So the above type would have to be written “1 ..10”. The problem does not occur if
the first constant of the range specifier is a symbolic constant.

This deficiency is very hard to correct in a two-phase grammar since floating-point numbers are
recognized in one grammar and ranges in another. A great deal of effort did not yield a suitable par-
titioning of the grammar and the search was abandoned. Unlike the deficiency with comment delim-
iters, however, the LEX generated scanner was not rewritten to also contain this defect. Changing
the LEX grammar so that it too would contain the defect would actually slow down the standard
recognizer, thus giving it an unfair disadvantage due to a problem it did not create.

In the comparisons of PRLY and PRYY that follow, remember that the rules of Pascal had to
be bent to accommodate the single-metalanguage version, and hence the comparison is not absolutely
fair. Nevertheless the version of Pascal accepted by the single-metalanguage version is close enough
to ISO Pascal to yield useful comparison information.
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3.2.2. Technical Implementation Problems

Unlike LEX, YACC was designed for writing parsers not scanners. YACC is designed to be
invoked, recognize one and only one sentence in a language, and then return to the calling program.
LEX on the other hand can be thought of as recognizing a sequence of sentences of a language, and
returning to the calling program after each sentence. Thus a LEX written scanner can be called as a
coroutine by a YACC written parser to fetch tokens one after another. A YACC written scanner,
however, does not return until it has verified that there is no further mput beyond exactly one sen-
tence of the given language.

To circumvent this shortcoming, the YACC written scanner and the YACC written parser are
run sequentially instead of as coroutines. The scanner fills a large memory array with the integer
codes for the tokens recognized and the parser reads this array as input.

3.3. Comparison of PRYY with PRLY

We conclude that except for the problems with comments and constant ranges, a context-free gram-
mar is a reasonable way to describe a scanner for Pascal. Assuming that a customized parser genera-
tor could provide convenient ways to solve these two problems, the main concerns remaining would be
about the size and speed of the generated scanners. Table 3.1 summarizes the characteristics of
PRLY and PRYY.

Object | Parse

Name | Phase Rules | States Size Time!
(Bytes) | (Sec.)

PRLY | scanner 97 545 21.9k
parser 204 369 6.8k

total 301 914 28.7k 49.7

PRYY | scanner 411 442 11.1k
parser 204 369 6.8k

total 615 811 18.9k 67.9

Table 3.1: A comparison of size and speed of PRLY versus PRYY.

The first thing to notice in Table 3.1 is that the number of rules in the grammar for the LEX
generated scanner is about one quarter of the number for the YACC generator scanner. A significant
contributing factor to this discrepancy is the large number of rules needed to describe the nonterminal
partial_keyword, and this is a notable deficiency of the grammar. Nevertheless the rule count for the
grammar for YaccScn is artificially exaggerated by counting each alternate definition for a nontermi-
nal as a separate rule. Thus the definition of the nonterminal lerzer is counted as 26 rules in the
grammar for YaccScn, whereas the specialized notation of LEX allows it to be counted as one rule in
the grammar for the standard scanner. Thus a customization of YACC’s notation could lead to a
lower rule count for YaccScn than shown in the table.

The next thing to notice is that despite the higher rule count of the grammar for YaccScn, the
number of states in the scanner for PRYY, as reported by YACC, is only 89% of the number of
states in the scanner for PRLY, as reported by LEX. Similarly the size of the object code for the
scanner for PRYY is 69% of the size of the scanner for PRLY. These ratios are a further indication
that the rule count for PRYY’s scanner was artificially inflated, and it alleviates fears that a DPDA
scanner will be too large.

+ Execution time required to parse 8,564 lines of Pascal code on a MicroVAX II.
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Even a comparison of the running times of the two recognizers is encouraging. Although
PRYY had a running time about 1.5 times that of PRLY, this is acceptable performance, especially
considering that YACC and its input language are being used for a purpose for which they were not
designed.

These result shows that the size and efficiency of a dual-phase single-metalanguage Pascal recog-
nizer can be comparable to those of a traditional dual-metalanguage one.

3.4. PROPY: A Single-Phase, Single-Metalanguage Pascal Recognizer

The experiments with the two-phase single-metalanguage Pascal recognizer PRYY were successful
enough to consider an even simpler strategy. Why not combine the context-free grammars for the
scanner and the parser into a single grammar? Such a strategy would eliminate the interface between
the two phases, since the names of the nonterminals representing tokens in the scanner grammar,
match the names of the terminals in the parser grammar. In addition, the combining of the two
grammars would eliminate the part of the grammar for YaccScn that describes the three token-stream
nonterminals. The token-stream nonterminals were introduced primarily to transfer a limited amount
of information about legal token sequences from the parser grammar to the scanner grammar. By
combining the two grammars these rules would become unnecessary.

To test the idea of a combined grammar, the grammar for YaccScn was combined with the
parser grammar, and the resulting grammar is shown in Appendix C. The grammar was prepared to
be used as input to YACC.

3.4.1. Conflicts Resolved by the Combined Grammar

Several conflicts in the grammar for YaccScn are resolved by combining it with the grammar for the
parser. As was mentioned in Section 3.2.1.1, “Resolving Ambiguities in YaccScn,” the grammar for
YaccScn could permit the multiple character tokens “:=", “(.”, “.)”?, ¢..”, “=" “>="_ and “<>”,
to be parsed as one token or two. The grammar for the parser, however, indicates that in none of
these cases can the two component tokens appear in sequence in a valid Pascal program. The com-
bined grammar also contains this information, and hence conflicts on the parsing of these multiple
character tokens disappear.

Similarly, part of the purpose of the special nonterminals an_token_stream and num_token_stream
in the grammar for YaccScn was to indicate that in a Pascal program an identifier never immediately
follows another identifier, and a numeric constant never immediately follows another numeric con-
stant. The parser grammar contained this information, so the combined grammar also contains it.

3.4.2. Conflicts Inherited from the Two-Phase Grammar

Most of the conflicts in the grammar for YaccScn were not resolved by combining it with the gram-
mar for the parser; they were simply passed on. These conflicts include the ones due to the ambiguity
between reserved keywords and identifiers. Since it is possible for keywords and identifiers to follow
each other in Pascal, it is still necessary to include the numerous rules for the symbol partial_keyword
in order to be able to recover from erroneous parsing decisions.

3.4.3. New Problems and Conflicts in the Combined Grammar

Optional White Space

In the grammar for YaccScn, all usage of the nonterminal “optional_white” was confined to the
description of token streams. The combined grammar no longer has such a convenient way to localize
the use of white space. Instead, the combined grammar explicitly specifies that optional white space
may follow the recognition of any nonterminal that formerly represented a token. Thus such symbols
as “ASSIGN_” and “PROCEDURE_", now have twin symbols without the underscores that represent
the same strings as the old symbols, but with optional white space appended. This approach is simple
but gives a somewhat bulky grammar.
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An alternate approach to handling white space would be to distribute the white space between
the symbols of the rules that were formerly parser rules. This approach introduces reduce-reduce con-
flicts not present in the former approach. These new conflicts appear for each rule that has a nullable
symbol between two white-space symbols, since there are then three consecutive symbols that can be
reduced from ¢. Nevertheless, if white space is represented by some non-obtrusive symbol such as
“ 7, some grammar writers may find a grammar written according to the latter approach more
aesthetically pleasing, since it more accurately represents the meaning of optional white space.

Required White Space -

The next significant problem with the combined grammar is that when the token-stream symbols are
removed, the only convenient way to specify that reserved words and identifiers must be separated by
real (not optional) white space, is also lost. The problem is that there are many high-level constructs
such as expressions and symbol lists that can be comprised of a single identifier, and may occur
immediately preceding or following a keyword. To express the requirement that keywords and iden-
tifiers must be separated by real white space, duplicate symbols would be required for all high-level
constructs to represent when those constructs generate sentential forms that can begin with an identif-
ier or end with an identifier. Then many grammar rules would have to be duplicated and modified to
specify when real white space is required. This grammar rewriting would lead to an explosion in the
size and complexity of the grammar.

Reduced Parser Lookahead

Perhaps the biggest problem introduced by combining the two grammars is the loss of lookahead
power. Formerly the parser generated by YACC could look ahead at an entire token to decide the
next parser action. In the combined parser grammar, the parser can look ahead only a single input
character. In the grammar for Pascal, there are several constructs that cannot be parsed (without
unwieldy grammar rewriting) as a result of this problem. A comprehensive list of these problems fol-
fows.

1) When parsing a compound statement such as

BEGIN
Statement List
END

if the last statement of the statement list ends in a semicolon, as is permissible, then the parser
cannot decide whether the “E” of END, is the beginning of a new assignment statement, or is the
start of the END keyword. The decision affects whether the parser reduces the statements read
so far, or shifts on more input hoping for a longer statement list. YACC’s default preference for
shift means that ending a statement list inside a compound statement with a semicolon will
always cause a parsing error. A similar problem arises with the reserved word “UNTIL” in the
REPEAT-UNTIL construct, and in distinguishing the reserved word “ELSE” in an IF-THEN-
ELSE construct from the reserved word “END”. :

2) A CASE construct takes the form:

CASE Expression OF
Case_ List
END

After shifting on the characters that comprise the case expression, the parser cannot decide
whether the lookahead symbol “0” is the start of the keyword OF or of the keyword OR. In the
former case it should reduce the symbols to an expression, whereas in the later case it should
continue shifting terminals in the hope of reducing a longer string to an expression. YACC’s
default action of shift means that a CASE construct can never be parsed properly.
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3)

4)

)

6)

7)

8)

3.5.

A WHILE loop takes the form:

WHILE Expression DO
Statement;

After shifting on the characters that comprise the while expression, the parser cannot decide
whether the lookahead character “D” is the start of the keyword DO or of the keyword DIV. In
the former case it should reduce the symbols to an expression, whereas in the later case it should
continue shifting terminals in the hope of reducing a longer string to an expression. YACC’s
default action of shift means that a WHILE construct can never be parsed properly. The same
problem occurs with the FOR construct.

After shifting on the characters of a variable, if the lookahead character is a dot, the parser can-
not decide whether the dot starts the sequence “.)” and the variable should be reduced to an
expression, or whether the dot represents the dot of a record-field selector, and it should be
shifted on to be reduced as part of a longer variable string. YACC’s default action of shift
means that the sequence “.)” can never be used as the alternate for “1”.

After recognizing the characters that comprise a CONST, TYPE, or VAR declaration section, with
one or more of the lookahead characters “T” (for TYPE), “v” (for VAR), “P” (for PROCEDURE),
“¢” (for FUNCTION), or “B” (for BEGIN), the parser cannot decide whether to terminate the
recognition of the current declaration section, or shift on the lookahead character in the expecta-
tion that it is part of a variable name introducing a new variable declaration in the current sec-
tion. YACC’s default action of shift, implies that no declarations section will ever be com-
pleted, and hence YACC reports those rules as never being reduced.

In ISO Pascal it is legal to specify an empty record declaration. Thus the string RECORD END
specifies a legal type declaration. Using the combined grammar, however, YACC cannot
decide on the basis of the lookahead character “E” whether to reduce the field list from ¢, or
whether to shift on the letter “E” in the expectation that it is part of a variable name that ini-
tiates a record field declaration.

In a procedure or function declaration the body of the procedure may be replaced by special
identifiers such as FORWARD or EXTERNAL. After shifting on the characters comprising a pro-
cedure header, and looking ahead at the characters “L.” (for LABEL), “T” (for TYPE), “v” (for
VAR), “P” (for PROCEDURE), “F” (for FUNCTION), or “B” (for BEGIN), YACC cannot decide
whether these letters start declarations belonging to the procedure body, or whether they initiate
an identifier that replaces the procedure body. The combined grammar, and YACC’s default
action of shift, means that the parser will never initiate the recognition of declaration, at the
start of a procedure or function body.

After encountering an identifier and looking ahead at the character “(” the parser cannot decide
whether to reduce the identifier to a procedure or function invocation header, or shift on the
parenthesis in the expectation that it comprises the first character of the sequence “(.” as a sub-
stitute for “[” which would indicate a subscripted variable. YACC’s default action blocks the
recognition of procedure or function invocations.

Conclusions

The experimental Pascal recognizer PRYY shows that it is possible to describe a reasonable scanner

using an LALR(1) grammar and simple conflict resolution. The remaining shortcomings, such as the

complex description of identifiers, the unimplemented Pascal characteristics, and the large number of

defaulted conflicts remaining are serious problems but not insurmountable. Most importantly PRYY
. shows that a DPDA scanner can compete in efficiency with an FSM scanner, both in size and speed.

The experiments with PRYY and PROPY show that to be able to describe a recognizer briefly

and conveniently, the metalanguage should be enhanced. The metalanguage needs a method for con-
cisely disambiguating simple constructs, since the only available method—adding more CF rules—is
not powerful enough.
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The experiment with PROPY also shows that a one-phase recognizer with a reasonable grammar
needs a more powerful lookahead capability than the single character lookahead provided by an
LALR(1) parser.



Chapter 4

Improved NSLR(1) Parser Generation

4.1. Introduction

In the previous chapters, the inadequacies of LR(1) parsers for implementing single-phase translators
were presented, and in Chapter 2 the reasons for choosing noncanonical SLLR(1) parsers, as presented
by K. C. Tai,> to overcome those inadequacies were given. This chapter presents a detailed descrip-
tion of NSLR(1) parsers and parser generators. There are, however, some deficiencies in the parser
generation algorithm as presented by Tai, and so we also propose methods of correcting those defi-
ciencies.

The first deficiency treated here is in the handling of ¢-productions. Tai’s use of e-CLOSURE
on inadequate parser states, generates more complete items from e-productions than are actually
needed. These extra items can introduce new conflicts that unnecessarily cause the rejection of some
grammars. We propose a method for reducing the number of e-reducing items generated, and in this
way admit a class of useful grammars previously rejected. Correcting this deficiency permits the
correction of a second deficiency. There is an error in Tai’s algorithm that may omit necessary non-
terminals from the lookahead sets of complete items in ordinary states, if the parser also contains non-
canonically expanded states. This error will be demonstrated and a correction proposed. Unfor-
tunately, the correction proposed for this error generates lookahead sets with many useless entries.
Hence we also propose methods for reducing the number of these useless entries.

4.2. Standard Parsing Terminology

The notation and terminology used in this chapter and the remainder of this thesis is largely standard
and can be found in such sources as Aho, Sethi and Ullman? Hopcroft and Ullman?24 Harrison?? and
Aho and Ullman?! In particular, with very few exceptions, it is the same terminology used by Tai?3’
To speed the reading of this section by experienced readers, any differences from standard notation
have been marked by a filled triangle (»), and differences from Tai’s notation have been marked by a
filled box (m).

A context-free grammar (CFG) G is a quadruple G = (Vy, Vy, P, S), where » Vy is the set of
nonterminals, » Vp is the set of terminals, P is the set of productions, and S in Vy is the start symbol.
The set of all grammar symbols is represented by V = Vy U V. We assume that the grammar has no
duplicate or useless productions, and no useless symbols. ’

Lowercase letters early in the alphabet, such as @, b, and ¢, represent a single terminal symbol.
Uppercase letters early in the alphabet, such as A, B, and C, and also the letter S, represent nonter-
minals. Uppercase letters late in the alphabet, such as X, ¥, and Z, represent terminals or nontermi-
nals. The Greek letter ¢ represents the empty string, and the other Greek letters, such as o, g, and ~,
represent strings of terminals or nonterminals, or e. (w Tai used lowercase letters late in the alphabet
for this purpose.) Lowercase letters late in the alphabet represent strings of terminals or e. The length
of a string o is denoted by |a|, and therefore |¢| = 0. Letters representing strings of symbols can be
subscripted, so that o; represents the /™ symbol of o. The symbol ¢ represents the empty set, (m Tai

used the Greek letter ¢ for the empty set.)

The productions in P are numbered 1,2, ..., p where p = |P|. Productions take the form
A — a, where A is called the left part, and « is called the right part. Let P; denote the i*" production

in P, and » let n; denote the length of the right part of P;.

28
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If A — o is a production and BA~ is a string in V*, then we write fJA~y = PBo~y and say that gA~y

derives Bay. The transitive closure of = is denoted by 5 , and the reflexive transitive closure of
= is denoted by = . There are two special kinds of derivation: a leftmost derivation denoted by
oz f, and a rightmost derivation denoted by & = . In the leftmost derivation « = B, the leftmost

nonterminal in « is substituted to derive 8, and in the rightmost derivation « = f, the rightmost non-

terminal of alpha is substituted.

Every derivation with a grammar has a corresponding parse tree. In such a derivation, every
application of a production A — o corresponds to a node in the tree labeled A with |a| ordered des-
cendants. » We call two derivations by the same grammar isomorphic if they have the same
corresponding parse tree.

A sentential form of G is a string « such that § = « and « is in V*. A sentence x of G is a sen-
tential form of G consisting solely of terminals, i.e., x is in V7. The language L(G) generated by G is
the set of sentences generated by G, i.e., L(G) = {x| § = x}. We can also refer to the language gen-
erated by some symbol of grammar G as Lg(X) = {x| X = x}.

A symbol X in V is said to be useless if there is no derivation of the form § = uXv & wxv. A
nonterminal A is called nullable if there exists a derivation A % e.

Definition: Let FIRST(«) be the set of terminals and nonterminals that can be the first symbol
of any sentential form derivable from «.

FIRST(c) = {Y| o = YB}.
Definition: » = Let T_FIRST(«a) be the set of terminals in FIRST(a).
T_FIRST(a) = {a| a isin V_and a is in FIRST(a)}

Definition: Let LAST(a) be the set of symbols that can be the last symbol of any sentential form
derivable from o.

LAST(a) = {Y]| a = gY}.

4.3. A Review of Ordinary SLR(1) Parsing and Parser Generation

In order to simplify the description of noncanonical SLR(1) parsing and parsing, a review of ordinary
SLR(1) parsing and parser generation is presented here.

SLR(1) grammars and parsers were first presented by deRemer!3 An SLR(1) parser consists of
a set Q of states and two functions, the parser action function f and the goto function g. State sq is

designated as the initial state. Assume that each input string is preceded by the symbol — and fol-
lowed by the symbol —, where neither — nor — is in V;. The parsing action function f takes an arbi-

trary state s and an input symbol b as arguments, where b is a terminal or in the set {-, —}. The
value of f(s, b) is either shift, reduce i, error, or accept. The goto function g takes a state s and a
symbol Y in V as arguments, and the value of g(s,Y) is either a state or error. ~

To construct a parser for a grammar G = (Vy,Vy P,S), G is augmented with a new start symbol
S’, not in Vy, and a new production §' — —S—. The new production is assumed to be the zeroth
production. »

Define T_FOLLOW(A), for a nonterminal A, to be the set of terminals that can follow A in
some sentential form, and if A can be the rightmost symbol of a sentential form, then — is included in
T_FOLLOW(A). That is, _

T_FOLLOW(A) = {b in V; U {—}| $* = BAb~ for some B in -V~
and ~ in V' —}.
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Each state in an SLR(1) parser is represented by a set of irems [i, j] where i is the number of a
production and j is the position of a special marker (here, a dot «) to be inserted in the right part of
P;. Let P; = A — « for this discussion. An item [i, j] is equivalent to the notation [A — 8« ] where

= o - - - o; and v = a1y - - - o, (both notations are used in this thesis). If a state contains
142 j 9 J+1% 42 n;

an item [i, j] with j < n;, then it has a shift transition for the symbol a; ¢, and «;,; is called the shift
symbol for that item. If a state contains an item [i, »;], then it has a reduction on P;. (m Tai called
these read transitions and reduce transitions respectively.)

For any set I of items, let CLOSURE(Z) be defined as the smallest set satisfying the following
properties: (1) every item in I is in CLOSURE(/), and (2) if [A — g«B~] is in CLOSURE(/) and
B — § is a production, then the item [B — . §] is in CLOSURE(]).

Notes on the Notation of the Parser Generation Algorithms

The construction algorithm for SLR(1) parsers, below, closely follows the notation used by Tai. There
are more elegant notations for describing this algorithm, but they do not work well for the NSLR(1)
parser generators that appear later. Using the same notation for all algorithms facilitates the task of
comparing the algorithms.

The notation used is precise, but not easily read. A few reminders and comments will help the
unfamiliar reader significantly. Remember that:

p = |P| = the number of productions in the grammar,

I

n; = the length of production P;, and so

[i, n;] = a complete item for production P;.

For example, if Ps = A — o then [5, ns] = [A — ««]. Complete items generate reduce actions in the
current state.

Symbol sets attached to complete items are indexed by the production number. For example L;
is the lookahead set for the complete item [i, n;] constructed from production P;. This indexing
scheme can be used since there can be only one complete item generated by any given production in
any particular state. It is not convenient to use the item number as an index, since the item set that
forms the current state grows during parser construction. Indexing by production number is used for
the symbol sets L;, LM;, F;, and FR;.

The set L is distinct from the sets L; for 1 <i <p. The set L is the set of symbols on which
shift transitions are indicated for the current state.

For the state s and the lookahead symbol Y, the generated function f(s, y) give the parser
action to be performed, and the generated function g(s, y) gives the destination state if the action is
shift.

Algorithm PG,: The Construction Algorithm for SLR(1) Parsers
(1) Initially, let s3 = CLOSURE({[0, 0]}) and Q = {sg} with sy “unmarked.”
(2) For each unmarked state s in Q, mark it by performing the following steps:
(2.1) Compute the SLR(1) lookahead sets:
(2.1.1) Foreachi, 0<i <p,let

T_FOLLOW(A) if s contains [i, ;] and P; = A — «
%) otherwise

i

be the simple 1-lookahead set associated with the reduction on P;.
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(2.1.2) Let L = {Y| s contains [i, j], j <n, Pj=A—a, and ajq = Y} be the simple
1-lookahead set associated with all shift transitions from s.
(2.1.3) IfL, Ly, Ly, "...," and L, are not pairwise disjoint, then G is not SLR(1).

(2.2) For each terminal b in L, set f(s, Y) = shift. If Ly = {-}, then set f(s, —{) = accept.
For each b in L;, 1 <i <p, set f(s,Y) = reducei. For each b in V U {—} but not in
LUuLyuLiu --- UL, set f(s, Y) = error.

(2.3) For each b in L, compute GOTO(s, Y) as follows:

GOTO(s, Y)=CLOSURE({[i, j+1]|s contains [i, j], j < n;,
Pi =A—~)O(, and Olj+1= Y}).
If GOTO(s, Y) is not already in Q, then add it to Q as an unmarked state. Set
g(s, Y) = GOTO(s, Y).
(2.4) ForeachY inV butnotin L, set g(s, ¥) = error. O

Any state with shift transitions only is called a shifr state. Any state with exactly one reduction
and no shift transition is called a reduce state. States which are neither shift states nor reduce states
are called inadequate states. A CF grammar G is said to be simple LR(1) or SLR(1) if and only if
every inadequate state in the SLR(1) parser for G has pairwise disjoint simple 1-lookahead sets associ-
ated with its shift transitions and reductions.

Algorithm Py: The SLR(1) Parser
Initially, the stack contains the initial state s,.

(1) Determine the current input symbol b.
(2) Let s be the state at the top of the stack.
(2.1) If f(s, b) = shift, then remove b from the input, push the state g(s, ») on to the stack,
and go to (1).
(2.2) If f(s, b) = reduce i, where P; = A — o, then pop n; states from the stack. A new state
s' is then exposed as the top of the stack. Push the state g(s’, A) onto the stack and go to

(D).
(2.3) If f(s, b) = error, then halt and declare error.
(2.4) If f(s, b) = accept, then halt and declare acceptance. ]

4.4. The Original NSLR(1) Parser and Parser Generator

In order to permit the reading of this chapter without constant reference to Tai’s paper, the original
algorithm for generating NSLR(1) parsers is reproduced here, and is called Algorithm NPG,. But

first we present a short overview of NSLR(1) parsing.

The NSLR(1) parser generation algorithm NPG, generates parse tables for an NSLR(1) parser*

As illustrated in Figure 4.1, an NSLR(1) parser uses two stacks, a state stack and a lookahead stack.
(w Tai called these stacks the state stack and the symbol stack, respectively.) The principal differences
from an ordinary SLR(1) parser are the addition of the lookahead stack, and the modification of the
parser reduce action to make use of that stack. The top of the symbol lookahead contains the look-
ahead symbol for the parser. If the lookahead stack is empty the next symbol will be taken from the
input stream. When implementing a character-level grammar, the input symbols are always single
characters.

* An NSLR(1) parser can actually execute a wide variety of canonical and noncanonical LR(1) parse tables, but
for simplicity we consistently use the term “NSLR(1) parser”. :
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Figure 4.1: Schematic representation of an NSLR(1) parser. The principal differences
from an SLR(1) parser are the addition of a lookahead stack, and the redefinition of the
reduce action to make use of that stack.

There is slightly different way, used by Tai, to describe the NSLR(1) parser. In this second
description, the parser is initiated with all the input stacked on the lookahead stack, with the front of
the input at the top of the stack. This description is functionally identical to the one given above, but
it simplifies the specification of the parsing algorithm. In the second description, popping the look-
ahead stack encompasses the operations of popping the lookahead stack and reading the next input
character if the lookahead stack is empty. As a result, we use the second descrlptlon in the rest of
this thesis.

An NSLR(1) parser has only the four usual parser actions, shift, reduce i, error, and accept, but
the operation of the reduce action has been modified. Let production P; = A — «. The original

reduce { action popped n; states from the state stack exposing state s’. Then it pushed the state
g(s', A) onto the state stack. The new reduce i action pops n; states from the state stack, and pushes
the symbol A onto the lookahead stack.

An NSLR(1) parser can execute SLR(1) parse tables correctly with only slight modification.
Since after the action reduce i, the symbol A on top of the lookahead stack will be the new lookahead
symbol, and since s’ will be the new current state, the next transition performed by the parser must be
to the state g(s’, A), exactly the destination of the SLR(1) reduce i action. The only change needed
to the parser generator is to ensure that the parser action f(s’,A) is a shift action. This simple change
can be effected by changing step (2.2) of Algorithm PGy so that f(s,Y) = shift for all shift symbols Y

in a state rather than only for terminals.

NSLR(1) parser generation is an extension of SLR(1) parser generation. Initially a standard
SLR(1) parser is generated, state by state, with the change given above. When a conflict arises in a
state, a state-expansion algorithm is invoked. All conflicts involve a reduce action on a complete
item, so the parser generator resolves conflicts, when it can, by eliminating the reduce action for con-
flicting lookahead symbols. The parser generator ensures that the state contains shift actions for those

-lookahead symbols that caused the conflict. The intention is to shift those lookahead symbols onto
the state stack so that they can be reduced based on further lookahead. The reduced symbol will be
pushed back onto the lookahead stack to serve as higher-level lookahead. For many grammars, this
reduced symbol provides the extra lookahead information needed to resolve the original conflict.

A short example will clarify this discussion. Consider grammar G4, shown in Figure 4.2. The
language described by grammar G,; can be given by the regular expression c*a | ¢*b. Although
L(Gy) is regular, the grammar itself is not LR(k) for any k. Grammar Gy is, however, SLR(1).
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S — Aa | Bb
A—CA| C
B—DB| D
C—c
D—c

Figure 4.2: Grammar Gy 4, a short SLR(1) grammar that is not LR(k) for any k.

0: S 1:
S - oS ST S.4 Accept
S — JAa
A — .CA A a
A= oC S —-A.a S —Aa. {1}
B—)oDB
B_b.D . .
C — vc B 3: b 8:
D — .c S —=B.b S —+Bbe. {__(}
4: 9:
¢ A—C.A A T asca. {a}
A—C. {a}
C| A— «.CA
E A—+¢C 10:
C— «c ¢ C —ce {a,c}
5: 11:
D B —D.B B J B _pB. {b}
B —D. {b}
D| B— .DB
f:) B — D 12:
D — «c C Sl D—ce {b,c)
6:
c C —ce {a,c}
D —c. {b,c}

Figure 4.3: SLR(1) parsing automaton for grammar Gy ;.

The SLR(1) parsing automaton for this grammar, generated by Algorithm PG is given in Fig-

ure 4.3. Notice that there is a conflict in state 6. When the parser is in state 6, and the lookahead
symbol is ¢, two reductions are indicated: [C — c. ], and [D — c¢+]. The NSLR(1) parser generator
examines the complete sets of symbols that can follow C and D in any sentential form and finds that
they are {A,C,a,c} and {B,D,a,c}, respectively. It finds that in these two sets there are no com-
mon nonterminals that can generate ¢. In other words ¢ is in FIRST(C) and FIRST(D), but neither
C nor D is common to both FOLLOW sets.
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As a result of this analysis, the parser generator generates shift items that shift the symbol ¢
with the intention of reducing it to C or D, and it deletes ¢ from the lookahead sets for both reduc-
tions. In this way, the reduce actions on lookahead ¢ are delayed, the lookahead c is reduced to
either a C or a D, based on further lookahead, and the reduced symbol is used to resolve the conflict.
The noncanonical expansion for state 6 is shown in Figure 4.4.

6':

State 0 — < &1 C —ce {A,C,a}
D —c.+ {B,D,b}

[

Figure 4.4: NSLR(1) expansion of state 6 of the SLR(1) automaton for grammar G ;.

A similar parsing problem can be described in terms of a character-level grammar for Pascal.
After recognizing a type declaration in a Pascal program, if the lookahead character is “v”, the parser
cannot know whether the “v” is the first character of a the name of the next type variable to be
declared, or is the first character of the keyword “var”. As a result it cannot know whether to reduce
all the type declarations seen so far to a type declaration section, or shift on the “v” to recognize a
new type declaration. By shifting on the “v” and later context, it can recognize the input as either a
keyword or a variable, reduce that later context, and have a reduced symbol as the lookahead symbol.
Thus it delays the parsing decision until it has examined later context. (This scenario assumes that
some method of disambiguating keyword from identifiers has been implemented. Such a method is
presented in the next chapter.) -

The method described above fails if the conflicting lookahead symbol is needed in its unreduced
form for a shift action by another state. This would happen if grammar G4 contained the rule

B — Dc instead of B — D. Then the symbol D could be followed by an unreduced string starting
with ¢, and reducing a lookahead of ¢ to C or D would block this later shift action. Algorithm NPG,

uses the function LM_FOLLOW, defined below, to determine which symbols may be needed for
shifting by predecessor states. Section 4.7.1 on the correctness of Algorithm NPG, contains more

details on the functioning of Algorithm NPG,.

The NSLR(1) parser generation algorithm and the NSLR(I) parsing algorithm, are reproduced
here as they appeared in the original paper, but with some minor notational changes, and are called
Algorithm NPGj and Algorithm NPy, respectively. First some functions must be defined.

In addition to the function T_FOLLOW, defined previously, algorithm NPG, also uses the func-
tions FOLLOW, LM_FOLLOW, and ¢-CLOSURE. The function FOLLOW(A), for a nonterminal
A, is the set of symbols that can follow A in some sentential form, and if A can be the rightmost sym-
bol of a sentential form, then - is included in FOLLOW(A). That is,

FOLLOW(A) = {Y in V U {}| S’ = BAY~ for some g in V"
and ~ in V' ).
(Thus the function T_FOLLOW(A) can also be defined as T_FOLLOW(A) = {a in V; U {—}| a in

FOLLOW(A)). LM_FOLLOW(A), for a nonterminal A, is the set of symbols that can follow A in
some left-sentential form, and if A can be the rightmost symbol of a left-sentential form, then — is
included in LM_FOLLOW(A). That is, :

LM_FOLLOW(A) = {Y inV Uy {4} | S’ % BAY ~ for some 8 in V"~
and ~ in V*—}.

Note that LM_FOLLOW(A) C FOLLOW(A). The function e-CLOSURE is defined as:



"CHAPTER 4: IMPROVED NSLR(1) PARSER GENERATION 35

For any set I of items, let e~CLOSURE(/) be defined as the smallest set satisfying the fol-
lowing properties: (1) every item in 7 is in E-CLOSURE(7), and (2) if [A - a+]isin [
and FOLLOW(A) contains B such that B—e¢ is in P, then [B-— «.] is in
e—~CLOSURE({).

Algorithm NPGy: Original Construction Algorithm for NSLR(1) Parsers
(1) Initially, let s = CLOSURE({[O, 0]}) and Q = {s¢} with sg “unmarked.”
(2) For each unmarked state 5 in Q, mark it by performing the following steps:
(2.1) Compute the SLR(1) lookahead sets:
(2.1.1) Foreachi,0<i <p, let

T_FOLLOW(A) if s contains [i, ;] and P, = A — «
Li = %) otherwise

be the simple 1-lookahead set associated with the reduction on P;.
(2.1.2) Let L = {Y|s contains [i, j}, j <m, P;=A— «a, and a;,; = Y} be the simple
1-lookahead set associated with all shift transitions from s.

(2.1.3) IfL, Ly, Ly, "...," and L, are pairwise disjoint, then s is SLR(1) consistent, so go

to step (2.7). [Steps (2. 2) to (2.6) comprise the state expansion part of the algo-
rithm performed only on inconsistent states.]

(2.2) Let s = e~CLOSURE(s), so as to add items for new reductions. (This step is unnecessary
if G is e-free.)

(2.3) Foreachi, 0<i<p,

LM_FOLLOW(A) if s contains [i, n;]Jand P; = A — o
LM; = %) otherwise

FOLLOW(A) if s contains [i, n;] and P; = A — o
Fi = %] otherwise
(2.4)" Let R = {Y| s contains [i, j], j <n;, P; = A — o and a;,; = ¥} be the set of shift sym-
bols of s. Foreachi, 0<i <p,
(2.4.1)" Compute the largest subset R; of F; that can distinguish the reduction by P;:
R; = {Y in F;| Y is neither in R nor in F; where 0 < j < p and j > i}.
(2.4.2)" Let L; = LM; U R; be the NSLR(1)-lookahead set associated with the reduction on
P;.
(2.4.3)’ Add the set I; of new items to s, where _
I;={[q,0l| P, =B— g,BisinF;, § # eand g, is not in L;}.
(2.5)" Let L ={Y|s contains [i,j], j<mn, Pi=A—a, and a;, =Y} be the NSLR(I)-
lookahead set associated with all shift transitions from s. '
(2.6)' If L, Ly, Ly, "...," and L, are not pairwise disjoint, then abort (thus G is not noncanonical
SLR(1)).
(2.7) Foreach Y in L, set f(s, Y) = shift. If Ly = {—}, then set f(s, ) = accept. For each ¥
in L;, 1<i<p, set f(s,Y)=reducei. For each Y in VU {-} but not in
LULyULiu - ULy,setf(s,Y) = error.
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(2.8) For each Y in L, compute GOTO(s, Y) as follows:

GOTO(s, Y) = CLOSURE({[i, j+1]| s contains [i, j], j < n;,
P;=A— «,and oy = 1}).

