The Properties and Applications
of Horn Clause Proofs

Bruce Spencer
Robin Cohen

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
Research Report CS-89-64

December, 1989

The Properties and Applications of
Horn Clause Proofs

Bruce Spencer and Robin Cohen
Department of Computer Science
University of Waterloo

Waterloo, Ontario, N2L 3Gl
ebspencer@dragon.uwaterloo.ca and rcohen@dragon.uwaterloo.ca

Abstract

Reasoning systems based on clausal logic and resolution, commonly
used in artificial intelligence research, may restrict the form of the
clauses to simplify computation or to guarantee efficient reasoning.
(Reasoning from general clauses is almost certainly intractable.) For
example SLD resolution, the proof procedure underlying the program-
ming language Prolog, reasons from definite clauses, clauses with ex-
actly one positive literal. In this paper we weaken that restriction, and
reason from Horn clauses, clauses with zero or one positive literal. We
define HC proofs, which are proofs from Horn clauses, and show that
they are sound and complete. Our treatment differs from other Horn
clause reasoners in that it is easily implemented with a backtracking
search strategy (we provide one), and its queries are unrestricted con-
junctions. HC proofs can improve the efficiency of consistency-based

~ non-monotonic reasoning systems when Horn clauses can describe the
domain. For.example, we have improved the performance of the The-
orist system.

1 Introduction

Formal reasoning systems that use the clausal form of first order logic without
equality are commonly used in artificial intelligence. But the general form of
clauses acceptable by each system is often restricted, to simplify the reasoning
procedure or to guarantee efficiency. For example SLD resolution, the simple
proof procedure underlying the programming language Prolog, reasons from
definite clauses. A definite clause is a disjunction of literals, exactly one of
which is positive. Given a query which is a conjunction of positive literals,
and a program which is a set of definite clauses, SLD resolution derives the
instances of the query that are entailed by (in every model of) the program.

We consider a more general case, where the program is a set of Horn
clauses and the query is a conjunction of positive and negative literals. A
Horn clause is a disjunction of zero or one positive literals and zero or more
negative literals. For this case, we define a Horn clause proof of a query, or
HC proof for short, that indicates the provable instances of the query. The
major result in this paper, stated informally, says that there is an HC proof of
a query which indicates some instance is provable if and only if the instance
is entailed by the set of clauses.

The case we consider is strictly simpler than the most general case, clauses
which are disjunctions of, and queries which are conjunctions of any com-
bination of positive and negative literals. Because our case is simpler, a
procedure for building HC proofs involves less work than one that applies to
general clauses, such as the MESON proof procedure[6].

Work similar to ours has been presented by Gallier and Raatz[4]. Their
clauses are Horn clauses and their queries are disjunctions of negations of
Horn clauses. Thus they can show the inconsistency of a set of Horn clauses.
Our work is new in that it admits an unrestricted conjunction as a query, so
we can show that a set of Horn clauses is inconsistent with a general clause.
Also, Gallier and Raatz use a breadth-first search strategy. They encoun-
tered complications with backtracking search. Backtracking is important for
minimizing the space required by the search procedure. We present a proof
procedure for HC proofs that backtracks.

In the next section we define HC proofs of single literals and prove sound-
ness and completeness for the propositional and first order cases. We extend
HC proofs to a conjunction of literals. We use HC proofs to add logical
negation to Prolog; this furnishes a backtracking procedure for building HC

2

proofs. We compare this work with related literature and point out appli-
" cations of HC proofs that improve the efficiency of consistency checking in
non-monotonic reasoning systems, such as Theorist[8] and the ATMS[2].

2 Horn Clause Proofs

Informally, a Horn clause proof tree for a literal g is a tree whose nodes
contain instances of literals from the Horn clauses. A parent node contains a
literal chosen from some clause, and its children contain the negation of each
of the other literals in that clause. A leaf of the completed tree is either an
instance of a singleton clause, so it spawns no new children, or an instance
of the negation of g, the root of the tree. :

HC proof trees differ from Prolog proof in two ways. First, any literal
in a Horn clause can be put in the parent node. Prolog programs contain
only definite clauses, and only instances of the positive literal in a clause can
be put in the parent node. As a direct result, Prolog proof tree nodes only
contain positive literals. Second, a leaf of a completed tree cannot be the
negation of the root, since all nodes are positive.

For this example Horn clause program

gV -rV s
rV g
K]

and the query —g, we build the tree as follows. First build a node that
contains the literal to be proved:

g

Next, select a clause which contains —¢. In this example we select =gV—rV-s.
Negate the other literals in the clause and put them as children of —gq.

r/q\s

Now build a subtree for each of the children. For s there is a clause that
matches it, and it has no other disjuncts, so we have completed this branch.
For r we select the clause r V —q, negate —g which becomes g, and make it a

child of r.
-q
r s

Now we apply the rule that has no Prolog counterpart. Since the ¢ is the
negation of the topmost node, —q, we have proved it. There are no remaining
nodes to be proved, so we have completed the tree.

It may appear contradictory that in this exercise we have proved both ¢
and —q. This is a proof by cases. Either g or g s true. By building the proof
tree we have established that if ¢ then —¢, but this leads to a contradiction.
So we reject g, leaving the case —q.

In the remainder of Section 2 we define HC proofs for propositional and
first order logic. We begin with some background.

We assume the reader is familiar with first order logic as presented in, for
example, [1, 5]. We shall represent formulas and sets of formulas with upper
case italics P, literals with lower case italics, g, and substitutions in Greek,
9. Let P\ Q be the set of elements of the set P that are not elements of the
set Q. Let VF represent the universal closure of F, where all free variables
in F are universally quantified. Let 3F be the existential closure.

