AR Conn, NIM. Gould
Pl Toin
A

1h.

589617

March 1990

A Proposal for a Standard Data Input Format for
Large-Scale Nonlinear Programming Problems.

Andrew R. Conn 7, Nicholas I. M. Gould # and Philippe L. Toint §

Abstract

We propose a standard data input format for large-scale nonlinear
programming problems. Our intention is to allow users to concentrate their
efforts in modelling nonlinear phenomena rather than having to tailor their
problems to one of many input formats in use at present. In addition it will
allow designers of nonlinear programming algorithms to anticipate the input
that they are likely to receive. The standard is intended to be fully
compatible with the MPS linear programming standard currently in
widespread use.

1 Department of Combinatorics and Optimization, University of Waterloo, Ontario, Canada.
The research of this author was supported in part by NSERC grant A8639.

Computer Science and Systems Division, A.E.R.E. Harwell, Oxford, England.
§ Department of Mathematics, Facultés Universitaires ND de la Paix, B-5000, Namur, Belgium.
March 1990

1.1 Introduction

The mathematical modelling of many real-world applications involves the minimizaton or
maximization of a function of unknown parameters or variables. Frequently these parameters have known
bounds; sometimes there are more general relationships between the parameters. When the number of
variables is modest, say up to ten, the input of such a problem to an optimization procedure is usually
fairly straightforward. Unfortunately many applications areas now require the solution of optimization
problems with thousands of variables; in this case merely the input of the problem data is extremely
time-consuming and prone to error. Mcreover, the mathematical programming community is only now
designing algorithms for solving problems of this scale.

This work was motivated directly by the difficulties the authors were experiencing entering test
examples 1o their large-scale nonlinear optimization package (SBMIN/LANCELOT, in preparation, see
Conn, Gould and Toint, 1988a,b, 1990,Conn, Gould, Lescrenier and Toint, 1987). It soon became
apparent that if others were to be encouraged to carry out similar tests and even enticed to use our
software, the process of specifying problems had to be considerably simplified. Thus we were inevitably
drawn to provide a preliminary version of what is described in the present paper: a standard data input
format (SDIF) for nonlinear programming problems, together with an appropriate translator from the
input file to the form required by the authors’ minimization software. While understandably reflecting our
views and experience, the present proposal is intended to be broadly applicabie.

During the subsequent (and successive) stages of development of these preliminary ideas, various
important considerations were discussed. These strongly influenced the present proposal.

- There are many reasons for proposing a standard input format. The most obvious one is maybe the
increased consistency in coding nonlinear programming problems, and the resulting improvement in
code reliability. As every problem is treated in a similar and standardized way, it is more difficult to
overlook certain aspects of the problem definition. The providing of an SDIF file for a given
problem also allows some elementary (and very often helpful) automatic error and consistency
checking.

- A further advantage of having a standard input format is the long awaited possibility of having a
portable testbed of meaningful problems. Moreover, a testbed that can be expected to grow. The
authors soon experienced the daunting difficulties associated with specifying large scale problems —
not only the difficulty of writing down the specification correctly but also the actual coding (and
frequent re-coding) of a particular problem which often results in non-trivial differences between
the initial and final data. These differences could be a major obstacle to valid comparisons between
competing optimization codes. By contrast, having an SDIF file allows simple and unambiguous
data transfer via diskette, tape or electronic mail. The success of the NETLIB and Harwell/Boeing
problem collections for linear programming and sparse linear algebra (see, Gay, 1985, and Duff,
Grimes and Lewis, 1989) is a good recommendation for such flexibility. The formality required by
the SDIF approach may admittedly appear formidable for very simple problems, but is soon repaid
when dealing with more complex ones.

- Of course, the SDIF format should cover a large part of the practical optimization problems that
users may want to specify. Explicit provision should be made not only for unconstrained problems,
but also for constraints of different types and complexity: simple bounds on the variables, linear
and/or nonlinear equations and inequalities should be handled without trouble. Special structure of
the problem at hand is also a mandatory part of an SDIF file. For example, the structure of
least-squares problems must be described in an exploitable form. Sparsity of relevant matrices and
partial separability of involved nonlinear functions must be included in the standard problem

1

description when they are known. Finally, the special case of systems of nonlinear equations should
also be covered.

- The existence and worldwide success of the MPS standard input format for linear programming
must be considered as a de facto basis for any attempt to define an SDIF for nonlinear problems.
The number of problems already available in this format is large, and many nonlinear problems
arise as a refinement of existing linear ones whose linear part and sparsity structure are expected to
be described in the MPS format. It therefore seems reasonable to require that an SDIF for nonlinear
programming problems should conform to the MPS format. We were thus led to chose a standard
that corresponds to MPS, augmented with additional constructs and structures, thus allowing
nonlinearity, and the general features that we wished, to be described properly.

- The requirement of compatibility with the MPS format has a number of consequences, not all of
which are pleasant. The first one is that the new SDIF must be based on fixed format for the SDIF
file. Indeed, blanks are significant characters in MPS, when they appear in the right data fields, and
cannot be used a general separators for free format input in any compatible system. The second one
is the a priori existence of a style for keywords and overall layout of the problem description, style
which is not always ideally suited to the description of nonlinear problems. Thus our present
proposal accepts these limitations.

- The SDIF should not be dependent on a specific operating systern and/or manufacturer. In this
respect, it must avoid relying on tools that may be excellent but are too specific (yacc and lex, for
example). This of course does not prevent any implementation of an SDIF interpreter to use
whatever facilities are locally available.

The authors are very well aware of the shortcomings of the SDIF approach when compared to more
elaborate modelling languages (see, for example, GAMS (Brooke, Kendrick and Meeraus, 1988), AMPL
(Fourer, Gay and Kemighan, 1987) and OMP (Decker, Louveaux, Mortier, Schepens and Looveren,
1987)). These probably remain the best way to allow easy and error free input of large problems.
However, we contend that there is at present no language in the public domain which satisfactorily
handles the nonlinear aspects of mathematical programming problems. While the advent of a tool of this
nature is very much hoped for, it nevertheless seems necessary to provide something like the SDIF now.
This (we hope, intermediate) step is indeed crucial for the development and comparison of algorithms for
solving the large scale nonlinear problems, without which a more elaborate tool would be meaningless
anyway. The SDIF for nonlinear problems may also be considered as a first attempt to specify the
minimal structures that should be present in a true modelling language for such problems. It is also of
interest to develop a relatively simple input format, given that researchers developing new optimization
methods may have to implement their own code for translating the SDIF file into a form suitable for their
algorithms. At this level, some compromise between completeness and simplicity seems necessary.
Finally, the existence and availability of modelling languages for linear programming for a number of
years has not yet made the MPS format irrelevant.

Hence, the reader should be aware that what sometimes appear as unnecessarily restrictive “features”
of the proposed standard are often direct consequences of the considerations outlined above.

As we have already mentioned, structure is an integral and significant aspect of large-scale problems.
Structure is often equated with sparsity; indeed the two are closely linked when the problem is linear.
However, sparsity is not the most important phenomenon associated with a nonlinear function; that role is
played by invariant subspaces. The invariant subspace of a function f{x) is the set of all vectors w for

which f{ix+w)=£(x) for all possible vectors x. This phenomenon encompasses function sparsity. For
instance, the function

2

f(xl ,x2, cee ,xlw)=xSm
has a gradient and Hessian matrix each with a single nonzero, has an invariant subspace of dimension 999,
and is, by almost any criterion, sparse. But the function

Rxy,%0, . s X1000) = (X1 +..... +x1000)2
has a completely dense Hessian matrix but still has an invariant subspace of dimension 999, the set of all
vectors orthogonal to a vector of ones. The importance of invariant subspaces is that nonlinear
information is not required for a function in this subspace. We are particularly interested in functions
which have large (as a percentage of the overall number of variables) invariant subspaces. This aliows for
efficient storage and calculation of derivative information. The penalty is, of course, the need to provide
information about the subspace to an optimization procedure.

A particular objective function F(x) is unlikely to have a large invariant subspace itself. However,
many reasonably behaved functions may be expressed as a sum of element functions, each of which does
have a large invariant subspace. This is certainly true if the function is sufficiently differentiable and has
a sparse Hessian matrix (see, Griewank and Toint, 1982). Thus, rather than storing a function as itself, it
pays to store it as the sum of its elements; the elemental representation of a particular function is by no
means unique and there may be specific reasons for selecting a particular representation. Specifying
Hessian sparsity is also supported in the present proposal, but we believe that it is more efficient and also
much easier to specify the invariant subspaces directly.

In this paper, we shall consider two types of nonlinear programming problem; the data required for the
two is identical in form and the actual optimization problem solved is left to the optimization procedure.

The first problem is the minimization or maximization of an objective function of the form
n
f 4
(1.1.1) F(x)=z{ g,.(z;wi,jfj(xj)+a,-1x—b,-), X=(Xg, X0 X,p)
= jed; o

within the “box™ region
(1.1.2) l;Sx;<u;, 1<sisn

and where either bound on each variable may be infinite. The univariate functions g; are known as group
functions. The argument

zjwi,jfj(xj)+a,-rx-—bi
JE€J;

is known as the i~th group. The functions fjrj=1,....n,, are called nonlinear elements functions. They
are functions of the problem variables x o where the x ; are either small subsets of x or such that fl has a
large invariant subspace for some other reason. Each index set J; is a subset of {1,, n, }. The constants
w, ; are known as weights. Finally, the function a ,T x—b; is known as the linear element for the i~th
group.

The second problem is the minimization or maximization of an objective function of the form

(1.1.3) go(Zw,'jfj(xj)+aorx—bo), X=(X], X500 X,)
) jelJ,

within the *box” region (1.1.2) and where the variables are required to satisfy the extra conditions
(1.1.4) g,.(zw,._jfj(xj)ﬂ,.’x—b,.) =0 (iely)
jeJ;

and

< T < .
(1.1.5) 0 {2} gi(jexjwi'jfj(xj)+a‘- x—b‘-) {z} ris (iel))

for some index sets I and /; and (possibly infinite) values r;. Again the functions g, are known as group
functions, although it it more common to call those in (1.1.4) equality constraint functions, those in (1.1.5)
inequality constraint functions and that in (1.1.3) the objective.

As can be seen, the data for either problem is of the same form. We need to specify the group functions,
linear and nonlinear elements and the way that they all fit together.

In §1 of this paper, we explain how we propose to exploit the structure in problems of the form
(1.1.1)«(1.1.5). We do this both in general and with respect to a number of examples. Details of the way in
such structure may be expressed in a standard data input format follow in §2. The input of nonlinear
information for element and group functions is covered in §3 and §4 respectively. The relationship to
existing work is presented in §5 and conclusions drawn in §6. A further set of examples and the resulting
input files are given in an appendix to the paper.

1.2 Problem, elemental and internal variables

A nonlinear element function f; is assumed to be a function of the problem variables x ;» @ subset of the
overall variables x. Suppose that x § has n ; components. Then one can consider the nonlinear element
function to be of the structural form fi(v,,... ,v,,j), where we assign v, =X;,... 2Va, =X - The
elemental variables for the element function fj are the variables v and, while we need to associate the
particular values x; with v, it is the elemental variables which are important in defining the character of

the nonlinear element functions.

As an example, the first nonlinear element function for a particular problem might be

(1.2.1) (x29 +X3—2x17)eng_x";
this is of the structural form
(1.2.2) fl(vl,vz,v3)=(v1+v2—2v3)ev‘_v’,

where we need to assign v, =x,, v, =x5 and v, =x,,. For this example, there are three elemental
variables.

The example may be used to illustrate a further point. Although f, is a function of three variables, the
function itself is really only composed of wo independent parts; the product of v, +v, —2v, withe™' 2,
or, if we write &, =v, +v, —2v; and u, =v, —v,, the product of u, with ¢"*. The variables #,; and u,
are known as internal variables for the element function. They are obtained as linear combinations of the
elemental variables. The important feature as far as an optimization procedure is concerned is that each

nonlinear function involves as few internal variables as possible, as this allows for compact storage and
more efficient derivative approximation.

It frequently happens, however, that a function does not have useful internal variables. For instance,
another element function might have structural form

(1.2.3) fa(vy,v,y)=v,sinv,,
where for example v, =x, and v, =x,,. Here, we have broken f, down into as few pieces as possible;
Although there are internal variables, u, =v, and u, =v,, they are the same in this case as the elemental
variables and there is no virtue in exploiting them. Moreover it can happen that although there are special

intenal variables, there are just as many internal as elemental variables and it therefore doesn’t
particularly help to exploit them. For instance, if

(1.2.4) F3(vy,vy)=(v, +v,)log(v, —v,),
where, for example, v, =x,, and v, =x,, the function can be formed as u,log u,, where u, =v, +v, and

uy=v,—v,. But as there are just as many intemal variables as elementals, it will not nomally be
advantageous to use this internal representation.

Finally, although an element function may have useful internal variables, the user may decide not to
exploit them. The optimization procedure should still work but at the expense of extra storage and
computational effort.

In general, there will be a linear transformation from the elemental variables to the internal ones. For
example (1.2.2), we have

1 1-2\("
(1.2.5) (:2‘)=(1 0 _1) 2

V3

while in (1.2.3), we have

w_ (1 0\ /v,
(1.2.6) uy)= 0 1)y,)
In general the transformation will be of the form

1.2.7 u=Wy

and this transformation is useful if the matrix W has fewer rows than columns.

1.3. Element and group types

It is quite common for large nonlinear programming problems to be defined in terms of many nonlinear
elements. It is also common that these elements, although using different problem variables, are
structurally the same as each other. For instance, the function

=1 .
1.3.1) 2 (xpy)
=1
naturally decomposes into the sum of n—1 group functions. Each group is a nonlinear element function
vV, of the two elemental variables v, and v, evaluated for different pairs of problem variables. More
commonly, the elements may be arranged into a few classes; the elements within each class are
structurally the same. For example, the function

1

(132) Y, (xixpq +x,/%,)
i=1

naturally decomposes into the sum of n—1 group functions. Each group is the sum of two nonlinear
elements v,v, and v,/v, again evaluated at different pairs of problem variables. A further common
occurrence is the presence of elements which have the same structure, but which differ in using different
problem variables and other auxiliary parameters. For instance, the function

n-1

(1.3.3) 3 (ix;xg)!

=1

naturally decomposes into the sum of n~1 group functions. Each group is a nonlinear element p 1V v, of
the single parameter p; and two elemental variables v, and v, evaluated for different values of the
parameter and pairs of problem variables. Any two elements which are structurally the same are said to be

5

of the same type. Thus examples (1.3.1) and (1.3.3) use a single element type, where as (1.3.2) uses two
types. When defining the data for problems of the form (1.1.1)—(1.1.5), it is unnecessary to define each
nonlinear element in detail. All that is actually needed is to specify the characteristics of the element types
and then to identify each f; by its type and the indices of its problem variables and (possibly) auxiliary
parameters.

The same principal may be applied to group functions. For example, the group functions that make up

n-1

(13.4) T (xix)?

=1

have different arguments but are structurally all the same, each being of the form g,(a)= a?. Asa slightly
more general example, the group functions for

-1

(1.3.5) Y i(x;x)?

=1

have different arguments and depend upon different values of a parameter but are still structurally all the
same, each being of the form g(a) =p,az2 for some parameter p,. Any two group functions which are
structurally the same are said to be of the same type; the structural function is known as the group type
and its argument is the group-type variable. Once again, using group types makes the task of specifying
the characteristics of individual group functions more straightforward. The group type g(a)= ais known
as the trivial type. Trivial groups occur very frequently and are considered to be the default type. It is then
only necessary to specify non-trivial group types.

1.4. An example
We now consider the small example problem,
minimize F(x, ,xz,x3)=_=x12 +x§x§1 +X,8in(x; +x3)+x, x4 +x,

subject to the bounds ~1 <x, <1 and 1 Sx4 2. There are a number of ways of casting this problem in the
form (1.1.1). Here, we consider partitioning F into groups as

(x)? + (xx3)* + (x,8in(x) +X3)+x,x3+x,)
14.1) T
group 1 group 2 group 3
Notice the following:

i. group 1 uses the non-trivial group function g,(@)= o?. The group contains a single linear element; the
element function is x.

ii. group 2 uses the non-trivial group function g, (@)= a®. The group contains a single nonlinear element;
this element function is x,x,. The element function has mwo elemental variables, v, and v,, say, (with
V) =X, and v, =x,) but there is no useful transformation to internal variables.

iii. group 3 uses the trivial group function g,(a)=a. The group contains two nonlinear elements and a
single linear element x,. The first nonlinear element function is x,sin(x, +x,). This function has three
elemental variables, v,, v, and v,, say, (with v, =x,, v, =x, and v, =x,), but may be expressed in terms
of swo internal variables u, and u,, say, where u, =v, and u, =v, +v,. The second nonlinear element
function is x,x,, which has two v, and v, (with v, =x, and v, =x,) and is of the same type as the
nonlinear element in group 2.

Thus we see that we can consider our objective function to be made up of three groups; the first and
second are non-trivial (and of different types) so we will have to provide our optimization procedure with
function and derivative values for these at some stage. There are three nonlinear elements, one from group
two and two more from group three. Again this means that we shall have to provide function and
derivative values for these. The first and third nonlinear element are of the same type, while the second
clement is a different type. Finally one of these element types, the second, has a useful transformation
from elemental to internal variables so this transformation will need to be set up.

1.5. A second example

‘We now consider a different sort of example, the unconstrained problem,
999
(1.5.1) minimize F(x;, ..., X)000) =(X, sin(x? +x 200 +x; — 1)) +1sin(x 2).
=1

Once again, there are a number of ways of casting this problem in the form (1.1.1), but the most natural is
to consider the argument of each sine function as a group — the group function is then g:(@)=p,sing,

1<i<1000, for various values of the parameter p,. Each group but the last has two nonlinear elements,
x200 and x? 1<i<999 and a single linear element x, — 1. The last has no linear element and a single

nonlinear element, xxzooo- A single element type, vlz. of the elemental variable, v,, covers all of the
nonlinear elements.