If GOTO(s, Y) is not already in @, then add it to Q as an unmarked state. Set
g(s, Y) = GOTO(s, Y).

(2.9) ForeachY inV butnotinL, set g(s, Y) = error. O

An explanation of the notation used by Algorithm NPGj is in order. The subscript i of the sets
FR;, F;, R;, and L; is a rule number. This technique is possible because these sets are associated only

with complete items in a state and any rule can produce only one unique complete item. Ideally the
subscripts would refer to an item number, but there is no convenient way to number items in a state.
The alternative of attaching four separate sets to each item is equally unattractive.

The set R contains all shift symbols in the current set s. In Tai’s paper, shift transitions were
called read transitions and R is the first letter of read. Unfortunately R is also the first letter of
reduce, and the reader should note that the sets R; have no relation to the set R. Using S (for shift)
for this set does not solve the problem as this letter is also heavily used, most notably as the start sym-
bol. Here we simply keep Tai’s naming convention and add this explanation in the hope that confu-
sion is minimized. :

Algorithm NP;: The NSLR(1) Parser

An NSLR(1) parser needs two pushdown stacks SYMBOL_STK and STATE_STK. Initially,
SYMBOL_STK contains the input string and STATE_STK contains the initial state sg.

(1) Determine the symbol ¥ at the top of SYMBOL_STK.
(2) Let s be the state at the top of STATE_STK.

(2.1) If f(s,Y) = shift, then pop ¥ from SYMBOL_STK, push the state g(s,Y) on to
STATE_STK, and go to (1).

(2.2) If f(s, Y) = reduce i, where P; = A — «, then pop n; states from STATE_STK, push A
onto SYMBOL_STK, and go to (1).

(2.3) If f(s, Y) = error, then halt and declare error.

(2.4) If f(s, Y) = accept, then halt and declare acceptance. O

4.5. More Parsing Terminology

Now that the SLR(1) and NSLR(1) parser generation and parser Algorithm have been presented,
more terminology can be defined. As before, differences from standard notation are marked by a
filled triangle (»), and differences from Tai’s notation are marked by a filled box (w).

A core set of items is a set of items without the lookahead sets specified. In an SLR parser and
an NSLR parser all the states have unique core sets. » A semicomplete item is an item whose dot
appears neither at the beginning nor the end of the right part, i.e. items of the form [A — ««f] in
which o # ¢ and B # ¢. A kernel item is an item [A — a. 8] in which & # ¢. Thus both semicomplete
and complete items are kernel items. The kernel set of a state is characteristic of that state in that all
the items of a state can be reconstructed from the kernel set; applying CLOSURE and, if necessary,
state expansion to the kernel set will generate all other items in the state. » The term state expansion
refers to the process of adding items to an SLR(1) inconsistent state to initiate reduction of right con-
~ text that causes a conflict. In Algorithm NPG, state expansion is performed by steps 2.2 to 2.6.

» A closure item is an item generated by the CLOSURE function from a kernel item, and has
its dot at the beginning of the right part of the rule. » An expansion item is an item generated by
state expansion. In an SLR parser, all items are either kernel items or closure items. » An item with
the dot at the beginning of the right part is called an initial irem, and may be either a closure item or
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an expansion item. An e-reducing item, also called an e-item for short, is an item formed from an
e-production. Such an item is represented by the notation [A — . ].

4.6. An Error in Algorithm NPG, in the Computation of NSLR Lookahead Sets

An error exists in Algorithm NPGg in the computation of lookahead sets for complete items. The

problem is that lookahead sets for complete items in unexpanded states contain only terminal symbols.
It is possible, however, that during a parse, an unexpanded state may be presented with a valid non-
terminal as a lookahead symbol and as a result the parser would incorrectly terminate with an error.

An example of this, devised by Thomas Pennello?? is presented here. Consider grammar G,,,

shown in Figure 4.5. Figure 4.6 shows the SLR(1) parsing automaton for this grammar. Notice that
state 6 is inconsistent due to a reduce-reduce conflict on lookahead symbol g. NSLR state expansion
modifies state 6 and produces the expanded state 6’ and the new state 13 as shown in Figure 4.7.

S — AF | BG
A—D

B—E

D—c

E—c

F — ga

G—gb

Figure 4.5: Grammar G,,, that illustrates an error in original NSLR(1) algorithm, NPG,.

Figure 4.8 presents a parse of the legal sentence cga. In this figure, symbols on the state stack
are subscripted by the number of the state in which the parser will be when that symbol is on top of
the state stack. The terminal ¢ is pushed on the state stack and the potential reduction of ¢ to D is
postponed until later context is shifted and reduced. The terminals g and a are shifted and reduced
to F. Next ¢ is reduced to D with look-ahead F, and D is shifted onto the state stack. At this point
D should be reduced to A with lookahead F, but the reduce action contains only g as the lookahead
symbol (state 4 in Figure 4.6). Thus the parse terminates with an error.

The error can be generalized as follows. Noncanonical state expansion delays the reduction of
some symbols until later context is examined. The later context is reduced to some nonterminal A
and pushed back onto the lookahead stack to serve as lookahead for a reduction in an expanded state.
The lookahead sets for complete items in the expanded state, include nonterminal lookahead symbols.
Some symbols on the state stack with lookahead A will be reduced to B, and B will be pushed onto
the lookahead stack. The reduction to B will return the parser to a state where B may be shifted onto
the state stack exposing A on the lookahead stack. The shift action may bring the parser into an
unexpanded state r with complete items in which B is the last symbol of one of the complete items.
Since r is unexpanded, however, the parser generation algorithm will have produced lookahead sets
for these complete items that contain only terminals. As shown by G,,,, a reduction may be the next

correct action to take, but the lookahead stack now contains a nonterminal, and no reduction is possi-
ble. Hence the parse will fail.

4.7. Improved Handling of ¢-Productions

Before the error described above can be fully corrected, the handling of e-productions during state
expansion must be improved. The improved handling of ¢-productions is needed for the proof of
correctness of Algorithm NPGs;. In any case, with this improvement more grammars are accepted.
The change is especially important for character-level grammars for scannerless parsers of program-
ming languages. In such grammars optional white space is ubiquitous, and the proper handling of this
¢-production in particular (optional_white — ¢) is vital.
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0: 1:
S = <5+ 5 S Se ——-—9ACC6pt
S-—PQAF
S — «BG 2: F 7:
A—.D Al S—AF S —AF. {~}
B—).E F—).ga
D._'.C - -
E o oc 2 8: . 11:
F—gea F —ga. {-}
3: G 9.
B S —B.G S —BG. {-}
G——Pogb :
P 10: 12:
b 4:
A—D. {g}
E 5:
6:
c D —c. {g}
E—c. {g)

Figure 4.6: SLR(1) parsing automaton for G,,,.

6
D —c. {F} 13: g
c E —c. {G} g F —gea ——= State 11
State 0 ———= b
F— ega G—geb |~ - State 12
G—> ogb

Figure 4.7: NSLR(1) expansion of SLR(1) automaton for G,,,.

In Algorithm NPGj, an inconsistent state is expanded by first forming the ¢-CLOSURE of the

-state, and then generating new shift items for all conflicting symbols in the lookahead sets of complete
items. Forming the e-CLOSURE of a state consists of adding a new complete item [B — . ] for every
symbol B in the lookahead set of any complete item, if B can produce ¢. Forming the e-
CLOSURE(s) guarantees that all complete items that could possibly be needed for the expanded state
will be included before conflicting lookahead symbols are identified. (All new items have the dot at .
the beginning of their right part, and all complete items have the dot at the end, so only e-reducing
items can have the dot both at the beginning and at the end of their right part.) As a result, the
analysis of lookahead conflicts and the addition of new shift items for state expansion can be done
once per state since the process can add no further complete items. Only new complete items could
introduce new conflicts.
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State Lookahead
Stack Stack
~ cga —
k- ce - ga
= Ce 813 o
= Cer 813 A —
- cgr F -
- DF
Dy F -
Error!

Figure 4.8: Sample parse of valid sentence cga. Current parser state is shown as a sub-
script of symbol on state stack. The error occurs because state 4 requires a lookahead of g
toreduce D to A.

It is interesting to note at this point that when state expansion introduces an ¢-item into a state,

the only reason that the item can cause new conflicts is because a simple lookahead scheme is being

- used, rather than a full LR or LALR lookahead scheme. Suppose for instance that the e-item
[D — .] was introduced into a state due to state expansion from the items [A — o .] {B, C, D, ¢}
and [C — «Dc]. Since the symbol D can produce ¢, and D is in the lookahead set of A, all of the
symbols that can actually follow D in this context are already in the lookahead set for A. But since a
simple lookahead scheme is being used, FOLLOW(D), the lookahead set of the item [D — «] may
contain some symbols not in FOLLOW(A ), and these symbols may cause new conflicts.

The disadvantage of the approach of Algorithm NPGy, however, is that e-CLOSURE adds some
new items that are not needed to reduce further right context. As a result, needless new conflicts may
be introduced and these conflicts may be unresolvable, resulting in the unnecessary rejection of the
input grammar.

We propose Algorithm NPG, to improve the handling of e-productions. In Algorithm NPGy, the
only e-items added reduce ¢ to a shift symbol of an item that is needed to shift on conflicting right
context. As a result, Algorithm NPG; has the two desirable properties that all symbols reduced from ¢
are immediately shifted by the same state (the property needed by the proof of Lemma 4.8.3), and all
e-reducing items contribute to the reduction of conflicting right context.

Two new functions are needed by Algorithm NPG;: the functions FRONT and FR_FOLLOW.
The function FRONT which is defined as

FRONT(a) = {X| ;=X and if i # 1then o; = ¢ for 1 < j < i}.

In other words, FRONT(«) contains the set of leading symbols in the string « up to and including the
first one that does not generate ¢. The function FRONT differs from the function FIRST in that
FRONT(«) contains only symbols in o, whereas FIRST(«) may also contain symbols in sentential
forms generated by «.

The function FR_FOLLOW stands for fully-reduced FOLLOW, and is defined as:
FR_FOLLOW(A) = {YinV U {1} | S’ %ﬂA&Yﬂ; for some g in =V,
4 in V¥, and é in Vy such that § = }.

The similarity of FR_FOLLOW to Tai’s function LM_FOLLOW is very strong, the only difference
being that the symbols A and Y, of the definition, may have intervening ¢ producing symbols §.
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An alternate definition of FR_FOLLOW gives a better indication of how this function should be
computed and helps to clarify its purpose.

FR_FOLLOW(A) = {Y inV U {4} | thereisarule C — BB§Y~y
where A is in LAST(B) and § = e.

This second definition tells us that if there were a state s with a conflict on the lookahead symbol ¥,
and A was the symbol preceding the dot in some item in s, then we should not try to reduce Y to
some nonterminal in order to resolve the conflict, as ¥ may be needed in its unreduced form for a
shift in some other state. In other words, the symbol Y appears in a rule after a symbol that generates
A, and therefore there will be a shift action on Y somewhere in the parser. That shift action may be
involved in the current derivation, and if Y is reduced to some other symbol as lookahead, it will not
be available for shifting.

Although FR_FOLLOW(A) is a superset of LM_FOLLOW(A), the computation of | JL; using

LM_FOLLOW in algorithm NPGy will be a superset of the same union computed using
FR_FOLLOW in Algorithm NPG,. The reason for this fact is that Algorithm NPG, first inserts

e-items for every e-producing symbol in the lookahead set of any complete item. This action simu-
lates the computation of FR_FOLLOW, but may include unnecessary items that enlarge | JL;.
_ i

Algorithm NPG;: Improved handling of ¢-productions.
Replace steps (2.2), (2.3), and (2.4)" of Algorithm NPG, with these steps:
(2.2)'" Foreachi,0<i<p,

FR_FOLLOW(A) if s contains [i, n;] and P; = A — o
%) otherwise

i

FOLLOW(A) if s contains [, n;] and P; = A — o
Fi= %) otherwise

(2.3)'" LetR = {Y| s contains [i, j], j <n;, P; = A— o and a4 = Y} be the set of shift symbols of
S.
(2.4)"" Foreachi, 0<i<p,
(2.4.1)"" Compute the largest subset R; of F; that can distinguish the reduction by P;:
R;={Y in F;|Y isneitherinR norin F;, where 0 < j <p and j # i}.
(2.4.2)"" letL; = FR; U R; be the NSLR(1)-lookahead set associated with the reduction on P;.

(2.4.3)"" Form the set I; of new items where I; = {[¢, 0]| P, = B— 8, B isin F;, § # ¢, and
for some X in FRONT(g), X is in F;—L;}.

(2.4.4)"" For each unmarked item [q, 0] = [B — « 8] in [;, such that C = g; is in Vy, and
there is a rule P, = C — v, where v = ¢:
(2.4.4.1)"" Add[r,0]=[C— «q] to],.
(2.4.4.2)'" Mark the item [q, 0]. _

(2.4.5)"" Addtheset]; tos. O

Steps (2.4.3)'" and (2.4.4)"" contain the principal differences of Algorithm NPG; from NPG.

Step (2.4.3)"" adds the new shift items needed to shift on conflicting right context. The right part of
some of these items may begin with symbols that are not in conflict, but are reducible from ¢. Step
(2.4.4)'" adds the items needed to reduce such symbols from e.
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When step (2.4)'' is done, the sets L; contain the lookahead sets for each complete item [7,r;].
All symbols in F; but not in L; will be shifted and reduced in order to resolve a conflict. After step
(2.4)"" is finished, some conflicts introduced during state expansion may still be resolvable. With suit-
able but tricky manipulation of F; and L; it would be possible to repeat step (2.4)'’ as many times as

necessary, and resolve some of the new conflicts. The class of extra grammars accepted in this way,
however, seems to be of very limited usefulness. As a result, the complexity added by repeating the
conflict resolution was not considered warranted and was not included in Algorithm NPG;.

4.7.1. Correctness of Algorithm NPG,

We now prove some lemmas and a theorem about Algorithm NPG;. The proofs are fairly informal,
since the length of complete formal proofs would be excessive.

Lemma 4.7.1: All SLR(1) consistent grammars will be accepted by Algorithm NPG,.

Proof: This proof is trivial. Unless a conflict arises in the grammar, Algorithm NPG, is identi-
cal to Algorithm PG, the SLR(1) parser generator. If such a conflict arose then Algorithm PG
would reject the grammar whereas Algorithm NPG, may accept it. Therefore the grammars accepted
by Algorithm NPG; must be a superset of the grammars accepted by PGy. . 0

Lemma 4.7.2: Only initial shift items, that is items with the dot at the beginning of the right
part, need be added during state expansion; no semicomplete items need be generated.

Proof: The purpose of state expansion is to reduce ambiguous right context into a unique look-
ahead symbol. The reduced symbol will then be used as a lookahead symbol to select between one
reduce action, and a conflicting reduce action or shift action.

Suppose a semicomplete item of the form [A — o« Xf] were added to a state to shift and later
reduce the lookahead symbol X. If there is no derivation o = ¢, such an item would combine some
left context with right context to produce a symbol A, therefore such an item need not be considered.
If left context of o were valid in the current state, then the LR construction algorithm would have
already included the item [A — o« X 3] in the state. On the other hand, a semicomplete item of the
same form, where there is a derivation o = ¢, would not necessarily combine left context with right
context and therefore is eligible for inclusion during state expansion. Notice, however, that adding
the initial item [A — « aXg] along with all items needed to reduce ¢ to o« would achieve the same pur-
pose. This second choice is the one made by Algorithm NPG;. The effects are equivalent, unless

other initial items of the form [B — ~+X ], were added where v may be ¢, but v # . (If ¥ = o then
both items could be added as initial items.) A grammar with two rules of the above form, however,
will always cause an unresolvable conflict. Since o = ¢, v = ¢, and there are rules A — oXg, and
B — X4, the symbol X will be in FR_FOLLOW(C) for every symbol C in « and v. Without loss of
generality assume that |«| < |y|. Since the grammar contains no useless rules, there must be some
state with the item [o; — «] {X ...}, and and one of the items [y; — «] {X ...} or [B— 7.X§].

Either case leads to a conflict, and since X is in FR_FOLLOW(q;) the conflict is unresolvable. O
Lemma 4.7.3: Algorithm NPG, adds all necessary items that shift lookahead'symbols in conflict.

Proof: Using Lemma 4.7.2, we need only show that Algorithm NPG, adds all possible initial

items of the form [B — «p] that shift the lookahead symbol X for all X in conflict. Let the set
F = UF ; for all ¢ such that there is a complete item [i, »;] in the current state. Thus F contains all

symbols terminal and nonterminal, that could follow the left context on the state stack. (Since the
simple strategy is used to compute the lookahead set, F may also contain some symbols that may not
follow the left context.) Therefore the symbol B must be in F. Let the set FR = UFR for all i such

that there is an complete item [i, »;] in the current state. Thus FR contains all symbols that may not
be shifted by an expanded state, since they may be needed for a shift action by a predecessor state.



CHAPTER 4: IMPROVED NSLR(1) PARSER GENERATION : : 42

(Since the simple strategy is used to compute FR, it may also contain some symbols that will not be
shifted by predecessor states.) Therefore if the symbol X is in FR it may not be correct to shift X and
reduce it. An item may cause the shifting of lookahead symbol X by the current state, or by descen-
dant states, if its right part g has the form 6X7n, where § = ¢. (If 6 = ¢ the X will be shifted by the
current state, if not, then by some descendant state.) If X is in FRONT(g) then g has the desired
form. Algorithm NPG, inserts, during state expansion, all items B — 8 such that B is in F and X is

in 2, unless X is in FR; for some i. In this last case it may be incorrect to shift X so X is left in L; to
cause and unresolvable conflict, and rejection of the grammar.

If 6 # ¢, then the state must also contain items to reduce 6, from e. (The symbols §; for

1< j < 6] will be reduced from ¢ by descendant states.) Step (2.4.4.1)"’ adds all possible 1tems of
the form [6;— «~] where v = ¢. (In an unambiguous grammar, there will only be one such item. If

there are two or more, a reduce-reduce conflict on X will result.) If v % ¢ then the loop of step
(2.4.4)"" will add the items needed to reduce ~; from e. O

Lemma 4.7.4: In states produced by Algorithm NPG{, all symbols reduced from ¢ will be
immediately shifted by the same state that reduced them. That is, if a state contains an item of the
form [A — .], it will also contain an item of the form [B — o« Af].

Proof: All e¢-items are generated either by CLOSURE or by state expansion. If an e-item
[A — <] was generated by CLOSURE then there must be a kernel item [B — o +Ap] in the same
state. This kernel item will shift the symbol A reduced from e.

If the e-item [A — o] was generated by state expansmn, then it was generated by step
(2.4.4.1)"". In this case the item takes the form [C — .], and was generated by step (2.4.4)"', and
there must be an expansion item of the form [B — « C§], which will shift C. a

Lemma 4.7.5: During state expansion, Algorithm NPG; may generate shift actions for look-
ahead symbols not in conflict. All such shift items will cause new unresolved conflicts, and hence it is
not necessary to generate all possible shift items for those lookahead symbols.

Proof: Step (2.4.4.1)"" may generate items of the form [C — «D§]. In some cases these new
state expansions items indicate a shift of the symbol D even though there was a unique reduction on
lookahead symbol D indicted before state expansion. Since D is in FIRST(C), C is in FIRST(B), and
B is in F;, therefore D is also in F;. This fact is true since if a symbol X is in F; then by construction

all the symbols in FIRST(X) are in F;.. If D is in F;, and there was no conflict on lookahead D before
state expansion, then D is also be in L;, the ultimate look ahead set for a reduction by rule i. Since D
is now in a shift lookahead set, and if D was not in conflict before state expansion it is still in a reduc-
tion lookahead set, therefore a conflict will result after state expansion. O

Lemma 4.7.6: If state expansion by Algorithm NPG, fails with an unresolvable conflict, then so
will state expansion by Algorithm NPGy.

Proof: States expanded by Algorithm NPG; differ from those expanded by Algorithm NPG, in
only two ways: 1) some e¢-items generated by NPG, are not generated by NPGy, and 2) some shift
items generated by NPG, are not generated by NPG,.

Case 1: The state expansion by Algorithm NPG, adds all possible ¢-items, hence states expanded by
Algorithm NPG; can contain no ¢-items that would not appear if the same state were expanded
by Algorithm NPG,. Nevertheless, since Algorithm NPG, resolves conflicts after adding e-items,
whereas Algorithm NPG, does not, it may seem that Algorithm NPG, may resolve some con-
flicts not resolved by NPG;. This is not the case. Only step (2.4.4.1)"" of Algorithm NPG, adds
e-items. If an e-item [r, 0] = [C — «] is added, then there must be an item of the form
[B — «p] such that C is in FIRST(8,), that was added by step (2.4.3)'' due to a conflict on
some symbol X in FRONT(g), where X # C. Since all lookahead symbols in conflict before
state expansion by NPG; would also be in conflict after ¢-CLOSURE by NPG,, therefore X
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would be in conflict for Algorithm NPGq also. Since C is in FIRST(g) and X is in FRONT(p),
X is in FR, and hence in L,, the ultimate lookahead set for the reduction [r, 0]. As a result
there is an unresolvable conflict on lookahead symbol X in Algorithm NPGj too.

Case 2: State expansion by Algorithm NPG, adds some shift items not added by NPG,. Such items

take the form [B — «6X7n], where § = ¢ and the symbol X was in conflict before state expan-
sion. All lookahead symbols in conflict for Algorithm NPG; before state expansion are also in

conflict for NPGy after ¢-CLOSURE. Furthermore, there is a symbol C = §, and a production
P, = C — ¢ such that X is in FR,. Therefore, if Algorithm NPG; generates a shift item not gen-
erated by Algorithm NPG,, Algorithm NPG, will also always fail with an unresolvable conflict.

O
Theorem 4.1: Algorithm NPG; accepts all grammars accepted by Algorithm NPG,.

Proof: All differences between Algorithm NPGy and Algorithm NPG; are in the state expansion
algorithm. By Lemma 4.7.6, if state expansion by Algorithm NPG; fails then so will state expansion
by Algorithm NPG,. Sometimes both state expansions may succeed, but produce different conflict-

free expanded states. The expanded states may differ in two ways: 1) the state produced by Algo-
rithm NPG, may have more ¢-items than the one produced by Algorithm NPG;, and 2) the state pro-

duced by Algorithm NPG; may have shift items not found in the state produced by Algorithm NPG,.
These differing states may result in differing states produced by GOTO.

Case 1: In a consistent state s, differences in e-items do not affect the state produced by GOTO(s, Y),
since the kernel set of destination states are formed solely from shift items in s. Therefore, such
differences will not lead to differing conflicts in destination states.

Case 2: As shown in case 2 of the proof of Lemma 4.7.6, when Algorithm NPG; produces an expan-
sion item not produced by Algorithm NPGy, Algorithm NPGy fails and rejects the input gram-
mar. As a result possible new conflicts in differing descendant states are not relevant.

Therefore all grammars accepted by Algorithm NPG, are also accepted by Algorithm NPG;. O

4.7.2. New Grammars Accepted by Algorithm NPG,
There are some grammars that would be rejected by Algorithm NPG, that are now acceptable. Con-

sider for instance the grammar G, in Figure 4.9. This grammar describes the language
{cca, ccja, cch, ccjb, ic, ijc}

S—AJa | BJb | iJD

A— DD

B — EE

D—c

E—c

J—elj
Figure 4.9: Grammar G,, a grammar that is rejected by the NSLR(1) parser construction
Algorithm NPGy, but is accepted by Algorithm NPG,.

Figure 4.10(a) shows the state of the SLR(1) parser for G, that contains conflicts. There is a
conflict between the two items [D — c« | and [E — ¢« ] on lookahead ¢. Figure 4.10(b) shows the the
same state after state expansion by Algorithm NPGy. The e-CLLOSURE has brought in the new item
[/J— «] {D, a}, since J can produce ¢ and J was in the lookahead set of the complete item
[D — c.]. As a result, there is an unresolvable conflict on lookahead symbol D. This conflict cannot
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be resotved by a shift action, because no other symbol in the lookahead set produces D. When Algo-
rithm NPG; is used, the item [/ — «] will not be brought in, and a state without conflicts shown in

Figure 4.10(c) will be produced by state expansion.

D—ce. {D,J,j,—} D—c. {D,J,a,j,4}
D—ce. {a,c,j,~} E—c. {E,D} E-—c¢. {E,b} :
st J—b. {D,a} > N
E—ce. {b,c} D vc D— .c .
E—).C E—+ e
(a) ©
c
(b)

Figure 4.10: The state with conflicts from the parsing automaton for G, is shown (a) before
state expansion, (b) after state expansion by Algorithm PGy, and (c) after state expansion
by Algorithm PG;. A conflict on lookahead D remains in (b) but not in (c).

4.8. Algorithm NPG,: Correcting the Lookahead Sets of Algorithm NPG,

The error in the lookahead sets of consistent states pointed out in Section 4.6 has not been corrected
in Algorithm NPG, so let us return to this problem. The simplest method of correcting the look-
ahead sets generated by Algorithm NPG, is to eliminate the function T_FOLLOW and use the func-
tion FOLLOW in its place. Let us call Algorithm NPG, corrected in this way, Algorithm NPG,.

In Algorithm NPG,, the only usage of T_FOLLOW is in computing the lookahead set for com-

plete items in SLR(1) consistent states. The end result of the change will be to produce reduce
actions in the parser action table for all possible following symbols, terminals and nonterminals, that
appear in any sentential form of a derivation in the grammar. Once this is done all complete items in
all states, expanded and unexpanded will have all possible follow symbols in their lookahead sets.

Although this correction is simple, the resulting parser generator may fail for grammars with
invisible symbols.

Definition: The set of invisible symbols contains those nonterminals that can ultimately produce
only ¢.
V; = {AinVy| A S w implies w = ¢}.
Similarly the set of visible symbols contains those symbols that can produce terminals.
Vy ={X inV|X = x for x in V7}.
These definitions imply that:
Vy=V-V,

Algorithm NPG, fails for grammars containing invisible symbols in the sense that it even rejects some

SLR(1) grammars that contain invisible symbols. Invisible symbols can be deleted from a grammar
without changing the language produced; nevertheless, they are sometimes useful for writing gram-
mars for programming languages when semantic actions are attached to the e-productions that use
them. In addition, Algorithm NPG, generates many entries in the parser action table that cannot be
used in any parse. These two deficiencies of Algorithm NPG, are addressed in Sections 4.9 and 4.11

respectively.
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4.8.1. Correctness of Algorithm NPG,

Assume that the grammars to be processed by Algorithm NPG, contain no invisible symbols. The
parser action table produced by Algorithm NPG, will contain all the entries of the table produced by
Algorithm NPG, plus additional reduce actions on nonterminal lookahead symbols. This section
proves that the added lookahead entries correct the lookahead error of Algorithm NPGy, and do not
introduce any new conflicts. This is done by proving two properties of the new entries:

1) the new entries do not make any formerly consistent states inconsistent,

2) the new entries, with the old entries, include all possible valid lookahead symbols.
The modification will, however, probably generate many useless entries.

Lemma 4.8.1: If a grammar contains no invisible symbols then using FOLLOW in place of
T_FOLLOW in computing the lookahead sets for reduce actions will not make any formerly con-
sistent state into an inconsistent state.

Proof: We now show that a state that was consistent according to Algorithm NPG; will remain
consistent according to Algorithm NPG,. This is all that is needed since once a state is found to be
inconsistent it is processed by a state expansion algorithm that does not use T_FOLLOW and hence
does not change from Algorithm NPG, to Algorithm NPG,.

_In an SLR(1) consistent state r, generated by Algorithm NPG;, a complete item [i,n;] of the
form [A — «.«] will have lookahead set T_L; = T_FOLLOW(A) associated with it. By Algorithm
NPG,, each complete item [i, n;] will have L; = FOLLOW(A) as its lookahead set. Assume that the
grammar has no invisible symbols, so that V; = ¢j. Then for every nonterminal B in L;,
FIRST(B) # ¢ and FIRST(B) D T_L;. Furthermore all terminals in L; are also in 7_L;. A new con-
flict would be either a reduce-reduce conflict or a shift-reduce conflict.

Case 1: New reduce-reduce conflicts. A new reduce-reduce conflict would arise if two distinct

complete items in some state r have disjoint terminal lookahead sets, but intersecting nonterminal
lookahead sets. Formally, for some i and j such that i # j, and [i,»;] and [j,n;] are in r, then

TLNTL;=¢, but Ly n L; # (J. Suppose there is a nonterminal C such that C is in L; N L;.
Then by the definition of L;, FIRST(C) C L; and FIRST(C) C L;. But T_FIRST(C) C FIRST(C),
hence T_FIRST(C) C L; and T_FIRST(C) C L;. But all terminals in L; are also in T_L;, hence
T_FIRST(C) C T_L; and T_FIRST(C) C T_L;, therefore

T_FIRST(C) C (T_L; n T_L;).

In SLR(1) consistent states, however, T_L; N T_L; = ¢, hence T_FIRST(C) = ¢, but since there are
no invisible symbols in the grammar, this is impossible. Hence there is no C in L; n L;, and there
are no new inconsistencies due to reduce-reduce conflicts.
Case 2: New shift-reduce conflicts. As in the original paper, let L be the simple 1-lookahead set
for shift transitions from state r:
L ={X|r contains [i, /], j <m, P; = A—x, and x;,; = X}
This definition can be rephrased as:

L = {X|r contains [A — a« XS]}

A new shift-reduce conflict will arise if T_.L; N L = (¢, but L; N L # ¢ for some i. This implies that
there is some nonterminal A, such that A isin L; and A isin L. Since A is in L and the SLR(1) con-
sistency of state r is tested on the CLOSURE(r), we know that L contains A and {B| [C — .Bg] is

in r for all C in FIRST(A)}. Since G has no invisible symbols, this recursive definition of L must
include a terminal symbol ¢ in T_FIRST(A). That symbol ¢ must also be a member of 7_L; and a
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contlict would have already existed in the unexpanded state. Hence no newly inconsistent state would
be generated. O

Lemma 4.8.2: Algorithm NPG, will generate all lookahead entries for complete items that could
possibly be needed by an NSLR two-stack parser.

Proof: Let us represent the state of an NSLR two-stack parser by the representation (a, 8),
where « is the contents of the state stack with the stack top at the right, and g is the contents of the
lookahead stack with the stack top at left. We can represent an arbitrary reduce action that reduces
the string § to D by the transition (+~6, X8) — (v, DX6), Where the string X§ ends with .
Notice that the reduce action requires a lookahead symbol X in (V U —{). This reduce action will
correspond to the step D — § in the derivation

S' HADXO = 6X0 & -x—

By the definition of FOLLOW, Any X that can occur in such a derivation must be a member of
FOLLOW(D). Hence using a lookahead set of FOLLOW(D) for the reduction of § to D will include
all possible lookahead symbols needed. O

It would also be desirable to prove that all lookahead entries generated by Algorithm NPG, will
be needed for some NSLR(1) parse. Unfortunately this is not the case, since both Algorithms NPG,
and NPG, generate many useless entries. Reducing the number of useless entries is the topic of Sec-
tion 4.11.

Take note also of the word simple in the acronym NSLR. As in an SLR parser it implies that
the lookahead sets may contain many lookahead symbols that cannot occur in valid strings of the
language. These extra entries can cause some spurious reduce actions on invalid input strings, but
never a spurious shift action. This characteristic of SLR parse table is discussed in more detail by
Aho and Ullman! in Section 7.3.5. An NSLR parser will not only allow some invalid reductions on
invalid inputs, but may also perform some shift actions on incorrect symbols. An NSLR parser will
accept no invalid input strings, but an exact statement of how it behaves on erroneous strings is not as
easily presented as for SLR parsers, and is not presented here. A study of behaviour of noncanonical
parsers on erroneous input would make a good topic for future research.

4.9. Allowing Grammars with Invisible Symbols

The proof of Lemma 4.8.1 required that the grammar being processed contain no invisible symbols.
Since invisible symbols can ultimately produce only ¢ they can be deleted from a grammar without
changing the language produced. Occasionally, however, e-productions using invisible symbols are
useful in a parser when semantic actions are attached.

Algorithm NPG, can still produce correct tables for grammars containing invisible symbols, but

in cases where the invisible symbols appear in the lookahead set of two complete items in a state, a
conflict may needlessly be announced. The problem is illustrated by grammar G;,, defined as follows:

S — ANa | BNb
A—c¢
B—c¢
N—¢

Grammar G, is an SLR(1) grammar, but once nonterminals are included in the lookahead sets
of complete items, as per Algorithm NPG,, a new conflict arises. In parsing the valid sentence ca,

the parser cannot decide whether to reduce the initial ¢ to A or B without inspecting the lookahead
symbol. An SLR(1) parser generator will generate the complete items [A — ¢« | with lookahead {a}
and [B — ¢« ] with lookahead {5} for making this reduction. Since the lookahead sets contain only
symbols from T_FOLLOW(A) and T_FOLLOW(B), there is no conflict. In Algorithm NPG,, how-

ever, the lookahead sets will be {N, a} and {N, b} respectively, and a conflict on N results. The
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conflict cannot be resolved by state expansion, and hence the grammar is rejected as not being
NSLR(1). Algorithm NPG,;, a modification of Algorithm NPG,, provides a way of processing gram-

mars with invisible symbols without needlessly announcing conflicts.

4.9.1, Algorithm NPG;: Correct Handling of Invisible Symbols

The method proposed here for handling lookahead conflicts on invisible symbols is simply to ignore
them. The justification for this treatment, is that since invisible symbols never generate any actual
terminal symbols in sentences of a grammar, they can be ignored. The proof of this is presented in
the next subsection.

To correct Algorithm NPG, so that it accepts all SLR(1) grammars as NSLR(1) grammars,
exclude invisible symbols from the sets L;, FR;, and F;. In other words, these three sets should be ini-
tialized as:

{FOLLOW(A) N Vy ifs contains [i, n;] and P; = A — o
Li=F; =

%) otherwise

FR_FOLLOW(A) N Vy if s contains [i, n;] and P; = A — «
FR; = %] otherwise '

After applying these changes to Algorithm NPG,, call it Algorithm NPGs;.