Except where noted, we consider all formulas to be in Skolem standard
form; all variables are implicitly universally quantified.

If p is a literal then let p be the function applied to p that negates it,
adding or removing the — operator as necessary. For examples, =g = ¢, and
7= —q.

The result of replacing g in a Skolem standard formula with g is still
a Skolem standard formula since no quantifiers are negated. For example,
replace ¢ with =g in ¥Y(p V q) to get ¥(p V —q).

q

4

2.1 Propositional Horn Clause Proofs

" In this section we introduce the propositional Horn clause proof, or HC proof,
a proof of a propositional literal from a consistent set of propositional Horn
clauses. The main result shows that a propositional literal is entailed by a
set of propositional Horn clauses if and only if there is an HC proof of it.

Definition 1 Let P be a consistent set of propositional Horn clauses.

1.1 An HC proof of a propositional literal g from P is an HC1 proof of g
from P U {g}.

1.2 An HC1 proof of a propositional literal g from P 1s
(1) a clause g; V ...V gn selected from P such that g = g; for some ¢,
and
(2) an HC1 proof of g; from P foreach j =1,...,7 - 1,:4+1,...,n.

The following lemma shows that the additional clause g has no effect
when a positive literal is being proved.

Lemma 1 There is an HC proof of a positive literal g from P if and only
if there is an HC1 proof of g from P. Both proofs consist only of definite
clauses.

Proof (= by structural induction on the HC proof) By Definition 1 there
is an HC1 proof of g from P U {—g}. If that HC1 proof consists of one clause,
it is g, a definite clause, so g € P. This also serves as an HC1 proof of g
from P. Suppose the HC1 proof has k + 1 clauses. Then there is a clause
C =g.V...Vg, € P where g; = g and an HCI proof of each g; for
j=1,...,i—1,i+1,...,n. Since g is positive C 1s a definite clause and
each g, is positive. By induction there is an HC1 proof of g; from P. These
proofs and C comprise the HC1 proof of g from P.

(<) An HC1 proof from P serves as an HC1 proof from any superset of P.
A straightforward induction, similar to the previous case, ensures it consists
of definite clauses.k

HC proofs are sound with respect to model theory.

Theorem 2 [Propositional Soundness] Let P be a consistent set of propo-
sitional Horn clauses and g a propositional literal. If there is an HC proof of

g from P then P = g.

Proof We show by induction that if we can build an HC1 proof of g from
P U {g} then P |= g. If the proof has one clause, it must be g. Since g € P,
we know that P |= g. Let there be an HC proof of g that has k + 1 clauses.
Then without loss of generality assume the topmost clauseis gV g1 V...V gn.
Then the HC proofs of g; for 7 = 1...n each have less than k + 1 clauses,
so by induction P =g;fori=1...n. SincegV g1 V...V gn € P, we have
PlEgVgiV...Vgn, sowehave P=gas required.t

The next two lemmas will be required for the proof of completeness.

Lemma 3 Let P be a consistent set of propositional Horn clauses, and let
a and b be positive propositional literals. Suppose P U {—a} and P U {-b}
are each consistent. Then P U {—a} U {—b} is consistent.

Proof Let A= {ry,...,rn} be the complete set of atoms in PU {-a}U
{-b}. Then since PU{-a} is consistent let F be a model of PU{—a}. That
is, Fy is a function, F} : A — {true, false}, and each clause in P U {—a},
evaluated by F; and the standard truth tables, evaluates to true. Similarly,
since PU{—b} is consistent, let F» be a model of PuU{-b}. Foreachr € A we
define F(r) = Fi(r) A Fy(r). We claim that F; is a model of PU {—a}u{-b}
so P U {—a} U {-b} is consistent. Clearly F3(a) is a model of {—a} since F}
maps a to false. Also F3(a) is a model of {—b} since F; maps b to false.
Thus we only need to show F3 is a model of P.

Suppose there exists a clause C in P such that F3(C) = false. There are
~ three cases. '

v (1) C = co where ¢ is a positive literal. Either Fi(co) = false or F3(co) =
false. Then either Fy or F3 is not a model of C. Contradiction.

(2) C = =1 V...V ey, where each ¢; is positive. Then Fs(c;) =
true, ..., Fa(cy) = true, so it must be that Fi(e1) = true,... , Fi(en) = true,
so F, is not a model of C. Contradiction.

(3)C =coVc1 V...V ey, where each ¢; is positive. Then Fi(c;) =
Fy(e1) = true, ..., Fi(c,) = Fa(c,) = true, and either Fi(co) = false or
Fy(co) = false. So either Fy or F, is not a model of C. Contradiction.i

Lemma 4 Let P be a consistent set of propositional Horn clauses and let
ai,...,an be positive propositional literals. If each of P U {-a1},...,PU
{—a,} is consistent, then P U {-a;} U...U{~a,} is consistent.

Proof We proceed by induction on k. The inductive hypothesis states
that PU{—a;}U...U{-az} U{—ak4} is consistent for eachi=1...n —k.

For k = 0, the inductive hypothesis is the premise of the lemma.

In the inductive step, we must show that the inductive hypothesis implies
that PU{~a,}U...U{~axs1}U{—ar414i} is consistent foreachz =1...n—
kE—1.