Thus we see that we can consider our objective function to be made up of 1000 nontrivial groups, all of
the same type, so we will have to provide our optimization procedure with function and derivative values
for these at some stage. There are 1999 nonlinear elements, two from each group except the last, but all of
the same type and again this means that we shall have to provide function and derivative values for these.
As there is so much structure to this problem, it would be inefficient to pass the data group-by-group and
element-by-element. Clearly, one would like to specify such repetitious structures using a convenient
shorthand.

1.6. A final example
As a third example, consider the constrained problem in the variables x, ..., X390 and y

(1.6.1) minimize }((x, —x,00)x, +)?

subject to the constraints
(1.6.2) X X (1 4+2/Dx,x,00 +y<0 (15i<99),
(1.6.3) 0<(sinx;)®<} (15i<100),
(1.6.4) (x, +x,0)2 =1

and the simple bounds
(1.6.5) -1<x;<i (1<€i<100).

As before, there are a number of ways of casting this problem in the form (1.1.2)(1.1.5). We chose to
decompose the problem as follows:

i. the objective function group uses the non-trivial group function g() =ja?. The group contains a single
linear element; the element function is y. There is also a nonlinear element (x; —x;o9)x,. This element
function has three elemental variables, v,, v, and v4, say (with v, =x,, v, =X and v5 =x,); there is a
useful transformation from elemental to internal variables of the form u, =v, —v, and u, =v; and the
element function may then be represented as u, u,.

ii. The next set of groups, inequality constraints, x,x;,; +(1+2/)x;x,9 +y<0 for 1<i<99 are of the
form (1.1.5) with no lower bounds. Each uses the trivial group function g(o)= & and contains a single
linear element, y, and two nonlinear elements x x;,, and (1+2/i)}x;x,q,. Both nonlinear elements are of
the same type, p,v,Vv,, for appropriate variables v, and v, and parameter p, and there is no useful
transformation to internal variables.

iii. The following set of groups, again inequality constraints, 0 < (sinx l-)2 <} for 1<i< 100 are of the form
(1.1.5) with both lower and upper bounds. Each uses the non-trivial group function g(a)= ¢ and contains
a single nonlinear element of the type sinv, for an appropriate variable v, . Notice that the group types for
these groups and for the objective function group are both of the form g(a)=p, o, for some parameter
P, and it may prove more convenient to use this form to cover both sets of groups.

iv. The last group, an equality constraint, (x, +x100)2 - 1=0isof the form (1.1.4). Again, this group uses
the trivial group function g(a)=« and contains a single linear element, —1, and a single nonlinear
element of the type (v, +v2)2 for appropriate elemental variables v, and v,. Once more, a single internal

variable, u, =v; +v, can be used and the element is then represented as u?.

Thus we see that we can consider our problem to be made up of 201 groups of two different types so we
will have to provide our optimization procedure with function and derivative values for these at some
stage. There are 200 nonlinear elements of four different types and again this means that we shall have to
provide function and derivative values for these. As for the previous example, there is so much structure
to this problem and it would be inefficient to pass the data group-by-group and element-by-element.
Again, one needs to specify this repetitious structure using a convenient shorthand.

We now consider how to pass the data for these and other problems to an optimization procedure. In our
description, we will concentrate on our third example; we will show how the input file might be specified
for this example to motivate the overall structure of such a file and then follow this with the general
syntax allowed.

2. The standard data input format

The data which defines a particular problem is written in a file in a standard format. It is intended that
this data file is interpreted by an appropriate decoding program and converted into a format useful for
input to an optimization package or program. The content of the file is specified line by line. As our
format is intended to be compatible with the MPS linear programming format (MPS/360 Version 2,

Linear and separable programming — users manual H20-0476-2, 1969), we preserve the MPS terminology
and call these lines cards.

2.1 Introduction to the standard data input format

As we have just said, the data format is designed to be compatible with the MPS linear programming
format. There are, however, extensions to allow the user to input nonlinear problems. The user must
prepare an input file consisting of three types of cards:

1 Indicator cards, which specify the type of data to follow.
2 Data cards, which contain the actual data.

3 Comment cards.

Indicator cards contain a simple keyword to specify the type of data that follows. The first character of
such cards must be in column 1; indicator cards are the only cards, with the exception of comment cards,
which start in column 1. Possible indicator cards are given in Figure 2.1.

keyword comments presence described in §
NAME . mandatory 221
either
GROUPS mandatory 2.2.6
ROWS synonym for GROUPS mandatory 226
CONSTRAINTS synonym for GROUPS 2.2.6
VARIABLES mandatory 227
COLUMNS synonym for VARIABLES 227
or

VARIABLES mandatory 228
COLUMNS synonym for VARIABLES 228
GROUPS mandatory 229
ROWS synonym for GROUPS 229
CONSTRAINTS synonym for GROUPS 229
CONSTANTS optional 2.2.10
RHS synonym for CONSTANTS 22.10
RHS' synonym for CONSTANTS) 2.2.10
RANGES optional 2.2.11
BOUNDS optional 22.12
START POINT optional 2.2.13
ELEMENT TYPE optional 22.14
ELEMENT USES optional 2.2.15
GROUP TYPE optional 22.16
GROUP USES optional 2217
OBJECT BOUND optional 2.2.18
ENDATA mandatory 222

Figure 2.1. Possible indicator cards

Indicator cards must appear in the order shown, except that the GROUPS and VARIABLES sections
may be interchanged to allow specification of the linear terms by rows or columns. The cards
CONSTANTS, RHS', RHS, RANGES, BOUNDS, START POINT, ELEMENT TYPE, ELEMENT
USES, GROUP TYPE, GROUP USES and OBJECT BOUND are optional.

9

The data cards are divided into six fields. The content of each field varies with each type of data card as
described in §2.2. Those in fields 1, 2, 3 and 5 must always be left justified within the field. Field 1, which
appears in columns 2 and 3, may contain a code (that is, a one of two character string which defines the
expected contents of the remaining fields on the card), fields 2, 3 and 5 may hold names and fields 4 and
6 might store numerical values. The numerical values are defined by up to 12 characters which may
include a decimal point and an optional sign (a positive number is assumed unless a - is given). The value
may be followed by a decimal exponent, written as an E or D, followed by a signed or unsigned one or
two digit integer; the first blank after the E or D terminates the field. The names of variables, nonlinear
elements or groups may be up to ten characters long. These names may include integer indices, see §2.1.1.

Any card with the character * in column 1 is a comment card; the remaining contents of the card is
ignored. Such a card may appear anywhere in the data file. In addition, completely blank cards are
ignored when scanning the input file and may thus be used to space the data. Finally, the presence of a $
as the first character in fields 3 or 5 of a data card indicates that the content of the remaining part of the
card is a comment and will be ignored.

2.1.1 The names of variables, nonlinear elements and groups

One of the positive features of the MPS standard is the ability to give meaningful names to problem
constraints and variables. As our proposal is intended to be MPS compatible, we too have this option.
However, one of the less convenient features of the MPS standard is the cumbersome way that repetitious
structure is handled. In particular, the name of each variable and constraint must be defined on a separate
line, and structure within constraints is effectively ignored when setting up the constraint matrix. We
consider it important to overcome this deficiency of the MPS standard when formulating large-scale
examples. One way is to allow variable, group and nonlinear element names to have indices and to have
syntactic devices which enable the user to define many items at once.

We allow any variable, group or nonlinear element to have a name using up to ten valid characters. A
valid character is any ASCII character whose decimal code lies in the range 32 to 126 (binary 0100000 to
11111110, hex 20 to 7E) (see, for instance, the Dictionary of Computing, Oxford University Press, 1983).
This include lower and upper case roman alphabetic characters, the digits O to 9, the blank character and
other mathematical and grammatical symbols. A name can be one of the following:

(i) a scalar name of the form ££££££££££ where each £ is a valid character type excepting that the
first £ cannotbe a $.

(ii) an array name of the form name (index) , where index is a list of integer index names, name is
a list of valid characters (the first character may not be a $) and the maximum possible size of the
expanded name does not exceed ten characters. The list of index names must be of the form
listl,1list2,1ist3, where listl, 1ist2 and 1ist3 are predefined index (parameter)
names (see §2.2.3, below) and all three indices are optional. The indices are only allowed to take on
integer values. Commas are only required as separators; the presence of an open bracket “ (~
announces a list of indices and a close bracket **) ~ terminates the list. A vector name is expanded as
namenumberl, number2, number3, where numberi, i =1, 2, 3 is the integer value
allocated to the index 1isti at the time of use.

As an example, the expanded form of the array name X (I, J, K) when I, J and X have the values 3,
4 and 6 respectively would be X3, 4, 6, while it would take the form X-6,0,3if I, Jand K have the
values -6, 0 and 3 respectively. However, X (I, J, K) could not be expanded if I, J and K were each

allowed to be as large as 100 as, for instance, X100, 100, 100 is over ten characters long and thus not a
valid expanded name.

10

An array item may be referred to by either its array name (so long as the index lists have been specified)
or by its expanded name. Thus, if I, J and K have been specified as 2, 7 and 9 respectively, X(I, J, K)
and X2, 7, 9 are identical.

If two separators (opening or closing brackets and commas) are adjacent in an array name, the
intervening index is deemed not to exist and is ignored when the name is expanded. Thus, the expanded
name of Y () is just Y, while thatof 2 (I, ,K) is 23,4 if Tis3andKis 4. Furthermore any name which
does not include the characters (,) or , may be used as an array name and is its own expanded name.
Thus the name X may be a scalar or array name whereas W(and V, can only be scalar names.

We defer the definition of integer indices until §2.2.3.

Note that blanks are considered to be significant characters. Thus if _ denotes a blank, the names _X
and X__ are different. It is recommended that all names are lefi-shifted within their relevant data fields to
avoid possible user-instigated name recognition errors.

2.1.2 Numerical values

The definition of a specific problem normally requires the use of numerical (real) data values. Such
values can be specified in two ways. Firstly, the values may simply occur as floating point numbers in
data fields 4 and 6. Secondly, values may be allocated to named parameters, known as real parameters,
and a value subsequently used by reference to particular real parameter name. This second method may
only be used to allocate values on certain cards; when this facility is used, the first character in field 1 on
the relevant data card will be a V or 2. This latter approach is particularly useful when a value is to be
used repeatedly or if a value is to be changed within a do-loop (see §2.2.4).

We defer the definition of real parameters until §2.2.3.

2.1.3 An example.

Before we give the complete syntax for an SDIF file, we give an illustrative example. In order to
exhibit as many constructs as possible, we consider how we might encode the example in §1.6. We urge
the reader to study this section in detail. As always, there are many possible ways of specifying a
particular problem; we give one in Figure 2.1.3. The horizontal and vertical lines are merely included to
indicate the extent of data fields. The actual widths of the fields are given at the top of the figure, and the
column numbers given at its foot.

The SDIF file naturally divides into two parts. In the first part, lines 2 to 39 of the figure, we specify
information regarding linear functions used in the example. In the second part, lines 40 to 93, we specify

nonlinear information. The first part is merely an extension of the MPS input format; the second part is
new.

The file must always start with a NAME card, on which a name (in this case EG3) for the example may
be given (line 1), and must end with an ENDATA card (line 94). A comment is inserted at the end of line 1
as to the source of the example. The character $ identifies the remainder of the line as a comment; the
comment is ignored when intespreting the input file.

We next specify names of parameters which will occur frequently in specifying the example (lines 2 to
5). In our case the integer and real parameters 1 and ONE are given along with N, a problem dimension —
here N is set to 100, but it would be trivial to change the example in 1.6 to allow variables Xy, s X, for
any n. We make a comment to this effect on line 4; any card with the character * in column 1 is a
comment card and its content ignored when interpreting the input file.

11

3 «10- « 10 -5 « 12 - « 10 o « 12
line F.1 Field2 Field 3 Field 4 Field 5 Field 6
1 EME [EG3 S The example of sec.1.6
2 |l l:‘ 1
3 1D 100
4 [variants of sec.l.6may be obtained by choice of N on the previous card
s lRD IONE 1.0
6 FROUPS
7 BJ
8 IA [NM1 L‘l -1
9 0 |I 1 INM1
10 L |CONLE (I)
11 D
12 0O I 1 N
13 G ICONGE (I)
14 D
15 ONEQ
16 {VARIABLES
17 0 {1 1 N
18 (I)
19 D
20 Y OBJ 1.0
21 ol 1 %1
22 Y ICONLE (I) 1.0
23 D
24 |[CONSTANTS
25 1 CONEQ 1.0
26 RANGES
27 0 I 1 INM1
28 IR1 ICONGE (1) 0.5
29 D
30 %OUNDS
31 DL [BND1 -1.0
32 DO [T 1 JN
33 I ALI T
34 |lzu leun1 X (1) REALI
35 D
36 R [BND1 Y
37 |START POINT
38 D |[START1 0.5
39 TART1 IY 0
40 LEMENT TYPE
41 3PROD V1 v2
42 3PROD v3
43 3PROD Ul u2
44 2PROD V1 V2
45 PROD 18
46 SINE V1
47 [SQUARE V1 V2
48 SQUARE ul
T T TT 1 T T 1T Tt *
1235 10 1215 2225 36 4 4750 61

Figure 2.1.3 (part 1). SDIF file for the example of §1.6

We now name the problem variables and groups (in our example objective function and constraints)
used. The groups may be specified before or after the variables. We chose here to name the groups first.

12

3 «10- « N -9 12 10 - 12
line F.1 Field2 Field 3 Field 4 Field 5 Field 6
49 [ELEMENT USES
50 {lv |oBn1 3PROD
st |v Bon v1 X1
52 | v o1 V2)
53 (v oIl V3 Ez
54 lpol 1 M1
55 | |za [ze2 1 1
56 | T [cLEA (1) 2PROD
57 CLEA (1) V1 k(l)
58 CLEA (1) V2 (IP1)
59 ICLEA (1) P1 1.0
60 CLEB (1) 2PROD
61 ICLEB (I) V1 (1)
62 CLEB (1) 2 o)
63 ALI i
64 10VERI IREALT
65 20VERI 1 OVERI 2.0
66 20VAI+1 20VERT ONE
67 ICLEB (1) p1 20VAT+1
68
69 1 1 N
70 ICGE (T) SINE
7 CGE (I) b1 ki
72
73 ICEQ1 |SQUARE
74 CEQL V1 1
75 CEQ1 2 b ()
76 [GROUP TYPE
77 v [PSQUARE [ALPRA
78 P PSQUARE [Pl
79 kRroup uses
80 |ir loBs P SQUARE
81 oBJ 0B.J1
82 loBJ p1 0.5
83 |poir il INM1
84 E CONLE(I) [CLEA(I) lcLEB (1)
85 D
86 Do |1 1 N
87 T ICONGE(I) [PSQUARE
88 E JCONGE(I) [CGE(I)
89 P ICONGE(I) [p1 1.0
90 D
91 cONEQ ICEQ1
92 [oBJECT BOUND
93 |}o osounn b0
94 [ENDATA
™TMTT Tt 1 Tt T 1 T1
123 5 10 12 15 225 36 40 4750

Figure 2.1.3 (part 2). SDIF file for the example of §1.6

The objective function will be known as OBJ (line 7); the character N in field 1 specifies that this is an
objective function group. The inequality constraints (1.6.2) and (1.6.3) are named CONLE1,
CONLE99 and CONGE1, ..., CONGE100 respectively. Rather than specify them individually, a do loop is
used to make an array definition. Thus the constraints CONLE1,
lines 9 to 11 with the do loop index I running from the previously defined value 1 to the value NM1 . The

13

..., CONLE99 are defined en masse on

integer parameter is defined on line 8 to be the sum of N and the value — 1 and in our case will be 99. The
characters XI-in field 1 of line 10 indicate that an array definition is being made (the X) and that the
groups are less-than-or-equal-to constraints (the L) . The do loop introduced on line 9 with the characters
DO in field 1 is terminated on line 11 with the characters ND in its first field. In a similar way, the
constraints CONGE1, ..., CONGES9 are defined all together on lines 12 to 14; that these constraints
involve bounds on both sides is taken care of by considering them to be greater-than-or-equal-to
constraints (XG) on line 13 and later specifying the additional upper bounds in the RANGE section (lines
26 10 29). Finally, the equality constraint (1.6.4) is to be called CONEQ (line 7); the character E in field 1
specifies that this is an equality constraint group.

Having named the groups, we next name the problem variables. At the same time, we include the
coefficients of all the linear elements used. The variables are named X1, ..., X100 and Y; an array
declaration is made for the former set on lines 17 to 19 and Y is defined on line 20. The character X in field
1 of line 18 indicates that an array definition is used. Only the objective function (1.6.1), inequality
constraint (1.6.2) and equality constraint groups (1.6.4) contain linear elements. As well as introducing
Y, line 20 also specifies that the linear element associated with group OBJ (field 3) involves variable Y
and that Y s coefficient in the linear element is 1.0 (field 4). A do loop is now used in lines 21 to 23 to
show that the linear elements for constraints (1.6.2) also use the variable Y. It is assumed that unless a
variable is explicitly identified with a linear element, the element is independent of that variable. Thus,
although (1.6.4) uses a linear element, the element is constant and need not be specified in the
VARIABLES section

The only remaining part of the linear elements which must be specified is the constant term. Again,
only nonzero constants need be given. For our example, only the equality constraint group (1.6.4) has a
nonzero constant term and this data is specified on lines 24 and 25. The string C1 in field 2 of line 25 is
the name given to a specific set of constants. In general more than one set of constants may be specified in
the SDIF file and the relevant one selected in a postprocessing stage. Here, of course, we only have one
set.

As we have seen, the inequality constraint groups (1.6.3) are bounded from above as well as from
below. In the RANGES section (lines 26 to 30) we specify these upper bounds (or range constraints as they
are sometimes known). The numerical values } are specified for each bound for the relevant groups in an
array definition on line 28; the string R1 in field 2 is once again a name given to a specific set of range
values as it is possible to define more than one set in the RANGES section.

