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1 Introduction

Trust region methods for nonlinear optimization problems have become very popular over the
last decade. One possible explanation of their success is their remarkable numerical reliability
associated with the existence of a sound and complete convergence theory. The fact that they
efficiently handle nonconvex problems has also been considered as an advantage.

As an integral part of this growing interest, research in convergence theory for this class of
methods has been very active. First, a substantial body of theory was built for the unconstrained
case (see [19] for an excellent survey). Problems involving bound constraints on the variables were
then considered (see [9], [20], [21] and [1]), as well as the more general case where the feasible
region is a convex set on which the projection (with respect to the Euclidean norm) can be
computed at a reasonable cost [29]. The studied techniques are based on the use of the explicitly
calculated projected gradient as a tool to predict which of the inequality constraints are binding
at the problem’s solution. Moreover, trust region methods for nonlinear equality constraints have
also been studied by several authors (see [30], [8], [5] and [25] for instance).

This paper also considers the case where the feasible set is convex. It presents a convergence
theory for a class of trust region algorithms with the following new features.

e The theory does not depend on the use of the Euclidean norm in the projection operator,
but allows for a uniformly equivalent family of arbitrary norms.

o The gradient of the objective function can be approximated if its exact value is either
impossible or too costly to compute at every iteration.

¢ The calculation of the “projected gradient™ (with respect to the chosen norms) need not be
carried out to full accuracy.

¢ When the feasible set is described by a system of linear and/or nonlinear (in)equalities,
conditions are presented that guarantee that the algorithms of the class identify, in a finite
number of iterations, the set of inequalities that are binding at the solution. We note that
this description of the feasible set does not need its partition into faces.

An attractive aspect of this theory is that it covers the case where a polyhedral norm is
chosen to define the projection operator, allowing the use of linear (or convex) programming
methods for the approximate calculation of the projected gradients. This type of algorithm
should be especially efficient in the frequent situation where the feasible set is defined by a set
of linear equalities and inequalities, and where a basis for the nullspace of the linear constraints’
matrix is cheaply available. In network problems, for example, this can be very cheaply obtained
and updated using a spanning tree of the problem’s underlying graph (see [17) for a detailed
presentation of the relevant algorithms). Other examples include multiperiodic operation research
models resulting in staircase matrices.

Another useful feature of this theory is that it provides a perturbation analysis for methods
using the exact projected gradient, as described in [9], [20], [21] and [1].

The problem and notation is introduced in Section 2, together with a general class of algo-
rithms. The convergence properties of this class are then analyzed in Section 3. A particular



practical algorithm of the class is discussed in Section 4. The identification of the active con-
straints is presented in Section 5. Section 6 presents an analysis of the conditions under which
the whole sequence of iterates can be shown to converge to a single limit point. Additional points
and extensions of the theory are discussed in Section 7. A glossary of symbols can be found in
Appendix B. All the assumptions used in the paper are finally summarized in Appendix C.

2 A class of trust region algorithms for problems with convex

feasible domain

2.1 The problem
The problem we consider is that of finding a local solution of
min f(z) (2.1)

subject to the constraint
ze X, (2:2)

where z is a vector of R", f(-) is a smooth function from R" into R and X is a closed convex
subset of R™, also called the feasible set. We assume that we can compute the function value
f(z) for any feasible point . We are also given a feasible starting point zo and we wish to start
the minimization procedure from this point.
If we define £ by
LE Xn{zeR"| f(z) < f(zo)}, (23)

we may formulate our assumptions on the problem as follows.

AS.1 The set £ is compact.

AS.2 The objective function f(z) is continuously differentiable and its gradient V f(z) is
Lipschitz continuous in an open domain containing L.

In particular, we allow for infinite X, provided the set £ remains bounded.

We will denote by (:, ) the Euclidean inner product on R™ and by ||-||; the associated £;-norm.