For each 7 = 2...n — k we have

PU{=a;}U...U{-az} U {—~ars1} is consistent
PuU{-a;}U...U{=ar} U{—axs;} is consistent
Lemma 3 = PU{-a;}U...U{=ar}U {=ags1} U{-ars;} is consistent

Replace j with i+1 in the above, and we have the conclusion of the inductive
step. When k becomes n—1 the conclusion of the inductive step is the result.h

Theorem 5 [Propositional Completeness] Let P be a consistent set of propo-
sitional Horn clauses, and g a propositional literal. If P |= g then there is an
HC proof of g from P.

Proof Let g be positive. We apply Lemma 1 so that we have only to
build HC1 proof of g from P, proceeding by induction on the number of
" clauses in P. If P has no clauses then the theorem is satisfied trivially since
P E g must be false. Let P have k + 1 clauses. We claim there is a clause
C=gV-gV...V—g,,C € P such that P\ C = g; for all 2. No generality
" is lost by assuming the positive literal appears first in C. The inductive
hypothesis provides an HC1 proof of each g; from P \ C. Each of these is also
an HC1 proof from P. These proofs, and C' comprise an HC1 proof of g.

We show the claim in three steps. (1) There must exist a clause C' =
gV V...V-g,, CEP. (2)Plgforalli=1...n (3) P\ C kg for
alli=1...n. '

(1) Suppose there is no clause C' =gV g1 V...V =gn in P. Then every
clause in P that mentions g mentions it negatively. P is consistent, so from
any model of P construct a new interpretation that differs, possibly, from

7

the model only in that it maps g to false. This new interpretation is also a
model of P because it does not affect the value of any clause that does not
mention g, and any clause that does mention g mentions it negatively, so it
must evaluate to true. Since there is a model of P that is not a model of g,
we have a contradiction.

(2) Suppose r clauses C; € P contain a positive g. Let C; = gV g V

..V Tgjn;. Suppose for all j = 1...r there is ¢; such that P b~ gji;. Then
for each j, PU{~gj;} is consistent. By Lemma 4, PU {~g15}VU...U{gri, }
is consistent. From any model of this construct a new interpretation that
differs, possibly, from the model only in that it maps g to false. This new
interpretation is also a model of P because every clause that contains a
positive g also contains some —gj;; that evaluates to true. Thus we have a
model of P that is not a model of g. Contradiction.

(3) Suppose for some 7, P\ C |~ g;. Then there is a model of P\ C that
maps g; to false. This is also a model of C, so it is a model of P. This
contradicts P |= g;, step (2) above.

This completes the demonstration of completeness for a positive goal.

We now let ¢ = —h, a negative literal, and build an HC proof for —h,
given that P = —h. We proceed by induction on the number of negative
clauses in P, clauses that contain only negative literals.

If P has no negative clauses then P |= —h is impossible because P U {h}
always has a model. That model can be built by assigning every atom to
true. This completes the base case. Let P have k+1 negative clauses. Select
a negative clause C = =g V...V —¢,. If P\ C'U{h} is inconsistent, then by
the inductive hypothesis there is an HC proof of —h from P \ C. This serves
as an HC proof of =k from P, so in this case, the demonstration is complete.

In the remaining case, P \ C U {h} is consistent. We know that P \
C U{h} [¢ for all i = 0...n, because otherwise P \ C U {h} U {c} is
consistent, and a model of this is a model of P U {h} which cannot exist.
By the demonstration of completeness for positive literals, there is an HC1
proof of ¢; from P\ C U {h} for all i = 0...n. We claim that there exists a
¢; such that P\ C [£ ¢;. If the claim is false then P\ C | co A ... A¢cp, 8O
P\ C [= —C. By monotonicity of }=, P |= ~C. Since C € P, P=C. This
means P is inconsistent, which contradicts our premise, so the claim must
be true. Without loss of generality, suppose P \ C [~ co. Then by Theorem
2 there is no HC proof of co from P\ C. But since P \ C U {h} |= co there is

8

%
'> _

C1) Cn

Figure 1: Construction of an HC1 proof of —h

an HC proof of o from P\ C U {h}. This HC proof must use h.

We build the HC1 proof of ~h bottom up. (See Figure 1.) Starting with
the HC1 proofs of ¢; from P\ CU{h} foralli=1...n, add the clause C on
top. This makes an HC1 proof of ~co from P U {h}. We proceed by turning
the HC1 proof of ¢y “on its head” and putting it on top of the proof of —cp,
which gives us our proof of —h.

Since the HC1 proof of ¢o from P\ C U {h} uses h, without loss of gen-
erality that proof’s topmost clause is co Vi V...V l,, such that for some j
either I; = h or the HC1 proof of 1; uses h. If 1; = h, as shown in Figure 1,
we put the clause co VI V... V11V =hVlij11 V... Vi, on top of the proof of
—¢co, noting that there is an HC1 proof of each lk=1...7—1,7+1...m.
This completes the proof of —h. If there is no j such that I; = h then for
some j the HC proof of 1; uses h. The topmost clause of this either contains
h or a literal for which the HC proof uses h. Repeat the construction until
—} is reached. This completes the construction of the HC1 proof of —h.A

2.2 First Order Horn Clause Proofs

We define Horn clause proofs of literals in a first order logic without equality.
The definition is generalized from the propositional case. The main result
of this section is the generalization of soundness and completeness from the
propositional case.

Variables in the literals impose a type of communication between sub-
proofs. When a substitution is made for a variable in one child node, all
other children that use that variable must now use the new instance. To
control this communication we do the subproofs one at a time. The order is
determined by a choosing function. A different choosing function results in a
different proof. We call the choosing function R, and the proof that results an
RHC proof. Each proof also produces a substitution for the variables in the
clauses and the goal. That substitution also depends on R, so it is called the
R-computed answer substitution. When there is no confusion we will refer
to the R-computed answer substitution simply as the answer substitution.