We now tum to the simple bounds (1.6.5) which are specified in lines 30 to 36 of the example. Ail
problem variables are assumed to have lower bounds of zero and no upper bounds unless otherwise
specified. All but one of the variables for our example have lower bounds of — 1. We thus change the
default value for the value of the lower bound on line 31 — the set of bounds is named BND1. The
character D in field 1 indicates that the default is being changed and the character L specifies that it is the
lower bound default that is to be changed. The variable x; is given an upper bound of i. We encode that in
a do loop on lines 32 to 35 of the figure. The do loop index I is an integer. We change its current value to
areal on line 33 and assign that value as the upper bound on line 34. The character Z in field 1 of this line
indicates that an array definition is being made and that the data is taken from a parameter in field 5 (as
opposed to a specified numerical value in field 4) and the character U specifies that the upper bound value
is to be assigned. The variable y is unbounded or, as it is often known, free. This is specified on line 36,
the string FR in field 1 indicating that Y is free.

The final “linear” piece of information given is an estimate of the solution to the problem (if known) or
at least a set of values from which to start a minimization algorithm. This information is given on lines 37

14

to 39. For our problem, we choose the values x; =}, 1<i<100 and y=0. Unless otherwise specified, all
starting values take a default of zero. We change that default on line 38 to | — the set of starting values are
named START1 — and then specify the individual value for the variable Y on line 39.

We now specify the nonlinear information. We saw in §1.6 that there are four element types for the
problem, being of the form (i) (v, —v,)vs4, (i) p;v,v,. (iii) sinv, and (iv) (v, +v2)2. In the ELEMENT
TYPE section on lines 40 to 48, we record details of these types. We name the four types (i)(iv) 3PROD,
2PROD, SINE and SQUARE respectively. For 3PROD, we define the elemental variables (lines 41 and
42) to be V1, V2 and V3 and the internal variables (line 43) to be Ul and U2 . Elemental variables may
be defined, two to a line, on lines for which field 1 is EV. Internal variables, on the other hand, are
defined on lines with IV in field 1. Similar definitions are made for 2PROD (line 44), SINE (line 46) and
SQUARE (line 47). The type 2PROD also makes use of a parameter p,. This is named P1 on line 45 for
which field 1 reads EP .

Having specified the element types, we next specify individual nonlinear elements in the ELEMENT
USES section. As we have seen, the objective function group uses a single nonlinear element of type
3PROD. We name this particular element OBJ1. On line 50, the character T in field 1 indicates that the
OBJ1 is of type 3PROD. The assignment of problem to elemental variables is made on lines 51 to 53.
Problem variables X1 and X3 are assigned to elemental variables V1 and V3; the assignment is indicated
by the character V in field 1. In order to assign x,q, (or in general x,) to v,, we assign the array entry
X (N) to V2. Notice that as an array element is being used, this must be specially flagged (XV in field 1)
as otherwise the wrong variable (called X (N) rather than X100 which is the expanded form of X (N))
would be assigned. There are two nonlinear elements for each inequality constraint group (1.6.2), each
being of the same type 2PROD. We name these elements CLEAl, ..., CLEA99 and CLEB1, ..,
CLEBR99. The assignments are made on lines 54 to 68 within a do loop. On lines 56 and 60 the elements
are named and their types assigned. As array assignments are being used, field 1 for both lines contains
the string XT. The elemental variables are then associated with problem variables on lines 57-58 and
61-62 respectively. Again array assignments are used and field 1 contains the string XV. Notice that on
line 58 v, is assigned the problem variable x,,,, where the index IP1 is defined as the sum of the index I
and the integer value 1 on line 55. It remains to assign values for the parameter p, for each element. This
is straightforward for the elements CLEA1, ..., CLEA99 as the required value is always 1 and the
assignment is made on line 59 on a card with first field XP. The remaining elements have varying
parameter values 1+2/i. This value is calculated on lines 63 to 66 and assigned on line 67. Line 63
assigns REALI to have the floating point value of the index I and the reciprocal of this value, 10VERI,
is obtained on the next line. This new value is then multiplied by the value 2 on line 65 and the value
assigned to ONE is added to the resulting value on the final line. Thus the parameter 20VAI+1 holds the
required value of p, and the array assignment is made on line 67. On this line the string ZP indicates that
an array assignment is being made taking its value from the parameter 20VAI+1 in field 4 (the Z) and
that the elemental parameter P1 in field 3 is to be assigned (the P) . The definition of the nonlinear
elements for the remaining constraint groups is straightforward. The inequality constraints (1.6.3) each
use a single element, named CGE1, ..., CGE100, of type SINE and the appropriate array assignments
are made on lines 69 to 72. Finally, the equality constraint (1.6.4) is named CEQ1 and typed SQUARE
with appropriate elemental variable assignments on lines 73 to 75.

‘We next need to specify the nontrivial group types. This is done in the GROUP TYPE section on lines 76
to 78. We saw in §1.6 that a single nontrivial group, p, o, is required. On line 77, the name PSQUARE is
given for the type and the group type variable ais named ALPHA. The string GV in field 1 indicates that
a type and its variable are to be defined. On the following line field 1 is GP and this is used to announce
that the group type parameter p, is named P1.

15

Finally, we need to allocate nonlinear elements to groups and specify what type the resulting groups are
to be. This takes place within the GROUP USES section which runs from line 79 to 91. The objective
function group is nontrivial and its type is announced on line 80. The group uses the single nonlinear
element OBJ1 specified on line 81 and the group-type parameter p, is set to the value } on the next line.
The characters T, E and P in the first fields of these three cards announcing their purposes. The inequality
groups (1.6.2) each use two nonlinear elements, but the groups themselves are trivial (and thus their types
do not have to be made explicit). The assignment of the elements to each group is made in an array
definition on lines 83 to 85; line 84 is flagged as assigning elements to a group with the string XE in field
1. The second set of inequality constraints (1.6.3) use the nontrivial group type PSQUARE with parameter
value 1. Each group uses a single nonlinear element and the appropriate array assignments are contained
on lines 86 1o 90. Lastly the trivial equality constraint group (1.6.4) is assigned the nonlinear element
CEQ1 on line 91.

The definition of the problem is now complete. However, it often helps the intended minimization
program if known lower and upper bounds on the possible values of the objective function can be given.
For our example, the objective function (1.6.1) cannot be smaller than zero. This data is specified on lines
92 and 93. The string LO in field 1 of line 93 indicates that a lower bound is known for the value of
(1.6.1). The string OBOUND in field 2 of this line is a name given to this known bound. The value of the
lower bound now follows in field 4. No upper bound need be specified as the function is assumed to lie
between plus and minus infinity.

2.2 Indicator and data cards

We now give details of the indicator cards and the data cards which follow them.

2.2.1 The NAME indicator card

The NAME indicator card is used to announce the start of the input data for a particular problem. The
user may specify a name for the problem; this name is entered on the indicator card in field 3 and may be
at most 10 characters long. The syntax for the NAME card is given in Figure 2.2.1.

-~ 10 -

Field 3
EME Prob__name
T T
15 - 24

Figure 2.2.1. The indicator card NAME

22.2 The ENDATA indicator card

The ENDATA indicator card simply announces the end of of the input data. The data for a particular
problem, in the form of indicator and data cards, must lie between a NAME and an ENDATA card. The
syntax for the ENDATA card is given in Figure 2.2.2.

16

ENDATA

Figure 2.2.2. The indicator card ENDATA

2.2.3 Integer and real parameters

We shall use the word parameter to mean the name given to any quantity which is associated with a
specified numerical value. The numerical value will be known as the parameter value. Integer and real
values may be associated with parameters in two ways. The easiest way is simply to set a parameter to a
specified parameter value, or to obtain a parameter from a previously defined parameter by simple
arithmetic operations (addition, subtraction and multiplication for integer values, addition, subtraction,
multiplication and reciprocation for real values). The second way is to have a parameter value specified in
a do loop, or to obtain a parameter from one specified in a do loop (see §2.2.4 below).

The syntax for associating a parameter with a specific value is given in Figure 2.2.3.

& e 10 5 « 10 - « 2 -5 « 10 -
F1 Field2 Field 3 Field 4 Field 5

ID |lint_p_name numerical vl

IA |lint_p_name |int_p name jnumerical_ vl

IM jint_p_name [int_p name jnumerical vl

IS |int_p_name |int_p name int_p_ name
IP |int_p_name |int_p name int_p name
RD rl p name numerical vl

RI rl p name [int_p name

RR rl p name [rl _p name

RA [rl__p name rl_p name jnumerical_vl

RM [rl__p name rl p name jnumerical_vl

RS |rl p name [rl__ p name rl p name
RP |rl p name [rl__p name rl_ p name
RE [rl__p_ name |funct_name jnumerical vl

RF rl p name (funct_name rl p name
AD Ir p_a name numerical vl

AL r p a_name jint_p name

AR |r_p_a name ir p a name

AA [r_p_a_name |r_p_a name [numerical vl

AM r p a_name |r_ p a name numerical vl

AS r p a_name |r_p a_name r_p_a_name
AP Ir p a_name [r_ p_a name r_P_a_name
AE r p_a_name |[funct_name [numerical vl

AF |r p_a_name |[funct_name r p a name
™ TT T T 7T T
235 1415 2425 36 40 49

Figure 2.2.3. Possible cards for specifying parameter values

The two character string in data field 1 (F.1) specifies the way in which the parameter value is to be
assigned. If the first of these characters is an I the assigned value is an integer; the parameter will be
referred 10 as an integer parameter or integer index. Altematively, if the first of these characters is an R or
an A, the assigned value is a real and the parameter will be called a real parameter.

17

If the string is ID, the integer parameter int_p_name named in field 2 is to be given the integer
value specified in field 4. The parameter may be up to ten characters long, and the integer value can
occupy up to twelve positions.

If the string is IA, the integer parameter named in field 2 is to be formed by adding the value of the
parameter int_p_name referred to in field 3 to the integer value specified in field 4. The parameter
appearing in field 3 must have already been assigned a value.

If the string is IM, the value of the integer parameter named in field 2 is to be obtained by multiplying
the value already specified for the parameter in field 3 by the integer value specified in field 4. Once
again, the parameter appearing in field 3 must have already been assigned a value.

If the string is IS, the value of the integer parameter named in field 2 is to be calculated by summing
the values of the integer parameters int_p_name referred to in fields 3 and 5. The parameters appearing
in fields 3 and 5 must have already been assigned values.

Finally, if the string is IP, the value of the integer parameter named in field 2 is to be formed as the
product of the values already specified for the integer parameters in fields 3 and 5. Once again, the
parameters appearing in fields 3 and 5 must have already been assigned values.

Note that, as an array name can only be a maximum of 10 characters long, any integer parameter which
is to be the index of an array may only be at most seven characters in length. Furthermore, such a
parameter name may not include the characters * (", *) "or*,

If the string is RD the real parameter r1__p name named in field 2 is to be given the real value
specified in field 4. The parameter may be up to seven characters long, and the real value can occupy up to
twelve positions.

If the string is RI, the real parameter value named in field 2 is to be assigned the equivalent floating
point value of the integer parameter int_p_name specified in field 3. The parameter appearing in field
3 must have already been assigned a value.

If the string is RR, the real parameter value named in field 2 is to be assigned the reciprocal of the
value of the real parameter r1l__p name specified in field 3. Again, the parameter appearing in field 3
must have already been assigned a value.

If the string is RA, the value of the real parameter named in field 2 is to be formed by adding the value
of the real parameter r1__p name referred to in field 3 to the real value specified in field 4. The
parameter appearing in field 3 must have already been assigned a value.

If the string is RM, the value of the parameter named in field 2 is to be formed by multiplying the value
already specified for the real parameter in field 3 by the real value specified in field 4. Once again, the
parameter appearing in field 3 must have already been assigned a value.

If the string is RS, the parameter value named in field 2 is to be formed as the sum of the values of the
real parameters r1l__p_name referred to in fields 3 and 5. The parameters appearing in fields 3 and 5
must have already been assigned values.

If the string is RP, the value of the real parameter named in field 2 is to be formed as the product of the
values already specified for the real parameters in fields 3 and 5. Once again, the parameters appearing in
fields 3 and 5 must have already been assigned values.

If the string is RE, the value of the parameter named in field 2 is to be formed by evaluating the
function named in field 3 at the real value specified in field 4. The function funct_name — and its
mathematical equivalent f{x) — may be one of: ABS (fix)=1x|), SQRT (fiIx)=vx), EXP (fix)=€*), LOG

18

(fix)=log, x), LOGLO (fx)=log,px), SIN (fAx)=sinx), COS (Ax)=cosx), TAN (f{x)=tanx),
ARCSIN (fix)=sin"" x), ARCCOS (fix)=cos~! x), ARCTAN (fx)=tan"! x), HYPSIN (f{x)=sinhx),
HYPCOS (fix)=coshx) or HYPTAN (f{x)=tanhx). Certain of the functions may only be evaluated for
arguments lying within restricted ranges. The argument for SQRT must be non-negative, those for LOG
and LOG10 must be strictly positive, and those for ARCSIN and ARCCOS must be no larger than one in
absolute value.

Finally, if the string is RF, the value of the parameter named in field 2 is to be formed by evaluating
the function named in field 3 at the value of the real parameter r1__p_name specified in field 5. The
function (and its mathematical equivalent) may be any of those named in the previous paragraph and the
restrictions on the allowed argument ranges given above still apply.

If the first character in field 1 is an A, an array of real parameters are to be defined. The particular type
of definition is as for the R cards, excepting that any name, r_p a_name, referred to in fields 2, 3 or §,
with the exception of integer parameters named in field 3 of AI cards and functions named in the same
field of AE and AF cards, must be an real parameter array name with a valid index.

Parameter assignments may be made at any point within the SDIF file between the START and
ENDATA indicator cards. It is anticipated that parameters will be used to store values such as the total
number of variables and groups, which are used later in array definitions, and to allow a user to enter
regular and repetitious data in a straightforward and compact way.

2.2.4 Do loops

A do loop may occur at any point in the GROUPS, VARIABLES, CONSTANTS, RANGES,
BOUNDS, START POINT, ELEMENT USES or GROUP USES sections. Do loops are used to make array
definitions, that is, to make compact definitions of several quantities at once. The syntax required for do
loops is given in Figure 2.2.4.

o 7T - « 7 > « 7 -
F.1 Field2 Field 3 Field 5
DO [int_par int_par int_par

DI lint_par int_par

one or more array definitions

OD |int_par

l’ND

™1) T T 1T 1T
235 11 15 21 40 46

Figure 2.2.4. Syntax for do loops

The two character string in data field 1 specify either the start or the end of a do loop. The start of a loop
is indicated by the string DO . In this case an integer parameter named in field 2 is defined to take values
starting from the integer parameter value given in field 3 and ending with the last value before the integer
parameter value given in field 5 has been surpassed. The parameters named in fields 3 and 5 must have
been defined on previous data cards. The parameter name defined in field 2 can occupy up to seven

19

locations. If the next data card does not have the characters DI as its first field, the parameter defined on
the DO card, i1oop say, will take all integer values starting from that given in field 3, say istart, and
ending on that in field 5, iend say. If istart is larger than iend, the loop will be skipped.

If the data card following a DO card has the string DI in field 1, the do loop parameter named in field 2
is to be incremented by the amount, incr say, specified for the integer parameter given in field 3. Once
again, the parameter in field 3 must have been previously defined. The index i loop will now take values

iloop = istart +j: incr

for all positive j for which iloop lies between (and including) i start and iend. If incr is negative
and istart is larger than iend, the parameter specifies a decreasing sequence of values. If incr is
positive and istart is larger than iend, orif incr is negative and istart is smaller than iend,
the loop will be skipped.

Once a do loop has been started, any array definitions which use its do-loop index specify that the
definition is to be made for all values of the integer parameter specified in the loop. Loops can be nested
up to three deep; this corresponds to the maximum number of allowed indices in an array index list.

A do loop must be terminated. A particular loop can be terminated on a data card in which field 1
contains the characters OD ; the name of the loop parameter must appear in field 2. Alternatively, all loops
may be terminated at once using a data card in which field 1 contains the characters ND.

In addition, parameter assignments with the syntax given in Figure 2.2.3 — that is cards whose first field
are ID, IA, IM, IS, IP, RD, RI, RR, RA, RM, RS or RP — may be inserted at any point in a do
loop; it is only necessary that a parameter is defined prior to its use.

Note that array definitions may occur both within and outside do-loops; all that is required for a
successful array definition is that the integer indices used have defined values when they are needed. The
use of do loops is illustrated in §2.4.

2.2.5 The definition of variables and groups

In the MPS standard, the constraint matrix, the matrix of linear elements, is input by columns; firstly
the names of the constraints are specified in the ROWS section and then variable names and the
corresponding matrix coefficients are set one at a time in the COLUMNS section. While there is some
justification for this form of matrix entry for linear programming problems — the principal solution
algorithm for such problems, the simplex method (Dantzig, 1963), is usually column oriented — there
seems no good reason why the coefficients of linear elements might rot also be input by rows. After all, it
is more natural to think of specifying the constraints for a problem one at a time. Furthermore, requiring

that a complete row or column has been specified before the next may be processed is unnecessarily
restrictive.

We thus allow the data to be input in a either a group-wise (row-wise) or variable-wise (column-wise)
fashion. In a group/row-wise scheme, one or two coefficients and their variable/column names are
specified for a given group/row; for a variable/column-wise scheme, one or two coefficients and their
group/row names are specified for a given variable/column. We do however still require that in a
group/row-wise storage scheme, the names of all the variables/rows which appear in linear elements are
completely specified before the coefficients are input. Similarly, in a variable/column-wise storage
scheme, the names of all the groups/rows which have a linear element must be completely specified
before the coefficients are input. This allows for some checking of the input data.

20

If the groups/rows are specified first, there is no requirement that variables/columns are input one at a
time (but of course they may be). When processing the data file, variable/column names should be
inspected to see if they are new or where they have appeared before. Likewise, if the variables/columns
are specified first, there is no requirement that groups/rows are ordered on input. The coordinates of new
data values can then be stored as a linked triple (group/row, variable/column, value). Conversion from
such a component-wise input scheme to a row or column based storage scheme may be performed very
efficiently if desired (see Duff, Erisman and Reid, 1986, pp. 30-31 and subroutine MC39 in the Harwell
Subroutine Library).