4.9.2. Proof of Correctness of Algorithm NPG;

Algorithm NPGj; has the same behavior as NPG, except that it ignores conflicts on invisible symbols.

In this section we present and prove six lemmas and two theorems to show that conflicts on invisible
symbols can be ignored in Algorithm NPG,.

Theorem 4.2: In an NSLR(1) parser generated by Algorithm NPG,, every reduce action that

returns the parser to an unexpanded conflict-free state and pushes a nonterminal A onto the look-
ahead stack will be immediately followed by a shift transition that removes A from the lookahead
stack, or by an accept transition that terminates the parse.

Proof: Every reduction of a string « to a symbol A, returns the parsing automaton to a state r
with an initial item [A — «co]. This is the item that initiated the shifting of the string «. In an unex-
panded state, with only one possible exception, such an item must have been generated by CLO-
SURE from a kernel item of the form [B — g+A~]. Such a kernel item indicates a shift transition
out of r on lookahead A. Since the state is conflict-free, this must be the only action available on a
lookahead of A.

The one initial item not generated by CLOSURE from a kemel item is [S'— «-S—]. A
reduction to S', however, would indicate an accept action, terminating the parse. a

Corollary: A nonterminal A is unnecessary in the lookahead sets of complete items unless some
expanded state in the parser contains an expansion item with a left part of A, and it contains no shift
item of the form [B — B+.A~].

This corollary will be used in section 4.11 to reduce the size of the lookahead sets.

Lemma 4.9.1: If a grammar with an invisible symbol A, has more than one distinct production
with a left part of A, that grammar will be ambiguous, and will be rejected by Algorithm NPG, with
unresolvable conflicts.

Proof: The ambiguity of the grammar is obvious. Suppose the grammar has the two rules
A— o and A — 8, where « # 8, and A is in V,. Since the grammars under consideration have no

useless symbols, there must be a derivation § = vA¢. This sentential form can generate two senten-
tial forms o and 4860. Since o and g are both in V;*, both of these sentential forms must generate

the same sentences.
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To see that such a grammar will be rejected by Algorithm NPG,, consider a state with an item
[B—6+A0]. Since A is not useless there must be such a state. The CLOSURE operation on this
state will generate the items [A — « o} and [A — « 8]. If either & or g are not ¢, further items will be
generated. In the end there will be at least two items [C — «], and [D — . ], where C and D are in
FIRST(A). If @ = ¢ then C = A, otherwise C is in FIRST(«). Similarly, if 8 = ¢ then D = A, other-
wise D is in FIRST(8). Since o and g are in V;+, C and D must also be in LAST(A). Since C and D
are in LAST(A), every symbol in FR_FOLLOW(A) must also be in FR_FOLLOW(C) and
FR_FOLLOW(D), and these symbols will lead to unresolvable conflicts on the complete items
[C— «]and [D — .]. O

Corollary: Every invisible symbol in a grammar accepted by Algorithm NPG, must either gen-

erate ¢ directly, A = ¢, or indirectly, A = o = ¢, but may not do both.

Lemma 4.9.2: Shift-reduce conflicts on invisible symbols that directly produce ¢ can be resolved
in favour of shifting. That is, if a state contains two items, a shift item of the form [B — a+Ap], and
a complete item of the form [C — ~.] with a lookahead set that includes A; where A is in V;, and

A = ¢, then A can be deleted from the lookahead set of the complete item.

Proof: In a parsing automaton created by Algorithm NPG,, if a state r contains the shift item

I = [B— a«Ap], where A is an invisible symbol such that A = ¢, then r must also contain a com-
plete item J = [A — «]. Item J will have been generated from item 7 either by CLOSURE or by step
(2.4.4)"" of state expansion. By Lemma 4.7.4, if a symbol A reduced from ¢ appears on the top of
the lookahead stack for a state r then it was reduced by the same state r due to item J.

This lemma assumes a conflict on lookahead A between item I and a complete item
K = [C — v.]. Before the symbol A is reduced from ¢ by state r, some symbol X, part of further
right context must appear on the stack, and a reduction to A chosen over a reduction to C based on
that lookahead. If there was no conflict between the complete items K = [C— y.] and
J =|A — .], and the reduction implied by the latter item was performed, then a reduction of v to C
should still be inappropriate, and the conflict on the newly reduced symbol A can be ignored. In
other words if there is no derivation

S H04X9,
then there can be no derivation
S B 094AX P S 04X .

If there were two such derivations, then there will always be some symbol X in the lookahead sets of
both item K and item J, and a conflict on X would result. Thus the conflict on A can be ignored as it
either represents no real conflict, or if there is a real conflict, it will be signaled by another lookahead
symbol X . ’

The symbol X will always be visible since by Algorithm NPG,, no reductions are made for which
the lookahead symbol is invisible. 0O
Lemma 4.9.3: Shift-reduce conflicts on any invisible symbol can be resolved in favour of shift-

ing. That is, if a state contains two items, one of the form [B — a+Apg], and the other of the form
[C — ~.] with a lookahead set that includes A, where A is in V;, then A can be deleted from the

lookahead set of the second item.
Proof: The case where A directly produces ¢ is handled by Lemma 4.9.2 above, so we need to

~ prove this lemma only for the case where A indirectly produces ¢ (that is A = ¢ = ¢). The proof is
quite similar to the proof of Lemma 4.9.2, but the decision to reduce the string ¢ to A will not be
made by state r, the state with the conflict. Rather it will be made by some state ¢ on a path ¢ from
state r. Nevertheless, CLOSURE or step (2.4.4)"' will generate from item I = [B — o« AS], at least
two items [A — <] and [D — o], where ¢ is in V;*, and D is in FIRST(y). Since ¢ is composed

solely of invisible symbols, D is also in LAST(A), and hence every symbol in FOLLOW(A) will also
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be in FOLLOW(D). Before ¢ can be reduced to A, and A pushed onto the lookahead stack, the sym-
bol D must be reduced from e. Before the reduction of D, some symbol X, part of further right con-
text must appear on the lookahead stack. If the reduction of 4 to C was inappropriate on lookahead
X before the reduction of D and A it should still be inappropriate after. In other words if there is no
derivation

S S 04X¢,
then there can be no derivation
S 5 04AX¢ = 04X 4.

If there were two such derivations, then there will always be some symbol X in the lookahead sets of
both item K and item J, and a conflict on X would result. Thus the conflict on A can be ignored as it
either represents no real conflict, or if there is a real conflict, it will be signaled by some other look-
ahead symbol X .

The symbol X will always be visible since by Algorithm NPG,, no reductions are made for which
the lookahead symbol is invisible. O

Lemma 4.9.4: Reduce-reduce conflicts on invisible symbols that directly produce ¢ can be
ignored in Algorithm NPG,.

Proof: Suppose that the conflict is on the lookahead symbol A. Assume there is no shift-reduce
conflict on A, since if there is Lemma 4.9.2 indicates that the correct action is to shift, and A should
be deleted from the lookahead sets of the reduce actions thus eliminating the conflict. If there is no
shift-item [B — o« AS] then Lemma 4.7.4 indicates that A cannot actually appear on the lookahead
stack for this state, and hence A can be deleted from the lookahead sets of the two conflicting com-
plete items. O

Lemma 4.9.5: Reduce-reduce conflicts on any invisible symbol can be ignored in Algorithm
NPG,.

Proof: Again we can assume that if there is a reduce-reduce conflict on the invisible symbol A
in some state r, there is no shift-reduce conflict on the same symbol. If there were such a conflict
then the correct action would be to shift, and the symbol A should be deleted from the lookahead sets
of the conflicting reduce actions.

Invisible symbols can be ranked by the depth of parse tree they need to produce ¢. Invisible
symbols that directly produce ¢, those symbols in the set {A| A = ¢}, are given a rank of 1. Other
invisible symbols are given the highest rank of any symbol they produce plus one. (In an unambigu-
ous grammar, invisible symbols can have no recursion, and therefore their rank must be finite. This
is easily shown using Lemma 4.9.1 and its corollary.) By the corollary to Theorem 4.2, we can delete
a symbol A from the lookahead sets of complete items, unless some expanded state has an expansion
item of the form [A — ««] and there is no shift item [B — 8+A~] in the same state. Such an item
can only exist if there is a conflict on some symbol in «. By induction on the rank of an invisible
symbol, using Lemmas 4.9.2 and 3.4 as a basis, and the previous statement as the induction step, it
can be shown that all reduce-reduce conflicts on invisible symbols that indirectly produce ¢, can be
ignored. |

The proof of Lemma 4.8.1 required that the grammar contain no invisible symbols. An exami-
nation of that proof will show, however, that it is sufficient that the lookahead sets contain no invisi-
ble symbols.

Lemma 4.9.6: Invisible symbols can be deleted from FR;, the sets of fully-reduce lookahead
symbols.

Proof: Symbols in FR; are those that may not be shifted and reduced by expansion items to
resolve conflicts. If no invisible symbols appear in L; or F; then no conflicts can arise on invisible

symbols. (All conflicts involve a reduce action.) Since no conflicts can arise on invisible symbols, no
shift items will be created to resolve conflicts on invisible symbols. Since no such shift items are
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created, there is no need to keep invisible symbols in FR; to block such actions.

It is still possible, however, that state expansion items whose shift symbol is invisible will be
created by step (2.4.3)"" of Algorithm NPG, to resolve conflicts on some visible symbol X. This step

may create items of the form [B — «Cé] where C is invisible, and FRONT($) contains the conflict-
ing lookahead symbol X. In this case however, if C = ¢ directly, then step (2.4.4.1)"’ will always
generate a complete item of the form [r, 0] = [C — «] whose lookahead set L, will contain all sym-

bols in FOLLOW(C) n Vy. If C would have been in some FR; to block the shifting of C, then since
C is nullable, FR; will also contain some visible symbol Y in FOLLOW(C) and there will be an
unresolved reduce-reduce conflict between L; and L,. Therefore, invisible symbols can be deleted
from the sets FR; without allowing grammars that would shift and reduce invisible lookahead symbols
that should not be reduced.

If C = ¢ indirectly, rather than directly, then step (2.4.4.1)"' will generate an item
[r, 0] = [D — «], such that D is in FIRST(C). The lookahead set of that new item, L,, will contain
all the symbols in FOLLOW(D) N Vy. Since C is invisible, FOLLOW(D) D FOLLOW(C). There-
fore as with the case in the preceding paragraph, there will be a conflict between L; and L,, and the
conflict that would have arisen on C can be safely ignored. O

Theorem 4.3: Every SLR(1) consistent grammar will be accepted by Algorithm NPGs,.
Proof: This theorem follows from Lemmas 4.7.1, 4.8.1, 4.9.3, 4.9.5, and 4.9.6. ([

4.10. Algorithm NPG4: A Variations on Algorithm NPG;

Algorithms NPG,; through NPG; have the property that they do not reject any grammars except by

leaving conflicts in the generated parser. This approach has the advantage that no special treatment is
needed for rejected grammars, but it also has two disadvantages. The first disadvantage is that some-
times work is done generating expansion items for states when it is obvious that the conflicts cannot
be eliminated. The second disadvantage is that understanding how the algorithm works can be
clouded by the complex mechanisms by which conflicts are left in the parser to ensure rejection of the
grammar.

If one allows a parser generator to have a mechanism for rejecting grammars other than by leav-
ing conflicts in the parser, and allows some grammars to be rejected when resolving conflicts becomes
too complex, then shorter simpler parser generators can be designed. Such a parser generator has
been presented by Salomon and Cormack#9-5% That algorithm is reproduced here for comparison pur-
poses, and is called Algorithm NPG}. To present that algorithm, an additional function definition is

needed.

Definition: HIDDEN(A) = {X| X isinVy, A = oXf, o # ¢ and o = ¢}

Algorithm NPG4 is presented in the informal style of the original paper in which it
appeared?#?:50 The alternate style may even help clarify the operation of preceding parser generators
presented here.

Algorithm NPG} avoids the complexity of steps (2.4.3)"" and (2.4.4)"’ by rejecting all grammars

~ that require recursive addition of state expansion items. Almost all such grammars lead to unresolv-
able conflicts anyway. There is, however, a small class of grammars accepted by Algorithm NPGj,

but rejected by Algorithm NPG4. An example of a grammar that falls into this class is:
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Loop until all states completed.
Compute next SLR state g for grammar.

To each complete item I;=[A — «.] attach a lookahead set L;=FOLLOW(A) N Vy and a
fully-reduced lookahead set FR; = FR_FOLLOW(A) N Vy.

If state g has a conflict then
For each conflicting lookahead symbol X:
resolved := true

For each complete item I; =[A — o« ] such that X isin L;:
If X is in FR; or X is in HIDDEN (B) for some B in L; then

resolved .= false
else :
For each rule B — X8 where B isin L;:
Add item [B — «XB] tog
end for
end if
end for
If resolved then
remove X from L,
else
reject grammar
end if
end for
end if
end loop.

Algorithm NPG}

S—BC | ED
C — Aec
D — Aed
A—cela
B—b
E—b
The language described by this grammar has four sentences: bec, bed, baec, and baed. In the

SLR(1) parser generated form this grammar there will be a conflict on whether to reduce the initial b
of each sentence to B or E. Algorithm NPG; will insert state-expansion items [C — «Aec] and

[D — «Aec] to reduce multiple lookahead symbols to C or D thus resolving the conflict on the reduc-
tion of B and E. In contrast Algorithm NPG} will simply reject this grammar.

The properties of the grammars accepted by Algorithm NPGj but rejected by Algorithm NPG}
are more restrictive than the above example would indicate. The right parts of the expansion item
added must begin with the same nullable symbol, and that symbol must directly produce ¢. Neverthe-
less, this kind of grammar may occur in the description of real programming languages where white
space (represented by the symbol A) is inserted at the start of tokens instead of at the end as in the
grammar of Appendix E.
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4.11. Reducing Lookahead-Set Size for Complete Items

Tai points out in Section 8 of his paper>> that state expansion generates some useless elements in
lookahead sets for complete items, and he comments on a possible solution to this problem. With the
corrections of Algorithms NPG, and NPG;, many unnecessary clements are added to the lookahead

sets of unexpanded states too. In this section, methods of reducing the number of these useless ele-
ments are presented.

The corollary to Theorem 4.2 tells us that some nonterminals will never be left on the lookahead
stack long enough to serve as lookahead for a reduce action. A nonterminal is pushed onto the look-
ahead stack by a reduce action. After reducing a string « to a nonterminal A, the parser always
returns to a state » that contains an initial item of the form [A — ««]. This will be the state that ini-
tiated the shifting of the symbol «;. If this state also contains an item of the form [B — 8. A~] then

the symbol A will be immediately shifted from the lookahead stack, and will never serve as the look-
ahead symbol for any complete item!

In an SLR(1) consistent state, all initial items (items with the dot at the start of the right part)
are generated by the CLOSURE operation from other items in the same state* As a result every ini-
tial item of the form [A — .«] in an unexpanded state will have a parent item of the form
[B — B+A~] in the same state. In an expanded state, on the other hand, some initial items are gen-
erated from the lookahead sets of complete items, and have no parent item to shift on the reduced
symbol.

Algorithm DUR;: Delete Useless Reduce Actions

Let RWOS (reduce without shift) be the set of symbols that can be reduced without an immediate
shift.

RWOS = {A| some state s contains an item of the form [A — ««],
but s does not contain an item of the form [B — 8+ A~]}

A simple method of reducing the number of nonterminal entries in the lookahead sets of complete

items is to delete all nonterminals that are not in RWOS from the lookahead sets of complete items.
O

Continued analysis of the parsing process shows that the size of lookahead sets can be reduced
even further. Suppose a reduction pushes a symbol A in RWOS onto the lookahead stack and returns
to a state ». That instance of A can be used as a lookahead symbol for further reduce actions only so
long as it is not shifted onto the state stack. Once it is shifted, it cannot reappear on the lookahead
stack unless it is reduced to some other symbol or a different instance of A. If, after a reduction
pushes a symbol A onto the lookahead stack, the symbols on the state stack form a string ~, then any
state that can use that instance of A as a lookahead will have symbols § on the state stack that were
reduced from ~ and possibly ¢. Neither A nor any further right context could have been involved in
the reduction to 6. Since § was reduced from  and possibly ¢, there must exist a derivation § = ~.

The path taken from the start state to the current state will determine the string currently on the
state stack. Each shift transition on the path contributes one symbol of the string. Let 4 be a string
that can be on the state stack when the symbol A is reduced and the parser returns to a state r that
contains no shift transition for A. There can be a large and possibly infinite number of such strings «
for any given state r. Let I" be the set of all such strings  for all states that do not shift A after
reduction. Let A be the set of strings that can be on the state stack when a reduction is indicated by
a complete item [ in state ». If § = ~ for some string § in A, and some string ~ in T', then we know

+ This statement assumes that the parser has no remaining shift-reduce conflicts. For parse tables that may be put
to use cven though they have shift-reduce conflicts, we must consider how the parser resolves such conflicts. If it
resolves them by shifting, then the statement is still true, otherwise it is also necessary to check that no complete
items use A as a lookahead symbal.

* The only exception is the item [S' — . FS%] which can be treated specially.
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that item / in state r may need the symbol A in its lookahead set.

Applying this test to each complete item of the parsing automaton will determine which nonter-
minals may be on top of the lookahead stack for each complete item of each state. Such an analysis
may be quite complex, so we propose a simpler but less stringent test. If the nonterminal A is to be
useful as a lookahead symbol for a complete item [C — 0D . ] then there must be some expanded
state that does not shift A but contains a complete item [B — ¢ « ] whose lookahead set includes A and
either

1) B isin LAST(D), or
2) D is nullable and there is some symbol E such that E = ¢BD for some ¢.

To apply this simplified test, define the function TAIL,_FOLLOW as:
TAIL_FOLLOW(X) = {Y| A = oXY for some A}.

Also define the function PNTLA(B) (mnemonic for Possible NonTerminal LookAhead) that gives non-
terminals that could possibly be used as lookahead symbols for complete items [C — 7B+ ], or B — v
if v = ¢. PNTLA can be computed as follows.

Algorithm CPNTLA: Compute PNTLA
(1) For each expanded state r:

(2) For each item [A — «a] in r:

3) For each complete item [i,n;] = [B— B+] inr:

G} If A isin L; then:

(5) For each C such that B is in LAST(C):

6)- Add A to the set PNTLA(C)).

(7N For each nullable symbol C in TAIL_FOLLOW(B):
(8) Add A to the set PNTLA(C).

A second algorithm for eliminating useless reduce actions from the parser action table can now
be given.
Algorithm DUR,: Delete Useless Reduce Actions

(1) For each state g:
(2) RWOS, = (5.
(3) If ¢ is an expanded state then:

4) For each item [A — « o] ing:

5) Add A to RWOS,.

(6) For each item [B — f+A~] in g:

@) Remove A from RWOS, if present. _

€)) For each complete item [j,n;] = [B — f.]ingq:
(9) k= 8] _

(10) For each nonterminal C such that f(g, C) = reduce j:
(11) If C is not in RWOS, then:

(12) If 3 = ¢ and C is not in PNTLA(B) then:
(13) Change f(q, C) from reduce j to error.
(14) If 4 # ¢ and C is not in PNTLA(S;) then:
(15) Change f(q, C) from reduce j to error.

In this algorithm, the set RWOS, is a subset of RWOS and contains those elements of RWOS
contributed by state g. In other words it contains those symbols that can be pushed onto the look-
ahead stack by a reduction that returns to state g, but for which state g contains no shift actions. No
symbols in RWOS, should be deleted from the lookahead set of any reduce action in state g, since any
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of those symbols could legitimately appear as lookahead symbols. Step (11) ensures that such symbols-
are not deleted.

PNTLA can be computed incrementally after the expansion of a state, but the elimination of
useless reduce entries from f must be performed after the construction of the parser action function f
is complete. The set FOLLLOW(A) is a superset of TAIL_FOLLOW(A) and hence can be used in
place of the latter set at the expense of possibly increasing the number of useless reduce actions that
remain.

Algorithms DUR,, CPNTLA and DUR, were implemented and applied to a scannerless NSLR(1)
parser for ISO Pascal. Algorithm DUR;, deleted 89.6% of reduce actions on nonterminal lookahead
symbols, consequently deleting 41% of the total number of table entries. Algorithm DUR, (imple-

mented to use FOLLOW in place of TAIL_FOLLOW) deleted 97.4% of reduce actions on nontermi-
nal lookahead symbols, decreasing the total table size by 45%. Higher complexity algorithms for
deleting useless reduce actions can be devised, but with diminishing returns. Since the remaining
reduce actions on nonterminal lookaheads for our sample parser constitute only 2% of the total table
size, and this figure could never be reduced to 0% in a parser with expanded states, the rewards for
developing better algorithms would be small. There may, however, exist other grammars that could
benefit more substantially from a further improved algorithm.

Not all parser implementations benefit from the use of Algorithms DUR; or DUR,. These algo-

rithms do not actually reduce the number of entries in a parser action table, but rather replace reduce
actions by error actions. Thus only parsers that use sparse table storage techniques that do not store
error entries will in fact be smaller. Nevertheless, in some implementations of parsers the smaller
number of reduce actions may actually speed up parser execution. This case would arise when a
searching algorithm is used to locate an entry in a sparse table. For an example of such a parser
implementation see Aho & Ullman* Section 6.8, page 233.

4.12, Algorithm NPG,: Complete Corrected NSLR(1) Parser Generator
(1) Initially, let s = CLOSURE({[0, 0}}) and Q = {sp} with sy “unmarked.”
(2) For each unmarked state s in Q, mark it by performing the following steps:
(2.1) Compute the SLR(1) lookahead sets:
(2.1.1) Foreachi, 0<i <p,let
FOLLOW(A) N Vy if s contains [i, n;]and P; = A — «

L= {@ otherwise

be the simple I-lookahead set associated with the reductions on P;.
(2.1.2) Let'L = {Y|s contains [i, j], j <n;, P;=A—«a, and «a;, = Y} be the simple

1-lookahead set associated with all shift transitions from s.
(2.1.3) I L, Ly, Ly, , and L, are pairwise disjoint, then s is SLR(1) consistent, so go

to step (2.7). [Steps (2.2) to (2.6) comprise the state expansion part of the algo-
rithm performed only on inconsistent states. ]

(2.2)'"" Foreachi, 0<i <p,
FR_FOLLOW(A) n Vy if s contains [i, n;] and P; = A — «
FR; = %) otherwise

FOLLOW(A) n Vy if s contains [i, m;] and P; = A — «
Fi = %) otherwise
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(2.3)"" Let R = {Y| s contains [/, j], j <nm;, P; = A— o and o;,; = Y} be the set of shift sym-
bols of s.
(2.4)"" Foreachi,0<i<p,
(2.4.1)"" Compute the largest subset R; of F; that can distinguish the reduction by P;:
R;={Y in F;|Y isin neither R nor F;, where 0 < j < p and j # i}.
(2.4.2)"" Let L; = FR; U R; be the NSLR(1)-lookahead set associated with the reductions
on P;.
(2.4.3)"" Form the set I; of new items where I; = {[g, 0]| P,=B—g,BisinF;, § #¢,
and for some X in FRONT(g), X is in F;—L;}.

(2.4.4)"" For each unmarked item [q, 0] = [B — . 8] in [;, such that C = g is in Vy,
and there is a rule P, = C — v, where 4 = ¢:
(2.4.4.1)"" Add[r,0]=[C— «q]tol.
(2.4.4.2)"" Mark the item [g, 0].

(2.4.5)"" Addtheset]; tos.

(2.4.6) Update PNTLA as in Algorithm CPNTLA steps (2) to (8).

(2.5) Let L = {Y|s contains [i,j], j<m, Pi=A—oa, and «;,; =Y} be the NSLR(I)-
lookahead set associated with all shift transitions from s.

(2.6)' If L, Lo, Ly, "...," and L, are not pairwise disjoint, then abort (thus G is not noncanonical
SLR(1)).

(2.7) ForeachY in L, set f(s, Y) = shift. If Ly = {4}, then set f(s, 4) = accept. For each ¥
in L;, 1<i<p, set f(s,Y)=reducei. For each Y in V y {-} but not in
LULyuLiy --- UL,setf(s, Y) = error.

(2.8) Foreach?Y in L, compute GOTO(s, Y) as follows:

GOTO(s, Y) = CLOSURE({[i, j+1]| s contains [i, j], j < n;,
Pi =A—)O(, andO(j+1= Y}).

If GOTO(s", Y) is not already in Q, then add it to Q as an unmarked state. Set
g(s,Y) = GOTO(s, Y).

(2.9) ForeachY inV butnotin L, set g(s, Y) = error.
(3) Delete useless reduce actions from F using Algorithm DUR,. O

4.13. Summary

This chapter describes in detail the NSLR(1) parser and parser generation method as described by
Tai. An error in Tai’s construction is identified. Before the error can be corrected, Tai’s handling of
epsilon productions is improved. In addition, this improvement is essential to parsing character-level
grammars, the subject of this thesis. The improved parser generator, called Algorithm NPG, is shown

to accept a proper superset of the grammars accepted by the original algorithm.
After improving the handling of epsilon productions, a correction for the error in Tai’s Method
is proposed. The parser generation method employing this correction is called Algorithm NPG,. It is

proved that the correction does not introduce any new conflicts so long as the grammar contains no
invisible symbols. The necessity of a case by case analysis in that proof is demonstrated by the fact
that the method does fail for the special case of invisible symbols.
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We next prove that invisible symbols in lookahead sets can be ignored for the parser generation
method proposed. The parser generator that ignores invisible symbols in the lookahead set is called
Algorithm NPG;. A significantly simplified version of NPGj is also presented that is only slightly less
powerful.

Finally, the correction proposed to Tai’s error generates many useless symbols in the lookahead
sets of parser actions. These useless entries may double the storage requirements for the parse tables
if sparse table storage methods are in use. As a result a method is proposed for eliminating most of
these useless symbols. The method has achieved at least 97% efficiency on real character-level gram-
mars. The completed parser generation algorithm is presented in its entirety and called NPG,.



Chapter 5

Restrictive Rules for Context-Free Grammars

5.1. Introduction

In this chapter we present a detailed description of the restrictive rules proposed for context-free
grammars. The description of each of the proposed rules is given in three parts.

(1) A formal definition is given of the meaning of the new rules.

(2) Algorithms are given for transforming context-free grammars containing instances of these rules
(called restricted context-free grammars—RCFG’s) into pure context-free grammars. In this way
the closure properties of these new rules on context-free grammars are established.

(3) Algorithms are given for generating parsers for restricted CFG’s.

5.1.1. Restricted Context-Free Grammars .
» A restricted context-free grammar, an RCFG, is a quadruple G = (V, P, R, §) where:

V = Vy U V; = The set of symbols in the grammar.
Vy = The set of nonterminal symbols.
Vr = The set of terminal symbols.

P = The set of productions.

R = Rg U Rur = The set of restrictive rules.
Ry = The set of exclusion rules.
R4 = The set of adjacency-restriction rules.
S = A member of Vy, is the start symbol.

As with ordinary context-free grammars, productions, the elements of P, take the form A — o,
where A is in Vy and « is a string in V*. The forms of the exclusion rules, Ry, and the adjacency res-

triction rules, Ry, are presented in detail below in Sections 5.2 and 5.3, respectively. It can be seen

that every restricted context-free grammar G = (V, P, R, §), has a corresponding unrestricted CFG
GY = (Vy, Vy, P, S), which is the same a G but without the restrictive rules. The definitions of the

restrictive rules given below imply that L(G) C L(GY).

The purpose of the restrictive rules is to contradict the productions in some way, and to override
the language defined by the unrestricted grammar. Thus the restrictive rules are applied after the pro-
ductions to eliminate certain derivations specified by the productions.

5.2. The Exclusioq Rule

The form of an exclusion rule is the same as the form of an ordinary CFG production except that the
operator “— ”is replaced by the operator “-¢+ ”. A sample exclusion rule would be:

A ¢ o

The left part of an exclusion rule is in Vy and the right part is in V*. In BNF grammars that use
“u="” or “=" as the production operator, the symbols “ :: ” or “ # ", respectively, can be used for

57
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the exclusion operator. If a grammar must be represented in the ASCII character set, then the char-
acter sequences “—X->”, ¢ 1:# 7 or “ # ” can be used as the exclusion operator.

An exclusion rule such as
identifier ¢ begin

can be read as “identifier does not generate begin”, or “identifier excludes begin”. It indicates that
the language generated by the left part (identifier) should not include the language generated by the
right part (begin). Such a rule could be used with a general description for identifier, to exclude the
generation of specific sentential forms by identifier. The following grammar fragment illustrates this
use of the exclusion rule.

identifier — id

id — letter | id letter | id digit
begin — "b""e" "g" "i" "n"

end — "e" "n" "d"

if — "

then — "t""h" "e" "n"

else — "e" " s e

identifier ¢ begin | end | if | then | else

Without the added exclusion rule, the language described by the symbol identifier includes those
described by the symbols begin, end, if, then, and else. If those keywords are supposed to be reserved,
then this is not the desired effect. The given exclusion rules remove the keywords from the set of
valid identifiers. The above example also illustrates that, just as with ordinary CFG rules, multiple
exclusion rules with the same left part can be joined by combining the right parts separated by OR
bars “|”.

The language excluded by an exclusion rule is the one defined by productions only, not by other
exclusion rules, and thus multiple exclusion rules are independent. For example, if a grammar G con-
tains the two exclusion rules A -+ B and B - C then the language generated by A excludes the
language generated by B as described by the productions for B, disregarding the exclusion rule for B.

5.2.1. Formal Description of the Exclusion Rule
Consider an RCFG G = (V, P, R, §) such that Ry contains the exclusion rule A > . If L y(o) is
the sublanguage generated by the string o according to the unrestricted grammar, then

Lo(A) = Lu(A) 0 L o(a).

In other words, the exclusion rule forbids derivations of the form § = Ay = g6~ for all § in L(c).
In the case of multiple exclusion rules with the same left part such as A > oy |ap | - - - | @, the

meaning is

Lo(A) = Lu(A) N Lgu(e) N Lgu(e) N -+ N Lgu(an)

Since the language generated by symbols in the left part of exclusion rules is defined in terms of the
unrestricted grammar, multiple exclusion rules with different left parts do not interact.

5.2.2. Closure Properties of the Exclusion Rule

Consider an RCFG G’ defined by adding the exclusion rule A ¢ o to a CFG G. The exclusion rule
specifies that L ,(A), the language generated by the symbol A according to the grammar G’, should

be the language L;(A) N Lg(e). Since context-free languages are not closed under complementation,
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and it is known to be undecidable whether the intersection of two CFL’s is also a CFL, context-free
grammars are not closed under exclusion. (Note that the language defined by a grammar using an
exclusion rule, is still well defined, even if the language is not context-free.)

If we wish an RCFG to produce a context-free language, we must place restrictions on the use
of exclusion rules. CFL’s are closed under intersection with a regular set, and regular sets are closed
under complementation, so if Lg(a) were restricted to being a regular set, then L(G) would be

context-free. With this restriction a grammar transformation can be given for constructing a CFG G"
from an RCFG G’. If the sole purpose of the exclusion rule were to solve the reserved-keyword prob-
lem then restricting L;(a)—the description of the reserved keywords —to being a finite set, would still

provide enough power to write a language specification.

Algorithm 7E: Grammar Transformation for Eliminating
Exclusion Rules

This algorithm makes use of several algorithms presented by Hopcroft and Ullm.an.24 These algorithms
are subscripted by the number of the theorem in which each appears. The algorithms used are:

HU, ; — page 22 — Convert an NFA without ¢ moves to a DFA.
HU, , — page 26 — Convert an NFA with ¢ moves to an NFA without ¢ moves.

HUs, — page 59 — Given a DFA Mthat recognizes a language L(M) construct a DFA that
recognizes the language L{M).
HUs 3 — page 115 — Given a CFG G, construct a DPDA that recognizes L(G).

HUs 4 — page 116 — Given a DPDA M, construct a CFG G such that L(G) is the language
recognized by M.

HUg.s — page 135 — Given a DPDA M, and a DFA M, construct a DPDA M3 which recognizes
the language L(M,) N L(M,).

HUjg g, — page 137 — Test if a CFL is finite.

HUg 1 — page 218 — Given a left- or right-linear grammar G construct an NFA that recognizes
L(G).
Consider a context-free grammar G = (Vy, Vy, P, §) with the added exclusion rule A > o.

The CFG G, with this added rule, becomes the RCFG G’ = (V, P/, R, S). The language L(G')

could be given by a pure CFG G" = (V§, Vr, P, §) constructed using the following steps:

(1) Initially P” contains all rules in P except those whose left part is A.

(2) Ensure that L;(e), is regular, and if so build a DFA that recognizes that language. It is unde-
cidable, in the general case, whether a CFL is regular. (See, for instance, Hopcroft and Ull-
man?24 page 281.) There are, however, some CFL’s that are readily recognizable as regular.

i) It is decidable if a CFL is finite (by algorithm HUgg), and all finite sets are regular.
Building a DFA to recognize a finite set is simple.

it) If the grammar for L;(e) is left linear, or right linear, then it is regular. Construct a DFA
from this grammar using algorithms HUs 1, HU, », and HU, ;.

iti) If Lg(e) is a deterministic CFL then it is decidable whether it is regular. Stearns3 and

Valiant3¢ give decision algorithms for the regularity of a DPDA, and an algorithm (though
not a practical one) for constructing a finite-state machine from a DPDA. Unfortunately
it is not decidable in the general case whether a CFL is deterministic.

If an DFA for recognizing L;(«) cannot be constructed, then the RCFG grammar is rejected.



CHAPTER 5: RESTRICTIVE RULES FOR CONTEXT-FREE GRAMMARS 60

(3) Compute a grammar G4 = (Vay, Var, Pa; A) for the language L(G,) = Lg(A) N Lg(e). Since
Lg(«) is regular, Ls(o) is also regular. This step can be done using algorithms HU;,, HUs 3,
I‘IU6.5> and HU5'4.

(4) Add the productions P, to P", and the symbols in V4 to the set V.

(5) Remove useless productions.