Definition 2 A choosing function R is a function from a sequence of lit-
erals to a literal.

Definition 3 Let P be a consistent set of Horn clauses.

3.1 An RHC proof of a literal g from P is an RHC1 proof of g from P
retaining g.

3.2 An RHC1 proof of a literal g from P retaining ¢ is either
(case a) nothing, if there is a most general unifier 6 of g and ¢, (In this
case the R-computed answer substitution is 6.), or '
(case b) (1) aclause g1 V...Vgn selected from P and given new, unique
variables, such that there is a g; and a most general unifier
9; of g and g;, and
(2) a RHCL proof sequence for g0, ... v i-10i,Tip10i - -, Tnbs
from P retaining t6;, which has an R-computed answer sub-
stitution f,eq.
(In this case the R-computed answer substitution for the
RHC1 proof is 6;0,, restricted to variables in g.)

3.3 An RHC1 proof sequence for the sequence g1, ..., from P retaining
tis ’

10

~(case a) the empty sequence, if n = 0. (The R-computed answer
' substitution for the empty sequence is €, the identity substi-
tution.), or
(case b) (1) an RHCL proof from P retaining ¢ of g; with R-computed
answer substitution 8;, where g; = R(¢1,...,9») and
(2) an RHC1 proof sequence for G105, ..., Gi—10i, Giv10i, - . ., gnbi
from P retaining t6; with R-computed answer substitution
Oseq-
(In this case the R-computed answer substitution for the
whole sequence is 6;8,.4.)

Soundness is the first important property of RHC proofs we demonstrate.

Theorem 6 [First Order Soundness] Let P be a consistent set of Horn
clauses, and g a literal. If there is a choosing function R and an RHC proof
of g from P with R-computed answer substitution 6 then P E g¢f.

Proof To show that RHC proofs are sound, we need to show RHC1 proofs
are sound. We claim that if there is an REC1 proof of g from P retaining ¢
with answer substitution 8 then P U {tf} |= gf. Given this we know that an
RHC1 proof of g from P retaining § with answer substitution 0 means that
P U {g0} |= gb. This means P U {g6} U {—(g0)} is unsatisfiable, or in other
words PU{Vg#}U{3g0} is unsatisfiable. If there is a model of P U{3g6} then
this is a can be made a model of PU{Vg8} U {3g6} by restricting the domain
to elements such that gé is true. But we know this set is unsatisfiable, so
P U {3g8} is unsatisfiable. Hence P |= —(3g0), which means P = g6.

We show the claim by induction on the number of clauses in the RHC1
proof of g. If there are no clauses in the RHC1 proof then there is a most
general unifier § of g and ¢, which is the answer substitution. Since g8 = tf
we know that P U {t0} = g6. This completes the base case. Suppose the
result holds for proofs with up to k clauses. Let there be a proof with k + 1
clauses. Then without loss of generality there is (1) a clause g1 V...V gn
such that §; is a most general unifier of g and g1, and (2) an RHC1 proof
sequence for G, 61, . .., 5,01 retaining ¢0; with answer substitution f,e,. Also
0 = 010,eq. .

We introduce an inner induction to show if there is an RHC1 proof se-
quence of Ay, ..., h, retaining t with answer substitution o where each RHC1

11

proof uses up to k clauses then P U {to} |= h1o,..., P U{to} = hno. For n
— 0 there is nothing to show since the sequence is empty. Suppose the inner
" induction result holds for sequences up to n. Let there be an RHC1 proof
sequence for hi,...,hn41 retaining t. Without loss of generality suppose R
selects hny1. Then there is an RHC1 proof of h,;1 retaining ¢t with answer
substitution 0,1, and an REC1 proof sequence for h10n41, ... , hnOpy1 retain-
ing to,,1 with answer substitution ,e,. By the outer induction hypothesis,
PU{toni1} E hnt10n41, s0 P U {t0n110seq} = Pnt10n410seq- By the inner
induction hypothesis, P U {t0,110seq} = P10n110seqy - -, P'U {ton410seq} =
RpOpy10seq- The inner induction argument is complete.

Apply the inner induction result to (2) by replacing h; in the inner re-
sult with g,6 and o with 6,.,. Then P }=G,610,eq,---, P = §,,010,eq. Since
(1V...Vgs) €EP,PE (91010seq V ... V Gn010seq), s0 P = g1010,c,. Since
§10105eq = g010seq, and 0 = 010,c4, We have P |= g0.& . o

We will also show that RHC proofs are complete, in the sense that any
correct answer substitution is an instance of some computed answer substi-
tution. We first show a version of the lifting lemma. Informally, it says given
a proof of a goal from a set of clauses we can lift this to a proof of a more
general goal from a set of more general clauses. The lifting lemma itself
requires the following lemma.

Lemma 7 Let g; and g, be literals, and ¢, and ¢, be substitution. Suppose
that ¢; binds no variables in g, or in phis, that ¢, binds no variables in g; or
in phiy. If 6 is a unifier of g1¢; and gz¢2 then there is a most general unifier
¢' of g, and g and a substitution 5 such that ¢;6 = 6’y restricted to the
variables in ¢; and @20 = 6’y restricted to the variables in g,.