If a variable/column-wise input scheme is to be adopted, the data file will contain a
GROUPS/ROWS/CONSTRAINTS indicator card and section followed by a VARIABLES/COLUMNS
card and section. The allowed data cards are discussed in §2.2.6 and §2.2.7. If a group/row-wise input
scheme is to be adopted, the data file will contain a VARTABLES/COLUMNS indicator card and section
followed by a GROUPS/ROWS/CONSTRAINTS card and section. The data cards for this scheme are
discussed in §2.2.8 and §2.2.9.

2.2.6 The GROUPS, ROWS or CONSTRAINTS data cards (variable/column-wise)

The GROUPS, ROWS and CONSTRAINTS indicator cards are used interchangeably to announce the
names of the groups which make up the objective function or, for constrained problems, the names of the
constraints (or rows as they are often known in linear programming applications). The user may give a
scaling factor for the groups or constraints In addition, groups which are linear combinations of previous
groups may be specified. The syntax for the data cards which follow these indicator cards is given in
Figure 2.2.6.

The one or two character string in data field 1 specifies the type of group, row or constraint to be input.
Possible values for the first character are:

N the group is to be specially marked (for constrained problems, the group/row is an objective
function group/row).

G the group is to use an extra “artificial” variable; this variable will only occur in this particular group,
will be non-negative and its value will be subtracted from the group function. For constrained
problems, this is equivalent to requiring the constraint/row be non-negative; the extra variable is
then a surplus variable and whether it is used explicitly (considered as a problem variable) or
implicitly will depend upon the optimization technique to be used. Thus, if the problem variables
are x, and the k—th group has a linear element &, “x—b,, the linear element that will be passed to the
optimization procedure could be a ,‘Tx -y —b,, for some non-negative variable y,.

L the group is to use an extra “artificial” variable; this variable will only occur in this particular group,
will be non-negative and its value will be added to the group function, For constrained problems,
this is equivalent to requiring the constraint/row be non-positive; the extra variable is then a slack
variable and may be used explicitly or implicitly by the optimization procedure. Thus, if the linear
element is as specified above, the linear element that will be passed to the optimization procedure
could be a, Tx+y, —b,, for some non-negative variable y r

E the group is a normal one (for constrained problems, the row/constraint is an equality),

X and 2 an array of groups are to be defined at once. When the first character is an X or 2, the second
character may be one of N, G, L or E. The resulting array of groups then each has the
characteristics of an N, G, L or E group as just described.

21

10 > &

10 -

O « « 12 - « 10 - ¢ 12 -
F.1 Field2 Field 3 Field 4 Field 5 Field 6
IGROUPS or
ROWS or
ICONSTRAINTS

N |group_name |$$$$$$$$$$ [numerical vl

G |group_name |$$$$$5$$$$ jnumerical vl

L |group_name [$$5$$$$$$$$ [numerical vl

E [group_name [$$$$$5$$$$ |numerical vl

XN [group_name $$$$$$$$$$ jnumerical_vl

XG |[group_name ($$$$55$8$$ [numerical vl

XL |[group_name [$$$$$$58$$ |numerical_ vl

XE |group_name [$5$$$$55$$$ inumerical vl

ZN |group_name |$$$5$$$$5$$ r_p_a_name

2G |group_name [$5$$3$5555S r_Pp_a name

ZL |group_name [$$$$$$5$$5$$ r_p_a_name

ZE |group_name [$55$585558$ r_Pp_a_name

DN igroup_name [$$5$$$5$5$5 [numerical vl $$$55$5$8$ numerical vl
DG |group_name [$$$5$5$$$$ numerical vl $$$$55$$5$ numerical_vl
DL lgroup_name [$$$$55595$ numerical vl $$5$55$$$$ jnumerical vl
DE |[group_name [$$$$$5558$ jnumerical vl $$$$$95%$$$ [numerical vl
mT TT TT T 1 T1 T
23 5 14 15 24 25 36 40 49 50 61

Figure 2.2.6. Possible data cards for GROUPS, ROWS or CONSTRAINTS (column-wise)

D the group is to be formed as a linear combination of two previous groups. When the first character is
a D, the second character may be one of N, G, L or E. The resulting group then has the

characteristics of an N, G, L or E group as just described.

The string group_name in data field 2 gives the name of the group (or row or constraint) under
consideration. This name may be up to ten characters long, excepting that the name 'SCALE" is not
allowed. For X data cards, the expanded array name must be valid and the integer indices must have been
defined in an parameter assignment (see §2.2.3).

The string $$$$$$55$$ in data field 3 may be blank; this happens when field 2 is merely announcing

the name of a group. If it is not blank, it is used for two purposes.

- It may be used to announce that all the entries (if any) in the linear element for the group under
consideration are to be scaled, that is divided by a constant scale factor; in this case field 3 will
contain the string ' SCALE' . If the first character in field 1 is a z, the string in data field 5 gives
the name of a previously defined real parameter and the numerical value associated with this
parameter gives the scale factor. Otherwise, the string numerical_vl, occupying up to 12
locations in data field 4, contains the scale factor. Fields 5 and 6 are not then used.

- If the first character in field 1 is a D, the current group is to be formed as a linear combination of

the groups mentioned in fields 3 and 5; the multiplication factors are then recorded in fields 4 and 6
respectively. Thus we will have

group in field 2 = group in field 3 * field 4 + group in field 5 * field 6.

22

In this case, the names of the groups in fields 3 and 5 must have already been defined. The
multiplication factors may occupy up to 12 locations in fields 4 and 6.

2.2.7 The VARIABLES or COLUMNS data cards (variable/column-wise)

The VARIABLES or COLUMNS indicator cards are used interchangeably to announce the (problem)
variables for the minimization. In addition, the entries for the linear elements are input here. The user may
also give a scaling factor for the entries in any column. The syntax for data following this indicator card is
given in Figure 2.2.7.

o« 10 - «— 10 » & 12 - « 10 » ¢ 12 -
F.1 Field2 Field 3 Field 4 Field 5 Field 6

[VARIABLES or
ICOLUMNS

varbl name [$$$$$$$58$ [numerical vi $5$$6$$$$$ [numerical vl
X (varbl_name [$$$$$$$$8$ jnumerical_ vl $$$555558$ numerical vl

Z [varbl_name |$$$$555558 r.p_a_name
™ TT TT TT TT T
23 5 14 15 24 25 36 40 49 50 61

Figure 2.2.7. Possible data cards for VARIABLES or COLUMNS (column-wise)

The string varbl_name in data field 2 gives the name of the variable (or column) under
consideration. This name may be up to ten characters long excepting that the name 'SCALE" is not
allowed. If data field 1 holds the character X or 2, an array of variables are to be defined. In this case, the
expanded array name of the variables (or columns) must be valid and the integer indices must have been
defined in a parameter assignment (see §2.2.3).

The string $$$$$$$$ in data field 3 is used for three purposes.
- If the string is empty, the card is just defining the name of a problem variable.

- It may be used to specify that the variable mentioned in field 2 occurs in the linear element for the
group given in field 3. In this case, the string in field 3 must have been defined in the GROUPS
section. If an array definition is being made, the string in field 3 must be an array name.

- It may be used to announce that all the entries in the linear elements for the variable under
consideration are to be scaled; in this case field 3 will contain the string *SCALE* .

A numerical value, whose purpose depends on the string in the previous field, is now specified. On 2
cards, the value is that previously associated with the real parameter r_p_a_name in field 5. On other
cards, the actual numerical value numerical_v1 may occupy up to 12 characters in data field 4.

If field 3 indicates that an entry for the linear element for a group is to be defined, the specified
numerical value gives the coefficient of that entry. If, on the other hand, field 3 indicates that all entries
for the variable in field 2 are to be scaled, the specified value gives the scale factor, that is the factor by
which each entry is to be divided.

On non Z cards, the strings in fields 5 and 6 are optional and are used exactly as for strings 3 and 4 to
define further entries or a scale factor.

23

2.2.8 The VARIABLES or COLUMNS data cards (group/row-wise)

The VARIABLES or COLUMNS indicator cards are used interchangeably to announce the (problem)
variables for the minimization. The user may also give a scaling factor for the entries in the column. The
syntax for data following this indicator card is given in Figure 2.2.8.

o« 10 -» « 10 » & 12 - « 10 -
F.1 Field2 Field 3 Field 4 Field 5

VARIABLES or
ICOLUMNS

varbl name [$$$$5$$$8$ jnumerical vl
X (varbl_name [$$$$85$$$55 [numerical_vl

Z |varbl_name [$$$5$$5$$5$ r_p a_name
T T TT T 1 T
23 5 14 15 24 25 36 40 49

Figure 2.2.8. Possible data cards for VARIABLES or COLUMNS (row-wise)

The string varbl name in data field 2 gives the name of the variable (or column) under
consideration. This name may be up to ten characters long excepting that the name 'SCALE' is not
allowed. If data field 1 holds the character X or Z, an array definition is to be made. In this case, the
expanded array name of the variables (or columns) must be valid and the integer indices must have been
defined in a parameter assignment (see §2.2.3).

The string $$5$$$5$$$$ in data field 3 is used for two purposes.

- If the string is empty, the card is just defining the name of a problem variable. Such a card must be
inserted for all variables that only appear in nonlinear elements.

- It may be used to announce that all the entries in the linear elements for the variable under
consideration are to be scaled. On 2 cards, the numerical value of this scale factor, the amount by
which each entry is to be divided, is that previously associated with the real parameter
r_p_a_name given in field 5. On other cards, the actual scale factor numerical_vl occupies
up to 12 characters in data field 4.

2.2.9 The GROUPS, ROWS or CONSTRAINTS data cards (group/row-wise)

The GROUPS, ROWS and CONSTRAINTS indicator cards are used interchangeably to announce the
names of the groups which make up the objective function and, for constrained problems, the names of
the constraints (or rows as they are often known in linear programming applications). In addition, the
entries for the linear elements are input here. The user may give a scaling factor for the groups or
constraints Furthermore, groups which are linear combinations of previous groups may be specified. The
syntax for the data cards which follow these indicator cards is given in Figure 2.2.9.

The one or two character string in data field 1 specifies the type of group, row or constraint to be input.
Possible values for the first character and their interpretations are exactly as in §2.2.6.

24

&« 10 5 « 10 » & 12 - — 10 5 e 12 -
F.1 Feld2 Field 3 Field 4 Field 5 Field 6
GROUPS or
ROWS or
ICONSTRAINTS
N |group_name [$$S$$5$$5$ numerical_vl $$$55555$$ numerical vl
G |group_name |$$$$5$55$$ numerical_vl $$$$$55$%$ numerical vl
L |group_name [$$$$5$$$8$$ jnumerical_vl $$$$559898 numerical vl
E |group_name [$$$$55$$$$ numerical_vl 55559588 numerical vl
XN lgroup_name [$$$$5$$$$$ |numerical vl $$5$$5565$ numerical vl
XG |group_name [$$$$5$$55$ jnumerical_vl $$55$$5$$$ numerical vl
XL |group_name ($$3$$5$$55$ [numerical_vl $$$$$5585% [numerical vl
XE |group_name |$$$$$3$$$$ numerical_vl 9555585558 numerical_vl
ZN |[group_name {$$$55$5555$ T_p_a_name
2G |group_name [$$$$$5555$ r_p_a_name
ZL |group_name [$$$$5555$8 T_P_a_name
ZE |group_name [$$$$$$5$5$$ r_p_a name
DN |[group_name [$$$$$$8$$$ numerical_vl $$$55555898 jnumerical vl
DG |[group_name [$$$$$$$5$$ jnumerical_vl $$5$5$$5$$ numerical_vl
DL |[group_name [$$$$$$5$$5$$ jnumerical vl 5555558S numerical vl
DE |[group_name [$$$$$$$$$$ jnumerical_vl $$$55589$8 [numerical vl
™T T1) T 1 TT T
23 5 14 15 24 25 36 40 49 50 61

Figure 2.2.9. Possible data cards for GROUPS, ROWS or CONSTRAINTS (row-wise)

The string group_name in data field 2 gives the name of the group (or row or constraint) under
consideration. This name may be up to ten characters long excepting that the name 'SCALE' is not
allowed. For X and Z data cards, the expanded array name must be valid and the integer indices must have
been defined in a parameter assignment (see §2.2.3). The kind of group (N, L, G, or E) will be taken to
be that which is defined on the first occurrence of a data card for that group. Subsequent contradictory
information will be ignored.

The string $$$$5$$$$$ in data field 3 is used for three purposes.

- It may be used to specify that the group mentioned in field 2 has a linear element involving the
variable given in field 3. In this case, the string in field 3 must have been defined in the
VARIABLES section. If an array definition is being made, the string in field 3 must be an array
name. The numerical value of the coefficient of the linear term corresponding to the variable. must
now be specified. On z cards, the value is that previously associated with the real parameter
r_p_a_name given in field 5. On other cards, the actual numerical value numerical_vl may
occupy up to 12 characters in data field 4.

- It may be used to announce that all the entries (if any) in the linear element for the group under
consideration are to be scaled; in this case field 3 will contain the string ' SCALE' . The numerical
value of the scale factor, that is the factor by which the group is to be divided, is now specified

exactly as above. In these first two cases, fields 5 and 6 may be used 1o define further coefficients or
a scale factor for non z cards.

25

- If the first character in field 1 is a D, the current group is to be formed as a linear combination of
the groups mentioned in fields 3 and 5; the multiplication factors are then recorded in fields 4 and 6
respectively. Thus we will have

group in field 2 = group in field 3 * field 4 + group in field 5 * field 6.

In this case, the names of the groups in fields 3 and 5 must have already been defined. The
multiplication factors may occupy up to 12 locations in fields 4 and 6.

2.2.10 The CONSTANTS, RHS or RES' data cards

The CONSTANTS, RHS or RHS' indicator cards are used interchangeably to announce the definition
of the constant term b; (in the constrained case, the right-hand-side) for each linear element. The syntax
for data following this indicator card is given in Figure 2.2.10.

o« 8 - « 10 » « 12 - — 10 - « 12 -
F.1 Field 2 Field 3 Field 4 Field 5 Field 6
ICONSTANTS or
RHS or
RHS '
D [rhs_name numerical_ vl
IV |rhs_name rl p name

rhs_name group name jnumerical vl group_name numerical_ vl
X |rhs_name group_name mumerical_ vl group_name mumerical vl
Z |rhs_name group_name r p a name
TT T 1 TT T 7 T1T T
2 5 12 15 2425 36 40 49 50 61

Figure 2.2.10. Possible data cards for CONSTANTS, RHS or RHS'

The string rhs_name in data field 2 gives the name of the vector of group constants/ right-hand-sides.
This name may be up to eight characters long. More than one vector of group constants may be defined.

The strings group_name in data field 3 and (optionally) 5 specify groups/rows/constraints for which
the constant term/right-hand-side is to be specified. Such strings must have been defined in the GROUPS
section. The string numerical_v1l in data field 4 and (optionally) 6 now contains the numerical value
of the constant/right-hand-side and may occupy up to 12 locations.

Constants for an array of groups may also be defined on cards in which field 1 contains the character X
or 2. On such cards, the expanded array name in field 3 and (as an option on X cards) 5 must be valid and
the integer indices must have been defined in a parameter assignment (see §2.2.3). On Z cards, the
numerical value of the constant/right-hand-side is that previously associated with the real parameter array,
r_p_a name, given in field 5. On X cards, the actual numerical value numerical_ vl may occupy
up to 12 characters in data fields 4 and (optionally) 6.

Any constants not specified take a default value. The default value for the components of each vector is
initially zero. This default may be changed using a card whose first field is the character D or V The
default value on a D card is specified in data field 4 for the vector named in field 2. For an V card, the

26

default value for the vector in field 2 is that associated with the real parameter, r1__p name, named in
field 5. The default value applies to each constant not explicitly specified; if the default is to be changed,
the change must be made on the first card naming a particular vector of constants.

2.2.11 The RANGES data cards

The RANGES indicator card is used to announce the definition of additional bounds on the artificial
variables introduced in the GROUPS section (in the constrained case, this corresponds to saying that
specified inequality constraints/rows have both lower and upper bounds). The syntax for data following
this indicator card is given in Figure 2.2.11.

o« 8 - « 10 - & 12 - « 10 5 « 12 =
F.1 Field 2 Field 3 Field 4 Field 5 Field 6
RANGES
D |rng_name numerical_ vl
IV jrng_name rl _p_name

rng name group_name [numerical_ vl group_name jnumerical vl
X |rng_name group_name [numerical_vl group_name jnumerical vl
Z jrng_name [group_name r_p_a_name
T T T 7 TT T T TT T
2 5 12 15 2425 36 40 49 50 61

Figure 2.2.11. Possible data cards for RANGES

The string rng_name in data field 2 gives the name of the vector of range values. This name may be
up to eight characters long. More than one vector of range values may be defined.

The strings group_name in data fields 3 and (optionally) 5 specify groups/rows/constraints whose
additional variable is to be given a second bound. Only groups initially specified with a G or L in columns
1 or 2 of field 1 in the GROUPS section have such a variable and therefore only these groups may be
specified.

Range values for an array of groups may also be defined on cards on which field 1 is the character X or
Z. On such cards, the expanded array name in field 3 and (as an option on X cards) 5 must be valid and
the integer indices must have been defined in a parameter assignment (see §2.2.3). On 2 cards, the range
value is that previously associated with the real parameter, r_p a_name, given in field 5. On X cards,
the actual numerical value numerical vl may occupy up to 12 characters in data fields 4 and
(optionally) 6. Using the terminology of §2.2.3, the extra bound is taken to imply the inequality 0<y £ 51
field 4 or 6 | on the artificial variable y,.