We recall that a subset K of R™ is a cone if it is closed under positive scalar multiplication,
that is if Az € K whenever 2 € K and X > 0 (see [26, p. 13]). Given a cone K, one can define
its polar (see [26, p. 121)]) as

K° ¥ {y e R"|(y,u) < 0,Yu € K} (2.4)

and verify that K is also a cone, and that (K°)° = K.
Given the convex set X, we can define Px(z), the projection of the vector £ € R™ onto X, as
the unique minimizer of the problem

min ||y — . 2.5
mip |1y — (25)

This projection operator is well known and has been much studied (see [32] for instance). We
will also denote by N(z) the normal cone of X at z € X, that is

N@) S {ye R | (y,u—z) <0, Vue X}. (2:6)



The tangent cone of X at 2 € X is the polar of the normal cone at the same point, that is
T(z) ¥ N(z)°. (2.7)
We note the identity
T(z) =cl{A(u—2)|A >0 and u € X}, (2.8)
where cl{S} denotes the closure of the set 5. We will also use the Moreau decomposition given
by the identity
z= PT(y)(z) + PN(U)(:B), (2.9)

which is valid for all z € R™ and all y € X (see [22]). This decomposition is illustrated in

Figure 1. In this figure and all subsequent ones, the boundary of the feasible set X is drawn with
a bold line.

Figure 1: The normal and tangent cones at y, and the corresponding Moreau decomposition of
z (translated to y)

We conclude this subsection with a result extracted from the classical perturbation theory of
convex optimization problems. This result is well known and can be found in [14, p. 14-17] for

instance.



L.eviuna | Assume that, for each z € X, the set D(z) C R"™ is convez and non-empty. Assume
wlaw that the mapping D(z) is continuous with respect to z. Assume finally that one is given
o real valued function F(y,z) which is defined, continuous and convez for all y € D(z) and all
¢« X Then, both the optimal function value

def .
F(2)¥ inf Fly,2) (2.10)
and the solution set
v(z) & {y € D(2)|F(y,2) = Fu(2)} (2.11)

ure conlinuous in .

2.2 Defining a local model of the objective function

The algorithm we propose for solving (2.1) subject to the constraint (2.2) is iterative and of trust
region type. Indeed, at each iteration, we define a model of the objective function f(z), and a
region surrounding the current iterate, z; say, where we believe this model to be adequate. The
algorithm then finds, in this region, a candidate for the next iterate that sufficiently reduces the
value of the model of the objective. If the function value calculated at this point matches its
predicted value closely enough, the new point is then accepted as the next iterate and the trust
region is possibly enlarged; otherwise the point is rejected and the trust region size decreased.
With each iteration of our algorithm will be associated a norm: we will denote by || - ||x) the
norm associated with the kth iteration.

We now specify the conditions we impose on the model of the objective function. This model,
defined in a neighbourhood of the kth iterate z;, will be denoted by the symbol m;, and is meant
to approximate the objective f in the trust region

B ¥ {z e R"|[lz — zall) < 1A}, (2.12)

where v, is a positive constant and A, > 0 is the trust region radius. We will assume that m,, is
differentiable and has Lipschitz continuous first derivatives in an open set containing By, that

me(zk) = f(zk) (2.13)

and that g; ef Vmy(zr) approximates V f(z,) in the following sense: there exists a nonnegative

constant x; such that the inequality
llewllpg < w1l (2.14)

holds for all k, where the error e;, is defined by e def gk — V f(2i) and where the norm || - || is
any norm that satisfies
K, 1)) < llzliry Ny llixg (2.15)

for all z,y € R™. In particular, one can choose the dual norm of || - [|(r) defined by

def. |<zy y)l
= su . 2.16
”y“[k] ::P “3||(k) ( )




Condition (2.14) is quite weak, as it merely requires that the first order information on the
objective function be reasonably accurate whenever a short step must be taken. Indeed, one
expects this first order behaviour to dominate for small steps.

Clearly, for the above conditions to be coherent from one iteration to the next, we need to
assume some relationship between the various norms that we introduced. More precisely, we will
assume that all these norms are uniformly equivalent in the following sense.