Proof g;ps¢y = gadha since ¢; binds no variables in phis. g1¢d2 = 1
since ¢, binds no variables in g;. 6 unifies g14; and g202 50 G118 = g2¢20.
Therefore g1¢2¢16 = g2¢2$18. In other words ¢2¢:6 unifies g1 and g,. There-
fore there is a most general unifier, #' of g; and gz, which means there is a
substitution 4 such that ¢¢:60 = 6'y.

Restricting substitutions to the variables in gi, ¢2¢1 = ¢1 since @2 does
not bind any variables in g; and ¢; does not bind any variables in ¢2. There-
fore, restricted to variables in g1, ¢18 = 0'y.

12

Restricted to the variables in ga, ¢2p1 = @2 since ¢; binds no variables in
¢5. Therefore, restricted to variables in g, b0 =6~

Lemma 8 [Lifting Lemma] Let P be a consistent set of Horn clauses, and g
a literal. Let P* be a set of instances of clauses of P, defined as P* = {C |
C € P,« is some substitution}. For every substitution 7 such that there is
a choosing function R and an RHC proof of gr from P* with R-computed
answer substitution 6, there is a choosing function R; and an R;HC proof of
g from P with R;-computed answer substitution ' and a substitution -y such
that 70 = 6'~.

Proof We need to show that if there is an RHC1 proof of gr from pt
retaining ¢+ with R-computed answer substitution § then there is a choosing
function R; and an RyHC1 proof of g from P retaining ¢ with an Ry computed
answer substitution 6’ and a substitution 4 such that 76 = 6'7. We proceed
by induction on the number of clauses in the RHCI proof. If there are no
clauses then there is a most general unifier 6 of g7 and ¢t7. Then 76 is a unifier
of g and ¢, so there is a most general unifier ¢’ of g and ¢, which means there
exists a v such that 8y = 78. This constitutes an RyHC1 proof of g from
P retaining ¢ with answer substitution 6, where any choosing function will
do for R;. This completes the base case. Suppose the lemma holds for a
proof with up to k clauses. (See Figure 2.) Let there be an RHC1 proof of g7
from P retaining tr with k + 1 clauses. Without loss of generality, there is
(1) a clause (g1 V...V gn)9 € P+ such that a substitution #; unifies g7 and
g1, and (2) there is an RHC1 proof sequence for g,¢by,. .. , G40, from P
retaining t¢f; with answer substitution Oseq-

We introduce a nested induction to show that if there is an RHC1 proof
sequence of hy$,...h,6 from P* retaining t6 involving proofs with up to k
clauses and with answer substitution o, then there is a choosing function Ry
and an R;HC1 proof sequence of hy,..., ks from P retaining t with answer
substitution o and a substitution p such that §o = o'p. We proceed by
induction on the length of the sequence. If the sequence is empty then the
answer substitution for the proof sequence is €. Let the new proof sequence be
empty, and its answer substitution be e. To have 6o = a'p’, welet p = 6, since
o = o' = ¢. This complete the base case. Suppose the induction step holds
for sequence of length n. Let there be a proof sequence for hi6,..., hnt16

13

Have

Build

Outer Induction
gr g
g I
fe3x g1
Inner Induction
Ont1 Useq 0-:1-*-1 Uieq
/ /
. hn+15 h16 o };_"5 hn+1 hl o]Z;_rll
Ont1 ;eq a':z+1 ;eq
/ /
hn60n+1 hlo';;+1 o hn0-1/1+1

/ S

N

apply ouler induclion

apply inner induction

Figure 2: Lifting an RHC1 proof of g7 from PT to an RyHC1 proof of g from

P.

14

from P retaining t§ with answer substitution . Then without loss of gen-
erality, suppose R selects hn16. There is an RHC1 proof of hpyi6 from
P+ retaining t§ with answer substitution 0,41, and a proof sequence of
h160ni1,-- -y hnb0nyq from P+ retaining téon41 with answer substitution
Oseq- Then define the selection function Ry so that Ri(h,...,Ant1) = hni1-
By the outer induction hypothesis, there is an RyHC1 proof of h,;; from
P retaining £5 with answer substitution o7, and there is a substitution
pnt1 such that 0,41 = Ohy1Pnil- Since 0'ni1Pnt1 = 00n41 a proof se-
quence for h160ni1,. ., Rnb0np retaining t§0,41 is a proof sequence for
R10'p41Pnt1s - -y 0 ny1Pny1 Tetaining to'pi1pny1. By the inner induction
hypothesis, (replace § in the statement of the hypothesis with p,+1, and the
h; with h;o'n11) there is an R;HC1 proof sequence for h10'ny1,. .-, hno'nia
from P retaining to’,,, with answer substitution o, and a substitution p,eq
such that pn110sq = OhegPseq- Thus we have an R;HCI proof sequence of
Ra, ..., hny1 from P retaining ¢ with substitution oy,,,07.,. Let o' =0} 1104
and let p = pseq- Then 60 = §0,4105eq = O 4 1Pnt10seq = O n410 seqPseq =
o'p. This completes the inner induction. _