A grammar containing multiple exclusion rules with the same left part, such as
A By | 82| -+ | Ba, can be processed by replacing those rules with the rule A >~ B, and adding

the productions B — 81 | 85| - - - | 8. to P before applying Algorithm TE. A grammar containings

multiple exclusion rules with different left parts can be processed by applying Algorithm TE repeat-
edly, using the output grammar of each application as the input grammar for the next application.
This can be done since multiple exclusion rules are independent as described in Section 5.2.1 above.
It is important to note, however, that wherever Algorithm TE refers to Lg(e), it refers to the

language generated by the right part of the exclusion rule according to the original grammar as it
existed before any applications of the algorithm.

5.2.3. Generating LR Parsers for Grammars Containing Exclusion Rules

Our construction algorithm builds the NSLR parser for the unrestricted ambiguous grammar, and uses
the exclusion rules to eliminate actions that would parse the excluded sublanguages. The method con-
sists of two modifications to the parser generator, and three tests for membership in the class of gram-
mars that are handled correctly. )

Definition: The set DESCEND(A) contains the immediate descendants of A.
DESCEND(A) = {X| A = aXg for some «, £}

Definition: The set DESCEND*(A) contains all symbols that can appear in any sentential form
generated by A.
DESCEND*(A) = {X| A & oXp for some «, 8}

Definition: The set DESCEND(A) contains all symbols that can appear in any sentential form
generated by A, except A itself.

DESCEND*(4) = DESCEND*(4) — {A}

Definition: The set U_DESCEND(A), the unique descendants of A, contains all symbols,
including A itself, that can appear only in sentential forms generated by A.

U_DESCEND(A) = {X | Every derivation § = «8X~6 generates the
same parse tree as some derivation S = aA§ = ofX~6}.

For example, in the grammar of Appendix D, U_DESCEND(Identifier) contains Identifier,
IdentifierFragment and Letter.

Definition: The uniquely-LAST function, U_LAST(A), is the set of symbols that only appear as
the last symbol of sentential forms generated by A, and includes A itself.

U_LAST(A) = {Y| A = gY for some 4, and every derivation
S = apYy e generates the same parse tree as
some derivation § = 0Ay = afYy = z}

Figure 5.1 gives an algorithm for computing U_LAST(A) and U_DESCEND(A ).
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true if B = oX

END_SYM(B, X) = { false otherwise

Compute the transitive closure END_SYM'.

true for ¥ in DESCEND(B)
ALT_DESCEND(B, Y) = and B # A
false otherwise

Compute the transitive closure ALT_DESCEND*.

Initially U_LAST(A) = {X| END_SYM*(4, X)},
and U_DESCEND(A) = DESCEND*(A).

For each B in DESCEND*(A):
For each rule B -+ aY:
For each symbol X in «:
U_LAST(A) := U_LAST(A)—- DESCEND*(X).
end for
end for
end for

For each B such that ALT_DESCEND*(S, B) is
true, where § is the start symbol:
Remove B from U_LAST(A).
Remove B from U_DESCEND(A).
end for

Add A to U_LAST(A) and U_DESCEND(A).
Figure 5.1. An algorithm for computing U_LAST(A) and U_DESCEND(A ).

Algorithm PGSE: Parser Generation for Simple Exclusion Grammars
To implement the processing of exclusion rules, the following modifications are made, and tests
added, to an LR parser generator:

Modification EMI1: For each rule E->« F, reduce-reduce conflicts between two items
I =[C—~+]and I; = [D—§.], where C is in U_DESCEND(E), and D is in U_LAST(F), are
resolved in favour of the second item, the reduction to D. Specifically, if L; and L; are the lookahead
sets for items /; and I; respectively, then for each X in L; remove X from L;. In addition, if FR; and
FR; are the fully-reduced follow sets for items ; and I; respectively, then for each Y in FR; remove Y
from FR;. The conflict resolution is made before each SLR state is tested for consistency. If state
expansion added e-items then the conflict resolution should also be applied again after state expan-
sion.

The effect of Modification EM1 is to prefer chained reductions that will yield F rather than E.
We will call this inhibiting a reduction 1o E.

Modification EM2: For each exclusion rule E - F, add a specially marked rule E — F. If the
grammar already contains a rule E-—» F, that rule should be specially marked, rather than adding a
new rule. Without the addition of the specially marked rules, the parser may not recognize that a
string in L (F) has occurred where only a string in L(E) is expected according to the original grammar.
These added rules will be handled like any other production by the parser generator except that no
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- reduce actions should be produced due to complete items of the form [E-— F.], and the rules should
be treated as if they do not exist during the computation of the sets DESCEND, DESCEND*,
DESCEND™*, U_DESCEND, and U_LAST. (A parser generator that treats the marked rules like
any other production during the computation of the above five sets will accept a smaller class of gram-
mars, but will still accept most of the grammars of interest.)

Test ET1: This test enforces the restriction on the grammar that the right part of each exclusion
rule must be a single nonterminal. In other words, the right part may not be a string or a terminal.

Test ET2: For Modification EM1 to be correct we must ensure that for any two parses of E and
F, either the parses are distinct, or that they start simultaneously. This test consists of two steps.

(a) Ensure that no recognition of E starts during a recognition of F. There must be no states in the
parser that contain an item of the form [A — o« ES] and (i) an item of the form [B — 71X . Y§]
where B is in DESCEND*(F), or (ii) an item of the form [B — v.] where B is in
DESCEND*(F) but not in U_LAST(F).

(b) Ensure that no recognition of F starts during a recognition of E. The conditions are the same as
for step (a) above but exchange E and F.

Test ET3: For each exclusion rule E - F, ensure that whenever a recognition of F has com-
pleted, a concurrent recognition of E also ends. This test can be done by ensuring that
FOLLOW(F) n DESCEND*(E) = (5.

Tests ET1 to ET3 should be applied after all state processing is complete, including state expan-
sion, if any.

The above method accepts only a restricted class of grammars, which we call SE (simple exclu-
sion) grammars, and which we have found adequate to describe programming languages. The adjec-
tive simple is used to describe this class of grammars because membership can be tested by examining
each state of the generated parser individually without regard to the transitions between states. This
property is shared by SLR grammars.

The above implementation can be simplified if we note that for most grammars of interest,
U_LAST(E) = {E} and U_LAST(F) = {F}. As a result, an implementation that omits the computa-
tion of U_LAST(E) and U_LAST(F) and uses { E} and {F}, respectively, in their place will still have
adequate power for the intended applications of the the exclusion rule.

5.2.4. Correctness of Algorithm PGSE

In the discussion that follows we will assume that the exclusion rule being implemented is E > F,
and the bold symbols E and F will be used without further comment.

Modification EM2 ensures that for every derivation S < oEg, there will also be a derivation
S = oFp. If however, the second derivation requires the use of one of the specially marked produc-
tions generated by Modification EM2, then parsing of the second sentential form will be blocked,
since the specially-marked productions cannot generate reduce actions.

If there is a derivation S = oES, and a derivation S & oF8 = axp, that does not require the
use of one of the specially marked rules, then there are two possibilities: (a) the string x is not in
L(E), or (b) the string x is in L(E). Case (a) is of no further interest since the rule E > F does not
affect such derivations. In case (b), there would be two derivations of the string axg, and the exclu-
sion rule would disallow the one of the form § = oE8 = axg. The two possible derivations of axg
would cause a reduce-reduce conflict in the generated parser on the reductions E = x, and F = x.
The remainder of this proof will show that many such conflicts will be resolved in favour of the second
reduction. We need not prove that all E-F conflicts are resolved; we need only show that all the con-
flicts that are resolved really are E-F conflicts, and are resolved correctly. If unresolved conflicts
remain, the generated parser is rejected. The intention is that the set of grammars, the simple-
exclusion grammars, for which all conflicts are resolved, should be a useful set.
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An outline of the remainder of the proof is as follows. We prove that whenever our method
favours a reduction reduce j to a symbol in U_LAST(F) over a reduction reduce { to a symbol in
U_DESCEND(E),

(i) reduction reduce j ends the recognition of a sentence x generated by F,

(i) reduction reduce i ends the recognition of a sentence y generated by E, and

(iii) the recognition of x and y started in the same state.

Since the recognitions of x and y start in the same states and end in the same states, therefore x = y,
and the reduction to E should indeed have been inhibited in order that E -+ x. Item (iii) is proved
by showing that

(a) if a recognition of E is initiated while a recognition of F is in progress, or

(b) if a recognition of F is initiated while a recognition of E is in progress,
then the grammar will be rejected by Test ET2.

5.2.4.1. Proof for SLR Parser Generators

First we prove that Algorithm PGSE works for an SLR parser generator. In the next subsection, we
prove it for the more difficult case of a NSLR parser generators.

To make the discussion that follows simpler, we assume that the state stack of an LR parser con-
tains both states attained by shift transitions, and the symbols shifted by those transitions. Since the
latter information is not necessary for the correct implementation of LR parsers it is customanly omit-
ted from actual implementations.

Lemma 5.1: In an LR parser, if the top n+1 elements of the state stack are the sequence of
states ¢ = gy * * * §,, With g, being the topmost, and the top n symbols on the state stack are the

string « = o4 - - - @,, and state g, specifies a reduce action on the production A — «, then state g
‘must contain an item of the form [B — 8.+A~] for some B, 3, and ~.

Proof: This is a fundamental property of LR parsers and a full proof is not given here. We can
see, however, that for such a reduction to be specified by state g,, states ¢; for i in the range

0 < i < n must each contain an item of the form [A — § «¢], where 6¢ = « and |6 | = i. Thus state
qo contains an item of the form [A — « «] and such items can only be generated by item-set closure on

items of the form [B — g.A~]. O

Definition: » A final recognition configuration I1 for a symbol A in an LR parsing automaton M
is a configuration of M such that the symbols on the top of the state stack can be reduced to A by a
series of reduce actions alone. Thus a final recognition configuration II is a quintuple
IM=(A,M,q, a,a) where A is the symbol to be recognized, M is the parsing automaton being con-
sidered, g is a sequence of n+1 states on top of the state stack, « is the string of the top n symbols on
the state stack that are to be reduced to A, and a is the lookahead symbol. The state g, and the sym-

bol «, are at the top of the state stack.

When M is in the final recognition configuration IT = (A, M, ¢, a, a) it is prepared to perform
the sequence of reductions that corresponds to the derivation A = = v = - - = o where each
string is generated by expanding the final symbol of the previous string, if it is a non terminal. (This
is not the same as a right-most derivation where the right-most nonterminal is expanded.) Since a
parser in a final recognition configuration can be transformed from having « on the top of the state
stack to having A there by reduce actions alone, at each step of the transformation it is only a suffix
of the state stack that is replaced.

Another property of final recognition configurations of the form II = (A, M, ¢, «, a) is that
each state §; for 0 < i < n is connected to state g;, by a shift transition on the symbol o; 4.

Lemma 5.2: State go of a final recognition configuration IT1 = (A, M, ¢, «, a) must have an
item of the form [B — f.A~].
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Proof: This is easily shown by repeated application of Lemma 5.1 on q. O

Lemma 5.3: When Modification EM1 inhibits a reduction to a symbol C on lookahead symbol
b in state r of a parser M, it is known that when M is in state r it will always be in a final recognition
configuration for F.

Proof: When Modification EM1 inhibits such a reduction on lockahead symbol b, then state r
contains an item I; = [D — ¢ « ], such that D is in U_LAST(F), and the lookahead set L; of I; con-

tains the symbol b. Since D can appear only at the end of sentential forms generated by F it is
guaranteed that F can be reduced from the top of the state stack without shifting on any more sym-
bols. In addition, since L; = T_FOLLOW(D), and since T_FOLLOW(D) = T_FOLLOW(F) for all
symbols D in U_LAST(F), therefore b is a valid lookahead symbol for a reduction to F. Therefore
the parser would be in a final recognition configuration for F. (W

Lemma 5.4: When Modification EM1 inhibits a reduction to C on lookahead symbol b in a
parser state r, then if the reduction were not inhibited, whenever the parser would be in state r it
would always be in a final recognition configuration for the symbol E.

Proof: When Modification EM1 inhibits a reduction to C in a parser state r, then state r con-
tains an item [C — 7. ], such that C is in U_DESCEND(E). Since members of U_DESCEND(E)
can only appear in sentential forms generated by E, the string currently on top of the state stack must
form at least part of a string that is eventually reduced to E. Modification EM1 inhibits reductions to
C on lookahead symbols in the set L; for the item [D — 6§ «]. Test ET3 ensures that

. FOLLOW(F) n DESCEND*(E) = 5.
Since D is in U_LAST(F), therefore FOLLOW(D) = FOLLOW(F). Since
L; = T_FOLLOW(D) C FOLLOW(D),

therefore
L;n DESCENDY(E) = (.

Therefore the lookahead symbol could not possibly be part of any string reduced to E, and the string
currently on top of the state stack must form all of the string to be reduced to E.

In addition we know that b is in T_FOLLOW(C). Since C is in U_DESCEND(E), therefore
T_FOLLOW(C) C T_FOLLOW(E) U DESCEND*(E).

But by Test ET3 we know that b is not in DESCEND*(E). Therefore » must be in T_FOLLOW(E)
and would be a valid lookahead symbol for a reduction to E. Therefore the parser must be in a final
recognition configuration for E. O

Lemma 5.5: In a final recognition configuration IT = (A, M, 4, «, a) of length n every state g;
for 0 < i < n has an item of the form [B — 8X « Y~] for some B in DESCEND*(A).

Proof: The state sequence § is produced by repeated application of the CLOSURE and the
GOTO functions starting with an item of the form [C — 6 +A¢]. In order that o; for 0 < j < n could
be shifted onto the state stack, all kernel items of state §; must have the form J = [B' — ¢a; « 3], for

some B’, ¢, and . Furthermore, at least one of these items B’ must be in DESCEND#* (A ), otherwise
a; could not participate in a reduction to A. If for all such items ¢ = ¢ then j must equal n, that is

state ¢; must be the last state of §, since in that case there would be no way for CLOSURE(g;) and
GOTO(q;, 1) to produce an item of the form J in state ¢;,4. Since ¢ > ¢ for at least one item in all
states §; the lemma is satisfied with B’ = B. m]

Theorem 5.1: In parsers that pass all of the tests ET1 through ET3, if Modification EM1 of
Algorithm PGSE inhibits the reduction of a string « to A on lookahead a in a state » of a parsing
automaton M in favour of a reduction of g to B, then whenever M is in state r it would have been in
a final recognition configuration 11 = (E, M, ¢, v, a) of length n with r = 4, and that final
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recognition configuration will be inhibited in favour of a final recognition configuration
V= (F,M,q,~,a). That is M will be in a final recognition configuration for F with an identical
state sequence ¢, reduction string v, and lookahead symbol a as in IT.

Proof: Lemma 5.4 specifies that when M is in state r it must be in a final recognition configura-
tion I1 = (E, M, ¢, v, a) of length n with ¢, = r. Lemma 5.3 specifies that when M is in state r it

must be in a final recognition configuration 2 = (F, M, §, §, a) of length m with s5,, = r. We must
show that § = §, and y = §.
There are three possibilities: n = m, n < m, orn > m.

Case 1: n = m. In this case since § and § must both be on the state stack at the same time, § = §.
Since in an LR parsing automaton all shift transitions to a particular state must be on the same
symbol, therefore v = §, and the theorem is proved.

Case 2: n < m. In this case state gy = §,,_,. By Lemma 5.2, gy contains an item [C — ¢ « E¢], and
by Lemma 5.5 §,_,, and hence g3, must have an item [D — ¢X «Yy] for some D in

DESCEND*(F). But Test ET2(a) rejects parsers with two such items in the same state. There-
fore this case is impossible in an accepted parser.

Case 3: n > m. An argument similar to the one used for Case 2 above will show that this case is also
impossible in accepted parsers.
Therefore the lemma holds. 0

5.2.4.2. Proof for Noncanonical SLR Parser Generators

The proot for noncanonical SLR parsers is complicated by the fact that state expansion can introduce
into a state an item [C — « ] even though there is no item [B — g« C’¢] such that C is in FIRST(C’).
This property means that lemmas 5.3, 5.4, and 5.5 do not always hold. We can however develop
modified versions of these lemmas that allow the proof of Theorem 5.1 for noncanonical SLR parsers.
Lemma 5.6 substitutes for lemmas 5.3 and 5.4, and Lemma 5.7 substitutes for 5.5.

Lemma 5.6: When Modification EM1 inhibits a reduction to a symbol C on lookahead symbol
b in state r of a parser M, the language accepted by the parser will not change unless M is in a final
recognition configuration for both E and F when in state r.

Proof: Since C is in U_DESCEND(E), inhibiting a reduction to C cannot change the language
accepted by the parser unless C is part of a string that is later reduced to E. Since b is not in
DESCEND*(E), C must be at the end of such a string, and hence M must be in a final recognition
configuration for E. Due to the productions added by Modification EM2, when M is in a final recog-
nition configuration for E it must also be in a final recognition configuration for F. (]

Lemma 5.7: In a final recognition configuration I1 = (A, M, 4, «, a) of length n every state g;
for 0 < i < n has an item of the form [B — X «Y~], or an item of the form [B — § « ] for some B in
DESCEND*(A). )

Proof: The proof is similar to the proof for Lemma 5.5, except that items can be generated by
CLOSURE, GOTO, or state expansion. The proof of Lemma 5.5 still holds for showing that there
must be an item in state ¢; of the form J = [B' — ¢a; « 9] where B’ is in DESCEND*(A). But it is
possible to have another item of that form in state §;,4 for j < n, even if ¢ = ¢, by the application of
state expansion on ¢; after the application of CLOSURE(g;). The item of the form J satisfies the
lemma by setting B’ = B, and either ¢o; = X and ¢ = Yy if ¢ 2 ¢, or oy = 6 if ¢ # e. 0

Theorem 5.1 can be proved for noncanonical SLR parsers too if its wording is changed slightly.
Rather than saying that if Modification EM1 inhibits a reduction in a state r then when parser M
enters state r it must be in a final recognition configuration for E and F, the theorem should say that
the inhibited reduction cannot affect the outcome of the parse unless M actually is in a final recogni-
tion configuration for E and F. This wording is less clear, but works equally well for SLR and NSLR
parsers.
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To prove the reworded Theorem 5.1, Lemma 5.6 can be used in place of lemmas 5.3 and 5.4,
and since Test ET2 test for both forms of the items mentioned in Lemma 5.7, Lemma 5.7 can be
used in place of Lemma 5.5. Since the proof is virtually identical, it is not repeated here.

5.3. The Adjacency-Restriction Rule
An adjacency-restriction rule takes the form

WX
The symbol “ -/ 7, a dash with a slash through it, is intended to convey the meaning may not be

adjacent to. If the grammar is to be represented using the ASCII character set, the sequence of char-
acters “—/-” can be used to represent the adjacency-restriction delimiter.

If the rule W £ X is inserted into a CFG G = (Vy, V¢, P, §), the effect is to disallow all
derivations of the form

S aWXy Sz

and all derivations that would produce the same parse tree as a derivation of the above form. The
intended use of an adjacency-restriction rule is to specify that in a derivation S = aWgX~y = z, the
string # may not derive ¢. The above definition holds equally well even when W = ¢ or X = e.

In RCFG’s for real programming languages, it is likely that many symbols would have similar
adjacency restrictions. To shorten such grammars we allow that the left and right parts of an adja-
cency restriction rule may be strings of symbols. For example, the rule & -/~ g means that o; -/ 8;

for all pairs i and j such that 1 <i < Jo|, and 1 < j < |8|. Note that the order of application of mul-
tiple adjacency restrictions has no effect on the language being defined.

5.3.1. Sample Usages of Adjacency Restrictions

To illustrate the use of the adjacency-restriction rule, two examples, drawn from actual grammars for
programming languages, are presented. The first shows how to use adjacency-restriction to solve the
longest-match ambiguity for identifiers and keywords. The second example shows how to resolve the
dangling-else ambiguity discussed in detail in Section 2.4.1.

As was mentioned in Chapter 1, the standard grammars for Pascal are ambiguous on how to
parse the code fragment

BEGINWORKEND ;

It could be parsed as either a simple statement that invokes a procedure called BEGINWORKEND, or as a
compound statement containing only a call to the procedure WORK. As is shown in the following
grammar fragment, a simple set of adjacency restrictions on the symbol that generates identifiers, and

those that generate the reserved words, can resolve the ambiguity. '
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ID ~ id
id — letter | id letter
letter —a | b |c | --- |z
white — € | "" ‘
BEGIN — begin
END — end
a o at | A
b — b | "B"
o e | e
ID BEGIN END - -- —/ ID BEGIN END" - - -

67

In this example the ellipses represent the rules and symbols needed to complete the grammar for
the remainder of the alphabet, and the remainder of the reserved words. With the above adjacency
restrictions, the ambiguity of the sample code segment is eliminated. It can no longer be parsed as a
compound statement, since that would require a parse in which the symbol BEGIN is adjacent to the
symbol ID (which produces the string WORK), and in which the symbol ID is adjacent to the symbol
END. It can now be parsed only as a single identifier.

The second sample usage of adjacency restrictions presented here shows how adjacency restric-
tions can be used to resolve the dangling-else ambiguity. Consider the following grammar fragment:
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Statement — Labels ULStatement

Labels — €

| Integer ™" Labels

ULStatement — ¢
VarExpr "

Id

Id "(" ExprList ")"

BEGIN StatList END

] :=" Expr
I

|

|

| IfThen

| IfThenElse
| CASE Expr OF CaseBody END

| WHILE Expr DO Statement

| REPEAT StatList UNTIL Expr

| FOR Id ":=" Expr UpDown Expr DO Statement
| WITH VarDO Statement

|

GOTO Integer
IfThen — IF Expr THEN Statement
IfThenElse — IF Expr THEN Statement ELSE Statement

IfThen —/~ ELSE

In this grammar fragment, an else clause must always be combined with the immediately
preceding un-elsed-if clause, since otherwise the parse would contain the symbol IfThen immediately
adjacent to the symbol ELSE. The advantages of this method of resolving the dangling-else ambi-
guity over the usual method of grammar rewriting are that it is shorter, simpler, and avoids repetitive
and risky rule duplication. It also more clearly identifies the ambiguity being resolved rather than
relying on the deductive powers of the reader.

In the interest of brevity, the treatment of white space has been omitted here, but the grammar
in Appendix D contains a sample resolution of the dangling-else ambiguity in its entirety, including
the treatment of white space.

5.3.2. Closure Properties of Adjacency Restrictions

In order to demonstrate that context-free languages are closed under adjacency restrictions, we present
a grammar transformation that converts a context-free grammar with added adjacency restrictions
into a pure CFG with no adjacency restriction that generates the same language. Formally, given an
RCFG G' = (V, P, R, S) with R = ¥, and Rz = {W -/ X}, the transformation produces a CFG

G" = (V§, V{, P",S) such that L(G") = L(G'). It can be seen that G' is constructed from its
corresponding unrestricted CFG G = (Vy, V7, P, S) by adding the restriction W —£ X.

All new symbols created by this transformation are superscripted and subscripted versions of
symbols in G. » The terminology used here is that, for the adjacency restriction W -4~ X, any new

symbol is made up of up to three parts: a basic part (the original symbol with no superscript or sub-
script), a possible subscript part of W or W, and a possible superscript part of X or X. When this
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algorithm has completed the transformation, every sentence produced by a symbol subscripted by W
must be derived through an intermediate string that ends in W, and every sentence produced by a
symbol subscripted by W cannot be derived through and intermediate string that ends in W. That is
to say, for every derivation Cy = o = y, there must be some o such that o)y = W, and for every

derivation Cy7 &= o Sy, ajo) # W. Similarly, every sentence produced by a symbol superscripted by

X must be derived through an intermediate string that begins with X, and every sentence produced by
-a symbol superscripted by X cannot be derived through and intermediate string that begins with X.
That is to say, for every derivation C*¥ & o &y, there must be some « such that o; = X, and for

every derivation CX & o Sy, oy # X.

Algorithm TAR: Grammar Transformation for Eliminating
Adjacency-Restriction Rules

Given an RCFG G' = (V, P, R, §) constructed from a CFG G = (Vy, V¢, P, S) by adding the res-

trictive rule W -/ X ; construct a CFG G" = (V§, V{, P", S) such that L(G") = L(G").

(0) Initially G" = G.

(1) Rewrite G” to eliminate all e-productions. An algorithm to do this is given by Hopcroft and
Ullman?24 in Section 4.4, page 90. If § =€ remember this fact, but temporarily disallow

S = e
Gll

(2) For each symbol C in LAST-Y(W):
(2.1) For each occurrence of C in a production P/":
(2.1.1) Replace P/ by two productions, one using Cy in place of C, and the other using
Cy-
(3) For each nonterminal C in FIRST}(X) u FIRST!(Xy) U FIRST!(X):

(3.1) For each occurrence of C in a production P/':

(3.1.1) Replace P! by two productions, one using C* and the other using cx.
(4)  For each new symbol S whose basic part is S (the original start symbol), add a new rule S — S
to P". S is still the start symbol for grammar G”.

(5) Delete all productions using symbols whose basic part is W and whose subscript part is W. Simi-
larly, delete all productions using symbols whose basic part is X and whose superscript part is X .
According to the meaning of the subscripts and superscripts, these symbols are self contradic-
tory: a W that does not generate W and an X that does not generate X .

(6) Delete all productions of the form Cy — o Zg , Ciz— o Zyy , C¥ — Z%o ,or CX & 7% |

(7) Delete all productions of the form Cy — oY for ¥ not subscripted by W unless C = W. Also
delete all productions CX — Y« for ¥ not superscripted by X unless C = X.

(8) Delete all productions C — oYy ZX4. This is the main step of this algorithm; applying the prin-
ciple of the adjacency-restriction rule. '

(9) Remove all useless symbols and productions.

(10) IfS = ¢ add the rule § — ¢ to P".
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5.3.3. Sample Application of Algorithm 7AR
To illustrate the application of Algorithm TAR, consider the RCFG Gs;, and the resulting
transformed CFG Gs ;.

S — oper | ID | S white oper | S white ID
ID — id

id — letter | id letter

letter — ™" | 0" | "¢" | --- | "2

o

white — ¢ |
oper —» M| ran |

ID 4~ ID
Grammar Gs : A sample RCFG.

S - sBsE|B|SsE

i — ID/p | SIB white ID{}
| 19 white IDJS | S ID2

P — S8 white oper | S5 white oper
| Si8 oper | S2 oper

2 s SI2 white IDIS | S white IDj2
| S22

S22 . oper | SI2 white oper

| S white oper | SI2 oper

[ S,‘E oper
D/ — id
id — letter | id letter
letter — nau l nb" | ncu i ... "Z"
white — "
Oper — ngn I nym }‘n+n } n_w

Grammar Gs ,: The result of applying Algorithm TAR to Grammar Gs 1.

5.3.4. Correctness of Algorithm TAR

We now show that for a CFG G” generated from an RCFG G’ by Algorithm TAR, L(G") = L(G").
The algorithm operates on the context-free grammar G, which is the unrestricted version of the
RCFG G’. The method of this section is to show that all sentences of L(G) that can be derived
without violating the restriction W —£ X will be in L(G"), and that no sentences of L(G) that must be
derived by violating W -4 X are in L(G").

To discuss the transformation of grammar G by Algorithm TAR, the intermediate grammar pro-
duced by steps (0) to (i) is called grammar G(;. Grammar G, for example, is the intermediate

grammar obtained after applying steps (0) through (3) to grammar G. Thus Gg = G, and
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Ggy = G". We will now examine, in order, the steps of Algorithm TAR to determine the effect that
each will have on the language described by the resulting grammar.

Since step (1) of Algorithm TAR is designed not to change the language produced by the gram-
mar, and since steps (2) and (3) merely duplicate rules, therefore L(G3)) = L(G(). Due to all the
rule and symbol duplication, however, grammar Gy is considerably more ambiguous than grammar
G.

The start symbol S of the grammar is unique in that its usage is not confined to rule replace-
ment; every derivation of a sentence in L(G) begins with the start symbol S. In this sense, the sym-

bol S can be seen to be the only symbol that is externally accessible. The purpose of step (4) is to han-
dle this uniqueness by providing external access to the duplicated version of the original start symbol.

Steps (5) to (7) eliminate the redundancy of the intermediate grammar introduced by steps (2)
to (4). To continue this discussion we need a notation to precisely describe derivations, so that dif-
ferent derivations that derive the same sentence can be distinguished.

Definition: » A derivation history by a context-free grammar G = (Vy, V¢, P, §) is a sequence
of triples (e, p, s), where « is a sentential form in the derivation, p is the production that is applied
to generate the sentential form of the derivation, and s is the index of the symbol in « that is to be
expanded to produce the next sentential form in the derivation. By this description, the sentential
form in the first triple will be the start symbol §, and the sentential form in the last triple will be in
Vr. v

Consider a derivation history 2 by grammar G(l):f consisting of a sequence of triples
Qq, Qg ..., Q,, such that Q; = (w;, p;, s;)} If the sentential forms w have ny occurrences of symbols

in LAST-}(W), and ny occurrences of symbols in FIRST!(X), then there will be 2%+ derivation
histories by grammar G that are identical except that each occurrence of a symbol Y in

LAST-}(W) u FIRST}(X) in the sentential form and the production parts of each triple, will be
replaced by a symbol whose basic part is ¥, and which has a possible subscript of either W or W and a
possible superscript of either X or X.

Definition: » Two derivation histories that are identical when every symbol in the derivation-
string and production parts of their triples is replaced by the basic part of the symbol, are called
basically-identical derivation histories.

Steps (5) to (7) eliminate the redundancy introduced by steps (2) to (4) and ensure that for each
unique derivation history by grammar Gy there will be exactly one basically-identical derivation his-
tory by grammar G;. To verify this statement, consider a sentential form w, = oY 8 in a derivation
history Q by grammar G(;), where Y is in LAST-Y(W). Let 74, 72, ..., 7m be the sequence of sub-
strings of w, to w, derived from ¥. Thus vy = Y, and ~,, is in V7.

Consider also the following two sequences generated using Gyy:
(i) a derivation history &, that is basically identical to Q2, consisting of the triples (¢;, g;, s;), and
(i) the strihgs 1, ¥y, -.., ¥, that are substrings of ¢, to ¢,, that are derived from the symbol Z in
¢, that corresponds to Y in w, (3; is basically identical to ~; for 1 <i < m, and Z is basically
identical to Y).
We can say that there are two distinct cases: either some ~; for 1 <i < m ends in W, or none
do.

t Notice that we are using G(1)7 which has no ¢-productions, rather than G(o)-
1 Note that this is a departure from the usual notation of this thesis. In this case w; is the sentential form of the

i™ triple of the derivation history {2, rather than the i™ symbol of the string .
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Case 1: some ~; ends in W. Since grammar Gy through G(7 have no e-productions, the last

symbol of a sentential form is always the parent of the last symbol of the sentence that the sentential
form ultimately generates. Step (5) ensures that all symbols whose basic part is W are subscripted by
W. Step (6) ensures that only a symbol subscripted by W can produce a string that ends in a symbol
subscripted by W. Therefore, if Z is to generate a string that ends in a symbol whose basic part is W,
then Z must be a symbol subscripted by W.

Case 2: no ~y; ends in W. Since grammar Gy through Gy have no e-productions, the last sym-

bol of a sentential form is always the parent of the last symbol of the sentence that the sentential form
ultimately generates. Steps (6) and (7) together ensure that any symbol U subscripted by W must pro-
duce a string that ends in a symbol subscripted by W, unless the basic part of U is W. The string v,

is made up entirely of terminals, and Step (2) subscripts only symbols in LASTY(W), hence the only
terminal symbols that could be subscripted by W would have a basic part of W. Therefore in this case
Z may not be subscripted by W it must be subscripted by W.

These two cases imply that for every symbol ¥ in LASTY(W) used in a sentential form of a
derivation history by G(y), the subscript of the corresponding symbol Z in a basically identical deriva-

tion history by G is determined by whether or not Y actually generates a sting ending in W. A

similar argument will show that for every symbol ¥ in FIRST™'(X) used in a sentential form of a
derivation history by G(y), the subscript of the corresponding symbol Z in a basically identical deriva-

tion history by Gy is determined by whether or not Y actually generates a string starting with X.
Since basically-identical derivation histories by Gy and G(;) can only differ by the subscripts used on

symbols in LAST-}(W) u FIRST}(X) and since those subscripts are uniquely determined by the
derivation by G(y), there can be at most one basically-identical derivation by G().

It must also be shown that for each derivation history {2 by G there is always at least one
basically-identical derivation history ® by G(;. The method of constructing such a & from (1 is quite

simple. For each symbol ¥ in LAST{(W) in the sentential forms of 2 chose a basically identical
symbol whose subscript is W or W according to whether Y actually does or does not, respectively, gen-
erate a string ending in W in 2. For this strategy to be consistent it is necessary that no rules of the
form Cy — oZy or Cy— oZy be deleted from G”. This condition is met by Algorithm TAR. A

similar analysis shows that there is always a consistent replacement for symbols in FIRSTY(X). This
replacement strategy guarantees that there is always at least one basically-identical derivation history
by G for each derivation history by G). :

Step (8) does the actual application of the adjacency restriction. We have shown that after step
(7), only symbols subscripted by W can generate strings ending in a symbol whose basic part is W, and
all symbols subscripted by W must generate such a string. We have also shown that after step (7),
only symbols superscripted by X can generate strings beginning in a symbol whose basic¢ part is X, and
all symbols superscripted by X must generate such a string. Therefore by deleting all rules in which a
symbol subscripted by W is followed immediately by a symbol superscripted by X, all sentential forms
that violate the adjacency restriction W -/~ X will be inhibited from generation, and only such senten-
tial forms will be inhibited.

Step (9) is included to point out that the preceding steps may result in grammars with useless
symbols and productions. If the grammar is to undergo further processing, these should be removed.

5.3.5. Repeated Application of Algorithm TAR

Algorithm TAR does some symbol renaming, therefore when it is used on RCFG’s with more than
one adjacency restriction, the meaning of subsequent adjacency restrictions may be lost. If Algorithm
TAR processes a grammar to eliminate a rule W -/ X, then any subsequent rule Y -/~ Z in which Y is
in LAST™}(W) in the original grammar, must be augmented by the two rules Yy 4~ Z and Yz -/ Z.