Any component in a range vector not specified takes a default value. The default value for the
components of each vector is initially infinite. This default may be changed using a card whose first field
is the character D or V The default value on a D card is specified in data field 4 for the vector named in
field 2. For an V card, the default value for the vector in field 2 is that associated with the real parameter,

rl_p name, named in field 5. If the default is to be changed, the change must be made on the first
card naming a particular range vector.

27

2.2.12 The BOUNDS data cards

The BOUNDS indicator card is used to announce data relating to lower and upper bounds on the
unknown variables. The syntax for data following this indicator card is given in Figure 2.2.12.

O« 8 - « 10 5 € 12 - « 10 -
F.1 Field2 Field 3 Field 4 Field 5
BOUNDS

LO bnd name |varbl_ name |numerical_vl

UP [ond _name varbl name jnumerical_ vl

FX [bond name (varbl name jnumerical_ vl

FR [bnd name |(varbl name

MI bnd _name |varbl_ name

PL bnd _name [|varbl name

XL [bnd name varbl name [numerical vl

XU bnd_name varbl name jnumerical vl

XX bnd_name |varbl name jnumerical vl

XR [ond name [|varbl name

XM [bnd_name varbl name

XP [bnd name varbl name

ZL [bnd name varbl name r p_a_name
2U bnd_name |varbl name r p_a_ name
ZX {bnd_name varbl name r_p_a_name
DL [bnd_ name numerical_ vl

DU [bnd_name numerical vl

DX bnd name numerical_vl

DR [bnd_name

DM bnd _name

DP [bnd name

VL [bnd_name rl p name
VU [bnd_name rl p name
VX [bnd_name rl p name
L T 1 TT T T
235 12 15 24 25 36 40 49

Figure 2.2.12. Possible data cards for BOUNDS

The two character string in data field 1 specifies the type of bound to be input. Possible values are: LO,
XL, 2L, DL or VL a lower bound, UP, XU, 2ZU, DU or VU an upper bound, FX, XX, ZX, DXorvXa
fixed variable, i.¢., the lower and upper bounds are equal, FR, XR or DR a free variable, i.e., the lower and
upper bounds are infinite, MI, XM or DM no lower bound and PL, XP or DP no upper bound. The string
bnd_name in data field 2 gives the name of the bound vector under consideration. This name may be up
to eight characters long. Several different bound vectors may be defined in the BOUNDS section.

If the card is of type LO, UP, FX, FR, MI or PL, the string varbl name in data field 3 specifies to
which variable the bound is applied. This name may be up to ten characters long and must refer to a
variable defined in the VARIABLES data. If the card is of type X1, 2L, XU, 2U, XX, ZX, XR, XMor

28

XP, the string varbl_name in data field 3 specifies an array of variables which are to be bounded. On
such cards, the expanded array name of this string must be valid and the integer indices must have been
defined in a parameter assignment (see §2.2.3). This name may be up to ten characters long and must refer
to a variable defined in the VARIABLE data. For bounds of type LO, UP, FX, XL, XU or XX, the
numerical value of the bound or array of bounds is given as the string numerical_vl using at most 12
characters in data field 4. For bounds of type 2L, 2ZU or ZX, the numerical value of the array of bounds
is that previously associated with the real parameter array r_p_a_name specified in field 5. When both
lower and upper bounds on a variable are required, they must be specified on separate cards. Possible
combinations are LO-UP, LO-PL, MI-UP XL-XU, XL-XP, XM-XU, ZL-XU, XL-RU, ZL-RU,
ZL-XP and XM-RU.

Each bound vector is given default lower and upper bounds on every variable. The value of the default
lower bound is initially zero and the upper bound is initially infinite. The default value for the bound
vector specified on field 2 on any card whose first string starts with the character D or V may be changed,
the particular bound under consideration is as defined above. The default value specified on DL, DU and
DX cards has the numerical value given in data field 4. Similarly, the default value specified on VL, VU
and VX cards is that associated with the real parameter, r1__p name, specified in field 5. If the defaults
are to be changed, the changes must be made on the first cards naming a particular vector of bounds.

2.2.13 The START POINT data cards

The START POINT indicator card is used to announce initial estimates of the values of the unknown
variables. The syntax for data following this indicator card is given in Figure 2.2.13.

&« 8 - «
F.1 Field 2

10 - & 12 - «—
Field 3 Field 4

10 -5 &« 12 -
Field 5 Field 6

ISTART POINT

D [sta_name
IV |sta_name

numerical vl

rl p name

sta_name varbl name [numerical_vl varbl_name numerical_ vl
X |sta_name |varbl_name jnumerical_ vl varbl_name numerical vl
Z |sta_name varbl name r p_a_ name
TT T T TT T TT T
2 5 12 15 2425 36 40 49 50 61

Figure 2.2.13. Possible data cards for START POINT

Any card with an empty field 1 is used to define the starting value for an individual variable. The string
sta_name in data field 2 gives the name of a starting vector and may be up to eight characters long.
Several different starting vectors may be defined in the START POINT section. The string varbl_name
in data field 3 (and optionally field 5) gives the name of the variable whose starting value is to be
assigned. This name must refer to a variable defined in the VARIABLE data.

Starting values for an array of variables may also be defined on cards with the character X or 2 in field
1; on X cards two arrays may be defined on a single card. On such cards, the expanded array name in field

3 (and field 5 for X cards) must be valid and the integer indices must have been defined in a parameter
assignment (see §2.2.3).

29

Each variable not explicitly specified is assumed to have a default starting value. The default for each
vector of starting values is initially zero but may be changed for the starting vector referred to in field 2 of
a card containing the character D or V in field 1. However, if the default is to be changed, the change must
be made on the first card naming a particular vector of starting values.

It remains to specify the numerical value of the default or individual starting point as appropriate On V
or Z cards, the value is that previously associated with the real parameter r1__p_name Or array of real
parameters rl_p _a_ name (respectively) given in field 5. On other cards, the numerical value is (or
values are) specified using up to twelve characters in the string(s) numerical_vl indata field 4 (and if
required field 6).

2.2.14 The ELEMENT TYPE data cards

The ELEMENT TYPE indicator card is used to announce the data for the different types of nonlinear
elements which are to be used. The names of the elemental and, optionally, intemal variables and
parameters for each element type are specified in this section. The syntax for data cards following the
indicator card is given in Figure 2.2.14.

o« 8 - « 6 «— 6
F.1 Field2 Field 3 Field 5
LEMENT TYPE

EV lety_name ev_nam ev_nam
IV [ety_name {iv_nam iv_nam
EP jlety_name ep_nam ep_nam
Tt T T T T
235 12 15 20 40 45

Figure 2.2.14. Possible data cards for ELEMENT TYPE

The string in field 1 may be one of EV, IV or EP. This indicates whether the names of elemental
variables (EV) , internal variables (IV) or elemental parameters (EP) are to be specified on the given
data card. If no cards with the string IV in field 1 are found for a particular element type, the element is
assumed to have no useful intemal variables; the intemal variables are then allocated the same names as
the elemental ones. Likewise, if no cards with the string EP in field 1 are found for a particular element
type, the element is assumed not to depend on parameter values.

The string ety_name in data field 2 gives the name of the element type under consideration. This
name may be up to eight characters long. The data for a particular element must be specified on
consecutive data cards.

The strings in data fields 3 and (optionally) 5 give the names of elemental variables (field 1 =EV) ,
internal variables (field 1 =IV) or parameters (field 1 =EP) for the element type specified in field 2.
These strings may be up to 6 characters long. The names of the variables for different element types may
be the same; the names of the elemental variables, internal variables and parameters (if the latter two are
given) for a specific element type must all be different.

30

2.2.15 The ELEMENT USES data cards

The ELEMENT USES indicator card is used to specify the names and types of the nonlinear element
functions. The element types may be selected from among those defined in the ELEMENT TYPE section.
Associations are made between the problem variables and the elemental variables for the elements used
and parameter values are assigned. The syntax for data following this indicator card is given in Figure
2.2.15.

© « 10 -5 « 10> - 12 - « 10 5 « 12 -
F.1 Field 2 Field 3 Field 4 Field 5 Field 6
IELEMENT USES

T jelmnt_name |ety_ name

XT lelmnt_name {ety name

V jelmnt_name [ev_nam varbl name

XV lelmnt name lev_nam varbl name

P |elmnt_name |ep_nam numerical vl ep_nam numerical_ vl
XP lelmnt_name jep_nam numerical vl ep_nam numerical vl
ZP lelmnt_name lep nam r_p a_name

™7 T TT 7 T T 17 T
23S 1415 2022 25 36 40 45 4950 61

Figure 2.2.15. Possible data cards for ELEMENT USES

For each card, the string elmnt_name in data field 2 gives the name, or an array of names, of a
nonlinear element function This name may be up to ten characters long and each nonlinear element name
must be unique. On array cards (those prefixed by X or 2) , the expanded element array name in field 2
must be valid and the integer indices must have been defined in a parameter assignment (see §2.2.3).

There are three sorts of data cards in the ELEMENT USES section. The first, identified by the characters
T or XT in field 1, give the name, or an array of names, of an element and its type. The string ety _name
in data field 3 gives the name of the element type to be used. This name may be up to eight characters long
and must have appeared in the ELEMENT TYPE section.

The second kind of data card, identified by the characters V or XV in field 1, is used to assign problem
variables to the elemental variables appropriate for the element type. On this data card, the string ev_nam
in data field 3 gives the name of one of the elemental variables for the given element type. This name
must have been set in the ELEMENT TYPE section and can be at most six characters long. The string
varbl_name in data field 5 then gives the name of one of the problem variable that is 1o be assigned to
the specified elemental variable. The name of this variable may have been set in the
VARIABLES/COLUMNS section or may be a new variable (often known as a nonlinear variable)
introduced here and can be up to ten characters long. On an XV card, the name of the variable must be an
element of an array of variables, with a valid name and index.

The last kind of data card, identified by the characters P, XP or ZP in field 1, is used to assign
numerical values to the parameters for the element functions (P) or array of element functions (XP and
2P) . On this data card, the strings ep_nam in data fields 3 (and, for P and XP cards, optionally 5) give
the names of parameters. These name must have been set in the ELEMENT TYPE section and can be at
most six characters long. On P and XP cards, the strings numerical vl in data fields 4 and

31

(optionally) 6 contain the numerical value of the parameter. These values may each occupy up to 12
locations within their field. On ZP cards, the string r_p a_name in data field 5 gives a real parameter
array name. This name must have been previously defined and its associated value then gives the
numerical value of the parameter.

2.2.16 The GROUP TYPE data cards

The GROUP TYPE indicator card is used to announce the data for the different types of nontrivial
groups which are to be used. The names of the group-type variable and, optionally, of group parameters
for each group type are specified in this section. The syntax for data cards following the indicator card is
given in Figure 2.2.16.

© « 8 - « 6 - « 6=
F.1 Field2 Field 3 Field 5
IGROUP TYPE

GV |[gty_name gv_nam

GP |gty_name gp_nam gp__nam
T T 1 T T T
235 12 15 20 40 45

Figure 2.2.16. Possible data cards for GROUP TYPE

The string in field 1 may be either GV or GP . This indicates whether the name of a group-type variable
(GV) or one or more group parameters (GP) are to be specified on the given data card. The data for a
particular group type must be specified on consecutive data cards. The string gty_name in data field 2
gives the name of a nontrivial group type and may be up to eight characters long. If data field 1 holds GV,
the string gv_nam in data field 3 then gives the name of the group-type variable for this group type. This
string may be up to 6 characters long. The names of the variables for different group types may be the
same. Altemnatively, if data field 1 holds GP, the strings gp_nam in data fields 3 and (optionally) 5 give
the names of parameters for the group type. These strings may again be up to 6 characters long. The
names of parameters for different group types may be the same; the names of the group-type variable and
parameters (if the latter appear) for a specific group type must all be different.

2.2.17 The GROUP USES data cards

The GROUP USES indicator card is used to announce which of the nonlinear elements appear in each
group and the type of group function involved. The group types may be selected from among those
defined in the GROUP TYPE section of the data while the elements may be selected from among the types
defined in the ELEMENT USES section. In addition, group parameter values are assigned. The syntax for
data following this indicator card is given in Figure 2.2.17.

For each card, the string group_name in data field 2 gives the name, or an array of names, of the
group(s) (or row(s) or constraint(s)) under consideration. The name may be up to ten characters long and
may have been defined in the GROUPS/ROWS/CONSTRAINTS section or may be a new group
introduced for the first time here. On array cards (those prefixed by X or 2), the expanded group array

32

&« 10 2 « 10 - « 2 -5 @« 10 9 « 12 -
F.1 Field 2 Field 3 Field 4 Field 5 Field 6
GROUP USES

T |group_name [gty_name

XT |group_name |gty_name

E |group_name lelmnt_name blank/num_ vl elmnt_name blank/num_ vl
XE |[group_name lelmnt_name jblank/num vl elmnt_name blank/num vl
ZE [group_name |elmnt_name r_p_a name

P |group_name |gp_nam numerical_ vl gp_nam numerical vl
XP [group name |gp_nam numerical vl gp_nam numerical_ vl
ZP [group_name {gp_nam r_p_a name

™ T TTTT T 7T T Tt T
235 1415 2022 2425 36 40 45 4950 61

Figure 2.2.17. Possible data cards for GROUP USES
name in field 2 must be valid and the integer indices must have been defined in a parameter assignment
(see §2.2.3).

There are three sorts of data cards in the GROUP USES section. The first, identified by the characters T
or XT in field 1, give the name, or an array of names, of a group function and its type. T and XT cards are
used to allocate a type to a group or an array of groups explicitly. Any group not explicitly typed is
assumed to be trivial. The string gty_name in data field 3 gives the name of the group type to be used.
This name may be up to eight characters long and must have appeared in the GROUP TYPE section.

The second kind of data card, identified by the characters E, XE or ZE in field 1, is an indication that
particular nonlinear elements are to be included in a given group. Optionally the given elements are to be
multiplied by specified non-unit weights. On these data cards, the string elmnt_name in data fields 3
(and optionally 5 on E and XE cards) hold the names of nonlinear elements which are to be used. The
names in both fields may be up to ten characters long and must have been defined in the ELEMENT USES
section. On XE and ZE cards, the names of the nonlinear elements must be components of an array of
nonlinear elements, with a valid name and index. The elements are multiplied by given weights. By
default, each weight takes the value 1.0. Only non-unit weights need to be specified explicitly. On E and
XE cards, non-unit weights have the numerical values specified in data fields 4 (and optionally 6). These
values may occupy up to 12 locations of their specified field. The default value of 1.0 is taken whenever
these fields are empty. On ZE cards, the string r_p_a_name in data field 5 gives a real parameter array
name. This name must have been previously defined and its associated value then gives the numerical

value of the weight. Any group that is not named on an E or XE card is taken to have no nonlinear
elements.

The last kind of data card, identified by the characters P, XP or 2P in field 1, is used to assign
numerical values to the parameters for the group functions (P) or array of group functions (XP and ZP) .
On this data card, the strings gp_nam in data fields 3 (and, for P and XP cards, optionally 5) give the
names of parameters. These name must have been set in the GROUP TYPE section and can be at most six
characters long. On P and XP cards, the strings numerical_ vl in data fields 4 and (optionally) 6
contain the numerical value of the parameter. These values may each occupy up to 12 locations of their
field. On ZP cards, the string r_p_a_name in data field 5 gives a real parameter array name. This name

must have been previously defined and its associated value then gives the numerical value of the
parameter.

33

The T or XT card for a particular group must appear before its v, Xv, P, XP or ZP cards.

2.2.18 The OBJECT BOUND data cards

The OBJECT BOUND indicator card is used to announce known lower and upper bounds on the value of
the objective function for the problem. The syntax for data following this indicator card is given in Figure

2.2.18.

S« 8 = « 12 - « 10 -
F.1 Field2 Field 4 Field 5
OBJECT BOUND

LO [ond_name numerical_ vl

UP bnd_name numerical_ vl

VL [bnd_name rl p name
VU [pbnd_name rl p name
™t T T T 7 T
235 12 25 36 40 49

Figure 2.2.18. Possible data cards for OBJECT BOUND

The two character string in data field 1 specifies the type of bound to be input. Possible values are: LO
or VL alower bound, and UP or VU an upper bound. The string bnd_name in data field 2 gives a name to
the bounds under consideration. This name may be up to eight characters long. Several different known
bounds on the objective function may be defined in the OBJECT BOUND section.

For bounds of type LO or UP, the numerical value of the bound is given as the string numerical vl
using at most 12 characters in data field 4. For bounds of type IL or IU, the numerical value of the bound
is that previously associated with the real parameter array r_p_a_name specified in field 5. When both
lower and upper bounds on the objective are known, they must be specified on separate cards.

The objective function is assumed by default to be unbounded both below and above. The values for
each named bound set may only be changed on a .,O, UP, VL or VU card.

2.3 Another example

In §1.4, we gave an example. An SDIF file for this example is given in Figure 2.3.1. The problem is
given the name DOC. The groups are referred to as GROUP1/2/3 and the variables are X1/2/3. The
vector of bounds is called BN1 and the two types of nonlinear element are ELEMENT1/2 . The elemental
variables are assigned names beginning with U and the internal variables for the second nonlinear element
start with V.. The two group types are GTYPE1/2. Finally the nonlinear element in GROUP 2 is given the
name G2E1, while those in GROUP3 are G3E1/2.