AS.3 There exist constants 01,03 € (0,1] and 03,04 > 1 such that, for all k; > 0 and k, > 0,

arll2liey) < lzllieay < @2llllhy) (217)
and
o3ll2lley) < ll2lle) < oallzliey (2-18)
for all z € R™.
If (2.16) is chosen, then (2.18) immediately results from (2.17) with o3 = 1/0; and 04 = 1/0.
We also note that (2.17) and (2.18) necessarily hold if the norms || - |j4,) and || - [lgxs) are
replaced by the £;-norm.
We finally introduce, for given k and for any nonnegative ¢, the quantity a() > 0 given by

def .
ax(t) = | min (g d)l, (2.19)
ldlixy<t

that is the magnitude of the maximum decrease of the linearized model achievable on the inter-
section of the feasible domain with a ball of radius ¢ (in the norm || - [|(x)) centered at z.
We then have the following simple properties.

Lemma 2 Forallk > 0,
1. the function t — ay(t) is continuous and nondecreasing for t > 0,
2. the function t — %ﬂ is nonincreasing for t > 0,

3. the inequality
ag(t
20 < | Preny(-0)l (2.20)

holds for all t > 0.

Proof.  The first statement is an immediate consequence of the definition (2.19) and of
Lemma 1 applied on the optimization problem of (2.19). In order to prove the second statement,
consider 0 < t; < t; and two vectors d; and dj such that

ar(t1) = —(gk,d1), lldilley < t1, 2 +di€X, (2.21)
and '
ar(tz) = —(9k,d2), |ldellx) <t2, 2k +dz€X. (2.22)

We observe that the point 2 + (1 /t3)d; lies between z;, and z; + da, and therefore we have that
2 + (t1/t2)dz € X. Furthermore,

t
152l = 3-lidally < (2.23)

t
[2]

5



and the point zj + (23 /2 )d2 thus lies in the feasible domain of the optimization problem associated
with the definition of ax(t1) and d;. As a consequence, we have that

ar(t 1 t ot
2th) s Lyigy, By = ) (224)
1 1 2 t2

and the second statement of the lemma is proved.
The third statement is proved as follows. Applying the Moreau decomposition to —g;, we
obtain that, for any d such that z; + d € X and (gx,d) <0,

(gkv d) = ”(PT(:eg)("'gk)a d) - (PN(zh)(—yk)’ PT(z,,)d) > "(PT(:::.)(—gk)’ d)v (2'25)

where we used the fact that d € T(z;) and the fact that the tangent cone is the polar of the
normal cone to derive the last inequality. Taking absolute values and applying (2.15) thus yields
that

[{g> d)| < lldll¢aey || Preay (— g )lIg- (2.26)

We then obtain (2.20) by applying this inequality to any solution d of the optimization problem
associated with the definition of ax(t) in (2.19) and using the fact that ||d||x) < t. O

2.3 A class of trust region algorithms

We are now ready to define our first algorithm in more details. Besides x; as used in (2.14), it
depends on the constants

0<m <pp<l, pze€(0,1], pq€(0,1], (2.27)
O<ws<wmra<w, we€(0,1], (2.28)
0O<m<m<1 (2.29)
and
0<m<12<1< . (2.30)

Algorithm 1

Step O : initialization. The starting point z¢ is given, together with f(z¢) and an initial trust
region radius Ag > 0. Set k = 0.

Step 1: model choice. Choose m;, a model of the objective function f in the trust region By
centered at zj, satisfying (2.13) and (2.14).

Step 2: determination of a Generalized Cauchy Point (GCP). If o &f ai(1) = 0, stop.

Else, find a vector s{ such that, for some strictly positive ), > ]]sf“(k),

zx +s¢ € X, (2.31)
lls€ llry < w2k, (2.32)
{91y 3% ) < —nzan(t), (2.33)



mi(zi + 8§ ) < ma(er) + p1(ge, 55 ), (2.34)

and, either
t, > min[vsAg, vy) (2.35)
or
mi(zi + 87 ) > ma(2i) + p2(gr, 55). (2.38)
Set the Generalized Cauchy point
2 = 21 + 5. (2.37)

Step 3: determination of the step. Find a vector s such that

Zp + 8, € X N By . (2.38)

and

mi(2r) — me(@i + k) > pa[mi(ze) — me(2$)]. (2.39)

Step 4: determination of the model accuracy. Compute f(zj + ;) and

F(ze) — fzr + 81)

= . 2.40
Pk ) - my(zk + si) (240)
Step 5: trust region radius updating. In the case where
Ph > M1, (2.41)
set
Tyl = T + Sk (2.42)
and
Art1 € [Ak,1348), if pr > 72, (2.43)
or
Apy1 € [1240, As), if pi < 2. (2.44)
Otherwise, set
Thil = Tp (2.45)
and
Brt1 € [118k,72484]. (2.46)

Step 6: loop. Increment k by one and go to Step 1.