Similar changes must be made if Z is in LAST-Y(W) or if Y or Z are in FIRSTI(X).
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5.3.6. Parser Generation for RCFG’s Containing Adjacency Restrictions

One could generate parsers for RCFG’s by applying Algorithm TAR to the grammar and then using
standard parser generation methods for the resulting CFG’s. Such a method, however, would not be
very practical since, as was seen with grammar Gs,, Algorithm TAR can significantly increase the

number of symbols and rules in a grammar, and hence the size of the parsing automaton. We present
a parser generation method that produces parsers for RCFG’s that are the same size or smaller than
parsers for the corresponding unrestricted CFG.

The principle of the proposed method is that, since the derivations allowed by the restricted
grammar are a subset of the derivations allowed by the unrestricted grammar, a parser for the res-
tricted language can be built by placing restrictions on parser for the unrestricted language. The res-
trictions consist principally of deleting reduce actions and shift actions from the unrestricted parser
and testing the consistency of the resulting parser.

The proposed method is intended for use with SLR or NSLR parser generators, and handles
only a limited class of RCFG’s called SAR (simple adjacency-restriction) grammars. The adjective
simple is used to describe this class of grammars because membership in the class can be tested by exa-
mining each state of the generated parser individually without regard to the transitions between the
states. This property is shared by simple LR parsers.

When the method is applied to an SLR parser generator, the class of grammars accepted is
called SAR-SLR, and when applied to an NSLR parser generator, the class is called SAR-NSLR.
The method we propose can also be applied to LALR and full LR parser generators, but in those
parser generators, extra information is available about lookahead sets that can be put to use in provid-
ing a more-powerful treatment of adjacency restrictions.

The proposed method of parser generation for SAR grammars consists of three modifications to
an LR parser generator, and three consistency checks of the grammar and generated parser.

The modifications are:

ARMI1- Delete symbols from the lookahead sets of complete items. This change forbids the parser
from making certain reductions and thus either eliminates conflicts from a state (disambi-
guation) or causes the rejection of input sentences that are in the unrestricted language but
not in the restricted language.

ARM2- Place restrictions on the shift items that can be introduced by the CLOSURE operation on
states.

ARM3- Require that lookahead sets be tested for some reduce actions, even though they are in
LR(0) consistent states. '

The consistency tests are:
ART1- Reject grammars with adjacency restrictions in which the left part is a terminal symbol.

ART2— Apply a test to the parser to avoid complex interactions of restricted symbols and unres-
tricted symbols.

ART3- Reject parsers with certain forms of items added during noncanonical state expansion.

5.3.6.1. Mod. ARM1 — Pruning Lookahead Sets

Before describing how lookahead sets are pruned, a new adjacency-restricted follow function,
AR_FOLLOW, must be defined. AR_FOLLOW(W) is similar to FOLLOW(W) except that it
excludes all symbols that can only occur in derivations that violate one of the adjacency restrictions.
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AR_FOLLOW(W) = {X| B = agYyfZyy, for some B,
B = ¢, and there exist derivations
O[UY()::} O(1Y1=) s = CYnYn where WZY,,
Zyvo= Zym1 = - = Z,m Where X=Z,,
such that no rule Y; -~ Z; exists for any i, j}

In this (and the next) definition we depart from the normal use of subscripted strings: the subscripted
greek letters ag, ay, ..., a,, and yg, 71, --:, 7, Tepresent strings in V*. Our normal notation is that ¢;

is the i symbol of the string o in V*. Similarly ¥; and Z; represent single symbols in V.
We also define AR_FOLLOW the adjacency restricted FR_FOLLOW set.

ARFR_FOLLOW(A) = {X| B = «¢Yy8X~ for some B,
B8 = ¢, and there exists a derivation
oYo= oy¥1= -+ = ¢o,Y, where A=Y,
such that no rule ¥; -/~ X exists for any i }

Algorithm ARF shows how these adjacency-restricted FOLLOW sets can be computed for an RCFG
G=(V,P,R,S).

Algorithm ARF: Computing Adjacency-Restricted Follow sets.
(1) Foreachrule P; =A — o inP:

(1.1) For each j in the range |«| > j > 1 in descending order, (notice that when o« = ¢ this loop
is skipped):

(1.1.1) For each & in the range j < k < |oe| in ascending order, stopping after processing
the first non-nullable oy :

(1.1.1.1) ProcessAdjacent(c;, oy, &5, ).

PROCEDURE ProcessAdjacent(W, X, AW, CAR)

Where:
W, X = A pair of adjacent symbols in that order.
AW = Set of ancestors of W in current expansion.

CAR = Collected adjacency restrictions,
={Z|Y -/~ Z isin Ryg and Y is in AW}.
(1) If W isnotin AW then:

(1.1) CAR' = CAR U {Y| W - Y isin Rgg}.

(1.2) If X is not in CAR' then:
(1.2.1) Insert X into ARFR_FOLLOW(W).
(1.2.2) ProcessSuccessor(W, X, 5, CAR').
(1.2.3) For each Y such that W — oY isin P:

(1.2.3.1) ProcessAdjacent(Y , X, AW U {W}, CAR").

PROCEDURE ProcessSuccessor(W, X, AX, CAR)

Where:
W, X, and CAR have the same meaning as in ProcessAdjacent .
AX = Set of ancestors of X in current expansion.
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(1) If X is not in AX then:
(1.1) Insert X into AR_FOLLOW(W).
(1.2) For each Y such that X — Yo is in P:
(1.2.1) IfY is not in CAR then:
(1.2.1.1) ProcessSuccessor(W, Y, AX U {X}, CAR).

Algorithm ARF is a straightforward algorithm, and as such is computationally intensive. It
functions by generating a significant part of all possible sentential forms generatable by G. Specifi-
cally, it generates all possible pairs of symbols that could be adjacent in any sentential form of G.
During the generation, all ancestors of each symbol are recorded and tested for a violation of the
adjacency-restriction rules in R,z. To ensure termination, it avoids cycles in an expansion, caused by

left- or right-recursive rules in P, by terminating expansion when a symbol appears as its own ances-
tor.

Mod. ARM1 for SLR Parsers

In SLR parsers, the lookahead set for the complete item A — o« is T_ FOLLOW(A). When adja-
cency restrictions are applied, the lookahead sets should be pruned to eliminate following symbols that
can only occur in sentential forms generated by derivations that violate the adjacency restrictions. To
produce the pruned lookahead sets, define the function ART_FOLLOW(Y) to be T FOLLOW(Y )
after applying adjacency restrictions.

ART_FOLLOW(Y) = {a in V; U {—}] @ isin AR_FOLLOW(Y)}.

The function ART_FOLLOW should be used in place of T_FOLLOW in Algorithm PG, (the SLR(1)
construction algorithm) for the determining lookahead sets.

Mod. ARM1 for NSLR Parsers

Algorithm NPG,, the improved NSLR(1) parser generation algorithm presented in the previous

chapter, uses two follow functions: FOLLOW and FR_FOLLOW. To prune the lookahead sets of an
NSLR(1) parser to comply with adjacency restrictions, these follow functions should be replaced by
their adjacency-restricted counterparts AR_FOLLOW and ARFR_FOLLOW respectively. (To han-
dle exclusion rules as well as adjacency restrictions, references to FOLLOW in Test ET3 of Algorithm
PGSE should also be replace by AR_FOLLOW.)

5.3.6.2. Mod. ARM2 — Inhibit the Generation of Some Shift Actions

The lookahead-set pruning done by Modification ARM1, above, inhibits reduce actions that would
violate the specified adjacency restrictions. It is also desirable to inhibit certain shift actions. Inhibit-
ing these shift actions does not change the language accepted by the parser, but it does have three
desirable effects: (1) it may eliminate shift-reduce conflicts with the inhibited shift actions, (2) it may
eliminate shift transitions out of a state and hence may eliminate states from the parsing automaton
thus reducing the size of the parser, (3) typically the eliminated states have parsing conflicts which will
also be eliminated. The undesirable shift actions are generated by item-set CLOSURE on parser
states and a simple redefinition of that function will eliminate them.

The original definition of the item-set CLOSURE operation on parser states was as follows:

For any set I of items, let CLOSURE(/) be defined as the smallest set satisfying the fol-
lowing properties: (1) every item in I is in CLOSURE(l), and (2) if [A — 8.B~] is in
CLOSURE(Z) and B — § is a production, then the item [B — «§] is in CLOSURE().

It is a property of LR parsers that for any parser state there is a unique symbol Y such that all

kernel items take the form C — Y « ¢. The definition of item-set CLOSURE should be modified by
adding the restriction that for all items [B — .§] added by CLOSURE, B and §; must be in

AR_FOLLOW(Y). Items added by state expansion must also observe this rule.
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5.3.6.3. Mod. ARM3 — Constrain Implementation of Generated Parser

No reduction may be made to a symbol A that appears as the left part of an adjacency restriction
without verifying that the current lookahead symbol is in AR_FOLLOW(A). Some parser implemen-
tations perform reduce actions without checking for a valid lookahead symbol, provided that the state
was LR(0) consistent. This simplification is still possible provided that the reduce action does not
reduce to a symbol that appears as the left part of an adjacency-restriction rule. If such unchecked
reductions are permitted the reduction-blocking method of applying adjacency restrictions may be
bypassed.

5.3.6.4. Test ART1 — Limit the Use of Terminals in Adjacency Restrictions

For the implementation given here, adjacency-restriction rules provided by the grammar writer may
not have a left part that is a terminal. That is, there may be no rule W —£ X in R4, such that W is in
Vy. The modifications given here work principally by blocking reductions to a symbol that is the left

part of an adjacency restriction when the right part of the same restriction appears as the lookahead
symbol. Since a terminal requires no reduction to appear on the parse stack, its reduction cannot be
blocked. Note that this restriction is not a great hardship, since a unit production can easily be added
to the grammar, so that the left part of the adjacency restriction rule can be a nonterminal.

5.3.6.5. Test ART2 — Reject Grammars with Complex Adjacency Restriction

Consider the following grammar:

S — BC

B—D | b| aBc
D — bb
C—E]| ¢
E—cc

D/ E

Since D may not be followed by E we would not want D reduced to B with a lookahead of ¢, since
the ¢ lookahead may be part of a reduction to E. But since B may be followed by ¢, and since D is
in LAST(B), the algorithms given above will still put ¢ in the set AR_FOLLOW(D), which may per-
mit an undesired reduction.

: To reject grammars with this problem ensure that for each adjacency restriction W -~ X, and
for each item [i, n;] = [W — «.] with lookahead set L; then L; n FIRST(X) = ¢j. Grammars that

exhibit this kind of problem contain a production of the form A — o«WY 8, and an adjacency restric-
tion W —£- X such that FIRST(Y) n FIRST(X) = (.

5.3.6.6. Test ART3 — Reject Parsers with Certain Forms of Noncanonical Items
If there is a rule W —/~ X in R, then any state with an item [i, ;] = [B — 8. ] with lookahead set
L; where B is in LAST(W) may not also contain an item added during noncanonical state expansion
of the form [A — .a], such that A is in Z; and either (i) X is in FIRST(«), or (ii) « = ¢. Such an
item may allow the reduction of a X to an ancestor symbol. Since the item was added by state expan-
sion, it would indicate the reduction of right context before left context. Thus the principal mode of
preventing adjacencies, that of blocking the reduction of left context when forbidden right context
appears in the lookahead could be bypassed.

Note that it is not correct to delete such items, since they are required for the correct parsing of

some sentences in the restricted language. It is necessary to detect grammars that produce such states,
report the problem, and reject the grammar.
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5.3.7. The Correctness of Adjacency-Restricted Parser Generation

In this section, we prove the correctness of the parser generation method by proving two properties of
the generated parser:
(1) when the above modifications and tests are applied to an SLR or NSLR parser, all sentences
accepted by the parser satisfy the adjacency restrictions specified, and :
(2) if the grammar and generated parser pass the specified tests, then all sentences in the specified
language will be accepted.

5.3.7.1. Property (1): All Sentences Accepted Are Valid

We now show that all sentences accepted by the generated parser will satisfy the adjacency restriction.
Consider an RCFG G = (V, P, R, §) and an adjacency restriction W -/~ X. The symbol W must be
either a terminal or a nonterminal.

Case 1: W is a terminal. This case is eliminated by Test ART1.

Case 2: W is a nonterminal. In any parse that violates the adjacency restriction, some string o must
be reduced to W. Due to Modification ARM3, all reductions are performed only with a valid
lookahead symbol, and the reduction to W has a lookahead set of AR_FOLLOW(W). We
know by Test ART?2 that

AR_FOLLOW(W) n FIRST(X) = (&7,

therefore no reduction of o to W can take place with X or a leading descendant of X as the
lookahead symbol. As a result, in any parse that violates the adjacency restriction, either some
string # must be reduced to X and then to some symbol in FIRST-(X) before W is reduced, or
some symbol D, intervening between W and X must be reduced from e. Since an SLR parser
produces only rightmost derivations, neither two cases are possible for an SLR parser. An
NSLR parser, however, can produce non rightmost parses. Consider each of the above two sub-
cases for an NSLR parser.

Subcase 2a: Some string B is reduced through X to some predecessor of X before o is reduced to
W. For this to happen there must be a state with an item I = [A — .« ¢}, such that X is in
FIRST(«), and item I must have been added by noncanonical state expansion. (All
canonical items lead to rightmost derivations only.) The state must also have an item
[B — 8. ] where 8 is left context that is ends in W, or g is left context yet to be reduced to
W. . Such combination of items are forbidden by Test ART3(i).

Subcase 2b: Some symbol D, intervening between W and X must is reduced from ¢. This can
only happen if a state has an item [D — «§] is added by noncanonical state expansion and
§ = ¢. The state must also have an item [B — 8.+ | where 8 is left context that is ends in
W, or g is left context yet to be reduced to W. Such combinations of items are forbidden
by Test ART3(ii).

5.3.7.2. Property (2): All Valid Sentences Are Accepted

We prove here that-if the parser is conflict free, and passes the three tests given above, then it will
accept all valid sentences of the language described by the grammar being implemented.

Tests ART1, and ART2 can only reject grammars, and hence do not change the language
recognized by a parser generated from an accepted grammar. Similarly Test ART3 rejects parsers,
and hence does not change the language recognized by an accepted parser. Modification ARM3 does
not disallow any valid sentences, it only disallows occasional parsing short-cuts. Thus only modifica-
tions ARM1 and ARM? could disallow valid parses.

Modification ARM1 can only remove symbols from the lookahead sets of reduce actions, since
AR_FOLLOW(A) C FOLLOW(A). By the definition of AR_FOLLOW, when Modification ARM1
removes a symbol ¥ from the lookahead set of a complete item [B — S. |, then there can be no valid
derivation § = aBY~. Hence Modification ARM1 cannot inhibit any valid parses.
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The shift actions deleted by Modification ARM2 would always lead to invalid parses if ever exe-

cuted. Any symbol not in AR_FOLLOW(Y), should not be shifted onto the parse stack on top of Y.
O

5.3.8. Additional Parser Enhancements

The strategy for implementing adjacency restrictions described above yields parsers with adequate
power for accepting complete grammars for modern programming languages such as Pascal. There
are further enhancements that can be made to the this implementation that will allow the parser to
accept a larger set of grammars, and may also make grammar writing easier. '

5.3.8.1. Eliminating Test ART1

Test ART1 of the adjacency-restriction implementation strategy presented above, the test that forbids
adjacency restrictions with a left part that is a terminal symbol, seems rather artificial. It is actually
possible to modify the parser further so that this test is not needed. For the rule a -/ X, the change
would involve preventing the reductions of strings ending in @, and an additional test that would
reject parsers in tricky cases involving e-productions. These changes are fairly complex but as
explained earlier would be of very limited value. As a result they are neither described here, nor are
they implemented in the prototype parser generator.

5.3.8.2. Mod. ARM4 — Reducing Parser Rejections by Test ART2

It is possible to make an additional change to an SAR-NSLR(1) parser that will reduce the number of
grammars rejected by Test ART2. Test ART2 will reject a grammar when there is a rule A -~ B in
Rur, there is a symbol C such that FIRST(C) n FIRST(B) = (¢, and there is a valid derivation

S = aAC~. In such a case, when a symbol ¥ in FIRST(C) n FIRST(B) appears as the lookahead
symbol on the lookahead stack, the parser cannot know whether to reduce some string 8 to A, since Y
may be at the start of a string to be reduced to B, an illegal reduction, or it may be the start of a
string to be reduced to C, a legal reduction.

The solution is to create a new kind of resolvable parser conflict. State-expansion items should
be created to shift on the lookahead symbol Y in the hopes that it will be reduced to either B or C,
and resolve the conflict. This can be done by making the following two modifications to Algorithm
NPGy:
1) In step 2.1.3, if there is a complete item [i,n;]=A — B., and some symbol Y in
FIRST(C) n FIRST(B) appears in L;, consider the state to be SLR(1) inconsistent, and proceed
to noncanonical state expansion.

2) After step (2.4.1)"', delete Y from R;.
Even when these two changes have been made, Test ART2 will still be required. If Y appears in FR;

then it will be reintroduced into L; by step (2.4.1)’', meaning that the conflict cannot be resolved, and
the parser must still be rejected by Test ART2.



Chapter 6

Results and Conclusions

6.1. Introduction

In order to test the viability of the parser generation methods proposed in this thesis, an SE-SAR-
NSLR(1)! parse-table generator was written in Modula-2. The program is based on an SLR(1)
parse-table generator written by Gordon Cormack. A user’s guide for this program is provided in
Appendix F.

The language description concepts of this thesis were tested by preparing an SE-SAR-NSLR(1)
grammar for ISO Pascal. The grammar is adapted from the one given by Jensen and Wirth26 and is
presented in Appendix D. An SE-SAR-NSLR(1) grammar for Modula-2 has also been written, as
well as grammars for small languages such as the input language for the parser generator. The recog-
nizers generated from the Pascal and Modula-2 grammars were verified on a test suite of programs
that was originally written to test student compilers for a course on compiler construction (CS-444).
The Modula-2 recognizer was also verified on the source code for the parser generator itself.

The remainder of this chapter discusses experience gained from the implementation of the pro-
posed techniques, and its apparent advantages and disadvantages.

6.2. Characteristics of the Sample SE-SAR-NSLR(1) Grammar

An examination of the single-phase grammar for Pascal presented in Appendix D, henceforth called
Grammar D, illuminates its salient characteristics. As is to be expected, most of the nontrivial rules in
the grammar come directly from the Jensen-Wirth grammar. Grammar D uses only three compound
adjacency-restriction rules, which describe 1334 simple adjacency restrictions, and occupy 10 lines of
the grammar. The grammar also uses 35 exclusion rules, occupying 4 lines. The purpose of all but
one of these disambiguation rules is quite clear and can be seen immediately to address one of the
ambiguities discussed in Chapter 1:
1) the identifier-keyword ambiguity,
2) the dangling-else ambiguity, or
3) the longest-match ambiguity between:
a) identifiers and keywords
b) identifiers and numeric constants, and
¢) keywords and numeric constants.
The only slightly obscure rule is

StarNoRRound —-")".

The purpose of this rule is to recognize correctly the compound comment-closure symbol “*)”. Aster-
isks appearing as part of a comment rather than part of the closing delimiter must be reduced through
the symbol StarNoRRound. The given adjacency restriction prevents this reduction if the asterisk is
immediately followed by a right parenthesis.

The grammar presented has a total of 560 rules. This is about 1.9 times the number of rules of
the LEX-YACC grammars presented in Appendix A. A quick comparison of the single-phase gram-
mar with the two-phase LEX-YACC grammars shows the reason for the greatest part of this differ-
ence. In the LEX grammar, the description of the symbol 1etter is given in one rule

t Recall that this acronym stands for simple exclusion, simple adjacency restriction, noncanonical simple LR(1}.
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letter [a-zA-Z] ,

whereas in Grammar D this requires 52 rules. Similar differences appear in the description of the
symbols Digit, StringElement, and CommentElement. In particular a valid string character can be
described by the LEX pattern “[~’\n]”, meaning anything that is not an apostrophe or a newline
character, whereas in Grammar D each valid character of a string must be given by a separate rule.
Note, however, that the LEX pattern must be implemented with about the same number of state tran-
sitions as for the rules of Grammar D, and the difference lies only in level of metasyntactic sugar pro-
vided by LEX. Such abbreviations could be easily built into the proposed parser generator, but have
not yet been provided. Another cause for the bulk of the unified grammar, its treatment of white
space, is discussed in detail in the next section of this chapter.

One source of bulkiness in Grammar D that is not superficial is the treatment of the reserved
keywords. Each keyword in Pascal has a corresponding symbol in Grammar D, in order that that
symbol can appear in the adjacency restrictions for solving the longest-match ambiguity with other
keywords and with identifiers. This source of bulkiness seems to be permanent since it is difficult to
conceive of a way of disambiguating language constructs without giving names to those constructs.

Once the grammars of Appendices A and D are processed they yield parsing automata of very
similar size. The LEX and YACC automata have a combined total of 914 states, whereas the
NSLR(1) parsing automaton has 1005 states. These close numbers are further evidence that the
differences in the sizes of the two grammars are primarily due to superficial syntactic differences.

The most important thing to note about Grammar D is that it completely and unambiguously
describes the syntax of Pascal (those aspects of the syntax that are context-free), it is machine process-
able, and yet it is not unreasonably long. '

6.3. The Treatment of White Space

In Grammar D, the treatment of white space is modeled after the treatment by two-phase parsers,
and those accustomed to writing traditional two-phase parsers might consider this to be the clearest
approach. The symbol White describes what may constitute optional white space in Pascal—any
sequence of blanks, tabs, newlines, formfeeds, and comments, or nothing at all. The symbols of
Grammar D whose names are entirely in uppercase, such as BEGIN and ASSIGN, each generate
strings that would be recognized as tokens by a two-phase recognizer. All of the token symbols have
similar descriptions: they generate a pretoken symbol that does not include white space, followed by
the symbol White.

Another possible treatment of white space would be to distribute the symbol for optional white
space throughout the grammar, between the symbols that it may separate. For example, instead of
the rule:

CompountStatement = BEGIN StatementSequence END.
-one could write the rule:
CompoundStatement = BEGIN White StatementSequence White END.

Such a scheme would reduce the number of rules and symbols in the grammar, at the cost of making
many of the rules longer. In experiments with this approach, it was found the the number of parser
states generated by a grammar using this approach was higher than for Grammar D. Since the
number of symbols decreased, and the number of states increased, the total parse-table size remained
about the same.

To make the approach of using distributed white space a reasonable one, a very short and
nonobtrusive name should be given to the symbol representing optional white space. A name consist-
ing of a single underscore character seems to be a suitable choice, and so the rule above would take
the form:
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CompoundStatement = BEGIN _ StatementSequence _ END.

The sample rule given above illustrates a difficult problem with distributing white space
throughout the grammar. In Pascal, a StatementSequence can be empty, and so in the the sample rule
we have three symbols in a row that can generate ¢. The grammar is therefore ambiguous, and it is a
kind of ambiguity that is difficult to correct in an SE-SAR-NSLR(1) grammar. As a result of these
disadvantages, the white-space treatment of Grammar D was the one chosen for presentation in this
thesis.

Some readers may consider both of the above approaches to describing white space as too
cumbersome, and so let us discuss a third possibility. The symbols in a grammar for a programming
language can be divided into two classes: those that can contain white space and those that cannot. In
addition, those symbols that can contain white space, usually do so in a quite regular way: white space
is usually allowed anywhere between immediate descendants. It might therefore be possible to
develop a metasyntax which simply lists the two classes of symbols, and a parser generator that takes
care of distributing white space as needed. The user specified productions would be automatically
modified to include the white space as requested, and parser generation would then proceed as usual.
This third approach leads to parsers very similar to the second approach above, and hence also awaits
more powerful parser generation techniques.

6.4. Single-phase Versus Two-Phase Parsing

Chapter 3 presented a comparison of two two-phase recognizers: PRLY, an FSM-DPDA recognizer,
and PRYY, a DPDA-DPDA recognizer. The conclusion of that chapter was that the descriptions and
implementations were of similar sizes, and running times.

In this section, we compare two-phase recognizers with a single-phase recognizer prepared
according to the methods of Chapters 4 and 5. Grammar D and the parser it generates can be com-
pared directly to the grammars and parsers of appendices A through C, but some aspects of the com-
parison are meaningless. The rule counts can be compared, but since Grammar D uses a different
philosophy from the other grammars (one of explicitly resolving all ambiguities), and since LEX and
YACC have evolved some short-hand forms for common rules, this comparison will be misleading.
The number of parser states could also be compared, but since this may depend on the amount of
table optimization and compression performed, this comparison too may be faulty. Finally the run-
ning times for the parser generator and the generated parsers are incommensurate, since these are
sensitive to the source and target language used and to implementation strategies.

To make a comparison between two-phase and single-phase recognizers that is as meaningful as
possible, a third two-phase recognizer has been prepared that uses the same input description language
and implementation details as the single-phase recognizer of this thesis. The grammar for this third
two-phase recognizer is given in Appendix E. The method of comparison will be to adjust the results
obtained by processing the grammars of appendix E so that they are the same as those obtained from
the YACC-YACC generated recognizer, PRYY, and use the same factors to normalize the results
obtained from Grammar D. In this way we hope to normalize away differences in implementation
strategies and source and target languages of PRYY and the recognizer generated by Grammar D.

The basis of comparison is thus as follows. The recognizers PRLY and PRYY can be compared
because they are both mature products with similar implementation strategies. The recognizer
prepared from the two-phase grammars of Appendix E will be evaluated and the ratio of its perfor-
mance statistics as compared to PRYY will be used to normalize the performance of a recognizer
prepared from Grammar D. This is equivalent to multiplying the performance statistics of PRYY by
the entries in the ratio column of Table 6.1 to get the expected performance of a single phase recog-
nizer written using the programming techniques of YACC. The normalized performance statistics of
the single-phase recognizer generated by Grammar D will then be compared to the performance
statistics of the standard recognizer model, PRLY.
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There are two SE-SAR-NSLR(1) grammars in Appendix E, Grammar £; and Grammar £,
derived by splitting Grammar D into two parts. Grammar E; was intended to be as similar as possi-
ble to the scanner grammar for PRYY given in Appendix B. Grammar F, was intended to be as
similar as possible to the standard parser grammar used for PRLY and PRYY given in Appendix A.

The language recognized by Grammar E;, is a stream of Pascal tokens optionally separated by

white space. All of the disambiguation rules of Grammar D, except the one for resolving the
dangling-else ambiguity, are also needed in Grammar E;: the longest-match ambiguities and the

reserved-keyword ambiguity must still be resolved. In addition, since Grammar E; has no informa-
tion about which tokens may legally follow which other tokens (all such information being contained
in Grammar E,) many additional disambiguation rules must be added. For instance we must add the
rule COLON —/~ EQUAL so that the first phase of the recognizer will know that the sequence “:="
should be parsed as ASSIGN and not as COLON and EQUAL. Thus Grammar E; requires six new
compound adjacency restrictions, representing 33 simple adjacency restrictions.

Table 6.1 summarizes the comparison of a two-phase SE-SAR-NSLR(1) Pascal recognizer, with
a single-phase SE-SAR-NSLR(1) recognizer.

Two-Phase Recognizer
One-Phase | Ratio
Scanner | Parser Total Recognizer

Symbols 207 169 376 343 0.91

Rules 380 210 590 560 0.95

States 450 358 808 1005 1.24

Time to generate

tables (seconds)! 29.5 93 38.8 119.8 3.09

Total parser

actions 93,150 | 60,502 | 153,652 344,715 2.24

Total non-error

parser actions 40,076 2,786 42,862 59,389 1.39
| Parse time? 58.9 49.9 0.85

t Phetests-wererun-oma-YAN-8650—

} Time to parse 8,564 lines of Pascal code run on a Micro-VAX IL.

Table 6.1: One-Phase Versus Two-Phase Syntax Analysis

From this table we can see that the two-phase recognizer has a slight advantage in the number of rules
and symbols. Thus the grammar writer not only benefits in not having to partition his grammar, but
also in being able to work with a smaller total grammar. The rest of the statistics are not as favour-
able. The two-phase recognizer suffers from a small increase in the number of parser states and non-
error parser actions. More significantly, the two-phase recognizer suffers from a very large increase
in the time required to generate the parser, and in the total number of parser actions.

The reason for the increase in the parser generation time is that it is roughly proportional to
r-t-y® where: r = number of rules, r = number of states, and y = number of symbols. Since a pro-
duct of sums is larger than a sum of products, the single-phase parser takes longer to generate even
though r and y are smaller. There is some evidence to believe that a change in the data structures of
the parser generator could give a parser generation time that is proportional to r-7-y?, so that even
though the single-phase recognizer will still take longer to generate, the ratio of the comparison to the
two-phase recognizer will improve.
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The Speed of One-Phase Parsers

Table 6.1 shows an improvement in the running time of the single-phase parser over the two-phase
parser. There are two principal reasons for this improvement. The first is that the two-phase parser
performs some unnecessary work in reducing the input to a token stream, whereas the single-phase
parser reduces low-level symbols to high-level ones without an intermediate conversion to a token
stream. The second reason is that the procedure-call interface between the two phases is eliminated in
the single-phase parser.

The Standard Recognizer Versus a One-Phase Recognizer

Table 6.2 presents a comparison of the three recognizer techniques after applying the normalization,
described above, of the results for the one-phase recognizer. Specifically, the size and time entries of
Table 6.1 were multiplied by the ratio of the entries for the YACC-YACC recognizer of Table 3.1 to
the entries for the two-phase recognizer of Table 6.1. All values are rounded to two significant digits
since the method of comparison is probably no more precise than that.

Object | Parse

Rules | States Size Time*

(Bytes) | (Sec.)
LEX-YACC 1.0 1.0 1.0 1.0
YACC-YACC 2.0 0.9 0.7 1.4
One-Phase 1.9 1.1 1.0 1.2

Table 6.2: Ratios of size and speed of the YACC-YACC Pascal recognizer, PRYY, and a
one-phase SE-SAR-NSLR(1) Pascal recognizer to the standard LEX-YACC recognizer,
PRLY.

The table shows that the one-phase techniques proposed are competitive with the standard
recognizer. There are compiler writing tools that generate faster recognizers than LEX and YACC,
but the comparison with LEX and YACC is still a valid one. Our recognizer uses straightforward
implementation techniques, so it is valid to compare it with other tools that also use straightforward
techniques as do LEX and YACC. When an optimizing parser generator is developed for SE-SAR-
NSLR(1) grammars, then its results can be compared with other optimizing parser and scanner gen-
erators such as FLEX45 and BISON17 An interesting property of the normalization process is that it
will yield the same table independent of such processing details as whether or not the optimizer option
is selected when compiling the one-phase recognizer.

Why has the single-phase recognizer produced results that are so similar to the standard recog-
nizer, PRLY? Conventional wisdom would tell us that a pushdown automaton should be slower than
a finite-state automaton. A closer analysis yields the following points:

® Theory tells us that an FSM, a DPDA, and a noncanonical DPDAS? all run in linear time on the
length of the input, so the performance statistics can only differ by a constant factor.

® The stack operations push and pop, the main difference between an FSM and a pushdown auto-
maton, are not expensive. Each can be implemented as a single data move, and a pointer
increment. In comparison, a table access for an FSM or PDA state transition may require a
multiplication, to convert two-dimensional indices into a one-dimensional index, or may require
a table search, if the table is stored as a sparse matrix.

¢ The interface between the FSM scanner and the DPDA parser in the standard model, is prob-
ably implemented as a procedure call. On modern computers a procedure call commonly
involves the pushing and popping of a large amount of information such as registers, display,
and local storage.
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e The FSM scanner of the standard recognizer may require k > 1 lookahead characters. For Pas-
cal for instance k = 2. Multiple lookahead complicates table accesses further.

6.5. The Independence of RCFG’s and One-Phase Parsing

There are two principal topics of this thesis: the use of restricted context-free grammars to describe
programming languages, and the implementation of single-phase parsers for programming languages.
It should be pointed out that these two methods are not necessarily bound together. It is possible to
use RCFG’s to describe programming languages, and thus reap the benefits of a complete, precise,
and unambiguous description, and yet still implement the described language by the traditional two-
phase method.

It is also possible to use the traditional imprecise description of programming languages in publi-
cations, but use SE-SAR-NSLR(1) grammars and parsers for the actual implementation.

6.6. Future Work

There have been hints throughout this thesis of how the proposed metalanguage and parser generation
scheme could be improved. This section summarizes possible improvements, and suggests directions
for new research.

6.6.1. Noncanonical Nonsimple LR Parsers

The most significant improvement to the power of the parser generator would be to devise a non- .
canonical LALR (NLALR) parser generator to replace the NSLR strategy described by this thesis.
As with a canonical LALR parser, in an NLALR parser the lookahead symbol for each complete
item is not simply the FOLLOW set of the left part of the item, but rather depends on the paths
through the parsing automaton to the current state. If the symbol Z is in the lookahead set of a com-
plete item [A — o« ] in a state s, that means that some state ¢ on a path to s must contain an item
[B — «B7], such that A is in LAST(8) and Z is in FIRST(y). In addition, in an NLALR parser, no
two states have the same core item set (the items of a state excluding the lookahead information).

There are two principal difficulties in implementing an NLALR parser. The first relates to
determining lookahead sets for items added during state expansion. State expansion is performed
when there is a conflict on a lookahead symbol, and the effect of state expansion is to shift on the
conflicting lookahead symbol. If the conflicting symbol is A, then for all rules of the form B — 3,
such that A is in FIRST(8), an item [B — .« 8] is added to the state. The customary method of han-
dling LALR items, as presented by Aho, Sethi, and Ullman’ for instance, is to attach a lookahead set
to each item, and add symbols to the set as the parser is being built, and thus new items added by
state expansion too will need lookahead sets attached to them.

The essence of the problem is that we cannot know in advance which symbols will be removed
from lookahead sets by state expansion, and shifted by shift actions. As a result, we would need to
collect the LA follow set (as opposed to the simple follow set) of all symbols in all lookahead sets as
we were building the parser. Furthermore, any symbol in a lookahead set of an item resulting from
state expansion, could itself be removed from a lookahead set by a later state expansion, and its LA
lookahead set also needed. We would therefore need to compute LALR(k) lookahead sets for some
unknown k, even though only one symbol of lookahead would actually be used during parsing.