Returning to the outer induction, we have (1) the clause (1V...Vgn)p €
P+ and a substitution 6; such that gr6; = g1¢0:1. Since the clause has unique
variables, we can be sure that 7 binds no variables in g; or in ¢. Likewise we
can assume that ¢ binds no variables in g or in 7. By Lemma 7 there 1s a
most general unifier 6] of g and ¢ and a substitution 71 such that 76; = 617
restricted to the variables in g, and ¢f; = 8,7, restricted to the variables
in the g;. Given (2) the RHC1 proof sequence for G, 901, - -, Gn$b1 from P
retaining t¢f#; with answer substitution 8,4, this is also a proof sequence for
G20.91, - -+ » G0t 71 from P retaining t0~;. Apply the inner induction result,
letting the A’s in the induction claim be the g;6;, 6 be 1 and o be 8], to get
an RyHC1 proof sequence for g,0;, ..., 5,01 from P retaining t6; with answer
substitution §,,, and a substitution Yseq such that 410.eq = e Vseq- This pro-
duces an RyHC1 proof of g from P retaining t with answer substitution 010405
so@ =00 . Lety = Y,eq. Then 76 = 7010,eq = 017105eq = 010504 Vsea = 'y

seq”*

Theorem 9 [First Order Completeness] Let P be a consistent set of Horn
clauses, and g a literal. For every substitution w such that P |= gw, thereis a
choosing function R and an RHC proof of g from P with R-computed answer
substitution ' and a substitution 4 such that w = w'y. ’

15

Proof Let {z1,...,2.} be the complete set of variables in gw. Then
let {ci,...,c.} be a set of constants not appearing in P or gw. Define ¢ =
{z1/c1,...,2,/c;}. Then gwe is ground. Since P |= gwg, PU{gw¢} is an un-
satisfiable set of clauses in Skolem standard form. Herbrand’s Theorem[1](p.
61) states that there is an unsatisfiable set of clauses if and only if thereis a
finite unsatisfiable set of ground instances of these clauses. Let S be the finite
unsatisfiable set of ground instances of clauses in P U {gwé}. Let P* be the
set of instances of clauses from P that appear in S. Then again by Herbrand’s
Theorem, P* is satisfiable since P is. So gw¢ € S, since otherwise S = P*
and one of them is satisfiable while the other is not. Thus $ = P* U {gwé}.
Since S is unsatisfiable, P* |= gw$. We may consider all ground literals to be
propositions, so by Theorem 5, there is an HC proof of gw¢ from P*. Observe
that this is an RHC proof of gw¢ from P* with answer substitution €. Any
choosing function will do for R; the order of subproofs does not matter since
no variables are bound. By textually replacing all instances of ¢; with the
corresponding z; in P* then we have built a new set P+ of clauses that are
instances of the clauses in P. By doing the same replacement of ¢; with z; in
the RHC proof of gw¢ from P* with answer substitution € we have built an
RHC proof of gw from Pt with answer substitution e. Now apply the lifting
lemma, letting 7 in the lemma be w, §' be ', and § be e

3 General Queries

Until now we have restricted ourselves to HC proofs of single literals. Here
we define an HC proof sequence, for proving a sequence of any number of
positive and negative literals.

Definition 4 An RHC proof sequence for the sequence g1,..., g, from P
retaining t is
(case a) the empty sequence, if n = 0. (The R-computed answer sub-
stitution for the empty sequence is €, the identity substitution.),
or
(case b) (1) an RHC proof from P of g; with R-computed answer substitution
6;, where g; = R(g1,...,9n) and :
(2) an RHC proof sequence for g16;,. .. , Gi—10;, gi4165, - . ., gn0; from
P with R-computed answer substitution f,,.

16

(In this case the R-computed answer substitution for the whole
sequence is 6;0,eq.)

HC proof sequences are sound and complete.

Lemma 10 Let P be a set of Horn clauses and G a sequence of literals. If
there is an RHC proof sequence of G from P with answer substitution & then,
treating G as a conjunction, P = G6.

Proof (by induction on the length of G) If G is empty then treated as

a conjunction, G = true, and there is nothing to show. f G = ¢1,...,9n41
then without loss of generality suppose there is a RHC proof of gny1 with
answer substitution 6,41, and an RHC proof sequence of gi6n41,- .-, gnbnt1

with answer substitution 8,.,. Then 6 = 0,1164¢,- By the soundness of RHC

proofs, P & gnt10nt1 = Gni10nt16seq, and by induction P |= ¢10n410seq A
... A Gnbpt10seq. Combining these we obtain PEG§.1

Lemma 11 Let P be a set of Horn clauses and G a sequence of literals.
Treating G as a conjunction, if there is a substitution 6 such that P = G¢
then there is an RHC proof sequence of G from P with answer substitution
¢’ and a substitution v such that § = 6'y.

Proof (by induction on the length of G) If G is empty then, treating
G as a conjunction G = true. Let v = 0, let the proof sequence be the
empty sequence, and let ¢ = e. If G = g1,...,9n then (1)P & gn410 and
(2)P = (g1 A ... A gn)f. By completeness of RHC proofs, from (1) there is
an RHC proof of g,+1 with answer substitution 6, and a substitution v,4+1
such that 6 = 0, ;Ynt1. From (2) we have P = (¢10,, 4 A .. A Gnb 1) Tt
By induction there is an RHC proof sequence of 16,4, --,9nbh, With an-
swer substitution 7}, and a substitution 7.e, such that Yn41 = Vi1 Vseq-
Given this RHC proof sequence, and the RHC proof of gn41 we have an RHC
proof sequence of g1, ..., gnt1 With answer substitution 6’ = 6/,_,7,,,- Let

7 = ’Yseq- Then 0 = 9;_‘_1’7”_}_1 fanas 9:1+17:;+1’Yseq — 0[7]

Building an HC proof sequence of g1,...,9n corresponds to showing that
a general clause §; V ...V g, is inconsistent with a set of Horn clauses. In

17

example 9 from [7], these clauses are inconsistent:

p Vv (1)
—p V (2)
p VvV ¢ (3)
~p V g (4)

We can show they are inconsistent by building an HC proof sequence. Since
clause (1) is non-Horn, we negate it and build a proof sequence of the negated
literals, —p and —gq.