34

“© « 10 - - 10 - o« 12 - « 10 - 12 -
F1 Field 2 Field 3 Field 4 Field § Field 6
ave DOC
GROUPS
E ROUP1
E ROUP 2
E ROUP 3
[VARIABLES
1 GROUP 1
2 GROUP 3
3
Jsourms
FR N1 X1
LO N1 X2 -1.0D+0
LO N1 X3 1.0D+0
UP N1 x2 1.0D+0
up N1 X3 2.0D+0
[ELEMENT TYPE
[EV [ETYPEl V1
EV [ETYPE1l V2
AY TYPE2 V1
v TYPE2 V2
EV TYPE2 . V3
IV TYPE2 Ul
v TYPE2 U2
FLEMENTUSES
T 2E1 ETYPE1
v 2E1 V1 2
v 2E1 v2 K3
T 3E1 IETYPEZ2
v 3E1 V1 X2
v 31 v2 X1
\2 3E1 V3 X3
T 3E2 ETYPE1
\Y 3E2 V1 X1
v 3E2 V2 X3
[GROUP TYPE
GV TYPE1 IALPHA
GV TYPE2 IALPHA
IGROUP USES
T ROUP1 GTYPEL
T ROUP2 GTYPE2
1§ ROUP2 G2E1
E ROUP3 G3E1
E ROUP3 G3E2
ExpaTa
Tt T T T1 T T i) T
23 5 14 15 24 25 36 40 49 61

Figure 2.3.1. SDIF file for the example of §1.4

35

O - 10 - - 10 - «— 12 — «— 10 - - 12 -

F.1 Field 2 Field 3 Field 4 Field 5 Field 6
INAME DOC?2
1D JoNE 1
1D 1000
1A [NM1 N =
NARIABLES
Do |t ONE v
(1)
D
[cROUPS
po | onE M1
N e x (ONE) 1.0
ND
XN |G (N)
CONSTANTS
D . fonsT
ONST G (N)
BOUNDS
Iz o
LEMENT TYPE
[v |souare v
LEMENT USES
Do 1 ONE
XT IE(I) SQUARE
xv [B(I) v (I
ND
GROUP TYPE
v [sINE ALPHA
P IsINE 3
GROUP USES
Do i ONE INM1
XT |6 (1) SINE
xE |e (1) E (1) = (N)
XP o (I) P 1.0
D
E 1000 1000
1000 i3 0.5
[ENDATA
T 1T T 1 T 1 T 1 Tt T
23 5 14 15 24 25 36 40 49 50 61

Figure 2.4.1. SDIF file for the example of §1.5

2.4 A further example

In §1.5, we gave a second example. Because of its repetitious structure, this example is well suited to
use array names and do loops. An SDIF file for this example is given in Figure 2.4.1. The problem is
given the name DOC2. The variables are referred to as X1, ..., X1000 and the groups are G1, ...,
G1000. The vector of bounds is called BND, the constants are CONST and single nonlinear element type
is SQUARE, with elemental variable V. Note that the BND section is necessary since the variables are
unrestricted and we must override the default lower bounds of zero and upper bounds of infinity. The
nonlinear elements are given the names E1, ..., E1G00. Finally, the single group type is SINE with
group-type variable ALPHA and parameter P .

36

3. The standard data input format for describing nonlinear elements

In addition to the problem data described in §2, the user might also wish to specify the nonlinear
element functions, and their derivatives, in a systematic way. A particular nonlinear element function is
defined in terms of its problem variables and its type; both of these quantities are specified in §2. Thus,
the only details which remain to be specified are the function and derivative values of the element types
and the transformations between elemental and internal variables, if any.

In this section, we present one approach to this issue. As before, data is specified in a file. The file
comprises an ordered mixture of indicator and data cards; the latter allow function and derivative
definitions in appropriate high-level language statements.

3.1 Introduction to the standard element type input format

3.1.1 The values and derivatives required

It is assumed that a nonlinear element type is specified in terms of internal variables u, whose names
are those given on the ELEMENT TYPE data cards in an SDIF file (if the element has no useful internal
variables, the internal and elemental variables are the same and the intemal variables will have been
named after the elementals), see §2.2.13. An optimization procedure is likely to require the values of the
element functions and their first, and possibly second, derivatives. These derivatives need only be given
with respect to the internal variables. For if we denote the gradient and Hessian matrix of an element
function f with respect to u by

Vofand V, f
respectively, the gradient and Hessian matrices with respect to the elemental variables are
WiV, fand WV, fW,
where W is defined by (1.2.7).

We thus need only supply derivatives with respect to u. Formally, we must define the function value £,
the gradient vector V, f(i.e., the vector whose i~th component is the first partial derivative with respect to
the i~th intemal variable) and, possibly, the Hessian matrix V,,, f(i.e., the matrix whose i, j~th entry is the
second partial derivative with respect to the i—th and j-th internal variables), all evaluated at u. We now
describe how to set up the data for a given problem.

3.1.2 Indicator cards

As before, the user must prepare an input file, the SEIF (Standard Element type Input Format) file,
consisting of indicator and data cards. The former contain a simple keyword to specify the type of data
that follows. Possible indicator cards are given in Figure 3.1.

keyword comments presence described in §
ELEMENTS same as NAME mandatory 221
TEMPORARIES optional = 3.2.1
GLOBRALS . optional 322
INDIVIDUALS optional 323
ENDATA mandatory 222

Figure 3.1. Possible indicator cards

Indicator cards must appear in the order shown. The cards TEMPORARIES GLOBALS and
INDIVIDUALS are optional.

37

The data cards are of two kinds. The first are like those described in §2.1. The others use four fields,
fields 1, 2 and 3, as before, and field 7 which starts in column 25 and is 41 characters long. This last field
is used to hold arithmetic expressions. An arithmetic expression is as defined in the Fortran programming
language standard (ANSI X3.9-1978) although it is not intended that expressions necessarily be restricted
to Fortran but rather io the particular programming language appropriate to the users optimization
procedure. We allow the use of any of the chosen language’s intrinsic functions in such expression.
Continuation of an expression over at most nineteen lines is also permitted.

3.1.3 An example.

Before we give the complete syntax for an SEIF file, we continue the illustrative example that we
started in §2.1.3 and show how to specify an input file appropriate for the problem of §1.6. Once again,
there are many possible ways of specifying a particular problem; we give one in Figure 3.1.3. The
arithmetic expressions given are written in Fortran.

The file must always start with an ELEMENTS card, on which a name (in this case EG3) for the
example may be given (line 1), and must end with an ENDATA card (line 40).

We next need to specify the names and attributes of any auxiliary quantities and functions that we
intend to use in our high level description of the element functions. These are needed to allow for
consistency checks in the proceeding high-level language statements and must always occur in the
TEMPORARIES section of the input file. Lines 3 to 6 indicate that we shall be using temporary quantities
SINV1, ZERO, ONE and TWOP1 and the character R in the first field for these lines states that these
quantities will be associated with floating point (real) values. The character M in field 1 of Lines 7 and 8
indicate that we may use the intrinsic (machine) functions SIN and COS. These are of course Fortran
intrinsic functions appropriate for the high-level language used here.

We now specify any numerical values which are to be used in one or more element descriptions within
the GLOBALS section. On lines 10 and 11, we allocate the values 0 and 1 to the previously defined
quantities ZERO and ONE . Note that such cards require the character G in field 1 - if an assignment were
to take more than 41 characters (the width of field 7), it could be continued on subsequent lines for which
the string G+ is required in field 1.

Finally we need to make the actual definitions of the function and derivative values for the element
types and specify the transformations from elemental to intemal variables in they are used. Such
specifications occur in the INDIVIDUALS section from lines 12 to 39 of the example. We recall that
there are four element types 3PROD, 2PROD, SINE and SQUARE and that their attributes (names of
elemental and intemal variables and parameters) have been described in the SDIF file set up in §2.1.3.

Two of the element types (3PROD and SQUARE) use intemal variables so we need to describe the
relevant transformation for those.

On line 13, the presence of the character T in field 1 announces that the data for the element type
3PROD is to follow. All the data for this element must be specified before another element type is
considered. On lines 14 and 15 we describe the transformation from elemental to intemal variables that is
used for 3PROD . Recall that the transformation is 4, =v, —v, and u, =v,. On line 14, the first of these
transformations is given, namely that U1 is to be formed by adding 1.0 times V1 to — 1.0 times V2. The
second transformation is given on the following line, namely that U2 is formed by taking 1.0 times V3.
Both lines are marked as defining transformations by the character R in field 1 — continuation lines are
possible for transformations which involve more than two elemental variables on lines in which the string
R+ appears in the same field.

38

- 41 (Field7) -

e «8- ~ 8 5 12 - - 8 » « 12 -5
line F.1 Field2 Field 3 Field 4 Field 5 Field 6
1 [ELEMENTS £G3
2 [TEMPORARIES
3 SINV1
4 ZERO
5 NE
6 TWOP 1
7 SIN
8 0S
12 [LOBALS
10 ZERO 0.0
1 NE
12 [INDIVIDUALS
13 T |3PROD
14 R Ul V1 1.0 2 -1.0
15 R [u2 V3 1.0
16 13 Ul*y2
17 G jul U2
18 I |u2 U1
19 H Jul U1 ZERO
20 H Ul U2 IONE
21 H [U2 U2 ZERO
22 T |2PROD
23 13 V1*v2
24 G V1 Ve
25 G [v2 V1
26 H V1 V1 ZERO
27 H [V1 V2 [ONE
28 H N2 V2 ZERO
29 T |SINE
30 A ISINV1 SIN (V1)
31 123 SINV1
32 G N1 ICOS (V1)
33 H V1 V1 -SINV1
34 |l lsouare L ‘
35 R |01 28 1.0 2 1.0
36 A [TWOP1 2.0*P1
37 IE IP1*U1*Ul
38 G Ul TWOP1*U1
39 H Ul Ul TWOP1
40 [ENDATA
mt Tt T Tor T 1 T 1
13 § 10 12 15 22 25 36 4 47 50 61 65

Figure 3.1.3. SEIF file for the nonlinear element types for the example of §1.6

We now specify the function and derivative values of the element type 4y u, with respect to its internal
variables. On line 16, the code F in field 1 indicates that we are setting the value of the element type to
U1*U2, the Fortran expression for multiplying U1 and U2. On lines 17 and 18, we specify the first
derivatives of the element type with respect to its two internal variables U1 and U2 — the character G in
field 1 indicates that gradient values are to be set. On line 17, the derivative with respect to the variable
U1, specified in field 2, is taken and expressed as U2 in field 7. Similarly, on line 18, the derivative with
respect to the variable U2 (in field 2), U1, is givenin field 7. Finally, on lines 19 to 21, the second partial
derivatives with respect to both internal variables are given. These derivatives appear on cards whose first
field contains the character H. On line 19, the second derivative with respect to the variables U1 (in field

39

2) and U1 (in field 3), 0.0, is given in field 7. Similarly the second derivative with respect to the variables
U1 (in field 2) and U2 (in field 3), 1.0, occurs in field 7 of line 20 and that with respect to U2 (in field 2)
and U2 (in field 3), 0.0, is given in field 7 of the following line.

The same principle is applied to the specification of range transformations, values and derivatives for
the remaining element types. The type 2PROD does not use a transformation to internal variables, so
derivatives are taken with respect to the elemental variables V1 and V2 (or one might think of the intemal
variables being V1 and V2, related to the elemental variables through the identity transformation). The
values and derivatives for this element type are given on lines 22 to 28. The type SINE again does not use
special internal variables and the required value and derivatives are given on lines 29 to 33. Note,
however, that the value and its second derivative with respect to v, both use the quantity sinv,; for
efficiency, we set the auxiliary quantity SINV1 to the Fortran value SIN (V1) on line 30 and thereafter
refer to SINV1 on lines 31 and 33. Notice that this definition of auxiliary quantities occurs on a line
whose first field contains the character A . Finally, the type SQUARE, which uses an transformation from
elemental to intemnal variables u, =v, +v,, is defined on lines 34 to 39. Again notice that the quantity
2p, occurs in both first and second derivatives, so the auxiliary quantity TWOP1 is set on line 36 to hold
this value.

3.2 Data cards

The ELEMENTS and ENDATA indicator cards perform the same function as the cards NAME and
ENDATA in §2.2.1 and 2.2.2 The problem name specified in field 3 on the ELEMENTS card must be the
same as that given in the same field on the NAME card of the SDIF file.

3.2.1 The TEMPORARIES data cards

When specifying the function and derivative values of a nonlinear element, it often happens that an
expression occurs more than once. It is then convenient to define an auxiliary parameter to have the value
of the common expression and henceforth to refer to the auxiliary parameter. For instance, a nonlinear
element of the two internal variables u, and u, might be u,e"“*. (The names of the internal variables have
already been specified in the ELEMENT TYPE section of the SDIF and are known as reserved
parameters.) Its gradient vector (vector of first partial derivatives) has components e“* and i 1 e“?, If we

define the auxiliary parameter w=e“?, the derivatives are then w and 1W-

© «6-
F.1 Field 2

TEMPORARIES

I [p_name
P_name
P_name
[P_name

™ T
235 10

Figure 3.2.1. Possible data cards for TEMPORARIES

40

The TEMPORARIES indicator card is used to announce the names of any auxiliary parameters which
are to be used in defining the function and derivative values of the nonlinear elements. This list should
also include the name of any intrinsic and external functions used. The syntax for data cards following the
indicator card is given in Figure 3.2.1.

The single character string in field 1 specifies the type of auxiliary parameter that is to be defined.
Possible types are integer (I), real (R), intrinsic function (M) or external function (F) . The string,
p_name, in field 2 then gives the name of the auxiliary parameter. The name can be up to six characters
long, must be a valid name for the programming language under consideration, but must not be a reserved
one, i.e., one of the names assigned to the internal variables for the element in question in the ELEMENT
TYPES section of the SDIF (see, §2.2.13). Any auxiliary parameter that is to be used must be defined in
the TEMPORARTIES section along with all intrinsic and external function names.

3.2.2 The GLOBALS data cards

The GLOBALS indicator card is used to announce the assignment of general parameter values. The
syntax for data cards following the indicator card is given in Figure 3.2.2.

o «6-> « 41 -
F.1 Field 2 . Field 7

GLOBALS

G |p_name I §EEELEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY
G+ SEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEELEEEEEEE
T T T T
23 § 10 25 65

Figure 3.2.2. Possible data cards for GLOBALS

The string in field 1 specifies whether a new assignment is to be made (G) or whether the assignment is
the continuation of an existing one (G+) . If the assignment is new, the string, p_name, in field 2 gives
the name of the auxiliary parameter that is to be defined; this name can be up to six characters long and
must have been previously defined in the TEMPORARIES section. If the assignment is a continuation, the
continuation refers to the auxiliary variable last named on a P card. At most nineteen continuations of a
single assignment are allowed. The string in field 7 is an arithmetic expression. The assignment

auxiliary variable last named in field 2 « field 7

is made, where < means “is given the value”; any variable mentioned in the arithmetic expression must
either be reserved (see §3.2.1), or have been defined in the TEMPORARIES section and, in the case of an
integer or real variable, allocated a value itself on a previous GLOBALS data card.

The GLOBALS section is intended for the definition of auxiliary variables which occur in more than
one element type. If an auxiliary variable occurs in a single element type, it may be defined in the
INDIVIDUALS section (see §3.2.3).

3.2.3 The INDIVIDUALS data cards

The INDIVIDUALS indicator card is used to announce the definition of function and derivative values
and the transformation between elemental and intemal variables for the types of nonlinear element
functions required. The syntax for data cards following the indicator card is given in Figure 3.2.3.

41

«— 41 (Field7) -
(—

&« 8 5 ¢« 6 - 12 = « 6 « 12 -
F.1 Field2 Field 3 Field 4 Field 5 Field 6
INDIVIDUALS

T lety_name

iv_nam ev_nam numerical vl ev_nam numerical v

A [p_name §EEEEEEEEEEEEEEEEEEEEEE&EEEEEEEEE&EEE&EEY
A+ S§EGE&EEEEEEEEEEE&EEEEEEEEEEEEEEESEEEE&EEEY
E §&6E&&EEEEEEEEEEEGEE4EEEEEELEEEEEE&EEEEESY

+ $68666656686556668888866686666&866666686&&&Y
G iv_nam & &&EEEEE&EEEEEEEEEEEEEEELEEEEEEEEEEEEEEY
G+ $ & &8 6865666688458 86666665656656E&GEEELEEES
H iv_nam iv_nam L5666 865886868658866886856685666EG6EE&EEEEEH
H+ §E8E&EEEEEEEEEEEEEEEEELEEEEEEEEEEEEEELEEEY
”mT1T TT 17 T T T 7 T) T 7
23 5 10 12 15 20 25 36 40 45 50 61 65

Figure 3.2.3. Possible data cards for INDIVIDUALS
The one or two character string in field 1 specifies the type of data contained on the card. Possible
values for the first character of the string are:

T This card announces that a new element type is to be considered. The string, ety _name, in field 2
gives the name of the element type; the name may be up to eight characters long and must have been
defined in the ELEMENT TYPE section of the SDIF file (see §2.2.13).

R This card announces that information concerning the transformation between the elemental and
internal variables for the element type is to be given. Such information is appropriate only for
element types which have been defined with internal variables in the ELEMENT TYPE section of the
SDIF file (see §2.2.13). The transformation is specified by the matrix W of §1.3; only nonzero
coefficients of W need be specified here.

The string, inv_name, in field 2 contains the name of an internal variable (i.e., row of W). The
name may be up to six characters long and must have been defined on an IV data line in the
ELEMENT TYPE section of the SDIF file. The strings, iv_nam, in fields 3 and (optionally) 5 then
give the names of elemental variables (i.e., columns of W). The names may be up to six characters
long and must have been defined on EV data lines in the ELEMENT TYPE section of the SDIF file.
The strings in fields 4 and (optionally) 6 contain the numerical values of the coefficients of W
corresponding to the row given in field 2 and the columns given in fields 3 and 5 respectively. These
numerical values may each be up to 12 characters long. The entries of W may be defined in any
order.

As an example, the transformation (1.2.5) could be entered with three R data cards. On the first,
field 2 would hold the name given to the intemnal variable u,; field 3 would hold the name given to
the elemental variable v, and field 4 would contain 1.0. Similarly field 5 would hold the name given
1o the elemental variable v, and field 6 would also contain 1.0. On the second, field 2 would also
hold the name given to the internal variable u,; field 3 would now hold the name given to the
elemental variable v, and field 4 would contain —2.0. On the third card, field 2 would hold the name

42

given to the intemnal variable u,; field 3 would hold the name given to the clemental variable v, and
field 4 would contain 1.0. Field 5 would now hold the name given to the elemental variable v, and
field 6 would contain ~1.0.