Compound Nonsimple-Simple LR Parsers

A simple solution to this problem is to use the LA lookahead set for ordinary items, but the simple
lookahead set for items added during state expansion. Kusters® has implemented this method. The
method works, but weakens the power of the grammars somewhat. A better solution would be to col-
lect lookahead sets for regular items only, and when an expansion item is added, retraverse the pars-
ing automaton to collect its lookahead set. The problem lies in finding efficient ways to perform this
traversal. The work of DeRemer and Pennello}® and of Park, Choe and Chang*?® may be useful in
formulating other ways of collecting the lookahead information needed.



CHAPTER 6: RESULTS AND CONCLUSIONS 85

On the Termination of the Construction for Nonsimple Noncanonical
LR Parser Generators

The second difficulty in constructing an NLALR parser arises in testing the consistency of states. In
an LALR parser, all states and paths between states must be constructed before the consistency of a
state can be tested. But in an NLALR parser generator, an inconsistent state may lead to state
expansion, and state expansion may generate a transition to an existing state s. The new transitions
to state s may cause the lookahead sets of some items to grow. Adding new lookahead symbols
would require that the consistency of state s, and all states on a path from s, be checked again. Each
consistency check may require another state expansion. Thus state expansion is not a once-per-state
operation as it is for an NSLR parser.

Despite the fact that states may have to be visited repeatedly for state expansion, it is possible to
write parser generators that are guaranteed to terminate. This conclusion can be seen by noticing that
in an NLALR parser, the states have unique core item sets. Since the number of rules in the gram-
mar is finite, and the number of items that can be generated from each rule is finite, the total number
of items that can be generated is finite. Since no item may be repeated in a state, the number of
unique states is finite. Also note that since the number of symbols in a grammar is finite, the size of
any lookahead set must also be finite. The finiteness of the parser to be generated is a good indicator
that an algorithm to compute such a parser should terminate.

The one way that state expansion could loop forever is if the same symbol deleted from a look-
ahead set by a state expansion was again added because of a new path added to the state by the
expansion. The number of states involved in such a cycle must be finite, so such a processing cycle
could be detected, and the grammar rejected. Alternatively cycles could be prevented by ensuring
that consistency of a state is only checked when a new path to a state is created not when one is
deleted. Since the number of paths possible to a state is finite, state expansion would not go on for-
ever.

Can a noncanonical full LR(1) parser also be generated? Preliminary analysis indicates that the
answer is yes. The time and space required for parser generation will be greater, however, as will the
space for the generated parser. Spector’? argues, that with table compression, the time and space for
LR(1) parser generation need not be significantly greater than for an LALR(1) parser, but that the
benefits are significant for the grammar writer. He and Pager*? present practical methods for gen-
erating LR(1) parsers. It may be possible to adapt these methods to noncanonical LR(1) parser gen-
eration.

It can be shown, in a similar fashion to the proof for NLALR parser generation, that NLR
parser generation can be made to terminate. In this case, the states do not have unique core sets, but
each state is unique when both the core items and the lookahead sets are considered. Since the
number of productions and symbols is finite, the number of unique states that can be generated, and
the paths between them, are finite, and hence parser generation can eventually terminate.

6.6.2. Nonsimple Restrictive Rules

It is also possible to extend the treatment of exclusion rules and adjacency restriction rules to relax the
constraints on their usage. Consider for instance the treatment of the exclusion rule A -+ B. The
parser generator described in this thesis decides whether a complete item is concluding the recognition
of the symbol A without examining the paths to the state containing the item. A parser-generation
algorithm that analyzed the paths to each state to determine the true predecessors of each item could
be more accurate and accept more grammars. The same is true for the treatment of adjacency restric-
tions. A possible name for these larger classes of grammars would be LBE (look-back exclusion) and
LBAR (look-back adjacency restriction) grammars.
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6.6.3. More Powerful Disambiguation Ruleé -

The disambiguation rules proposed in this thesis are not the only ones possible. It is possible that a
single disambiguation rule could replace both of these.

There are also some ambiguity problems that the rules proposed here do not handle well. For
instance, Aho and Johnson present a disambiguation rule for concisely specifying operator precedence -
and transitivity. The disambiguation rules proposed in this thesis are poor at handling this problem,
and produce a grammar almost as large as disambiguation by grammar rewriting.

6.6.4. Parse Table Compression

Single-phase grammars describe programming languages right down to the character level. In a pro-
gramming language there are groups of characters such as letters and digits, that can be treated ident-
ically by a parser. This repetition should allow for parser compression techniques that would be of
minimal benefit in other types of parsers whose terminal symbols are significantly more diverse.

6.6.5. A Reliable Compiler Writing Tool

This thesis has proposed several novel techniques for describing and implementing programming
language translators. There is bound to be a great deal of resistance to these ideas until they are
implemented in a complete and reliable compiler writing tool intended for widespread use. The
implementation of an SE-SAR-NSLR(1) parse-table generator reported above is a step toward this
goal, and work on a complete parser generator to rival LEX and YACC is in progress.



Appendix A

The Standard Pascal Recognizer

This appendix contains the description of a Pascal recognizer, prepared according to standard
methods, consisting of a finite state scanner and a DPDA parser. The description consists of the
grammar for the standard scanner, the grammar for the standard parser, the C-language description
of the interface between the scanner and the parser, and the makefile showing the compilation depen-
dencies of the two modules.

A.1. The Grammar for the Standard Scanner

%<
/%

* s canner . 1

* Lex script for a Pascal token scanner.

*/

# include "tokens.h"
# include "extern.h"

3y
%Start CODE COMMENT

letter la-zA~Z ]
digit [0-9]
faA]
[bB]
[eC]
[dD]
[eE]
[fF]
(gG]
(hH]
(11]
(3J]
(kK]
[1L]
[mM]
[nN]
[o0]
[pP]
[qQ]
[rR]
[ss]
[tT]
[uU]

e o”w OB HEHHKR—HDIDMmHAHOO QOB TP
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v [vv]
w [ww]
X [xX]
y [yY]
Z [zZ]
%%

/% Enter scanner in CODE state. */

BEGIN CODE;
<CODE>"{" BEGIN COMMENT;
<COMMENT>"}" BEGIN CODE;
<COMMENT?> . X
<COMMENT>\n
<CODE>\n ;
<CODE>[ \t\f] ; /* Skip white space. */
<CODE> [—+x/=><:;, . ONI\]I"] { /* Single character tokens

* represent themselves. */
return{(int) *yytext);}

<CODE>"(." return((int) °]17);
<CODE>" .)" return((int) °[’);
<CODE>{a}{n}{d} return (AND) ;
<CODE>{a}{r}{r}{a}{y} return (ARRAY) ;
<CODE>" :=" return (ASSIGN) ;
<CODE>{b}{e}{g}{i}{n} return(BEGIN );
<CODE>{c}{a}{s}{e} return(CASE) ;
<CODE>{c}{o}{n}{s}{t} return(CONST) ;
<CODE>{d}{o} return(DO) ;
<CODE>" . ." return(DOTDOT) ;
<CODE>{d}{o}{w}{n}{t}{o} return (DOWNTO) ;
<CODE>{e}{1}{s}{e} return(ELSE) ;
<CODE>{e}{n}{d} return(END) ;
<CODE>{f}{o}{r} return(FOR) ;
<CODE>{fH{u}{n}{c}{t}{i}{o}{n} return(FUNCTION);
<CODE>">=" return(GE) ;
<CODE>{g}{o}t{t}{o} return(GOTO) ;
<CODE>{d}{i}{v} return(IDIV) ;
<CODE>{i}{f} return(IF);
<CODE>{i}{n} return (IN);
<CODE>{digit}+ return(INT) ;
<CODE>"<=" return(LE);
<CODE>{1}{a}{b}{e}{1} return (LABEL) ;
<CODE>{m}{o}{d} return(MOD) ;
<CODE>"<>" return(NE) ;
<CODE>{n}{i}{1} return(NIL) ;
<CODE>{n}{o}{t} return(NOT) ;
<CODE>{o}{f} return(OF) ;
<CODE>{o}{r} return(OR) ;
<CODE>"e" return{(int) °~’);
<CODE>{p}{a}{c}{k}{e}{d} return (PACKED) ;
<CODE>{f}{i}{1}{e} return (PHYLE) ;

<CODE>{p}{r}{o}{c}{e}{d}{u}{r}{e} { return(PROCEDURE) ;}
<CODE>{p}{r}{o}{g{r}{ak{m} {
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return (PROGRAM) ; }
<CODE>{digit}r+"."{digit}+({e}[-+]?{digit}+)? |
<CODE>{digit}+{e} [-+]?{digit}+ Teturn(REAL);

<CODE>{r}{e}{c}{o}{r}{ad} return (RECORD) ;
<CODE>{s}{e}{t} return(SET) ;

<CODE>’ ([~’\n] |’ )+’ return (STRING);
<CODE>{r}{e}{p}{e}{a}{t} return (REPEAT) ;
<CODE>{t}{h}{e}{n} return (THEN) ;
<CODE>{t}{o} return(T0) ;
<CODE>{t}{y}{p}{e} return(TYPE) ;
<CODE>{u}{n}{t}{i}{1} return (UNTIL) ;
<CODE>{v}{a}{r} return (VAR) ;
<CODE>{w}{h}{i}{1}{e} return(WHILE);
<CODE>{w}{i}{t}{n} return(WITH) ;
<CODE>{letter}({letter}|{digit})* return(ID) ;
<CODE>. return (GARBAGE) ;

%%

A.2. The Grammar for the Standard Parser

%token <text> ID
%token <int const> INT
%token <real const> REAL
%token <text> STRING
%token PROGRAM BEGIN_ END
%token LABEL CONST TYPE VAR PROCEDURE FUNCTION
%token FILE PACKED ARRAY RECORD SET OF
%token ASSIGN DOTDOT NE LE GE IN IDIV MOD
%token AND OR NOT NIL
%token IF THEN ELSE WHILE DO FOR TO DOWNTO
%token CASE REPEAT UNTIL WITH GOTO GARBAGE
%union {

double float const;

int int_const;

char *text;

}
%%

program : program_head block *.’ ;

program head : PROGRAM ID program parms ’;  decls ;-

program_parms
[ »( file list )~ ;

file 1ist . ID
| file 1list °,” ID ;
decls ~. label decl part const decl part

type decl part var decl part
proc_decl part ;
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block : prologue part compound stat
epilogue part ;

prologue part T

epilogue part R

label decl part :
I LABEL label decl list ;> ;

label decl 1list : label decl
| label decl 1list ’,” label decl ;

label decl : INT ;

const decl part :
| CONST const decl list ~;’ ;

const decl list :@ const decl
| const decl list ’;

const _decl ;

const decl . ID ’=’ const ;

const : unsigned num
| ’+’ unsigned num | °-’ unsigned num
] ID | *+”> ID | ’~-" ID
] STRING ;

unsigned num : INT | REAL ;

type decl part
[ TYPE type decl list *;~ ;

type decl list @ type decl

| type decl 1list °;’ type decl ;
type decl : ID =’ type ;
. type . simple type | structured type
| °>=> ID ;
simple type : scalar_type | ID ;
scalar type : *(* scalar list )~

| const DOTDOT const ;
scalar list : ID | scalar list *,’ ID ;
structured type : u struct type | PACKED u_struct type ;
u_struct_type : ARRAY [ array rest

| RECORD field 1ist END

| SET OF simple type
| FILE_ OF type ;
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array rest . simple type ']’ OF type

| simple type °,’ array rest ;
field list . fixed part | fixed part ’;~
| fixed part *;’ variant part

| variant part | ;

fixed part : fixed item 1list
| fixed part °;’ fixed item 1list ;

fixed item 1list : ID °:’ type
| ID *,’ fixed item list ;

variant part : CASE tag field OF variant list
| CASE tag field OF variant list *;’ ;

tag_field :ID | ID *:” ID ;
variant_list : variant | variant list °;’ variant ;
variant : case_label 1ist ’:” *(’ field list ')~ ;

case label 1ist : const i case label list °,” const ;

var decl part
| VAR var decl list *;’ ;

var_decl list : var_decl
| var _decl list °;’ var decl ;

var_decl : ID 7:” type
[ ID *,” var_decl ;

proc_decl part
| proc_decl list ;

proc_decl 1ist : proc decl
| proc_decl list proc decl ;

prdc_decl ! proc_heading block *;°
| proc beg f parm decl *;’ ID *;’
| func_beg f parm decl *:’ ID ”; ID *;”’ ;

proc _heading ! proc_head beg decls

| func_head beg decls
| func_beg *;° decls ;

proc_head beg : proc beg f parm decl *;° ;
func head beg : func beg f parm decl *:* ID *;” ;

proc_beg : PROCEDURE ID ;
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func beg : FUNCTION ID ;
f_parm_decl » (¢ f_parm_list *)” | ;
f parm list : £ parm
| £ parm list *;’ f parm ;
f parm : val fparm list
| VAR var fparm list
| func_beg f parm decl ’:’ ID

| proc_beg f parm decl ;

val fparm list : ID ’:’ type

| ID *,’ val fparm list ;
var fparm 1list : ID *:° type

| ID *,’ var fparm list ;
compound stat :'BEGIN_ stat 1ist END ;
stat_list : état | stat list *;’ stat ;
stat : ul_stat | label ul stat ;
label : INT "
ul_stat : simple_stat | struct stat | ;
simple stat . beg stat var ASSIGN expr

| beg stat proc_invok
| no hassel stat

| GOTO INT ;

beg stat N

proc_invok : noparms_pinvok | plist pinvok ’)°’
| noparms_pinvok *(’ *)’ ;

noparms_pinvok : ID ;

plist_pinvok ! noparms_pinvok *(’ parm

' | plist pinvok *,’ parm ;

var :ID | var 7.’ ID

| subscripted var "1’ | var " ;

subscripted var : var '[’ expr

| subscripted var °,’ expr ;
parm : expr | expr ’:° expr
| expr *:’ expr ’:' expr ;

expr : simple expr
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| expr =’ simple_ expr

| expr NE simple_ expr

| expr LE simple_expr

| expr <’ simple expr

| expr GE simple_expr

| expr >’ simple expr

| expr IN simple_ expr ;

simple expr . term | *+° term | -7 term
| simple expr ’+° term
| simple expr °-’ term
| simple expr OR term ;

term . factor
| term **’ factor | term ’/’ factor
| term IDIV factor | term MOD factor
| term AND factor ;

factor : var | unsigned const | *(° expr )~
| func_invok | set | NOT factor ;

unsigned _const : unsigned num | STRING | NIL ;
func_invok : plist_finvok )~

| start finvok *(° *)° ;
plist finvok : start_finvok *(’ parm

| plist finvok *,’ parm ;

start finvok : ID ;
set : *[” element list ] | *[* *]° ;
element list : element | element list *,’ element ;
element : expr | expr DOTDOT expr ;
struct_stat : 1f then else stat

if beg stat

while beg DO stat
for beg DO stat
with beg DO stat ;

if then else . 1f beg matched stat ELSE ;
1f beg : IF expr THEN ;

while beg : WHILE expr ;

for beg : for_init updown expr ;

for init : FOR ID ASSIGN expr ;

updown : TO | DOWNTO ;
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with beg © WITH rec_list ;
no hassel stat : compound stat
| case alt stat ”;’ END

| case alt stat END
| repeat beg stat list UNTIL expr ;

repeat beg : REPEAT ;
case beg : CASE expr OF comnst

| case beg *,’ const

| case alt stat *;’ const ;
case alt : case beg *:’ ;
matched stat : ul m stat | label ul_m stat ;
ul m stat : simple stat

if then else matched stat
while beg DO matched stat
for_beg DO matched stat

with beg DO matched_stat ;

Tec_list : var | rec list *,’ var ;

A.3. The Interface between the Scanner and the Parser

The two files “tokens.h” and “extern.h” describe the interface between the standard scanner and the
standard parser.

A.3.1. The Automatically-Produced file “tokens.h”

typedef union {
double float comnst;

int int comnst;
char *text;
} YYSTYPE;

extern YYSTYPE yylval;
define ID 257
define INT 258
define REAL 259
define STRING 260
define PROGRAM 261
define BEGIN 262
define END 2863
define LABEL 264
define CONST 265
define TYPE 266
define VAR 267
define PROCEDURE 268
define FUNCTION 269
define FILE 270

HHEHFRHHBTHFEHEHHERFREHRR
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define PACKED 271
define ARRAY 272
define RECORD 273
define SET 274
define OF 275
define ASSIGN 276
define DOTDOT 277
define NE 278
define LE 279
define GE 280
define IN 281
define IDIV 282
define MOD 283
define AND 284
define OR 285
define NOT 286
define NIL 287
define IF 288
define THEN 289
define ELSE 290
define WHILE 291
define DO 292
define FOR 293
define TO 294
define DOWNTO 295
define CASE 296
define REPEAT 297
define UNTIL 298
define WITH 299
define GOTO 300
define GARBAGE 301

FHOHHEHHHHEHHHE BRI RS S BB

A.3.2. The File “extern.h”
/%

* extern.h

* External variable declarations.

*/
extern int yylineno; /* Current source line no. */
extern char yytext[]; /* Current token string. */

extern YYSTYPE yylval; /* Current token value. */

A.4. The Makefile for Synchronizing Generation of the Recognizer

#

# Makefile

# oo

#

#

# Possible C flags:

# -0 — C optimizer.
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# -g — Include globals in object for xdb.
# -pg — Extensive profiling.
CFLAGS = -0
prly main.o parser.o sScanner.o yyerror.o
cc $(CFLAGS) main.o parser.o scanner.o yyerror.o —11 \
-0 prily

scanner.c . scanner.l tokens.h extern.h
lex -t scanner.l >scanner.c

# Tokens.h is generated by the parser generator.
tokens.h
make parser.c

parser.c : parser.y extern.h
yacc —-d —V parser.y
#
# —— Replace tokens.h only if it has changed.
# —— This prevents useless recompiles of scanner.c.
@csh -f diff repl y.tab.h tokens.h
émv y.output parser.graph
émv y.tab.c parser.c
#
# —— Replace tokens.h only if it has changed.
# —— This prevents useless recompiles of scanner.c.

@csh —f d4iff repl y.tab.h tokens.h



Appendix B

A Single-Metalanguage Two-Phase Pascal Recognizer

This appendix contains the description of a single-metalanguage two-phase Pascal recognizer. Only
the BNF grammar for the scanner is presented, since the grammar for the parser and the description
of the scanner-parser interface are the same as for the standard recognizer presented in Appendix A.
The grammar is processed by YACC to produce a scanner in the C language.

Due to the difficulty of calling a YACC generated scanner as a procedure, the scanner and the
parser run as two separate processes and communicate tokens over a UNIX pipe. The details of this
method are not shown here as they are not relevant to this thesis. The assumption is that if this tech-
nique of describing the scanner with the same metalanguage as is used to describe the parser became
popular, then a version of YACC that produced callable scanners would be developed.

B.1. The Grammar for the Scanner

/*
* YaccScen.y
b 3 oo
*
* Yacc script for a Pascal token scanner.
*
* Difference from lex version:
* FElipsis in a range cannot immediately follow a digit.
*/
3t

# include <stdio.h>
# include "tokens.h"
# include "pryy macros.h"

# define SET TOK(arg) token code = arg

# define SEND TOKEN ¥Wrptr++ = token_code;\
token_Code =0

extern short int *wrptr;

int token code;
int chin;
extern int lineno;

%x

%istart good scan

%%
good scan : token stream
{ *xwrptr++ = 0; /% End of tokens. */ }
| token stream act white
{ #wrptr++ = 0; /* End of tokemns. */ } ;
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act white

token stream

an_token stream

num_token stream

token

b N\t | °N\f’ | ’\n’ | comment
act_white * ° | act white "\t~
act _white *\f’ | act white "\n’

act_white comment ;

/* nothing */

token stream token { SEND TOKEN; 7
an_token stream token { SEND TOKEN; 3
num_token stream token { SEND TOKEN; }
token stream act white token

{ SEND_TOKEN; }

an_token stream act white token

{ SEND_TOKEN; }

num_token stream act white token

{ SEND TOKEN; } ;

token_stream an_token { SEND TOKEN; }
token stream act white an token

{ SEND_TOKEN; }

an_token stream act_white an token

{ SEND_TOKEN; }

num_token stream an_token

{ SEND_TOKEN; }

num_token stream act white an token

{ SEND_TOKEN; }

token stream num token

{ SEND_TOKEN; }

token stream act white num token

{ SEND_TOKEN; }

an_token stream act_white num token
{ SEND TOKEN; }

num_token stream num_token

{ SEND_TOKEN; }

" num_token stream act white num_token

{ SEND_TOKEN; } ;

STRING
- SET _TOK(’-");
SET_TOK(’+°);
SET TOK(’*’);
SET TOK(*/*);
SET TOK(’=");
SET TOK(’<’);
SET TOK(*>’);
SET TDK( ")
SET TOK( oF
SET_TOK(®, ')
SET TOK(* [ )
SET TOK( [*);
SET TOK(*]");
SET TOK(’1°);
SET _TOK(’~*)

N e e N s N e N N Yy~ S Nt S S U U iy
B B s L Y L Iy S
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SET TOK(*~’); }
SET TOK("(*); }
SET TOK(*)"); }
SET_TOK(*.’); }
SET _TOK(ASSIGN); }
SET_TOK (DOTDOT) ; }

I
B N W N e N Y= S Sy,

SET_TOK(GE); }
'<* *=' { SET TOK(LE); }
> SET TOK(NE); } ;
an_token : keyword | ID_;
num_token : INT_ | REAL ;
letter alblcldlelflglnlil]
l kX111 lmlinlolplglrislt
' vilviliwixlylzl " _~;
digit Y R R R S A B S IR
| 5 | 6" | *7° | "8 | "9 ;
a . ;a': I rA) ;
b b’ | BT ;
c ‘e’ | °Ct o
d :d; I :Di '
e re.v l :E; '
f £} CF
g Jg) ‘ :G) ;
h h’ | CH®
i b T R S
j ;j; | JJ: ;
k 'k” | K
1 )1; | )L) ;
m xm) | )M, ;
n )n) l )N) ;
O )Or ' )O) l
p ‘PP
q ;q) I :Q’ ;
r )I_) I ,RJ ;
S :S: I !Sl ;
t ;t; I JT’ ;
u )u: l ,U) ’.
V ’v) I )V) ;
w. st I ,w, ;
X ,X, l }xl l
y LY
Z JZ) | )Z, ;
most_any char c\t’ | \f°
| > | e | su > | H | .$ | ,0’ l %’
l ,(, ] ;), I Tk’ l 4y l ’ l s _» l > l
I ’O’ I 31’ l )2’ I )3’ I )4)
l )5) l ,6, I :7) I ’8’ I :9»
l ):: l ’;! I ;<; I > l y>) | y?; l 1@)
I )A’ l ;B’ I ,C’ I ,D, [ )E’ I JF, ' ;G) I
| )I) I )J) | )K’ l )L) I )MI l )Nr I )01 l
' ’Q) ' )R: ' )S) l )T: l )U) I )V, ! ,W, I
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comment
comment body

INT
digit string

REAL _

opt_sign

STRING
string body

AND _
ARRAY
BEGINB
CASE_
CONST _
DO_
DOWNTO_
ELSE_
END

FOR_
FUNCTION
GOTO
DIV

i

N
LABEL _
MOD

NIL

NOT

I
I
I

: /* nothing */

I
I
I
I
|

A0 P <

>

vz

ERECR)
> >
> 2

]
r
z
|

’\\)

e

71

?

' ’k.v

| H
l B

’

s

>

l L] | E ]

comment body '}’ ;
r{)
comment body most any char
comment body
comment body

,\n,

)\))

’

digit_string <{ SET TOK(INT); } ;
digit
digit string digit ;

digit string °.~

digit string

{ SET_TOK(REAL); }
- digit string
{ SET_TOK(REAL); }

digit_string e opt sign digit string

" digit_string e opt _sign digit string

{ SET_TOK(REAL); } ;

string_body *\’’

L IS

.

{ SET TOK(STRING); } ;

"\’’ most_any char

\l)

)\1’

string_body *\’’

a0 0o P
O 0P O~ I3

@]
o

HoH 8 HE PR Q0 kD@
O H O P BH HmEKEH O0g OB |

¢ H Qoo

S5 nim A o
n o+
j=)

< g Haun =

)}J
:\!)

=
ct

:\:;
string body most any char
string body °}-’

e N N N T s = T s T W e Sy Sy S Vi WP

:\»» .
’

SET_TOK(AND); } ;
SET_TOK(ARRAY); } ;
SET_TOK(BEGINB) ;
SET _TOK(CASE); } ;

SET_TOK(CONST); } ;
SET_TOK(DO) ; } ;
SET_TOK (DOWNTO) ;
SET _TOK(ELSE); } ;
SET TOK(END); } ;

SET_TOK(FOR); } ;

{ SET_TOK(FUNCTION); } ;
SET_TOK(GOTO); } ;
SET TOK(IDIV); } ;
SET_TOK(IF); } ;
SET_TOK(IN); } ;
SET_TOK(LABEL) ;

SET_TOK(MOD); }
SET_TOK(NIL); }

SET_TOK(NOT); }

’

’

b

)

)

»
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OF _ o f { SET_TOK(OF); } ;

OR_ or { SET_TOK(OR); } ;

PACKED _ :packed { SET TOK(PACKED); } ;

PHYLE cfile { SET_TOK(PHYLE); } ;

PROCEDURE _ procedure { SET_TOK(PROCEDURE); } ;
PROGRAM :pTogrT amn{ SET TOK(PROGRAM); } ;

RECORD _ rTecord - { SET TOK(RECORD); } ;

REPEAT _ cTepeat { SET TOK(REPEAT); } ;

SET_ iset { SET_TOK(SET); } ;

THEN_ Sthen { SET_TOK(THEN); } ;

TO_ to { SET_TOK(TO); } ;

TYPE ctype { SET_TOK(TYPE); } ;

UNTIL cumntil { SET_TOK(UNTIL); } ;

VAR var { SET_TOK(VAR); } ;

WHILE cwhile { SET_TOK(WHILE); } ;

WITH_ cwith { SET_TOK(WITH); } ;

keyword : AND_ | ARRAY_ | BEGINB_ | CASE_ | CONST_ | DO_

| DOWNTO | ELSE | END_ | FOR_ | FUNCTION
| GoTo_ | IDIV_ | IF_ | IN_ | LABEL_ | MOD_
| NIL | NOT_ | OF_ | OR_ | PACKED | PHYLE
| PROCEDURE_ | PROGRAM_ | RECORD | REPEAT
| SET | THEN | TO_ | TYPE | UNTIL | VAR
| WHILE | WITH_ ;

partial keyword : an [ ar |arr|arra
|l el beglbegi
|l calcas| col]con]cons
| di | DO w | DO wn { DO wnt
lel |l els|en|ti]fil
| folfu|lfun{func|funct
| funecti| functio
lgolgotllal|llab|labe
I mo | nifno
lpalpaclpackl|packe
lprlprolprocl|lproce
[ proced| procednu
|l procedur
| proglprogr|progra
|l Te]rec|recolrecor
|l Teplrepelrepea
lselthlthe |l tyl typ
lan]lunt|unti
[valwh|[whi | whil
| wi | wit;

ID_ : letter { SET_TOK(ID); }
| ID_ letter { SET TOK(ID); }
| ID_ digit { SET_TOK(ID); }
| partial keyword { SET TOK(ID); }
| keyword letter { SET TOK(ID); }
| keyword digit  { SET TOK(ID); } ;

%%



Appendix C

A Single-Metalanguage Single-Phase Pascal Recognizer

This appendix contains the description of a single-metalanguage single-phase Pascal recognizer. This
grammar was constructed by combining the two grammars of the single-metalanguage two-phase
recognizer PRYY. This grammar still has all the ambiguities of the two separate grammars.

/*
¥ propy.y
% ot etaseb
*
* Yacc script for a complete Pascal recognizer.
%
* Difference from prly:
* Elipsis in a range cannot immediately follow a digit.
*/
%start program
%
progranm : program_head block DOT ;
program head : PROGRAM ID program parms SEMI decls ;

program_parms :
[ LPAR file list RPAR ;

file 1list : ID
| file 1list COMMA ID ;
decls : label decl part const decl part
type_decl part var_decl part

proc decl part ;

block . prologue part compound stat
epilogue part ;

prologue part T
epilogue part @ ;

label decl part : -
| LABEL label decl list SEMI ;

label decl 1ist : label decl
| 1abe1_declﬂlist COMMA 1abe1_dec1 ;

label decl : INT ;

const decl part
| CONST const decl list SEMI ;

const decl 1ist : const decl
| const decl 1list SEMI const decl ;
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const decl

const

unsigned num
type decl part
type decl 1list

type decl

type

‘simple type

scalar type

scalar list
structured type
u_struct type

array rest

field 1list

fixed_part
fixed item 1ist
variant part

tag field
variant 1ist

variant

ID EQUAL const ;
unsigned num
PLUS unsigned num | MINUS unsigned num

ID | PLUS ID | MINUS ID | STRING ;

INT | REAL ;

TYPE type decl 1ist SEMI ;

type decl
type _decl 1list SEMI type decl ;

ID EQUAL type ;

simple type | structured type
POINTER ID ;

scalar type | ID ;

: LPAR scalar 1list RPAR

const DOTDOT const ;

ID | scalar list COMMA ID ;

: u_struct_type | PACKED u struct type ;

. ARRAY LSQR array rest

RECORD field 1ist END
SET OF simple type | PHYLE OF type ;

simple type RSQR OF type
simple type COMMA array rest ;

fixed part | fixed part SEMI
fixed part SEMI variant part

variant part | ;

fixed item list
fixed part SEMI fixed item 1list ;

ID COLON type
ID COMMA fixed item 1list ;

CASE tag field OF variant list
CASE tag field OF variant 1list SEMI ;

ID | ID COLON ID ;
variant | variant list SEMI variant ;

case label list COLON LPAR field 1list

RPAR ;

103



APPENDIX C: A SINGLE-METALANGUAGE SINGLE-PHASE PASCAL RECOGNIZER

case_label_list

var _decl part
var_decl list
var_decl
proc_decl part
proc_decl 1ist

proc decl
proc_heading

proc head beg
func head beg
proc beg

func beg

f parm decl

f parm 1list

f parm

val fparm list
var fparm list

compound stat
stat list
stat

label

ul stat

const | case label 1list COMMA comnst ;

VAR var_decl 1list SEMI ;

var decl
var_decl 1list SEMI var decl ;

ID COLON type
ID COMMA var decl ;

proc_decl list

! proc decl

proc_decl 1ist proc decl ;

: proc_heading block SEMI

proc beg f parm decl SEMI ID SEMI
func beg f parm decl COLON ID SEMI ID SEMI ;

: proc_head beg decls

func head beg decls
func_beg SEMI decls ;

: proc_beg f parm decl SEMI ;

func_beg f parm decl COLON ID SEMI ;

: PROCEDURE ID ;
: FUNCTION ID ;

: LPAR f parm list RPAR | ;

f parm | f parm list SEMI f parm ;

val fparm list

VAR var_fparm 1list

func_beg f parm decl COLON ID
proc_beg f parm decl ;

ID COLON type
ID COMMA val fparm 1list ;

ID COLON type
ID COMMA var fparm list ;

: BEGINB stat list END ;

stat | stat list SEMI stat ;

: ul_stat | label ul _stat ;

INT COLON ;

simple stat | struct stat | ;
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simple stat

proc_invok

noparms_pinvok

plist pinvok

var

subscripted var

parm

expr

simple expr

term

factor

unsigned const

func_invok

plist finvok

start finvok
set

element list

var ASSIGN expr | proc_invok
no_hassel stat | GOTO INT ;

noparms_pinvok
plist _pinvok RPAR
noparms_pinvok LPAR RPAR ;

1D ;

noparms pinvok LPAR parm
plist pinvok COMMA parm ;

ID | var DOT ID
subscripted var RSQR | var POINTER ;

var LSQR expr
subscripted var COMMA expr ;

expr | expr COLON expr
expr COLON expr COLON expr ;

simple expr | expr EQUAL simple expr

expr NE simple expr | expr LE simple expr
expr LT simple_expr | expr GE simple eXpr
expr GT simple _expr | expr IN simple expr

term | PLUS term | MINUS term
simple expr PLUS term

simple expr MINUS term

simple expr OR term ;

factor | term MULT factor
term DIV factor | term IDIV factor
term MOD factor | term AND factor ;

var | unsigned const

LPAR expr RPAR

func_invok | set | NOT factor ;

unsigned num | STRING | NIL ;

: plist_finvok RPAR

start_finvok LPAR RPAR ;

start finvok LPAR parm
plist finvok COMMA parm ;

D ;
LSQR element list RSQR | LSQR RSQR ;

element | element list COMMA element ;
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element

struct_stat

if then else
if beg
while beg
for beg

for init
updown

with beg

no_hassel stat

repeat beg

case beg

case alt
matched stat

ul_m stat

expr | expr DOTDOT expr ;

if then_ else stat | if beg stat
while beg DO stat | for beg DO stat
with beg DO stat ;

if beg matched stat ELSE ;

IF expr THEN ;

: WHILE expr ;

for_init updown expr ;

. FOR ID ASSIGN expr ;

: TO | DOWNTO ;

: WITH rec_list ;

compound stat

case alt stat SEMI END

case_alt stat END

repeat beg stat list UNTIL expr ;

‘: REPEAT ;

CASE expr OF const
case beg COMMA const
case alt stat SEMI const ;

case beg COLON ;

:ul m stat | label ul m stat ;

/¥ —————— scanner

optional white

white
one white

letter

simple stat

if then else matched stat
while beg DO matched stat
for beg DO matched stat

with beg DO matched stat

var | rec list COMMA var ;
module —————- */
/* nothing */ | white ;
one white |  white one white ;
N\t | °\f’ | ’\n’ | comment ;
| h | |

T

ldlel f|g il j
lnfolpl ql s |t
lx 1yl z ’
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digit N O R A - A B A B
‘ )5) l ’6) l )7’ I »8) | )9) ;
alpha num : letter | digit;
. ’a! | ’A) ’
B

o

-
-

N M€ <O H.00O0B8 S8 H®Ro M 0@ = 6 00

-
-

N< K & < ctnnHOQTWOPRE B KRS K IZ0M o0 Q0o e
=4

most_any char AN A AV i

[}

>

any string char : most_any char | "} ;
any comment char : most any char | ’\n” | *\"~ ;
comment : comment body °}’ ;
comment body 0

| comment_body any_comment_char ;

MINUS : MINUS_ optional white ;
MINUS =Ty

PLUS :"PLUS _ optiomal white ;
PLUS e

MULT : MULT optional white ;