Of course, this only describes a relatively abstract algorithmic class. In particular, we note
the following:



1. We have not been very specific about the model m; to be used in the trust region. In
fact, we have merely stated that its value should coincide with that of the objective at the
current iterate, and that its gradient at this point should approximate the gradient of the
objective at the same point. We will also impose additional necessary assurnptions on its
curvature in order to derive the desired convergence results. This still remains very broad
and requires further specification for any practical implementation of the algorithm.

One very common model choice for a twice differentiable f is to use a quadratic of the form
1
mp(zr + 8) = f(zr) + (Vf(zr),s) + 5(3, Hgs), (2.47)

where Hj is a symmetric approximation to V2f(z,). In particular, Newton’s method
corresponds to (2.47) with the choice of Hy = V2f(zy).

Another interesting choice is
mi(zk + 8) = f(2k + 3), (2.48)

that is the model and the objective are required to coincide on X N By. In that case, pp will
always be exactly one, and the trust region size A, may be assumed to be very large. We
then obtain a convergence theory of an algorithm which is no longer a trust region method
in the classical sense. In particular, if the step s, is determined by a linesearch procedure
(see [29], [1]), the present theory then covers both linesearch and trust region algorithms in
a single context.

2. When k = 0 or 2 # &k—1 or Ap < Ag_y, the definition of the model my, at Step 1 and the
condition that (2.14) is satisfied may require the computation of a new sufficiently accurate
approximate gradient g;.

3. We now briefly motivate the conditions (2.31)—(2.36).

The first of these conditions is imposed because we want our algorithm to generate feasible
points only. This may be essential when some constraints are “hard”, for instance when
the objective function is undefined outside X.

Condition (2.32) simply requires the step to be inside a ball contained in the trust region
defined by (2.12). This is intended to leave some freedom for the calculation of s in Step 3,
even when the GCP is on the boundary of that smaller ball.

Condition (2.33) relates the definition of z{ to that of a point along the projected gradient
path
zx(t) = Py (zy — tgr) (t> 0). (2.49)

Indeed, it can be shown that, if 3 = 1 and ||- llcey = Il - ll2, then z{ achieves the same reduc-
tion in the linearized model as that obtained by the unique point z(tx) on the projected
gradient path (2.49) having length ¢, if such a point exists. Condition (2.33) can therefore
be interpreted as a weakening of the condition (for example, required in [9], [21] and [29])
that z{ should be on the projected gradient path. This weakening is of great practical
interest when the projection onto the feasible domain X is not readily computable.



An example is shown in Figure 2 using the £oo-norm, where the set of admissible steps s{
is represented by the shaded area, and where (2.33) with u3 = 1 is achieved for the step

dk(tk).

—ak(tk)

\ |~ #3ai(te)

P

Vo Ag| | tr

Zi + dr(tr)

A\

NNV
/

Figure 2: An illustration of condition (2.33) using the £o,-norm

Conditions (2.34) and (2.36) are the classical Goldstein conditions for a “projected search”
on the model along the approximation of the projected gradient path implicitly defined by
varying .. This projected search is similar to that introduced in [29] and modified in [20].
Condition (2.35) completes (2.34)—(2.36) by allowing the search to terminate with a point
that sufficiently reduces the model m, while having a length comparable to the trust region
radius.

We note here that the value of ¢ is never used by Algorithm 1 except in the definition
of sf. It is unnecessary to explicitly define its numerical value, provided its existence is
guaranteed for the computed s¢.

At this stage, it is far from obvious how a vector sf satisfying the conditions of Step 2 can
be computed. The existence of a suitable step will be addressed in Section 4. We note here
that condition (2.33) implies that both s{ and the denominator of (2.40) are nonzero.