This card announces that an auxiliary parameter, specific to the current element type, is to be
assigned a value. The string, p_name, in field 2 gives the name of the auxiliary parameter that is to
be defined; this name can be up to six characters long and must have been previously defined in the
TEMPORARIES section. The string in field 7 is an arithmetic expression. The assignment

auxiliary variable named in field 2 « field 7

is made, where again <« means “is given the value”; any variable mentioned in the arithmetic
expression must either be reserved (see §3.2.1), or have been defined in the TEMPORARIES
section. If in this latter case, the variable is integer or real, it must have been allocated a value itself
either on a previous GLOBALS data card or on a previous P card for the current element type in the
ELEMENTS section.

This card specifies the value of the nonlinear element. The string in field 7 is an arithmetic
expression; the assignment

nonlinear element function « field 7
is made; any variable mentioned in the expression must obey the rules set out in the A section above.

This card specifies the value of a component of the gradient of the nonlinear element. The string,
iv_nam, in field 2 contains the name of an internal variable. The component of the gradient
specified on the card will be taken with respect to this variable. The string can be up to six
characters long and must have been defined on an IV data line in the ELEMENT TYPE section of the
SDIF file. The string in field 7 is an arithmetic expression; the assignment

derivative of element w.r.t. variable in field 2 « field 7

is made; any variable mentioned in the arithmetic expression must obey the rules set out in the A
section above. Once the user starts to form the gradient for an element type, any component not -
explicitly specified will be assumed to have the value zero.

This card specifies the value of a component of the Hessian matrix of the nonlinear element. The
strings, iv_nam, in field 2 and 3 contain the names of internal variables. The component of the
Hessian specified on the card will be taken with respect to these variables. The string can be up to
six characters long and must have been defined on an IV data line in the ELEMENT TYPE section of
the SDIF file. The string in field 7 is an arithmetic expression; the assignment

second derivative of element w.r.t. variables in fields 2 and 3 « field 7

is made; any variable mentioned in the arithmetic expression must obey the rules set out in the A
section above. H cards are optional. However, once the user starts to specify the Hessian matrix for
an element type, any component not specified will be assumed to have the value zero. The matrix is
assumed to be symmetric and so the user needs only supply values for one of

O or I i,
duou, " Juou, HN

it does not matter which. Observe that defaulting Hessian components to zero gives a very simple
way of inputing sparse matrices; however, as we stressed in the introduction, we do not recommend
this method of specifying invariant subspaces.

43

The data started on a A, F, G and H card may be continued on a card whose first field contains a A+,
F+, G+ or H+ respectively. Such cards contain an arithmetic expression in field 7 and no further data; the
arithmetic expression must obey the rules set out in the A section above. At most nineteen continuations of
a single assignment are allowed. card

The data for a single element type must occur on consecutive cards and in the order given in Figure
3.2.3. A new element type is deemed to have started whenever a T card is encountered. The F card is
compulsory for all element types; elements with useful transformations from elemental to internal
variables must also have R cards. The data for a particular card type is considered to have been completed
whenever another card type is encountered.

3.3 Two further examples

In §1.4, we gave an example. An SEIF file for this example is given in Figure 3.3.1. The problem is
again given the name DOC. The two types of nonlinear element were assigned the names ELEMENT1/2
by the previous SDIF file. The elemental variables were given names beginning with v and the intemal
variables for the second nonlinear element started with U. The constant 0.0 occurs in the derivatives of
both elements, so an auxiliary variable is assigned to hold its value. The function value and derivatives of
the second element type use both sines and cosines of u, and again auxiliary variables are assigned to.
hold these values, this time as variables local to ELEMENT2. The second derivatives are sufficiently
straightforward to compute that we provide them.

We gave a second example in §1.5. An SEIF file for this example is given in Figure 3.3.2. The problem
is again given the name DOC2 . The only type of nonlinear element was assigned the name SQUARE in
the previous SDIF file, its elemental variable was called V and there was no useful range transformation.

44

4. The standard data input format for describing nontrivial groups

In addition to the problem data and the nonlinear element types described in §2 and 3, the user might
also wish to specify the nontrivial group functions, and their derivatives, in a systematic way. A particular
nontrivial group function is defined in terms of its group type and variable; both of these quantities are
specified in §2. Thus, the only details which remain to be specified are the function and derivative values
of the group types.

Once again, we present an approach to this issue. As before, data is specified in a file. The file
comprises an ordered mixture of indicator and data cards; the latter allow function and derivative
definitions in appropriate high-level language statements.

4.1 Introduction to the standard group type input format

4.1.1 The values and derivatives required

It is assumed that a nonlinear group type is specified in terms of its group-type variable as described on
a GROUP TYPE data card in an SDIF file, see §2.2.13. An optimization procedure is likely to require the
values of the group functions and their first and second derivatives (taken with respect to the variable). We
now describe how to set up the data for a given problem.

4.1.2 Indicator cards

As before, the user must prepare an input file, the SGIF (Standard Group type Input Format) file,
consisting of indicator and data cards. The former contain a simple keyword to specify the type of data
that follows. Possible indicator cards are given in Figure 4.1.

keyword comments presence described in §
GROUPS same as NAME mandatory 22.1
TEMPORARIES optional 3.2.1
GLOBALS optional 322
INDIVIDUALS optional 42.1
ENDATA mandatory 222

Figure 4.1. Possible indicator cards

Indicator cards must appear in the order shown. The cards TEMPORARIES, GLOBALS and
INDIVIDUALS are optional.

The data cards are of a single kind, using four fields, fields 1,2, 3 and 7, exactly as described in §3.1.2.

4.1.3 An example.

Before we give the complete syntax for an SGIF file, we finish the illustrative example that we started
in §2.1.3 and §3.1.3 and show how to specify an input file appropriate for the problem of §1.6. The format
is fairly similar to that for the SEIF file of §3. Once again, there are many possible ways of specifying a
particular problem; we give one in Figure 4.1.3.

The file must always start with a GROUPS card, on which a name (in this case EG3) for the example
may be given (line 1), and must end with an ENDATA card (line 10).

We next need to specify the names and attributes of any auxiliary quantities and functions that we
intend to use in our high level description of the group functions. These are needed to allow for

45

- 41 (Field7) -
o 8 -« 8 - o« 12 - « 8 - 12 -
F1 Field 2 Field 3 Field 4 Field § Field 6
EELEMENTS Doc
ITEMPORARIES
cs
SN
ZERO
SIN
0S
GLOBALS
IZERO 0.0D+0
[INDIVIDUALS
T TYPE1
V1 * v2
1 v2
2 V1
1 V1 2ERO
5 1 v2 1.0D+0
H 2 V2 ZERO
T TYPE2
R o1 V1 1.0D+0
R |2 lv2 1.0D+0 3 1.0D+0
1Y s cos (U2)
A Isn SIN (U2)
F U1 * SN
c 1 SN
e fu2 1*cCs
H 1 vl ZERO
lu ul 2 S
H Ju2 u2 - Ul * SN
EnDATA 1 | |
tT1T1 TtT 1T TT 1 T 1 T 17 1 T
235 10 12 15 20 22 25 36 40 47 50 61 65
Figure 3.3.1. SEIF file for the element types for the example of §1.4
- 41 (Field7) -
o 8 - 8 - o« -12 - « 8 - 12 -
F.1 Field 2 Field 3 Field 4 Field 5 Field 6
LEMENTS poc2
NDIVIDUALS
T |SQUARE
v *% 2
2.0D+0 * vV
H v 2. 0D+0
NDATA | | |
Tt Tt 1 TT 1 Tt Tt T T
235 10 12 15 20 22 25 36 40 47 50 61 65

Figure 3.3.2. SEJF file for the element type for the example of §1.5

consistency checks in the proceeding high-level language statements and must always occur in the
TEMPORARIES section of the input file. Line 3 indicates that we shall be using temporary quantities
TWOP1 and the character R in the first field of this lines states that the quantity will be associated with a
floating point (real) value.

We now make the actual definitions of the function and derivative values for the nontrivial group type

46

G- 8 o ~— 8 -9 41 -

line F.1 Field2 Field 3 Field 7

1 [sROUPS EG3

2 ITEMPORARIES

3 I'rwopl

4 TNDIVIDUALS

s T [PSQUARE

6 WOP1 2.0*P1

7 P1*ALPHA*ALPHA

8 TWOP 1 *ALPHA

9 H ITWOP1

10 m\TA
T Tt 1 T 1 T
1235 1012 15 2 25 65

Figure 4.1.3. SGIF file for the nontrivial group type for the example of §1.6

used; we recall that there is a single nontrivial group type PSQUARE and that its attributes (name of
group-type variable and parameter) has been described in the SDIF file set up in §2.1.3. This definition
takes place within the INDIVIDUALS section. The presence of the character T in field 1 of line 5
announces that the data for the group type PSQUARE is to follow. All the data for this group must be
specified before another group type is considered. We note that the quantity 2p, occurs in both first and
second derivatives of the group type function and so the auxiliary quantity TWOP1 is set on line 6 to hold
this value. The first field of a line on which such an assignment is made contains the character A. The
value (line 7), its first derivative (line 8) and second derivative (line 9) with respect to the group-type
variable are now given. A Fortran expression for these values occurs in field 7 on each of these line; the
lines contain the characters F, G and H respectively in field 1 for such assignments.

If there had been more than a single group type with one or more expressions in common, these
expressions could have been assigned to previously attributed quantities in a GLOBALS section. This
section would then have appeared between the TEMPORARIES and INDIVIDUALS sections.

4.2 Data cards

The GROUPS and ENDATA indicator cards perform the same function as the cards NAME and ENDATA
in §2.2.1 and 2.2.2 Likewise, the TEMPORARIES and GLOBALS data cards have exactly the same syntax
as those in §3.2.1 and 3.2.2, excepting that the reserved parameters are now the group-type variables
specified in the GROUP TYPE section of the SDIF file.

4.2.1 The INDIVIDUALS data cards

The INDIVIDUALS indicator card is used to announce the definition of function and derivative values
for the types of nontrivial group functions required. The syntax for data cards following the indicator card
is given in Figure 4.2.1.

The one or two character string in field 1 specifies the type of data contained on the card. Possible
values for the first character of the string are:

T This card announces that a new group type is to be considered. The string, gty name, in field 2
gives the name of the group type; the name may be up to eight characters long and must have been
defined in the GROUP TYPE section of the SDIF file (see §2.2.15).

A This card announces that an auxiliary parameter, specific to the current group type, is to be assigned
a value. The string, p _name, in field 2 gives the name of the auxiliary parameter that is to be

47

o« 10 - «— 41 -

F.1 Field 2 Field 7

INDIVIDUALS

T [gty_name

A [p name 5586666656556 86866686686568686866686666864&6666&
A+ E6EEEEEELEEEEEEEGGEEEEEEELELEEELELESE&EEES
¥ 65 &EELEEELEEEEEEE6EEEEGEEEEGEEEEEEEEE44EEY
F+ &6 6666665656666 666666&6856668666686566566
G S5 &E&LEEEEGEEELEEEEEEEEEEEEEEEELEEGEELEGEY
G+ §66865665666656665656656865866G566EG586666&
H 8866 6ELEEEEEEEEEEEEELELEEEEEEEEEEEEEEESY
H+ 686665 &E&EEEEEEELESEEEEEEEEEGEEEEEEEEEE&EEY
mT TT T T
23 5 10 12 25 65

Figure 4.2.1. Possible data cards for INDIVIDUALS
defined; this name can be up to six characters long and must have been previously defined in the
TEMPORARIES section. The string in field 7 is an arithmetic expression. The assignment

auxiliary variable named in field 2 «- field 7

is made; any variable mentioned in the arithmetic expression must either be reserved (see §3.2.1), or
have been defined in the TEMPORARIES section. If, in this latter case, the variable is integer or
real, it must have been allocated a value itself either on a previous GLOBALS data card or on a
previous P card for the current element type in the INDIVIDUALS section.

This card specifies the value of the nontrivial group. The string in field 7 is an arithmetic expression;
the assignment

nontrivial group function « field 7
is made; any variable mentioned in the expression must obey the rules set out in the A section above.

G This card specifies the value of the first derivative of the nonlinear group function with respect to its
group-type variable. The string in field 7 is an arithmetic expression; the assignment

first derivative of group function « field 7

is made; any variable mentioned in the arithmetic expression must obey the rules set out in the A
section above.

H This card specifies the value of the second derivative of the the nonlinear group function with
respect 1o its group-type variable. The string in field 7 is an arithmetic expression; the assignment

second derivative of group function « field 7

is made; any variable mentioned in the arithmetic expression must obey the rules set out in the A
section above.

The data started on a A, F, G and H card may be continued on a card whose first field contains a A+,
F+, G+ or H+ respectively. Such cards contain an arithmetic expression in field 7 and no further data; the
arithmetic expression must obey the rules set out in the A section above. At most nineteen continuations of
a single assignment are allowed.

48

The data for a single group type must occur on consecutive cards and in the order given in Figure 4.2.1.
A new group type is deemed to have started whenever a T card is encountered. The F card is compulsory
for all group types.
4.3 Two further examples

In §1.4, we gave an example. An SGIF file for this example is given in Figure 4.3.1.

S - 8 - - 8 - « 41 -
F1 Field 2 Field 3 Field 7
GROUPS DOC
ITEMPORARIES
IALPHA2
TWO
INDIVIDUALS
T [GTYPEl
A [TWwo 2.0D+0
F ALPHA * ALPHA
G TWO * ALPHA
1 TWO
T |GTYPE2 .
A |JALPHA2 ALPHA * ALPHA
i3 ALPHA2 * ALPHA2
G 4.0D+0 * ALPHA2 * ALPHA
H 1.2D+1 * ALPHA2
[ENDATA
Tt TT 1 TT T
235 10 1215 2225 65

Figure 4.3.1. SGIF file for the nontrivial group types for the example of §1.4

S « 8 - - 8 - o« 41 -
F.1 Ficeld 2 Field 3 Field 7
ROUPS DOC2
[TEMPORARIES
ISINA
SIN
0S
INDIVIDUALS
T SINE
ISINA P * SIN(ALPHA)
ISINA
. (P * COS(ALPHA)
H - PSINA
NDATA
Tt TT T Tt b
235 10 1215 2225 65

Figure 4.3.2. SGIF file for the nontrivial group type for the example of §1.5

The problem is again given the name DOC. The two types of nontrivial groups were assigned the names
GTYPE1/2 by the previous SDIF file, each with group-type variables ALPHA. The function and
derivatives values of the second group type, g(@)=a* all use some product of &?, 50 an auxiliary variable
is assigned to hold this value, the variable being local to the group type. Likewise, the derivatives of the

first group type, g(@)= @ both use some product of 2.0, so another auxiliary variable is assigned to hold
its value,

49

We gave a second example in §1.4. An SGIF file for this example is given in Figure 4.3.2. The problem
is again given the name DOC2. The single nontrivial group type was given the name SINE by the
previous SDIF file, with the group-type variable ALPHA and the single parameter P . The function and
second derivatives both depend on the product of the parameter with the sine of the group type variable,
so an auxiliary variable is assigned to hold this value.

50

5. Other standards and proposals

There have been a number of other proposed standards for input. The most popuiar approaches use a
high level modelling language to specify problems. Typical examples are GAMS (Brooke, Kendrick and
Meeraus, 1988), AMPL (Fourer, Gay and Kernighan, 1987) and OMP (Decker, Louveaux, Mortier,
Schepens and Looveren, 1987). Such approaches are useful for specifying repetitious structures, but do
not really attempt to cope with useful nonlinear structure (like invariant subspaces). Recent work by
Fourer, Gay and Kernighan (1989) hopes to overcome this disadvantage.

We have recently become aware of other suggestions for the input of large-scale struciured problems.
These proposals are based upon representing nonlinear functions in their factorable (Lenard, 1989) or
functional forms (McComick and Rahnavard, 1989). Such forms are the the logical extensions of (1.1.1)
in which a function is decomposed completely into basic building blocks. The advantage of such schemes
is the potential for the automatic calculation of derivatives, but this must be weighed against the difficulty
of describing how the building blocks are assembled. We await further details of these interesting
proposals

6. Conclusions

We have made a proposal for a standard input format for the specification of (large-scale) nonlinear
programming problems. In its full generality, the user needs to provide three input files. The first
describes the structure of the problem and the decomposition of the problem into group and element
functions. The second and third then specify the values and derivatives of these functions. It is anticipated
that the first file will be used to provide input parameters for a user’s optimization procedure, while the
remaining two will be used to generate problem evaluation subprograms.

Such an approach has already been implemented at Harwell as one way of presenting problem data to
the authors’ large-scale nonlinear programming package (SBMIN/LANCELOT, in preparation, see Conn,
Gould and Toint, 1988a,b,1989, Conn, Gould, Lescrenier and Toint, 1987). Indeed, as the input parameter
list for our optimization procedure is rather long, we regard the approach given here as the most reliable
method of setting up a particular problem.

51

7.References

A. Brooke, D. Kendrick and A. Meeraus GAMS: A user’s guide, Scientific Press, 1988.

A.G. Buckley, "Test functions for unconstrained minimization", Technical Report CS-3,
Computing Science Division, Dalhousie University, 1989,

AR. Conn, N.IM. Gould, M. Lescrenier and Ph.L. Toint, "Performance of a multifrontal
scheme for partially separable optimization”, Technical Report CS-88-04, Department
of Computer Science, University of Waterloo, Waterloo, Ontario, CANADA, 1988.

AR. Conn, N.LM Gould and Ph.L. Toint, "Global convergence of a class of trust region
algorithms for optimization with simple bounds®, SIAM Journal on Numerical
Analysis 25 433-460, 1988a.

AR. Conn, N.ILM. Gould and Ph.L. Toint, "Testing a class of methods for solving
minimization problems with simple bounds on the variables”, Mathematics of
Computation 50 399-430, 1988b.

AR. Conn, N.LM. Gould and Ph.L. Toint, "A Globally convergent augmented Lagrangian
algorithm for optimization with general constraints and simple bounds”, SIAM
Journal on Numerical Analaysis (to appear) 1990.