MULT Dok
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DIV : DIV_ optional white ;
DIV VA
EQUAL . EQUAL optional white ;
EQUAL L=
LT : LT optional white ;
LT R
GT : GT_ optional white ;
GT D>
COLON : COLON_ optional white ;
COLON _ Lt
SEMI : SEMI_ optional white ;
SEMI T
COMMA : COMMA - optional white ;
COMMA = L
LSQR : LSQR_ optional white ; -
LSQR_ R R

} ;(» ;.:l.
RSQR : RSQR_ optional white ;
RSQR R

I > > :)’ ;
POINTER : POINTER optional white ;
POINTER DT

I :@; ;
LPAR : LPAR optional white ;
LPAR_ . ’() ‘,
RPAR : RPAR optional white ;
RPAR_ . r)x ’
DOT : DOT_ optional white ;
DOT _ E DL
ASSIGN : ASSIGN optional white ;
ASSIGN DTl =
DATDOT . DOTDOT_ optiomnal white ;
DOTDOT _ LT T
GE . GE_ optional white ;
GE_ I
LE . LE optional white ;

LE Do =
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NE
NE

INT
INT
digit string

REAL
REAL

opt_sign

STRING
STRING
string body

AND
AND
ARRAY
ARRAY

BEGINB
BEGINB_

CASE
CASE_

CONST
CONST_

DO
DO _

DOWNTO
DOWNTO_

ELSE
ELSE_

END
END

FOR

FOR_
FUNCTION
FUNCTION

NE optional white ;
)<) )>) :

’

INT_ optional white ;
digit_string ;
digit | digit string digit ;

: REAL  optional white ;

digit string DOT_ digit string
digit string e opt sign digit string
digit string DOT digit string
e opt _sign digit string ;
/* nothing %/ | PLUS_ | MINUS ;

STRING_ optional white ;
string body '\’ ;

*\’” any_string char

)\:: )\:) >\:,

string body any strlng char
string body >\’” °*\°" ;

AND optional_white ;
and ;

: ARRAY optlonal white ;

array ;

BEGINB optional white ;
begin

CASE optional white ;
case ;

CONST optional white ;
const ;

: DO_ optional white ;

d o ;

: DOWNTO_ optional white ;
: DO wnto ;

ELSE optional white ;
el s e ;

. END_optional white ;

end ;

: FOR_ optional white ;

for )

FUNCTION optlonal white ;
function ;
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GOTO : GOTO_ optional white ;
GOTO . goto ;

EAY : IDIV_ optional white ;
IDIV cdiv ;

IF : IF_ optional white ;

IF 1 f ;

IN : IN optional white ;

IN :in ;

LABEL : LABEL optional white ;
LABEL :label ;

MOD : MOD_ optional white ;
MOD :m o d ;

NIL : NIL_ optional white ;
NIL :n il ;

NOT : NOT_ optional white ;
NOT _ :n ot ;

OF : OF  optional white ;

OF o f ;

OR : OR_ optional white ;

OR _ Tor ;

PACKED : PACKED optional white ;
PACKED cpacked ;

PHYLE : PHYLE optional white ;
PHYLE cf i le ;
PROCEDURE : PROCEDURE optional white ;
PROCEDURE :procedure ;
PROGRAM : optional white PROGRAM optional white ;
PROGRAM S program;

RECORD : RECORD _optional white ;
RECORD _ :record ;

REPEAT : REPEAT optional white ;
REPEAT _ :Tepeat ;

SET : SET_ optional white ;
SET _ s et ;

THEN : : THEN optional white ;

THEN _ :then ;
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TO : : TO optional white ;

TO bt o ;

TYPE : TYPE optional white ;
TYPE ctype ;

UNTIL : UNTIL. optional white ;
UNTIL cuntil ;

VAR : VAR optional white ;
VAR . var ;

WHILE : WHILE optional white ;
WHILE cwhile ;

WITH : WITH_ optional white ;
WITH Pwith ;

keyword : AND | ARRAY | BEGINB | CASE_ | CONST_ | DO

DOWNTO | ELSE_ | END | FOR_ | FUNCTION
GOTO_ | IDIV_ | IF_ | IN_ | LABEL | MOD_
NIL_ | NOT_ | OF | OR_ | PACKED | PHYLE
PROCEDURE | PROGRAM | RECORD | REPEAT
SET_ | THEN_ | TO_ | TYPE | UNTIL_ | VAR_

WHILE | WITH_;

partial keyword : an | ar | arrfarra
|l pbelbeglbegi
|l cajcaslcolcon| cons
ldi | DO_w | DO wn | DO wnt
el lels|en|fi]lfil1]fo
f'fulfun|func|funct
ffuncti]|]functio
[golgot|lallabl|labe
[mo [ nilno
|l palpaclpacklpacke
|l prlprolproc|proce
| proced | procednu
|l procedur _
lproglprogr | progra
lrelreclrecolrecor
[ rTeplrepelrTepea
l'selth|lthe |l tyltyp
lunrn|unt|unti
l'valwh|whil]whil
lwilwit;

ID : ID_ optional white ;

ID : letter | ID_ alpha num

| partial keyword | keyword alpha num ;

%%



Appendix D
An SE-SAR-NSLR(1) Grammar for ISO Pascal

This appendix contains a simple-exclusion simple-adjacency-restriction noncanonical simple LR(1)
grammar for ISO Pascal. The notation used here is that new rules start in column 1 and continuations
of previous rules do not. Comments start with an excalmation mark (!) and continue to the end of
the line.

SOAP 1.1

S’ = bof Program eof

Program = Programbeading SEMICOLON Block DOT
Programleading = PROGRAM IDENTIFIER ProgramParameterlList

ProgramParameterList =
| LROUND IdentifierList RROUND

Block = LabelDeclarationPart
ConstantDefinitionPart
TypeDefinitionPart
VariableDeclarationPart
ProcedureAndFunctionDeclarationPart
CompoundStatement

LabelDeclarationPart =
| LABEL Labellist SEMICOLON

Labellist Label

| LabelList COMMA Label

ConstantDefinitionPart =
| CONST ConstantDefinitionlList

ConstantDefinitionlList = ConstantDefinition SEMICOLON
| ConstantDefinitionList ConstantDefinition

SEMICOLON

TypeDefinitionPart =
| TYPE TypeDefinitionList

TypeDefinitionList = TypeDefinition SEMICOLON
| TypeDefinitionList TypeDefinition
SEMICOLON

VariableDeclarationPart =

112



APPENDIX D: AN SE-SAR-NSLR(1) GRAMMAR FOR ISO PASCAL

| VAR VariableDeclarationlist

VariableDeclarationlList = VariableDeclaration SEMICOLON
| VariableDeclarationlList
VariableDeclaration SEMICOLON

ProcedureAndFunctionDeclarationPart =
| ProcedureAndFunctionDeclarationlist

ProcedureAndFunctionDeclarationlList =
ProcedureOrFunctionDeclaration
SEMICOLON
| ProcedureAndFunctionDeclarationList
ProcedureOrFunctionDeclaration
SEMICOLON

ProcedureOrFunctionDeclaration = ProcedureDeclaration
| FunctionDeclaration

ConstantDefinition = IDENTIFIER EQUAL Constant

TypeDefinition = IDENTIFIER EQUAL Type
VariableDeclaration = IdentifierList COLON Type

ProcedureDeclaration = ProcedureHeading SEMICOLON Block
| ProcedureHeading SEMICOLON IDENTIFIER

FunctionDeclaration = FunctionHeading SEMICOLON Block
| FunctionHeading SEMICOLON IDENTIFIER

ProcedureHeading = PROCEDURE IDENTIFIER FormalParameterList

FunctionHeading = FUNCTION IDENTIFIER FormalParameterList

COLON IDENTIFIER

FormalParameterList =

| LROUND FormalParameterSectionList RROUND

FormalParameterSectionlList = FormalParameterSection
| FormalParameterSectionList SEMICOLON
FormalParameterSection

FormalParameterSection = ValueParameterSpecification
| VariableParameterSpecification
| ProceduralParameterSpecification
| FunctionalParameterSpecification
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ValueParameterSpecification =
IdentifierList COLON IDENTIFIER
| IdentifierList COLON ConformantArraySchema

VariableParameterSpecification = VAR IdentifierlList COLON
VariableParameterTypeField

VariableParameterTypeField = IDENTIFIER
| ConformantArraySchema

ProceduralParameterSpecification = ProcedureHeading
FunctionalParameterSpecification = FunctionHeading

ConformantArraySchema = PackedConformantArraySchema
| UnpackedConformantArraySchema

PackedConformantArraySchema = PACKED ARRAY LSQUARE
IndexTypeSpecification RSQUARE
OF IDENTIFIER

UnpackedConformantArfaySchema = ARRAY LSQUARE
IndexTypeSpecificationList RSQUARE
OF VariableParameterTypeField

IndexTypeSpecificationList = IndexTypeSpecification
| IndexTypeSpecificationList SEMICOLON
IndexTypeSpecification

IndexTypeSpecification = IDENTIFIER DOTDOT IDENTIFIER COLON
IDENTIFIER

CompoundStatement = BEGIN StatementSequence END

StatementSequence = Statement
| StatementSequence SEMICOLON Statement

Statement = UnlabelledStatement
| Label COLON UnlabelledStatement

UnlabelledStatement = SimpleStatement
| StructuredStatement

SimpleStatement =
| AssignmentStatement
| ProcedureStatement
| GotoStatement

StructuredStatement = CompoundStatement
| ConditionalStatement
| RepetitiveStatement
| withStatement
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ConditionalStatement = IfThen | IfThenElse | CaseStatement

RepetitiveStatement = WhileStatement | RepeatStatement
| ForStatement

AssignmentStatement = Variable ASSIGN Expression

ProcedureStatement = IDENTIFIER ActualParameterList

| Variable
GotoStatement = GOTO Label
IfThen = IF Expression THEN Statement
IfThenElse = IF Expression THEN Statement
ELSE Statement
IfThen —/~ ELSE
CaseStaﬁement = CASE Expression OF CaseList END

| CASE Expression OF Caselist SEMICOLON END
Caselist = Case | CaselList SEMICOLON Case
RepeatStatement = REPEAT StatementSequence UNTIL Expression
WhileStatement = WHILE Expression DO Statement

ForStatement = FOR IDENTIFIER ASSIGN Expression
ToOrDownto Expression DO Statement

ToOrDownto = TO

| DOWNTO
WithStatement = WITH Variablelist DO Statement
VariablelList = Variable

| Variable COMMA Variable
Case = CaseConstantlist COLON Statement

CaseConstantlList = Constant
| CaseConstantlist COMMA Constant

Type = SimpleType | StructuredType
| PointerType
SimpleType = OrdinalType | IDENTIFIER

StructuredType = UnpackedStructuredType
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PointerType

OrdinalType

PACKED UnpackedStructuredType
POINTER DomainType

EnumeratedType | SubrangeType

UnpackedStructuredType = ArrayType | RecordType

DomainType
EnumeratedType

SubrangeType

ArrayType

IndexTypeList

RecordType
SetType
FileType
ComponentType

FieldList

FixedPart

VariantPart

RecordSection

VariantSelector

Variant

TagType

TagField

SetType | FileType .

IDENTIFIER

LROUND IdentifierList RROUND

PreDotConstant DOTDOT Constant

ARRAY LSQUARE IndexTypelList RSQUARE
OF ComponentType

SimpleType
IndexTypelList COMMA SimpleType

RECORD FieldList END
SET OF SimpleType

FILE OF ComponentType

Type

FixedPart | FixedPart SEMICOLON

FixedPart SEMICOLON VariantPart

FixedPart SEMICOLON VariantPart SEMICOLON
VariantPart | VariantPart SEMICOLDN

RecordSection
FixedPart SEMICOLON RecordSection

CASE VariantSelector OF Variant
VariantPart SEMICOLON Variant

IdentifierList COLON Type

TagType
TagField COLON TagType

CaseConstantlist COLON LROUND
FieldList RROUND

IDENTIFIER

IDENTIFIER
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= IDENTIFIER

| UnsignedNumber

| Sign IDENTIFIER

| Sign UnsignedNumber
| CharacterString

I Special constant to eliminate SLR inconsistency.
PreDotConstant = IDENTIFIER

| UnsignedNumber

| Sign IDENTIFIER

| Sign UnsignedNumber

| CharacterString

Expression = SimpleExpression
| SimpleExpression
RelationalOperator SimpleExpression

SimpleExpression = UnsignedSimpleExpression
| Sign UnsignedSimpleExpression

UnsignedSimpleExpression = Term
| UnsignedSimpleExpression
AddingOperator Term

Term = Factor
| Term MultiplyingOperator Factor
Factor = UnsignedConstant | Variable
| SetConstructor
| IDENTIFIER ActualParameterList
| NOT Factor
|

LROUND Expression RROUND
RelationalOperator = EQUAL IINE | LT | LE | GT | GE | IN
AddingOperator = PLUS | MINUS‘J OR
MultiplyingOperator = STAR | SLASH | DIV | MOD | AND

UnsignedConstant = UnsignedNumber | CharacterString | NIL

IDENTIFIER

Variable =
| Variable DOT IDENTIFIER
I
I

Variable POINTER
Variable LSQUARE IndexList RSQUARE

IndexList = Expression
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| IndexList COMMA Expression

SetConstructor = LSQUARE RSQUARE
| LSQUARE ElementDescriptionlList RSQUARE

ElementDescriptionList = ElementDescription
| ElementDescriptionlList COMMA
ElementDescription

ElementDescription = ExXpression
| Expression DOTDOT Expression

ActualParameterList = LROUND ActualParameterPart RROUND

ActualParameterPart = ActualParameter
| ActualParameterPart COMMA ActualParameter
ActualParameter Expression
Expression COLON Expression
Expression COLON Expression
COLON Expression

UnsignedNumber = UnsignedInteger White
| UnsignedReal White

IdentifierlList = IDENTIFIER
| IdentifierList COMMA IDENTIFIER

Label = DigitSequence White

Sign = PLUS | MINUS

IDENTIFIER Identifier White

Identifier IdentifierFragment
IdentifierFragment = Letter
| IdentifierFragment Letter
| IdentifierFragment Digit

UnsignedInteger = DigitSequence
UnsignedReal = DigitSequence DOT DigitSequence
| DigitSequence DOT DigitSequence
e ScaleFactor

| DigitSequence e ScaleFactor

ScaleFactor = DigitSequence
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| "+" DigitSequence
| "-" DigitSequence

CharacterString = "’" StringElementSequence "’" White

StringElementSequence = StringElement
| StringElementSequence StringElement

DigitSequence = Digit

| DigitSequence Digit
Comment = LCURLY CommentElementSequence *“}*
} LCURLY CommentElementSequence "#*)"

CommentElementSequence = CommentElement
| CommentElementSequence CommentElement

! Deleted for strings.

! Deleted for strings.
R ! Deleted for comments.

! Deleted for comments.

Letter zalblecldlelflglnlil]l]j
kXl 1 Imlilnlolplgqglr|s|t
ol viwlx{ylz

Digit = wQn | mpw | 2w | v3v | wge
l ngn ] nEn | nwzn I ngn ’ nge

StringElement = nrewm
| StringOrCommentElement
| Hogn l n}n

CommentElement = StringOrCommentElement
| "’* | StarNoRRound | "\n"

StarNoRRound = "xv

StringOrCommentElement = "\t" ] "ew , "\f" , "\\" | nw
|\ ] e | onge | g | owge | (e | )
I B B A VA BT DN T
| m2n | w3w | wgn | wBw | wgn | wyn | g
I R B R B BTN B
I ngn I NAM ] upn I nen I upn l L ol ' upn
I ugn I WHn | nyw | wn I ngn l ng,w I npn
| *N* | ®0" | "P" | "Q" | “R" | "S* | “T*
IR SR B R GO B R N AR
| u]u I n-~u I ||~u I nen l ngn l nhHn ] nen
| ar | mer | MEM | vgt | tme | ot | wge
| "k* | 1w | 'mr | 'mt | to" | tp* | g
IR T B U CN B R O
I AT B O R I
|
l
I
I
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! Punctuation

] e

ASSIGN = o= White
SEMICOLON R White

DOT = n.» White

DOTDOT = .. White
LROUND = (" White

RROUND = ) White

LSQUARE = [ wWhite | “(." White
RSQUARE = i White | ".)" White
LCURLY = L G

COMMA =", White

EQUAL = "=" White

COLON = " White

POINTER = "o White | "e" White
PLUS = "4 White

MINUS = "=t White

NE = " White

LT = me White

LE = w=t White

GT = > White

GE = M= White
STAR = "k White

SLASH = w/n White

! Reserved keywords

|

AND = and White

ARRAY = array White

BEGIN = begin White

CASE = case White

CONST = const White

DIV = div White

DO = do White

DOWNTO = downto White
ELSE = else White

END = end White

FILE = file White

FOR = for White
FUNCTION = function White
GOTO = goto White

IF = if White

IN v = in White

LABEL = label White

MOD = mod White

NIL = nil White

NOT = not White

OF = of White

OR = or White

PACKED = packed White
PROCEDURE = procedure White
PROGRAM = White program White
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RECORD = record ‘White
REPEAT repeat White
SET set White
THEN then White
TO to White
TYPE type White
UNTIL until White
VAR var White
WHILE while White
WITH = with White

Il

1

il

and =
array
begin
case
const
div

do
downto
else

end

file

for
function
goto

if

in

label
mod

nil

not

of

or
packed
procedure
program
record
repeat
set

then

to

type
until
var
while
with =

L O { I T L2 1 | 1 A O R VRS N T T
Qo B HFQ®n s < 5 uim A o
[ =] w o = P
ct =]
e}

H
€€<1C'L‘f¢fd'cnH"'!*U“U*UOOC’E’EF—‘HHO‘Q%’-&H(‘D(DQ&QOOO‘&{D
i—'~‘.‘_‘t'93U'*<O.’J‘CD(D('D"‘J"1S\?"1P'hOHODEJ"bOdOI-".’Ji—'OOH'OE\"CD*‘SE

L T I R VO I | BT
© 00 n X
® N H © 0
QP o
==}

1l

= all IIA"
1n 'b n n B "
1] C " n C i

I
l
|
"d" I "D"
|
|
|

I

11

Ilell IIE!I
llfll IIFII
g l|gl| IIGII

i}

]

g OO0 TP
H



APPENDIX D: AN SE-SAR-NSLR(1) GRAMMAR FOR ISO PASCAL 122

h = "nh* | “H"
i = vin | I
] =gy
S = "k" | K"
1 = "1 | L
m = "m" | "M
n = "p" | "N"
o = "o" | "Q"
p - npu I npn
q = "g" | "Q"
T = “prn | wR"
I = ugn ' ngn
t = g | vTe
u = "y* | "y"
v = wyn | nyr
w = "yt | "W
X = x| nxX
y = "y" | "y
zZ = Mgz | wZw
! Define white space.
b e e e e e e
White =

| White WhiteElement
WhiteElement = " v | w\g" | "\n" | "\f" | Comment

|
! Disambiguation section

Identifier and array begin case const div do downto

else end file for function goto if in label mod nil
not of or packed procedure program record repeat
set then to type until var while with

—-/— Tdentifier and array begin case const div do downto
else end file for function goto if in label mod nil
not of or packed procedure program record repeat
set then to type until var while with DigitSequence

StarNoRRound -/- ")*

do | downto | else | end | file | for
function | goto | if | in | label | mod
nil | not | of | or | packed | procedure
program | record | repeat | set | then

Identifier # and | array | begin | case | const [ div
l
l
|
l
| to | type | until | var | while | with



This appendix contains two simple-exclusion simple-adjacency-restriction noncanonical simple LR(1)
grammars for a two-phase ISO Pascal recognizer. The grammar for the scanner is given first, and the
grammar for the parser follows it. The notation used here is that new rules start in column 1 and con-
tinuations of previous rules do not. Comments start with an excalmation mark (!) and continue to the

end of the line.

Appendix E

SE-SAR-NSLR(1) Grammars for a
Two-Phase ISO Pascal Recognizer

E.1. The Grammar for the Scanner

S’ = bof White TokenSequence eof
TokenSequence = Token White
| TokenSequence Token White
Token = UnsignedInteger | UnsignedReal
| IDENTIFIER | CharacterString | ASSIGN
| SEMICOLON | DOT | DOTDOT | LROUND
| RROUND | LSQUARE | RSQUARE | COMMA
| EQUAL | COLON | POINTER | PLUS | MINUS
| NE | LT | LE | GT | GE | STAR | SLASH
| and | array | begin | case | const
| div | do | downto | else | end | file
| for | function | goto | if | in
| label | mod | nil | not | of | or
| packed | procedure | program | record
| repeat | set | then | to | type | until
| var | while | with
! _____ ——
't Indivisible symbols
! _______________________
UnsignedInteger = DigitSequence
IDENTIFIER = IdentifierFragment -

IdentifierFragment = Letter

.UnsignedReal

IdentifierFragment Letter
IdentifierFragment Digit

= DigitSequence PERIOD DigitSequence

DigitSequence PERIOD DigitSequence
ScaleFactor

| DigitSequence ScaleFactor
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ScaleFactor

1

CharacterString

e DigitSequence
e PLUS DigitSequence
e MINUS DigitSequence

"M StringElementSequence * "

StringElementSequence
| StringElementSequence StringElement

DigitSequence =

NumFrag =

Comment

NumFrag

StringElement

Digit | NumFrag Digit

LCURLY CommentElementSequence "}*
| LCURLY CommentElementSequence "*" ")"

CommentElementSequence = CommentElement
CommentElementSequence CommentElement

b3
[t

| II)II
nqm

strings.

Letter =afblcjdlelflgl!lhli
'kl llminflolplaqlrls
fulviliwlx |yl z :

Digit = 0" | "1n | m2v | e3v | wge
| weH | ngn [ L4l | ngn | ngu

StringElement = wrw wew | gtringOrCommentElement
|k | ey

CommentElement = StringOrCommentElement
| »*» | StarNoRRound | “\n*

StarNoRRound = kb ! Star not followed by ")*".

StringOrCommentElement = "\t" | " % | "N\f" | ®\\" | "in
I n\nu I nypn | u$u ‘ n%n l ngu l n(n
, nn | u’u l n_n | non l n/u I non
| m2e | g | 4w | wEe | wen | M7
IR P R I B
| »e" | *A" | “B" | "c" | "D | "E*
[ ugGn | Wl { wym | " u [ ugn l uym
| *N* | w0 | *P* | "@" | *R" | "S"
| v | Ve | e | e | owyw | oegze
| W ] e | o n | wew | owae | owpe
| nan | te | MEM | omgt | vhe | i
I nin ' nyn | "t ' wpw I non | "P"
l wyn ] ngH | ngn I gt l nyn I Nyr#
NI U B R EN IR

! [ "\n" | " ! Deleted for
! [ L L ! Deleted for

1
I Punctuation

comments.
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ASSIGN
SEMICOLON
PERIOD
DOT
DOTDOT
LROUND
RROUND
LSQUARE
RSQUARE
LCURLY
COMMA
EQUAL
COLON
POINTER
PLUS
MINUS
NE

LT

LE

GT

GE

STAR
SLASH

1l

l

It

n-~n

nyn
n_mn
ngen
nen
new
nyu
wyn

N’

'n/n

! Reserved keywords

and
array
begin
case
const
div
do
downto
else
end
file
for
function
goto
if
“in
label
mod
nil
not
of
or
packed
procedure
program
record
repeat

L e O 1 B (N

Il

MO O 0B Y B HRHERKIG HHRBRMROOOOOQOOQAQANDNDDDD

© O MNP HROHEHOP MOS0 REHOORODO®HND

T 0 0O 00

I n(u

lu n

l u-(u

| u@u

nyn
H—n

< B numA o
n o
=}

¢ = oo o H oA~ on s
o B
ct

o omMmn *
®» 32 00

QP o
= -
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set =s et
then =t hen
to =to

type =typ
until =until
var =vVar
while =while
with =with
a = Hgm l Ly
b = wpn [ ngn
c = o I necu
d = "g" | “p"
e = ugn l ngw
f = nfu ' ngn
g = "g" | "G"
h = "p" | vH"
i = min | oeIv
j = nju l "wyu
s = "k" | K"
1 = 1" | oL
m = "m"* l "MH
n = H#ph | uN"
o = "o" | ngoe
P = npn l upwu
q = "q" | Q"
T = wpmn I nRn
S = "gt | nsSe
t = wgn | T
u = nyr | ey
v = wyn | wyn
W = wyr |y
X = "x" I &
y =yl
Z = tWgn I nzn

Define white space.

White =
| White WhiteElement

WhiteElement = % poe\g" | o\f" | "\n" | Comment

]
! Disambiguation section

IDENTIFIER and array begin case const div do downto
else end file for function goto if in label mod
nil not of or packed procedure program record
repeat set then to type until var while with
—-/— IDENTIFIER and array begin case const div do downto
else end file for function goto if in label mod
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nil not of or packed procedure program record
repeat set then to type until var while with
DigitSequence UnsignedInteger UnsignedReal ScaleFactor
DigitSequence -/- DigitSequence
StarNoRRound —/—- “)*"

UnsignedReal UnsignedInteger
-/— UnsignedInteger UnsignedReal ScaleFactor e

CharacterString —/- CharacterString
LROUND —~/- STAR DOT DOTDOT RSQUARE
LSQUARE -/- RROUND

DOTDOT -/- RROUND DOT DOTDOT RSQUARE

DOT -/- RROUND DOT DOTDOT RSQUARE UnsignedInteger
UnsignedReal

PERIOD -/— RROUND DOT DOTDOT RSQUARE
COLON -/- EQUAL
EQUAL NE LT LE GT GE -/- EQUAL NE LT LE GT GE

IDENTIFIER and | array | begin | case | const | div

#

| do | downto | else | end | file | for

| function | goto | if | in | label | mod
| nil | not | of | or | packed | procedure
| program | record | repeat | set | then

| to | type { until { var | while | with

E.2. The Grammar for the Parser

S’ = bof Program eof

Program ProgramHeading SEMICOLON Block DOT

ProgramHeading PROGRAM IDENTIFIER ProgramParameterList

ProgramParameterlist =
| LROUND IdentifierList RROUND

Block = LabelDeclarationPart
ConstantDefinitionPart
TypeDefinitionPart
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VariableDeclarationPart
ProcedureAndFunctionDeclarationPart
CompoundStatement

LabelDeclarationPart =
' | LABEL Labellist SEMICOLON

Labellist = DigitSequence
| LabellList COMMA DigitSequence

ConstantDefinitionPart =
| CONST ConstantDefinitionlList

ConstantDefinitionList = ConstantDefinition SEMICOLON

| ConstantDefinitionList ConstantDefinition

SEMICOLON

TypeDefinitionPart =
| TYPE TypeDefinitionlList

TypeDefinitionList = TypeDefinition SEMICOLON
| TypeDefinitionList TypeDefinition
SEMICOLON

VariableDeclarationPart =
| VAR VariableDeclarationlList

VariableDeclarationList = VariableDeclaration SEMICOLON
| VariableDeclarationlList

VariableDeclaration SEMICOLON

ProcedureAndFunctionDeclarationPart =
| ProcedureAndFunctionDeclarationlList

ProcedureAndFunctionDeclarationlist =
ProcedureOrFunctionDeclaration SEMICOLON
| ProcedureAndFunctionDeclarationlList
ProcedureOrFunctionDeclaration SEMICOLON

ProcedureOrFunctionDeclaration = ProcedureDeclaration
| FunctionDeclaration

ConstantDefinition = IDENTIFIER EQUAL Constant
TypeDefinition = IDENTIFIER EQUAL Type
VariableDeclaration = IdentifierList COLON Type

ProcedureDeclaration = ProcedureHeading SEMICOLON Block
| ProcedureHeading SEMICOLON IDENTIFIER

FunctionDeclaration = FunctionHeading SEMICOLON Block
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| FunctionHeading SEMICOLON IDENTIFIER

ProcedureHeading = PROCEDURE IDENTIFIER FormalParameterlList

FunctionHeading = FUNCTION IDENTIFIER FormalParameterList
COLON IDENTIFIER

FormalParameterList =
| LROUND FormalParameterSectionList RROUND

FormalParameterSectionList = FormalParameterSection
| FormalParameterSectionlList SEMICOLON
FormalParameterSection

FormalParameterSection = ValueParameterSpecification
| VariableParameterSpecification
| ProceduralParameterSpecification
| FunctionalParameterSpecification

ValueParameterSpecification =
IdentifierList COLON IDENTIFIER
| IdentifierList COLON ConformantArraySchema

VariableParameterSpecification = VAR IdentifierList COLON
VariableParameterTypeField

VariableParameterTypeField = IDENTIFIER
| ConformantArraySchema

ProceduralParameterSpecification = ProcedureHeading
FunctionalParameterSpecification = FunctionHeading

ConformantArraySchema = PackedConformantArraySchema
| UnpackedConformantArraySchema

PackedConformantArraySchema = PACKED ARRAY LSQUARE
IndexTypeSpecification RSQUARE
OF IDENTIFIER '

UnpackedConformantArraySchema = ARRAY LSQUARE
IndexTypeSpecificationList RSQUARE
OF VariableParameterTypeField

IndexTypeSpecificationlList = IndexTypeSpecification
| IndexTypeSpecificationlList SEMICOLON
IndexTypeSpecification

IndexTypeSpecification = IDENTIFIER DOTDOT IDENTIFIER COLON
IDENTIFIER
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CompoundStatement = BEGIN StatementSequence END

StatementSequence = Statement
| StatementSequence SEMICOLON Statement

Statement = UnlabelledStatement
| Label COLON UnlabelledStatement

UnlabelledStatement = SimpleStatement | StructuredStatement
SimpleStatement =

| AssignmentStatement | ProcedureStatement
| GotoStatement

StructuredStatement = CompoundStatement
| ConditionalStatement
| RepetitiveStatement | WithStatement

ConditionalStatement = IfStatement | CaseStatement

RepetitiveStatement = WhileStatement | RepeatStatement
| ForStatement

AssignmentStatement = Variable ASSIGN Expression

ProcedureStatement, = IDENTIFIER ActualParameterlist

| Variable
GotoStatement = GOTO Label
IfStatement = IfThen
| IfThenElse
IfThen = IF Expression THEN Statement

H

IfThenElse IF Expression THEN Statement

ELSE Statement
IfThen —/- ELSE

CaseStatement = CASE Expression OF Caselist END
| CASE Expression OF CaselList SEMICOLON END

Caselist = Case
| CaseList SEMICOLON Case

RepeatStatement = REPEAT StatementSequence UNTIL Expression

I

WhileStatement WHILE Expression DO Statement
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ForStatement = FOR IDENTIFIER ASSIGN Expression
.ToOrDownto Expression DO Statement

ToOrDownto = TO | DOWNTO
WithStatement = WITH VariablelList DO Statement
VariableLlist = Variable
| Variable COMMA Variable
Case = CaseConstantList COLON Statement

CaseConstantlList = Constant
| CaseConstantList COMMA Constant

Type = SimpleType | StructuredType | PointerType
SimpleType = OrdinalType | IDENTIFIER

StructuredType = UnpackedStructuredType
| PACKED UnpackedStructuredType

PointerType = POINTER DomainType
OrdinalType = EnumeratedType | SubrangeType

UnpackedStructuredType = ArrayType | RecordType | SetType
| FileType

DomainType = IDENTIFIER
- EnumeratedType = LROUND IdentifierList RROUND
SubrangeType = PreDotConstant DOTDOT Constant

ArrayType = ARRAY LSQUARE IndexTypeList RSQUARE
OF ComponentType

IndexTypelist = SimpleType
| IndexTypeList COMMA SimpleType

RecordType = RECORD FieldList END
SetType = SET OF SimpleType
FileType = FILE OF ComponentType
ComponentType = Type

FieldList

| FixedPart | FixedPart SEMICOLON
| FixedPart SEMICOLON VariantPart
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| FixedPart SEMICOLON VariantPart SEMICOLON
| VariantPart | VariantPart SEMICOLON

FixedPart = RecordSection
| FixedPart SEMICOLON RecordSection

VariantPart . = CASE VariantSelector OF Variant
| VariantPart SEMICOLON Variant

RecordSection = IdentifierList COLON Type

VariantSelector = TagType
| TagField COLON TagType

Variant = CaseConstantl.ist COLON LROUND
FieldList RROUND

TagType = IDENTIFIER

TagField = IDENTIFIER

! _______________________

Constant IDENTIFIER | UnsignedNumber

Sign IDENTIFIER | Sign UnsignedNumber
CharacterString

! Special comstant to eliminate SLR inconsistency.
PreDotConstant = IDENTIFIER | UnsignedNumber

| Sign IDENTIFIER | Sign UnsignedNumber
| CharacterString

Expression = SimpleExpression
| SimpleExpression RelationalOperator
SimpleExpression

SimpleExpression = UnsignedSimpleExpression
| Sign UnsignedSimpleExpression

UnsignedSimpleExpression = Term
| UnsignedSimpleExpression
AddingOperator Term

Term = Factor
| Term MultiplyingOperator Factor
Factor UnsignedConstant | Variable

IDENTIFIER ActualParameterList

| SetConstructor
I
| NOT Factor | LROUND Expression RROUND

RelationalOperator = EQUAL | NE | LT | LE | GT | GE | IN
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AddingOpérator = PLUS | MINUS | OR
MultiplyingOperator = STAR | SLASH | DIV | MOD | AND

UnsignedConstant = UnsignedNumber | CharacterString | NIL

IDENTIFIER | Variable DOT IDENTIFIER

Variable =

| Variable POINTER

| Variable LSQUARE IndexList RSQUARE
IndexList = Expression | IndexList COMMA Expression

SetConstructor = LSQUARE RSQUARE
| LSQUARE ElementDescriptionList RSQUARE

ElementDescriptionlist = ElementDescription
| ElementDescriptionList COMMA

ElementDescription

ElementDescription = Expression
| Expression DOTDOT Expression

ActualParameterList = LROUND ActualParameterPart RROUND

ActualParameterPart = ActualParameter

| ActualParameterPart COMMA ActualParameter

ActualParameter = Expression
| Expression COLON Expression
| Expression COLON Expression
COLON Expression
! _______________________
UnsignedNumber = UnsignedInteger | UnsignedReal

IdentifierList = IDENTIFIER -
| IdentifierList COMMA IDENTIFIER

Label = UnsignedInteger

Sign = PLUS
| MINUS
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Appendix F

SOAP: An SE-SAR-NSLR(1) Parser Generator

User’s Guide

Daniel J. Salomon

F.1. Introduction

This document describes the use of the SE-SAR-NSLR(1) parser generator called SOAP. The name
“SOAP” was devised by rearranging the first letters of the words ““one-phase syntax analysis””. This
program reads a restricted context-free grammar and builds the states and lookahead sets necessary to
implement a noncanonical shift-reduce parser. Two forms of output are produced. The first is a file
containing a human-readable listing of the vocabulary, grammar, and state sets. The second is a file
that contains similar information but is designed to facilitate further machine processing.