-p

—q
@ |e

-q Y4
© @
p q

4 Logical Negation in Prolog

By making two changes to the Prolog interpreter, we can convert it to an
HC interpreter, a procedure for building Horn clause proof trees (modulo the
occur-check problem).

By Lemma 1, there is no difference between the Prolog interpreter and
the HC interpreter for positive goals.

Given a negative goal, the HC interpreter must retain a literal which is
the positive form of that goal, and apply substitutions to it as they arise
from unification. If a new goal arises that unifies with the retained literal,
that goal is considered proved. o

The other change affects the database of clauses. Prolog clauses are
definite clauses, and they only need to be referenced by their positive literals.
The HC interpreter must have access to negative clauses, clauses that contain
only negative literals. And it must be able to access a clause by any literal
in it, positive or negative.

To illustrate, we give two Prolog programs. The first, a familiar one
provided for reference, builds Prolog proofs.

18

:- op(300, xfx, (+))-

% proof(Q) is true if there is a proof of G from definite clauses
proof(G) :-

definite_clause(G « L),

proof_seq(L).

% proof_seq(L) is true if L is a list of literals and
% there is a proof for each one.
proof_seq([])-
proof_seq([L1 | Ls]) -
proof(L1),
proof_seq(Ls).

% definite_clause(G « L) means G < L is a definite clause
% given new variables where G 1s the head, positive literal, and
% I, is a list of literals, in their positive form.

The second builds HC proofs. It needs to access the clauses by all literals.
One way to do this, used here, is to form the contrapositives. For a clause
g1V ...V g, there are n contrapositive forms. For each ¢ = 1...n the

contrapositive form is g; <= Gy, - -5 9i—1>Jit1> -+ -1 9n-

- op(50, fx, (7))
- op(300, xfx, (<))

% he_proof(G) is true if there is an HC proof of G.
hc_proof(G) :-

negate(G, Neg_G),

hel_proof(G, Neg_G).

% hcl_proof(G, T) is true if there is an HC1 proof of G retaining T
hcl_proof(T, T).
hel_proof(G, T) :-

contrapositive_horn_clause(G L),

hel_proof_seq(L, T).

19

hcl_proof_seq(] |, -)-

hcl_proof seq([L | Ls], T) :-
hcl_proof(L, T),
hcl_proof_seq(Ls, T).

% Clauses database routines:
% contrapositive_horn_clause(G « L) means G «+ L is a Horn
% clause in one of its contrapositive forms, given unique variables.

To see that this program correctly builds RHC proofs it is necessary only
to compare Definition 3 with the program. The program is considerably
simpler because the underlying Prolog interpreter deals with the variable
substitutions. Except for this, the program is a translation of Definition 3
where the selection function R always chooses the leftmost literal.

5 Comparison with Related Work

Gallier and Raatz also consider reasoning from Horn clauses, in [4]. They
describe HORNLOG, a proof procedure that applies when the program 1s a set
of Horn clauses and the query is a disjunction of negations of Horn clauses.
Our work is new in two ways.

HC proofs apply in a slightly more general case than HORNLOG. Re-
stated as refutation, HORNLOG can detect the unsatisfiability of a set of Horn
clauses. Because HC proof sequences can prove an arbitrary conjunction of
literals, they can refute a set of clauses, one of which is a general clause and
the rest are Horn clauses.

HORNLOG is a proof procedure, based on graph rewriting, and it uses a
particular search method, breadth-first search. It is reported that backtrack-
ing search methods introduce complications to the graph rewriting proce-
dure; previous graphs are difficult to recover. On the other hand, we have
shown how to extend Prolog to build HC proofs, thus they can be found
by depth-first search with backtracking. Backtracking implementations need
significantly less space, because a stack is used to store different branches of
the search space at different times in the same space.

One final difference occurs in the first order case. HORNLOG is a complete
procedure with respect to indefinite answers, whereas HC proofs are only

20

complete for definite answers. To explain, if there is no HC proof of g from P
then there is no substitution w such that P = gw. However there may be a
set of substitutions {wy,...,wn} such that P = gu1 V...V gwn. For example,
consider P a single clause —p(a) V —p(b), and the query —=p(X). Then there
is no Horn clause proof of =p(X) from P. This seems to indicate there is
no X such that p(X). However P guarantees there is such an X, and either
X = a or X = b. Poole [10] gives a method for generating such an answer.
That method leads to a new definition of RHC proofs. We will present it, and
a proof of its completeness in a future paper. .

Another proof procedure, closely related to HC proofs, is the MESON
(Model Elimination Subgoal OrieNted) procedure [6]. It is complete for gen-
eral clauses, and is the basis for [11] and [12] and the theorem prover in [8].
‘The negative ancestor rule for model elimination is the new rule needed to
extends the procedure’s coverage from definite to general clauses. Quoting

[11):

(In the proof tree) If the current goal matches the complement of
one of its ancestor goals. then apply the matching substitution
and treat the current goal as if it were solved.

This rule requires each literal in the proof tree to be compared to each of
its ancestors. Contrast this with Horn clause proof trees where a literal only
needs to be compared to one ancestor, the top-level one. In this example,

bV -a
cV b
dV -c
—aV ~d

the proof tree for —a is

21

—-c

—~d

a

To prove a, the negative ancestor rule asks us to compare a with each of
—d, —¢, =b and finally —a. Our procedure only compares a with the —a.