G.B. Dantzig, Linear programming and extensions, Princetown University Press, 1963.

B.D. Decker, F. Louveaux, C. Mortier, G. Schepens and A.V. Looveren, Linear and mixed
nteger programming with OMP, Beyers and Parters, 1987.

LS. Duff, A.M. Erisman and J.K. Reid, Direct methods for Sparse matrices, Oxford University
Press, 1986.

LS. Duff, R.G. Grimes and J.G. Lewis, "Sparse matrix test problems”, ACM Transactions on
mathematical software 15 1-14, 1989.

R. Fourer, D.M. Gay and B.W. Kemighan "AMPL: a mathematical programming language”,
Computer science technical report 133, AT&T Bell Laboratories, 1987.

R. Fourer, D.M. Gay and B.W. Kernighan, "A high-level language would make a good
standard form for nonlinear programming problems”, talk at the CORS/TIMS/ORSA
meeting, Vancouver, 1989,

D.M. Gay, "Electronic mail distribution of linear programming test problems",
Mathematical Programming Society COAL Newsletter, December, 1985.

A. Griewank and Ph.L. Toint, "Partitioned Variable Metric Updates for Large Structured
Optimization Problems", Numerische Mathematik 39 119-137, 1982.

W. Hock and K. Schittkowski, Test examples for nonlinear programming codes, Lecture
notes in ecomomics and mathematical systems, volume 187, Springer-Verlag, Berlin,
1981.

M. Lenard "Standardizing the interface with nonlinear optimizers”, talk at the
CORS/TIMS/ORSA meeting, Vancouver, 1989. -

G. McCormick and P. Rahnavard "Representation of unconstrained optimization", talk
at the CORS/TIMS/ORSA meeeting, Vancouver, 1989,

JJ. Moré, "A collection of nonlinear model problems”, Preprint MCS-P60-0289,
Argonne National Laboratory, 1989.

J.J. Moré, B.S. Garbow and K.E. Hillstrom, "Testing unconstrained optimization software”,
ACM Transactions on mathematical software 7 1741, 1981.

K. Schittkowski, More test examples for nonlinear programming codes, Lecture notes
in economics and mathematical systems, volume 282, Springer-Verglag, Berlin, 1987.

52

8. An appendix of further examples.

Although it has been necessary to give an exact specification of the allowed input formats, we feel that
the best way to learn how to input problems is by studying specific examples. Consequently, we present
here five further examples which use many of the salient features of the standard. We hope that readers
will be encouraged to trying converting their favourite test examples into the standard form.

A collection of SDIF files for many sets of standard test problems is currently being compiled. To date,
we have translated the problems given by Moré, Garbow and Hilstrom (1981), Moré (1989) and Buckley
(1989). Work is proceeding on the problems given in the books by Hock and Schittkowski (1981) and
Schittkowski (1987). I is our intention to put the resulting files in the public domain.

-

8.1 A simple unconstrained problem

Firstly, we give an SDIF file for the famous Rosenbrock function in 2 variables (Moré, Garbow and
Hillstrom, 1981, page 27, problem 28). Here the objective function is

100(x, —x2)% +(1-x,)>.

There are no constraints and the given starting value for an unconstrained minimization is
x; =-1.2, x,=1. An appropriate SDIF file might be: .

NAME ROSNB2
VARIABLES
X1
X2
GROUPS
N Gl X2 1.0
N Gl 'SCALE' 0.01
N G2 X1 1.0
CONSTANTS
ROSNB G2 1.0
BOUNDS
DR ROSNB

START POINT

ROSNB X1 -1.2 X2 1.0
ELEMENT TYPE
EV sQ vl

ELEMENT USES

T El SQ

vV El vi X1
GROUP TYPE

GV L2 GVAR
GROUP USES

T Gl L2

E Gl El

T G2 L2

OBJECT BOUND

* Least square problems are bounded below by zero

LO ROSNB 0.0

53

ENDATA
* Specify the form of the different element types
ELEMENTS ROSNB2
INDIVIDUALS
T SQ
F -Vl * vl
G V1 -Vl -vi
H V1 vl - 2.0
ENDATA
* Specify the form of the different group types
GROUPS ROSNB2
INDIVIDUALS
T L2
F GVAR * GVAR
G GVAR + GVAR
H 2.0
ENDATA

8.2 A simple constrained problem

Next, we give an SDIF file for the 65th constrained example collected by Hock and Schittkowski
(1981, page 87). The objective function is
(@ —x)2 +(x; +x, ~10)2/9+(x, - 5)2.
There is a single inequality constraint .
xlz +Jc22 +x3 <48
and additional simple bounds
~4.55x,545, ~455x,<45, —-55x,<5

on the variables. The values x, =-S5, x, =35, x5 =0 give the starting point for the minimization. Noting the
use of range transformations, an appropriate SDIF file might be:

NAME HS65

* Number of variables
ID N 3
* Useful parameters
Ip 1
Ip 3

RD NINE
RR 1/9 NINE

O W

VARIABLES
X1
X2
X3
GROUPS
* Objective function
N OBJ
* Constraints functions

L CON

54

CONSTANTS

HS6S5 CON 48.0
BOUNDS
LO HS65 X1 -4.5
UP HS65 X1 4.5
L0 HS65 X2 -4.5
UP HS65 X2 4.5
LO HS65 X3 -5.0
UP HS65 X3 5.0
START POINT
HS65 X1 -5.0 X2 5.0
HSE5 X3 0.0

ELEMENT TYPE

EV DIFSQR vl V2
IV DIFSQR U
EV SUMSQOR vi v2
IV SUMSQR U
EV sQ-5 v
BV 5Q \'4

ELEMENT USES

* Nonlinear elements for the objective function

T 01 DIFSQR

v o1 vi X1
v ol v2 X2
T 02 SUMSQR

v 02 Vi X1
v 02 v2 X2
T 03 SQ-5

vV 03 A X3

* Nonlinear elements for the constraint function

DO I 1 3
XT C({I) sQ

XV C(I) v X(I)
ND
GROUP USES

E OBJ ol 03
ZE OBJ 02 1/9
E CON Ccl c2
E CON c3
ENDATA

* Specify the form of the different element types
ELEMENTS HS65

TEMPORARIES

R DIF

INDIVIDUALS

* square of V, where V = U1 - U2

T DIFSQR

R U V1 1.0 v2 -1.0
F U*xu

G U U+ U

H U U 2.0

* square of (U -~ 10 }, where U = V1l + v2
T SUMSQR

R U Vi 1. v2 1.

<«

55

A DIF U - 10

F DIF * DIF
G U DIF + DIF
H U U 2.0

* square of (V - 5)

T SQ0-5

A DIF V-5

F DIF * DIF
G Vv DIF + DIF
H V v 2.0

* square of V

T 8Q

F vV *v

G Vv V+V

H Vv v 2.0
ENDATA

* Specify the form of the different group types
GROUPS HS65
* All groups are trivial

ENDATA

8.3 A system of nonlinear equations with single-indexed variables

Here we give an SDIF file for the discrete boundary value problem in n variables given by Moré,
Garbow and Hillstrom (1981, page 27, problem 28). We set the problem up as a system of nonlinear
equations (constraints) .

2x;-x, =Xy, +hAx +ik+1)3/2=0, (i=1,...,n),

where h=1/(n+1) and x,=x,,, =0. We specify n=8 and use the starting point x;=ih(ih-1) for
i=1,....,n. An appropriate SDIF file might be:

NAME BDVLE1O
* N is the number of internal discretization points
ID N 8

* Define useful parameters

ID O 0

ID 1 1

IA N+1 N 1

RI RN+1 N+l

RR H RN+1

RP H2 H H
RM HALFHZ2 H2 0.5
VARIABLES

DO I] N+1
X X{(I)

ND
GROUPS

DO I 1 N
IA I-1 I -1

JA I+l I 1

XE G(I} X(I-1) -1.0 X (I} 2.0
XE G(I; X{(I+1}) -1.0

ND

56

BOUNDS

DR BDVLE
XX BDVLE X(0) 0.0
XX BDVLE X (N+1) 6.0
START POINT
X BDVLE X (0} 0.0 X (N+1) 0.0
DO I 1 N
RI RI I
RP IH RI H
RA IH-1 IH -1.0
RP TI In IH-1
Z BDVLE X(I) TI
ND
ELEMENT TYPE
EV WCUBE v
EP WCUBE B
ELEMENT USES
DO I 1 N
RI REALI I
RP IH REALI H .
XT E(I) WCUBE
XV E(I) v X(I)
2P E(I) B IH
ND
GROUP USES
DO I 1 N
ZE G(I) E(I) HALFH2
ND
ENDATA

* Specify the form of the different element types
ELEMENTS BDVLE1Q

* the cube of (V + B)

TEMPORARIES

R VPLUSB

INDIVIDUALS

T WCUBE

A VPLUSB vV + B

F VPLUSB**3

G Vv 3.0 * VPLUSB**2

H V v 6.0 * VPLUSB

ENDATA

* Specify the form of the different group types
GROUPS BDVLE1(

* all groups are trivial

ENDATA

57

8.4 An unconstrained problem with double indexed variables

Now, we give an SDIF file for the linear minimum surface problem formulated by Toint (see, Buckley,
1989, page 71). This example illustrates the use of two-dimensional arrays. The problem is described in
the comments included in the following SDIF file:

NAME LMSRF100
* The problem comes from the discretization of the minimum surface
* problem on the unit square: given a set of boundary conditions on
* the four sides of the square, one must find the surface which
* meets these boundary conditions and is of minimum area.
* The unit square is discretized into (p-1)**2 little squares. The
* heights of the considered surface above the corners of these little
* squares are the problem variables, There are p**2 of then.
* Given these heights, the area above a little square is
* approximated by the
* S(i,3) = sqrt(1 + 0.5(p-1)**2 (a(i,J) + b(i,3))) / (p-l)**2
* where
* a(i,j) = x(i,3) - x(i+1,3+1)
* and
* bli,J) = x(i+l,3) - x(i,3+1)
* In the Linear Minimum Surface, the boundary conditions are given
* as the heights of a given plane above the square boundaries. This
* plane is specified by its height above the (0,0) point (HOG below),
* and its slopes along the first and second coordinate
* directions in the plane (these slopes are denoted SLOPEJ and SLOPEI
* P is the number of points in one side of the unit square
ID P 10

* Define the plane giving the boundary conditions

RD HOO 1.
RD SLOPEJ 4.
RD SLOPEI 8.

Qo

* Define a few helpful parameters

IS TWOP P P

IA P-1 P -1

IP PP-1 P P-1

RI RP-1 P-1

RR INVP-1 RP-1

RP RP-15Q INVP-1 INVP-1
RR SCALE RP-18Q -

RP SQP-1 RP-1 RP-1
RM PARAM SQP-1 0.5

ipD 1 1

ID 2 2

RP STON INVP-1 SLOPEI
RP WTOE INVP-1 SLOPEJ
RS HO1 HOO SLOPEJ
RS H10 HOO SLOPEI
VARIABLES

* Define one variable per discretized point in the unit square

DO J 1 P
DO I 1 P
X X(1,3)

ND
GROUPS

* Define a group per little square

DO I 1 pP-1
DO J 1 P-1
ZN S(I,J) *SCALE' SCALE
ND
CONSTANTS

58

D LMSRF -1.0
BOUNDS
DR LMSRF

* Fix the variables on the lower and upper edges of the unit square

DO J 1 P

Ia J-1 J -1

RI RJ-1 J-1

RP TH RJ-1 WTOE
RS TL TH HOO
RS TU TH H1C
ZX LMSRF X1, TL
ZX LMSRF X{P,J) TU
ND

* Fix the variables on the left and right edges of the unit square

DO I 2 P-1
1A 1-1 1 -1

RI RI-1 1-1

RP TV RI-1 STON
RS TR ™v HOO
RS TL ™v HO1
ZX LMSRF X(1,P) TL
2X LMSRF X(I,1) TR
ND

START POINT
* All variables not on the boundary are set to 0.0
D LMSRF 0.0

* Start from the boundary values on the lower and upper edges

Do J 1)4

Ia J-1 J -1

RI RJ-1 J-1

RP TH RJ-1 WTOE
RS TL TH HOO
RS TU TH H10
Z LMSRF X1, TL

Z LMSRF X(p,J) TU
ND

* Start from the boundary values on the left and right edges

DO I 2 pP-1
Ia I-1 I -1

RI RI-1 I-1

RP TV RI-1 STON
RS TR v HOO
RS TL ™v HO1
Z LMSRF X(I,P) TL

Z LMSRF X{1,1) TR
ND

ELEMENT TYPE
* The only element type.

EV ISQ \'28 v2
IV IsQ v

ELEMENT USES

* Each little square has two elements using diagonal and
* antidiagonal corner values

DO I 1 P-1
IA I+1 I 1
DO J 1 P-1
IA J+1 J 1

59

XT A(1,J) IsQ

XV A(I,J) vl X({1,3)

XV A(I,J) v2 X(I+1,J+1)
XT B(I,J) I5Q

XV B(I,J) V1 X(I+1,J)
XV B(I,J) v2 X(I,J+1)
ND

GROUP TYPE

* Groups are of the square root type
GV SQROOT ALPHA
GROUP USES

* All groups are of SQROOT type.

DO I 1 P-1
DO J 1 P-1
XT s(1,J) SQROOT

2E 5(I1,J) A(I,J) PARAM
Z2E s(I,J) B(I,J) PARAM
ND

OBJECT BOUND
LO LMSRF 0.0
ENDATA
* Specify the form of the different element types
ELEMENTS LMSRF100
INDIVIDUALS

* Difference sguared

T 1SQ

R U Al 1.0 v2 -1.0
F U*Uy

G U U+uU

H U U 2.0
ENDATA

* Specify the form of the different group types
GROUPS LMSRF100
TEMPORARIES

M SQRT
R SQRAL

INDIVIDUALS

* square root groups

T SQROCT

A SQRAL SQRT (ALPHA)

F SQRAL

G 0.5D0 / SQRAL

H -0.25D0 / (SQRAL * ALPHA)
ENDATA

8.5 A constrained problem with triple indexed variables

Finally, we give an SDIF file for the problem of determining the maximum growth possible when
performing Gaussian elimination with complete pivoting. Starting with an n by » real matrix X D we let
X® be the matrix which remains to be eliminated after k-1 steps of Gaussian elimination without
pivoting. Let x; ; , be the (i,)~th entry of X ®_ We thus wish to maximize X, » a Subject to the restrictions
that the matrices X® and X**!) are related to each other by elimination restrictions, that the largest

60

element in the bottom n—k— 1 block of X® occurs in position (k, k, k) and that the initial matrix XV is
scaled so that the largest entry in magnitude is 1. This leads to the problem
minimize -x, , ,
subject to the elimination constraints
’ I"'j'k_'_l_xi'j.k+xi;hk1gj’klxhgk=o for k<i.<_n,k<j5n and k=1,...,"—l,

constraints which make the signs of the pivots unique,

Xy x 20 for k=1,..,n,
a normalizing constraint, x; , ; =1, and complete pivoting constraints

-1<x;

a1 S1 forl<ign,1<j<n

and
-—x‘ngxu'ka‘u for k€i<n,k<j<nand k=2,...,n-1.

These details, along with a suitable starting point, are given for the case n=6 in the following SDIF file:

NAME GAUSS91
* size of the matrices = n

ID N 6

* other parameter definitions
D1l 1

ID 2 2

IA N-1 N -1
VARIABLES
DO K

Do J
DO I

Lol
32

X X{(I,J,K)
ND
GROUPS

* objective function

DO K N N
XN 0BJ X(K,K,K}) =-1.0
ND

* elimination constraints

DO K 1 N-1

IA K+ X ’ 1

DO I K+ N

Do J K+ N

XE E(I,J,K) X{(I,J,K+} 1.0 Xx(1,3,K) -1.0
ND

* complete pivoting constraints (submatrices 2 to n-1)

DO K 2 N-1
DO I K N
DO J K N

X(K,K,K) =-1.0

XL M{I,J,K) X(I,J,X) 1
1 X(K,K,K) 1.0

.0
XG P(I,J,K} X(I,J,K) .0
ND

61

BOUNDS
* default = free variables
DR GAUSS

* complete pivoting constraints (submatrix 1)

DO T 1 N
DO J 1 N
XL GAUSS x(I1,J,1) -1.0

XU GAUsS X(1,J,1) 1.0

ND

* ensure pivotal elements are nonnegative

DO K 1 N
XL GAUSS X{K,K,K) 0.0
ND

* normalize first pivot
FX GAUSS X1,1,1 1.0
START POINT
* default value for starting point component
D GAUSS 0.01

* Set initial matrices to perturbed identities

DO K 1 N
DO I K N
X GAUSS X(I,1,K) 1.0

ND

ELEMENT TYPE

EV ELIM vl V2
EV ELIM v3

ELEMENT USES

DO K 1 N-1

IA K+ K 1

DO I K+ N

DO J K+ N

XT A(I,J,K) ELIM

XV A{I,J,X) V1 X(I,K,K)
XV A(I,J,K) V2 X (K, J,K)
XV A(I,J,K) V3 X{K,K,K)
ND
GROUP USES

DO K 1 N-1

IA K+ K 1

DO I K+ N

DO J K+ N

XE E(I,J,K) A(I,J,K)

ND

ENDATA

* Specify the form of the different element types
ELEMENTS GAUSS91

TEMPORARIES

R VALUE
R V3sQ

62

INDIVIDUALS

T ELIM

A VALUE V1l *v2 / v3
A V3sQ V3 *x v3

F VALUE

G Vi V2 / V3

G V2 Vi / v3

G v3 - VALUE / V3
H V1 v2 1.0 / v3

H Vvl v3 - V2 / v3sQ
H V2 v3 - V1l / Vv3sQ
H V3 v3 2.0 * VALUE / V3sQ * v3
ENDATA

* Specify the form of the gifferent group types
GROUPS GAUSS91
* all groups are trivial .

ENDATA

63

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