F.2. Input Format

The input to SOAP is a restricted context-free grammar. For parser generation to be completed
correctly, the input grammar must be in the class SE-SAR-NSLR(1), i.e. simple-exclusion simple-
adjacency-restriction noncanonical SLR(1).

F.2.1. Comments and Blank Lines

Comments may be inserted anywhere in the input file. Comments start with an exclamation mark
“P” and continue to the end of the line. Blank lines may be inserted anywhere in the input file.

F.2.2. Grammar Symbols

Terminals and nonterminals may be almost any sequence of characters delimited by blanks, tabs,
formfeeds, or newlines. This convention allows punctuation marks to be used as symbol names, and
thus allows very concise grammars. It also allows very descriptive symbol names such as
“(letter|digit)*”.
Some strings, however, have a special meaning and cannot be used alone as symbol names.

They are: ’

= — (equal sign),

| - (alternation bar), -

@ — (atsign),
# — (number sign), and
-/~ — (adjacency-restriction operator).

The meanings of these special symbols are explained in later sections. In addition the symbols
“<BOF>” and “<EQOF>" are predefined terminal symbols reserved for representing beginning-of-
file and end-of-file, respectively. These strings can be used as part of symbol names, but not alone as
symbol names, thus a common technique is to escape them with a backslash. Thus \= is a valid
symbol name even though = is not.

“Symbol names are case sensitive, so that “IDENT”” and “‘Ident” are different symbol names.

As its name implies, SOAP is intended for writing scannerless parsers of programming
languages, and hence special treatment is given for symbols intended to represent input characters.
To specify terminal symbols that represent a single input character, enclose that character in quotation
marks. For instance the symbol "x" represents the single input character x. Escape sequences are

134
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available for representing unprintable or syntactically troublesome characters:

\n — Newline

\f — Formfeed

\t — Horizontal tab
\" — Quotation mark
\\ — Backslash

\s - Space

A quoted string containing more than one character will be treated as a sequence of quoted
symbols containing only one character each. For instance the quoted symbol "begin" is equivalent to

the five symbols "b", "e", "g", "i", and "n", but is more convenient to write. A space can be embedded
inside a quoted symbol, and it will be converted into the symbol "\s".

F.2.3. Grammar Rules

There are three kinds of grammar rules: productions, exclusion rules, and adjacency restriction rules,
In addition every grammar must start with a line specifying the the grammar format being used. The
form of each rule is presented in following sections. Each rule begins in column 1 of the input, and
any line for which column 1 is a blank or tab is a continuation of the previous rule.

F.2.4. Grammar Format Specification

Every grammar must start with a line identifying the grammar format being used. The purpose of
this format specification is to allow an orderly transition to new grammar formats. If the format of
the grammar expected changes in the future, old grammars will not be mistakenly interpreted as being
in the new format. If possible, a translator will be provided to convert old grammars to the new for-
mat.

A grammar format specification consists of a grammar version name followed by a grammar

version number. Currently the format expected is:
SOAP 1
this line need not start in column one, and need not be in upper case.

F.2.5. Productions
A production takes the form:

nonterminal = right-part | alternate-right-part
| alternate-right-part | ...

Each nonterminal may appear only once as the left part of a production, but it may have as
many alternate right parts as desired. SOAP assigns symbol numbers to each terminal and nontermi-
nal symbol. A symbol that does not appear as the left part of any rule is assumed to be a terminal
symbol.

The first production of the grammar should have the form:
start-symbol = <BOF> string-of-symbols <EOF>

This rule defines the distinguished start symbol. The distinguished start symbol may not be used in
the right part of any rule, and may not have any alternate right parts. The predefined symbols
“<BOF>"" and “<EOF>"" are terminals and represent ‘‘beginning of file’’ and ‘“‘end of file”’” respec-
tively.

F.2.6. Exclusion Rules

Exclusion rules have a form similar to productions, but use the operator “#’° where “="" would
appear. A sample exclusion rule would be:

symbol-0 # symbol-1 | symbol-2 | symbol-3 | ...

The right part and alternate right parts must consist of a single symbol. All the symbols must be
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nonterminals. Currently SOAP accepts only one such construct, and it is intended to define the set of
reserved keywords in a programming language.

F.2.7. Adjacency-Restriction Rules
Adjacency-restriction rules take the form:

pred-1 pred-2 pred-3 ... —/— succ-1 succ-2 succ-3 ...

Currently SOAP requires that a symbol may appear in the left part of only one adjacency restriction.

F.2.8. Semantic Actions

The names of semantic actions can be attached to grammar productions. The purpose of this feature
is (1) to facilitate the binding of semantic actions to grammar rules by grammar table postprocessors,
(2) to allow future versions of SOAP to generate complete parsers, rather than just parse tables, and
(3) to allow vertical parse-table compression. Vertical compression is described in a section by that
name, below.

A semantic-action name may follow a production right part, or alternate right part and is
separated from the right part by an “@” (at sign). For example:

Block = BEGIN Statements END @ process_block
| BEGIN END @ null_block

The name of the semantic action is intended to be the name of a macro or procedure that will
be invoked whenever a reduction by that rule is made. A probable form of the macro or procedure
would be to have one parameter for each symbol in the right part of the production to accept a
pointer to an attribute record, and produce a pointer to an attribute record as a result. Rules without
a semantic action are considered to perform some default semantic action called ‘“‘Default’””. The
default semantic action would probably be to copy the attribute record of the first symbol in the right
part of the production and assign it to the symbol in the left part of the production.

If a semantic action is also followed by an “@” then it also applies to all the subsequent alter-
nate rules for the current left part, or until another semantic action is specified. This saves repetition
of the semantic action for long lists of highly similar rules, as are common in character-level gram-
mars. To reselect the default semantic action after a repeated semantic action select the action “‘@
Default”.

* F.3. Parse-Table Compression

Three kinds of parse table compression are provided: reduce-action pruning, vertical compression, and
horizontal compression.

F.3.1. Reduce-Action Pruning

SOAP uses the set FOLLOW(A) for lookahead symbols on reduce actions to the symbol A. This
strategy is correct, but often generates many reduce actions for lookahead symbols that could not pos-
sibly appear on the lookahead stack for particular states. SOAP has some simple strategies for remov-
ing reduce actions on impossible lookahead symbols. These strategies are described elsewhere [Daniel
J. Salomon, “Metalanguage Enhancements and Parser-Generation Techniques for Scannerless Parsing
of Programming Languages”, Ph.D. Thesis, University of Waterloo, 1989, section 4.10].

F.3.2. Vertical Compression

Vertical parse-table compression is so called because it reduces the number of parser states (number of
rows in the parse table). It can be selected by the option ““-v”’ on the command line.

The first step of vertical compression is to determine equivalent reduce actions in the parse
table. Two reduce actions “REDUCE i” and “REDUCE j” are considered to be equivalent if the
productions “i”’ and ““j”’ by which they perform the reduction
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(1) have the same left part, :

(2) have the same number of symbols in the right part, and

(3) specify the same semantic action.
Equivalent reduce actions in the parse table are identified and replaced by a common reduce action.
After reduce actions have been remapped, there may be identical rows in the parse table. Any
parse-table row that has appeared earlier in the table is removed, and all shift transitions are
remapped to reflect the new state numbers.

This kind of compression is most effective on grammars with repetitive rules such as:

Letter = a | b |c|d] ..

F.3.3. Horizontal Compression

Horizontal parse-table compression is so called because it reduces the width (number of columns) of
the parse table. It can be selected by the option “-h” on the command line. If a column is identical
to a previous column, it is deleted. When horizontal compression is specified, a map is prepared for
mapping each lookahead symbol to the correct parser-action column.

Parser_action_column = lookmap [lookahead_symbol]

If both vertical and horizontal compression are requested, horizontal compression is applied after
vertical compression. In this way it may benefit from the remapping of reduce actions that precedes
vertical compression. Note, however, that reduce actions are not remapped unless vertical compres-
sion is requested.

For backward compatibility with earlier versions of the parse-table generator, the number of
columns in the compressed parser-action table is not reported in the ““.tbl” file. A parser that uses the
compressed tables should allocate a table that has one column for each symbol. In such a table some
of those columns may be unused. Horizontal compression is principally intended to be a compression
of the reporting of the table.

F.4. Executing SOAP
SOAP is invoked with a command line in the following form:

soap [-IcknsduvhWwa] [input-file]

Options:
-1 Inhibit production of a listing (.Ist) file, produce only a parse table (.tbl) file.
-c  Print closure item-set when reporting states in the listing file. (Default option.)
-k Print only kernel items when reporting states in the listing file.

-n  Perform noncanonical state expansion if a state is not SLR(1) consistent. (Default
option.)

-s  Prepare only SLR(1) tables. Do not invoke state expansion even if state is not SLR(1)
consistent.

-d  Implementor debug mode. Internal tables are initialized to zero to simplify debugging,
despite the extra execution time required. This option is not useful for the user.

-u Do not perform reduce-action pruning. All reduce actions are left in the parse table, even
if it is known that the specified lookahead symbol cannot appear on the lookahead stack
for a particular state. :

-1 Keep invisible symbols in lookahead sets. This option is useful only for experimenting
with special parser generation techniques.
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-v. Perform vertical compression of parse tables.
-h  Perform horizontal compression of the parse tables.
-W  Ignore keyword disambiguation (exclusion) rules included in grammar.

-w  Process keyword disambiguation (exclusion) rules, but keywords (the excluded symbols)
are reserved only if they appear in a valid context for that keyword, otherwise they are
interpreted as identifiers (the exclusion symbol). If this option is used then a semantic
action should test each identifier against the list of reserved words. This option leads to
smaller parse tables, at the expense of user testing for reserved words.

-a  Ignore adjacency-restriction rules.

F.5. The Listing File

SOAP produces a listing file describing the parser generated. The listing file will have the same name
as the input file with the file type changed to ““.Ist”’. If input comes from standard input then the list-
ing will be produced on standard output. The generation of a listing file can be suppressed by using
the option “-I”. :

The listing file begins by with a list of the symbols of the grammar. Each symbol is preceded by
its assigned number, and by a flag of “T”” or “NT” to indicate whether it is a terminal or a nontermi-
nal.

Next the grammar is listed. The grammar rules are numbered starting from 0. If a grammar
rule had a semantic action attached, the name of that action will be shown. Productions added to
implement the exclusion rules in the grammar are listed with the operator “#” in place of “="". A
listing of the exclusion rules and adjacency-restriction rules follows the productions.

Next the states of the SLR(1) parser are listed. Each item in each state is preceded by a flag to
indicate its type:

K-- The item is a kernel item.

-C- The item was added by item-set closure on the kernel set.

--N The item was added by noncanonical state expansion.

--E  The item is an epsilon item added by noncanonical state expansion.

The items themselves are listed in two forms. The first form is a numeric pair (rule, position), that
gives the rule number of the item, and the position of the item dot. The second form lists the rule
symbolically with a period representing the item dot inserted between the symbols of the rule. The
position of the item dot shows how many symbols from the beginning of the rule have been recog-
nized by the current state. Complete items, those items (with the item dot at the end) that lead to
reduce actions, are followed by their lookahead set enclosed in braces. Incomplete items, those items
that lead to shift transitions are followed by the state number of the transition destination.

F.5.1. Conflict Reporting

If any conflicts are detected, they are listed preceding the inadequate state. SLR conflicts are pre-
ceded by the marker “++++"’, and unresolvable conflicts are preceded by the marker “>>>>""
so that they can be easily located using a text editor. The type of the conflict, SLR, NSLR, SE, or
SAR, is given following the conflict marker along with a report of the items involved in the conflict.
If noncanonical parse-table generation is selected, then some of the SLR conflicts may be resolved,
and the unresolved ones will be reported as NSLR conflicts.

F.5.1.1. Simple-Exclusion (SE) Conflicts
If the exclusion rules were used to resolve a reduce-reduce conflict then the items involved in that

resolution are reported before each state preceded by the marker “----’. Violations of the tests for
simple exclusion grammars are flagged as are conflicts with the marker “>>>> SE”. There are

three simple exclusion tests applied for each exclusion rule “E # F”’:
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Test 1 — The right part, F, of the exclusion rule must be a single nonterminal. It may not be a string
of symbols, or a terminal.

Test 2a — Ensure that no recognition of E starts during a recognition of F. This means that there
must by no states in the parser that contain an item of the form [A = alpha . E beta] and
either (i) an item of the form [B = gamma X . Y delta] where B is a descendent of F, or
(ii) an item of the form [B = gamma .] where B is a descendent of F that can appear in a
nonfinal position of a sentential form generated by F.

Test 2b — Ensure that no recognition of F starts during a recognition of E. This test is the same as
Test 2a, but exchange E and F.

Test 3 — Ensure that whenever a recognition of F has completed, a concurrent recognition of E also
ends. This can be done by ensuring that no descendents of E are in FOLLOW(F) except
perhaps E itself.

One of these three test numbers will be given with each reported SE conflict.

F.5.1.2. Simple-Adjacency-Restriction (SAR) Conflicts

Violations of the tests for simple adjacency-restriction grammars are reported with the marker
“>>>> SAR”. There are three tests applied for each adjacency restriction “W -/- X**:

Test 1 — The left part, W, may not be a terminal symbol.

Test 2 — No state may contain a complete item of the form [W = 'alpha .] with lookahead set L,
such that some symbol in L can appear as the first symbol of a sentential form generated by
X.

Test 3 — Any state with an item of the form [B = beta .] with lookahead set L. where B could appear
at the end of a sentential form generated by W, may not also contain an item of the form
[A = . alpha] added during noncanonical state expansion, such that A is in L, and either
(i) X could appear as the first symbol of a sentential form generated by alpha, or (ii) alpha
can generate the empty string.

One of these three test numbers will be given with each reported SAR conflict.

F.5.2. Other Listing Information

After the listing of the states, a listing is given of the lookahead symbols deleted for reduce actions in
each state. This kind of table compression can be suppressed with the program option ““-u

Next is the “come-from’ table. For each state q, it lists the number of each state with a transi-
tion to state q. This table is useful when trying to find the origin of parser conflicts. An unresolvable
NSLR conflict in a state q can often be eliminated by correcting an SLR conflict in a state with a
transition to q. The come-from table helps locate all such states. The come-from table has the title
“Predecessors of each state”

Finally comes a hstlng of statistics about the parser. Some of these statistics are repeated after
each pass of the vertical or horizontal compression algorithm, if those compressions were requested.

F.6. The Parse-Table File

If there are no errors in the grammar, the information necessary to build a parser is placed in the
parse-table file. The parse-table file will have same name as the input file with the file type changed
to “.tbl”’. If the input grammar was taken from standard input then the parse-table file will have the
name “‘soap.tbl’”’. This file is intended to be easily machine readable.

The first record in the file contains three integers:
number-of-symbols . number-of-grammar-rules number-of-states

Following this line comes a list of the symbols in the grammar, the productions in the grammar, and
the states of the parser. Each symbol, rule, or state occupies one line of the file. The symbols, rules,
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and states are not explicitly numbered in this file, instead they are implicitly numbered by their order-
ing, starting with the index zero.

In the list of symbols, each symbol is preceded by the number 1 if it is a nonterminal, and 0 if it
is a terminal.

Each rule appears in the following format:
left-part length-of-right-part right-part-symbols

Each state line contains the number of transitions and reductions in the state, and then pairs of
numbers representing each transition or reduction. A transition is represented by the pair of
numbers:

symbol destination-state
A reduce action is represented by the pair of numbers:
symbol —rule

The rule number is negative to distinguish it from a shift transition.
The information about the semantic actions comes next. This information consists of:

(1) A line containing the number of different semantic action names that appeared in the grammar,
followed by a list of those names.

(2) A list of numbers, one for each rule, that gives the number of the semantlc action that applies to
each rule. The number 0 means the default semantic action.

Finally the lookahead-symbol map generated by horizontal table compression is output. If hor-
izontal compression was not requested, this table is omitted. Otherwise it consists of one number for
each symbol in the grammar. The number gives the parse-table column that should be used for each
lookahead symbol.

Earlier versions of this parser generator did not allow the specification of semantic actions or
horizontal table compression. The information for these two parser features is attached to the end of
the parse table in order that the parse tables produced could be accepted by parse-table processors
written for the old format.

F.7. Grammar Preparation Tips
Here are some useful tips for writing single-phase grammars for SOAP.

F.7.1. Defining Reserved Words
The following sequence of rules for excluding reserved words from identifiers is incorrect.

ID = letter | ID letter | ID digit
ID # keyword

The reason that this is incorrect is that it would disallow the identifiers that begin with a keyword.
The proper definition of identifiers would exclude reserved keywords from completed identifiers only.
To do this use rules more like the following:

ID = letter | ID letter | ID digit
Finished_ID = ID
Finished_ID # keyword

F.7.2. Eliminating NSLR Conflicts

As difficult as eliminating SLR conflicts is for some grammars, eliminating NSLR conflicts can be
even harder. A grammar writer should try to eliminate SLLR conflicts as much as possible before
attacking the NSLR conflicts. Often an unintentional SLR conflict can generate numerous NSLR
conflicts that are very hard to resolve. When eliminating an NSLR conftict, check the come-from
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table for all the states that have a path to the problem state. Sometimes an SLR conflict in one of
these parent states can be much easier to eliminate than the NSLR conflicts that it generates.

F.8. A Sample Grammar and Its Qutput

F.8.1. The Input File
1

! Sample input file.
!

SOAP 1
S’ = <BOF> S "\n" <EOF> @ exit
S = TOKEN | S TOKEN
TOKEN = ID white @ count_id
| kwi white @ count kw
| kw2 white @ count kw
[ opl white @ count_op
letter = "a“ @ save char @
l ubu l "C" | udn
ID = id
id = letter @ init_id
| id letter @ append letter
kwl = "bad"
kw2 = "cab"
opl = II+II
white = j wom

! Disambiguation rules.
ID kwl kw2 -/- 1ID kwl kw2

ID # kwil | kw2

F.8.2. The Listing File
NSLR(1) parser tables reqﬁested.

Symbols:
O NT S5~
1 T <BOF>
NT S
T "\n"
T <EOF>
NT TOKEN
NT ID
NT white

NO A WN
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8 NT kwi
9 NT kw2
10 NT op1
11 NT letter
12 T "av
13 T "b*
14 T "c*
15 T "g©
16 NT id
17 T Il+ll
18 T "\s"

.
!

= <BOF> S "\n" <EOF> @ exit
= TOKEN
| S TOKEN
TOKEN = ID white @ count id
[ kwl white @ count kw
| kw2 white @ count kw
| opl white @ count_op
letter = "a" @ save char
|
|
I

|

0 n

OO O WNHO

"b" @ Save_char
"c" @ save char
"a" @ save_char

id

kwl

kw2

letter @ init id

| id letter @ append letter

kwl = “p* "a" "d"

sz " C n 1] a ] 0 b n

opl " + 1)

white =

| "\S"

=
= O ©

ID
ID
ID
id

[ e GGy
O WN
I+ % 1

e
© 0
I

N
o

No invisible symbols.

Adjacency-restriction rules:
ID kwi kw2 -/- 1ID kwl kw2

Exclusion rule:
ID # kwl | kw2

State Graph:

State O:
-C- (18,0) opl = bw --> state 13
-C—- (17,0) kw2 = . H"c" ugn wup» -—> state 10
-C—- (16,0) kwi = . "p» wg" ugn --> state 9
~C- (15,0) id = id letter --> state 12
-C- (14,0) id = . letter --> state 7
-C- (13,0) ID # . kw2 ~-—> state 5
-C- (12,0) ID # . kwi -—> state 4
~-C- (11,0) ID = id --> state 12
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-C- (10,0) letter = nge --> state 11
—-C- (9,0) letter = new --> state 10
—C- (8,0) letter = Hp -—> state 9
-c- (7,0) letter = . "a" -—> state 8
-C- (8,0) TOKEN = . opl white ——> state 6
-C- (5,0) TOKEN = . kw2 white --> state 5
-C- (4,0) TOKEN = . kwl white --> state 4
-C- (3,0) TOKEN = . ID white --> state 3
-C- (2,0) S = . S TOKEN -—> state 1
—-¢c- (1,0) S = . TOKEN —--> gtate 2
K——- (0,1) S' = <BOF> S "\n" <EOF> —-> state 1
State 1:
-C- (18,0) opt = . “+* ——> state 13
-C- (17,0) kw2 = . "c" "a" upr - -—> gstate 10
~C- (16,0) kwi = . "b" "a" g -—> state 9
-C- (15,0) id = id letter —-—> state 12
-c- (14,0) id = . letter —--> state 7
-C- (13,0) ID # . kw2 —-> state 5
-C- (12,0) ID # . kwl -—> state 4
-c- (11,0) ID = . id —-—> state 12
-c- (10,0) letter = g -—> state 11
-C- (9,0) letter = new --> state 10
-C- (8,0) letter = np ——> state 9
-C- (7,0) letter = ngt ~--> state 8
—C- (6,0) TOKEN = . opl white ——> state 6
-C- (5,0) TOKEN = . kw2 white --> state 5
—-C- (4,0) TOKEN = kw1l white -—> state 4
-C- (3,0) TOKEN = . ID white —-—> state 3
K-— (2,1) S = S . TOKEN --> state 15
K-—— (0,2) S’ = <BOF> S . "\n" <EQOF> -—> state 14
State 2:
K-— (1,1) S = TOKEN . {"\n", TOKEN, ID, kwil, kw2,
opl, letter, ngu wpe, wen, *d*, id, nyn}
State 3:
—C- (20,0) white = . u"\s" --> state 17
—-Cc- (19,0) white = . {"\n", TOKEN, ID, kwil, kw2,
opl, letter, ngn wpw, mweh, *dv, id, wqnl
K—— (3,1) TOKEN = ID . white —-—> state 16
State 4:
—c- (20,0) white = "\s" -—> state 17
—C- (19,0) white = {"\n", TOKEN, ID, kwil, kw2,
opl, letter, "a", "b", "c*, wgw, id, "+"}
K—— (12,1) ID # kwi {3
K-— (4,1) TOKEN = kwi . white -—> state 18
State 5:
—C— (20,0) white = "\s" —-—> state 17

-C- (19,0) white =
opl, letter,
K-— (13,1) ID # kw2

{"\n", TOKEN, ID, kwl, kw2,
ngm ompn, nen ,ongn, id, u+n}

{3

143
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State 6.

State 7:

State 8:

++++ SLR inconsistencies

State 9:

++++ SLR inconsistencies

K.__
K___

State 10:

K__

--N

State 11:

K__

State 12:

State 13:
K___

(5,1) TOKEN = kw2 . white ——> state 19

(20,0) white
(19,0) white

opl, letter, "a",

n\s" ——> state 17
{"\n", TOKEN, ID, kwl, kw2,

ll'bll' Ilcll’ Ildll‘ id’ II+II}

(6,1) TOKEN = opl . white --> state 20

(14,1) id = letter

opl, letter, "a",

(7,1) letter = "a“

opl, letter, "a",

{"\n", TOKEN, white,
"bn, "C", "d", ||+||’ II\SII}

{"\n", TOKEN, white,
llbll' IICII' Ildll' “+"1 II\SII}

in state 9

(16, 1) kwli = “wpw . ngn o wgn
(8,1) letter = "b" {nan}
(16,1) kwi = "b" . *a" "d" --> state 21

(8,1) letter = "p"
opl, letter, "b",

{"\n", TOKEN, white,
"C", "d", n+u' "\S"}

in state 10
(17,1) kw2 = "cg" . mgw wpn
(9,1) letter = "¢ {"3."}
(17,1) Kw2 = muen | ngh npw --> gtate 22

(9,1) letter = "c"
opl, letter, "b",
(7,0) letter = . "a"

(10,1) letter = "g"
opl, letter, "a",

{"\n", TOKEN, white,
"C", "d", n+u' II\SII}
—-—> state 22

{"\n", TOKEN, white,
upn, uwen, ﬁd“' LR "\S"}

(15,1) id = id . letter -—> state 23

(11,1) ID = id . {"\n", TOKEN, white, opl,
u+n'u\su}

(10,0) letter = . "g —-> state 11

(9,0) letter = ne -—> state 25

(8,0) letter = "b" ——> state 24

(7,0) letter = ngn --> state 8

(18,1) opl = "+»
kwl, kw2, opl, le
id, "+": "\S"}

{*\n", TOKEN, ID, white,
tter, "a", "b“, "c*, "d",
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State 14:
K._._.

15:
K__

State

16:

State

State

State

State

State

++++ SLR inconsistencies

K__
K..__

State 21:
K___
-—N
K___._

++++ SLR inconsistencies

K_._
K__

State 22:
K___
--N
K__

State 23:

(0'3) S’ <BOF> S u\nn

(2,2) 8 = 8 TOKEN {
kw2, opl, letter, "
n+n}

(3,2) TOKEN = ID white

kwi, kw2, opl, letter,

id, n+n}

(20,1) white = "\g*
kw2, opl, letter,
n+u}

(4,2) TOKEN = kwl white

kwl, kw2, opl, letter,

id, n+n}

(5,2) TOKEN = kw2 white

kwl, kw2, opl, letter,

id, u+n}

(6,2) TOKEN = opl white

kwl, kw2, opl, letter,

id, "+"}
in state 2
(16,2) kwl = "pm nug
(7,1) letter = "an
(16.2) kwli = "pn qan
(10,0) letter = . uwgn
(7,1) letter = "an
Opl, 1etter' wgn
in state 2
(17,2) kw2 = HoHw ugn
(7,1) letter = "a"
(17,2) Kw2 = h"en mwgu
(8,0) letter = npn
(7,1) letter = "a"
Opl , 1etterl ngw , 0

<EQOF> —=> state 26

"\n", TOKEN, ID, kwil,
a“, Ilbll' "C", Ildll' id’
{"\n", TOKEN, ID,
"2.", "b", “C", Ildll‘
{"\n", TOKEN, ID, kwil,
Ila'll’ IIbII, IICII‘ IldII‘ 1d'
{"\n", TOKEN, ID,
Ilall ) Ilbll s llcll ) lldll )
{"\n", TOKEN, ID,
nan' llbll' llcll' lldll‘
{"\n", TOKEN, ID,
Ilall' Ilbll’ "C", Ildll’
1
lldn
{"d"}
"ga" --> state 27
-—> state 27
{"\n", TOKEN, white,
b", "C", u+u' "\S"}
2
Ilbll
{“b"}
» "pr —-—> state 28
—-—> state 28

{"\n", TOKEN, white,
C", "d“, n+||’ "\S"}
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K-— (15,2) id = id letter . {"\n", TOKEN, white,
Opl, letter, ™a", "b", "cv, ndn, v+, u\sn}

State 24:
K-— (8,1) letter = "b" . {"\n", TOKEN, white,
op1: 1etter, "2.", “b", IICII' Ildll' ||+||’ "\S"}
State 25:
K-— (9,1) letter = "c" . {"\n", TOKEN, white,
Opl, letter, nau' "b", "C", "d", u+n' "\S"}
State 26:
K-- (0,4) S’ = <BOF> 8 "\n" <EOF> . {}

~—-—~— Exclusion of reduce actions in state 27.
K-- (10,1) letter = "4" . {"\n", TOKEN, white,
Opl, fnyn , "\S"}

State 27
K—— (16,3) kwl = "b" mag" »dge | {"\n", TOKEN,
white, opi, "+*,"\s"} ‘
K-- (10,1) letter = "d" . {letter, "a", “b", "cv,
"d"}

—-——— Exclusion of reduce actions in state 28.
K-——- (8,1) letter = "b" . {"\n", TOKEN, white,
0p1,"+“, "\S"}

State 28:
K-— (17,3) kw2 = "c" "g4 "p» | {"\n", TOKEN,
white, opi, "+","\s"}
K—— (8,1) letter = "pb" . {letter, "a", "b", "c",
"d"}

Lookahead-Symbols Deleted.

State Symbols

2 TOKEN, ID, kwl, kw2, opl, id
3 TOKEN, ID, kwl, kw2, opl, id
4 TOKEN, ID, kwl, kw2, opl, id
5 TOKEN, ID, kwi, kw2, opl, id
6 TOKEN, ID, kwl, kw2, opl, id
7 TOKEN, white, opi

8 TOKEN, white, opl, letter

9 TOKEN, white, opl

10 TOKEN, white, opt

11 TOKEN, white, opl, letter

12 TOKEN, white, opil

13 -~ TOKEN, ID, white, kwi, kw2, opl, letter, id
15 TOKEN, ID, kwl, kw2, opl, id

16 TOKEN, ID, kwl, kw2, opl, id

17 TOKEN, ID, kwl, kw2, opl, letter, id
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18
19
20
21
22
23
24
25
27
28

Predecessors of each state.

WO WN=O

C

4 SLR inconsistencies.

TOKEN, ID, kwil, kw2, opl, id
TOKEN, ID, kwil, kw2, opi, id
TOKEN, ID, kwil, kw2, opl, id

TOKEN, white,
TOKEN, white,
TOKEN, white,
TOKEN, white,
TOKEN, white,
TOKEN, white,
TOKEN, white,

12

OC O OO COCOC OO
I N YU Y

12

[N EN

D WWRE P OOO0O

opl
opl
opl
opl,
opl,
opi,
opl,

Processing statistics:

Kernel size:
SLR closure size:
NSLR closure size:

letter
letter
letter
letter

Maximum Average

3
20
20

State hash—chain len: 2

onflict Summary

1.344828
2.931035
3.068965
1.035714
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Grammar passes SAR test 1.
Grammar passes SAR test 2.
Grammar passes SAR test 3.

Number of parser rows: 29

Number of parser columns: 19

Number of non-ERROR parser actions: 216
44 shifts actions
16 reductions on nonterminal lookahead symbols
156 reductions on terminal lookahead symbols

Vertical table compression -— pass 1.

Number of parser rows: 25

Number of parser columns: 19

Number of non-ERROR parser actions: 188
44 shifts actions
15 reductions on nonterminal lookahead symbols
129 reductions on terminal lookahead symbols

Vertical table compression -- pass 2.

Number of parser rows: 24

Number of parser columns: 19

Number of non—ERROR parser actions: 179
42 shifts actions
14 reductions on nonterminal lookahead symbols
123 reductions on terminal lookahead symbols

Vertical table compression —-— pass 3.

Number of parser rows: 24
Number of parser columns: 19
Number of non-ERROR parser actions: 179
42 shifts actions
14 reductions on nonterminal lookahead symbols
123 reductions on terminal lookahead symbols

Horizontal table compression applied:

Number of parser rows: 24

Number of parser columns: 17

Number of non—-ERROR parser actiomns: 177
40 shifts actions
14 reductions on nonterminal lookahead symbols
123 reductions on terminal lookahead symbols

F.8.3. The Parse-Table File

2

19 21 29
18

0 <BOF>
1S
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n \nn
<EOF> .
TOKEN
ID
white
kwl
kw2
opl
letter
H all

llb "

1 C "

1" dll

id

II+ n
"\S"

1 2384

NN o

07

11 1 12

11 1 13

111 14

11 1 15

61 186

618

619

16 1 11

16 2 16 11

8 3 13 12 15

9 3 14 12 13

10 1 17

7 0

7 1 18

132152638495 106 11 7 12 8 13 9 14 10 15 11 16\
12 17 13

13 3145156 38495106 11 7 12 8 13 9 14 10 15 11 16\
12 17 13

-1 11 -1 12 -1 13 -1 14 -1 15 -1 17 -1

-19 7 16 11 -19 12 -19 13 -19 14 -19 15 -19 17 -19 18 17
-19 7 18 11 -19 12 -19 13 -19 14 -19 15 -19 17 ~-19 18 17

-19 7 19 11 -19 12 ~-19 13 -19 14 -19 15 -19 17 ~-19 18 17

-19 7 20 11 -19 12 ~19 13 -19 14 -19 15 -19 17 ~-19 18 17

-14 11 -14 12 -14 13 -14 14 -14 15 -14 17 -14 18 -14

-7 12 -7 13 -7 14 -7 15 -7 17 -7 18 -7

-8 11 -8 12 21 13 -8 14 -8 15 -8 17 -8 18 -8

-9 11 -9 12 22 13 -9 14 -9 156 -9 17 -9 18 -9

-10 12 -10 13 -10 14 -10 15 -10 17 -10 18 -10

-11 11 23 12 8 13 24 14 25 15 11 17 -11 18 -1t

-18 12 -18 13 -18 14 -18 15 -18 17 -18 18 -18

26

N ONNOOOHOOOORKREERRRRROO

NDNNNNE N
= © 00 ;N O

N0 N0 00N O OO
W WWwwwwwwowwoww
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3 -2 11 -2 12 -2 13 -2 14 -2 15 -2 17 -2
3311 -3 12 -3 13 -3 14 -3 15 -3 17 -3

3 -20 12 -20 13 -20 14 -20 15 -20 17 -20

3 -4 11 -4 12 -4 13 -4 14 -4 15 -4 17 -4

3 -511 -6 12 -5 13 -5 14 -5 15 -5 17 -5

3 -6 11 -6 12 -6 13 -6 14 -6 15 -6 17 -6

3 -7 11 -7 12 -7 13 -7 14 -7 15 27 17 -7 18 -7
3 -7 11 -7 12 -7 13 28 14 -7 .15 -7 17 -7 18 -7
3 -15 11 -15 12 -15 13 -15 14 -15 15 -15 17 -15 18 -15
3 -812 -8 13 -8 14 -8 15 -8 17 -8 18 -8
3-912 -9 13 -9 14 -9 15 -9 17 -9 18 -9

3 -16 12 -10 13 -10 14 -10 15 -10 17 -16 18 -16

3 -17 12 -8 13 -8 14 -8 15 -8 17 -17 18 -17

Default exit count id count kw count_op save char init id\
append letter

100233455550006700000

VNN ONNOWHONNTONNN



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
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