In other circumstances we can avoid this checking altogether. By Lemma
1 when the topmost goal is positive, no negative goal can arise, so no match
can ever succeed.

6 HC Proofs for Non-Monotonic Reasoners

HC proofs can show that a conjunction of literals is inconsistent with a set
of Horn clauses in the following manner: if P is a set of Horn clauses then
PU{aiA... Aay} is inconsistent if and only if PU{a1}U...U{an-1} F —an,
which can be found with an HC proof.

The propositional version of this is one task performed by de Kleer’s
assumption-based truth maintenance system (ATMS][2]). The ATMS checks
it conjunctions, called environments, for consistency by generating all min-
imal inconsistent conjunctions, called nogoods. An environment is rejected
if it is a superset of some nogood. But generating all minimal nogoods 1is
more work than is required, especially in ATMS applications characterized
by many minimal nogoods and few environments that need to be tested for
consistency, or in ATMS applications that do not need all environments for
each literal. In these cases the cost of calculating all possible nogoods is not
justified by the need to test a few environments for consistency. Horn clause
proof trees offer an alternative test for consistency that does not generate
unrelated inconsistencies.

22

Theorist[8, 9] is a reasoning system based on first order logic, that ex-
plains observations by producing theories. Certain predicates are designated
as defaults, and these may be assumed true if doing so does not lead to
inconsistency. To explain an observation, Theorist selects a set of defaults,
that together with the known facts, entail the observation. This selected set
is called the theory. Theorist rejects any theory that is inconsistent.

Theorist implementations to date[10] use general clauses, and a proof pro-
cedure based on the MESON proof procedure to check theories for consistency.
In cases where Horn clauses are enough to encode the domain facts, Theo-
rist may take advantage of HC proofs. For diagnosing a full adder circuit, a
Theorist interpreter using HC proofs was 25% faster than a interpreter based
on the negative ancestor rule, but otherwise identical. We will describe our
implementation in another paper.

7 Summary

A pure Prolog program is a set of first order definite clauses. Each definite
clause is a disjunction of one positive literal and any number of negative lit-
erals. There can be no clause with only negative literals in a Prolog program,
so Prolog programs cannot assert or entail a negative literal. In this paper
we considered reasoning from a set of Horn clauses. A Horn clause is either a
definite clause or a clause with only negative literals. With Horn clauses it is
possible to assert and entail negative literals. We defined HC proofs for first
order logic without equality, and showed that they are sound and complete
with respect to model theory. A sequence of HC proofs can show that a set
of Horn clauses is inconsistent with a general clause.
The idea behind HC proofs is this:

To prove a literal g build a proof tree with g as the top level goal,
but assume that the negation of g is already proved.

HC proofs can be used to add logical negation to Prolog, without also
adding disjunction. We described the changes to a Prolog interpreter that
extend it to build HC proofs, and illustrated with a Prolog program. The
HC proof procedure involves less work than the MESON|[6] proof procedure, a
procedure for reasoning from general clauses.

23

We also applied HC proofs to the checking comsistency in Theorist, a
logic-based system for hypothetical reasoning. A Horn Theorist interpreter
diagnosed a full adder circuit 25% faster than a comparable Theorist imple-
mentation based on the negative ancestor rule.

Acknowledgements

Special thanks to Fahiem Bacchus for useful comments on a earlier draft.
This work has benefited from comments and discussions by Paul Kates, Peter
van Beek and Fei Song.

References

[1] Chin-Liang Chang and Richard Char-Tung Lee, Symbolic Logic and
Mechanical Theorem Proving, Academic Press (1973).

[2] Johan de Kleer, An assumption-based Truth Maintenance System, Ar-
tificial Intelligence 28:127-162 (1986).

[3] W. P. Dowling and J. H. Gallier, Linear-Time Algorithms for Testing
the Satisfiability of Propositional Horn Formulae, Journal of Logic Pro-
gramming 1(3):267-284 (1984).

[4] Jean Gallier and Stan Raatz, HORNLOG: A Graph-Based Interpreter
for General Horn Clauses, Journal of Logic Programming 4(2):119-155
(1987).

5] John Wylie Lloyd, Foundations of Logic Programming, Springer- Verlag
) g
(1984).

[6] D. W. Loveland, Automated Theorem Proving: A Logical Basis, North
Holland, Amsterdam (1978).

[7] Francis Jeffry Pelletier, Seventy-Five Problems for Testing Automated
Theorem Provers, Journal of Automated Reasoning 2:191-216 (1986).

[8] David Poole, Randy Goebel, and Romas Aleliunas, Theorist: a logical
reasoning system for defaults and diagnosis, in The Knowledge Frontier:

24

Essays in the Representation of Knowledge, N. Cercone and G. McCalla
(Eds.), Springer Verlag, New York, 331-352 (1987).

9] David Poole, A Logical Framework for Default Reasoning, Artificial In-
telligence, 36:27-47 (1988).

[10] David Poole, Compiling A Default Reasoning System into Prolog, Re-
search Report CS-88-01, Department of Computer Science, University
of Waterloo, Waterloo, Ontario, Canada (1988).

[11] M. E. Stickel, A Prolog Technology Theorem Prover, Journal of Auto-
mated Reasoning 4:353-380 (1989).

[12] Zerksis D. Umrigar and Vijay Pitchumani, An Experiment in Program-
ming with Full First-Ozder Logic, in Symposium of Logic Programming,
IEEE Computer Society Press, Washington D. C. (1985).

25

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