The vector zf in (2.37) is called a Generalized Cauchy Point, or GCP, because it plays a
role similar to that of the GCP in [9], [20], [4] and [29].

4. Again, much freedom is left in the calculation of the step s; in Step 3, but this fairly broad
outline is sufficient for our analysis. However, this freedom is crucial in practical imple-
mentations, as it allows a refinement of the GCP step based on second order information,
hence providing a possibly fast ultimate rate of convergence.

5. Only a theoretical stopping rule has been specified at the beginning of Step 2. (This
criterion will be justified in Section 3). Of course, any practical algorithm in our class must
use a more practical test, which may depend on the particular class of models being used.
The present hypothesis is however natural in our context, where we want to analyze the
behaviour of the algorithm as k tends to infinity. We will therefore assume in the sequel
that the test at the beginning of Step 2 is never triggered.

6. From the practical point of view, it may be unrealistic to let the trust region radius Aj
grow to infinity, and most implementations do impose a uniform upper bound on these
radii. This is coherent with (2.43), where a strict increase of A}, is not required.

7. The condition (2.46) may seem inappropriate when ||s||(x) is small compared with the trust
region radius A,. Analogously to the observation in [29], this condition may be replaced
by the more practical

Apy1 € [min(yollskll(x), Y18%), 7244] (2.50)

for some g € (0, 1] without modifying the theory presented below.
8. The algorithm necessarily depends on several constants. Typical values for some of them
are 3 = 0.1, u = 0.9, g = 1, »; = 1, v3 = 1078, vy = 0.01, p, = 0.25, 3, = 0.75,

1 =0.01, 92 = % and 43 = 2. Suitable values for the remaining constants will only become
clear after extensive testing.

We call an iteration of the algorithm successful if the test (2.41) is satisfied, that is when

the achieved objective reduction f(zz) — f(zx + i) is large enough compared to the reduction
mp(2,) —mp(zi+3:) predicted by the model. If (2.41) fails, the iteration is said to be unsuccessful.
In what follows, the set of indices of successful iterations will be denoted by S.

3 Global convergence for Algorithm 1

3.1 Criticality measures

If we are to prove that the iterates generated by Algorithm 1 converge to critical points for the

problem (2.1)-(2.2), we clearly must specify how we will measure the “criticality” of a given

feasible point. We say that a feasible point z, is critical (or stationary) if and only if

— Vf(z.) € N(z.). (3.1)

10



We propose to use, as a measure of criticality, the quantity
eile] ¥ | min (Vf(z),d)| (3:2)
z4+dEX ! ’
lldll(x)<1

which can be interpreted as the magnitude of the maximum decrease of the linearized objective
function achievable in the intersection of X with a ball of radius one (in the norm ||- {l(x)) centered
at z. Observe that ai[z] reduces to ||V f(z)||; when X = R™ and || - lgey =11 - ll2-

Lemma 3 Assume (AS.2) holds. Then, for all k > 0, ax[-] is continuous with respect to its
argument.

Proof.  The continuity of ag[-] with respect to its argument is a direct consequence of
Lemma 1. O '

We now show that all the norms || - ||(x) are formally equivalent.

Theorem 4 Assume (AS.2) and (AS.3) hold. Then there exists a positive constant ¢; > 1 such
that

1
Zakt [z] < Qk, [z] < cray, [z] (3.3)
Jorallze X and allky > 0 and k3 > 0.
Proof. We first observe that, using assumption (AS.3),
||d||(k) =1== 01 < ||d||z £ o,. (3.4)

The lower (resp. upper) bound in this last inequality represents the smallest (resp. largest)
possible distance (induced by || - ||2) between z and the boundary of any ball, lldlley = 1, for
k > 0. The ball {z + d | ||d]|2 < o2} then contains all the balls of the form

ldllry < 1, (3.5)

while the ball {z + d| ||d||; < o1} is contained in them all. Consider now

def . def .
Grnne | min (Vf(2), )| a0d coin 2| min (V£(z),d). (3.6)
lidlla<es idllz <oy .
Because of the second part of Lemma 2 (with z, = z, gx = V f(z) and ||- ey = 11+ |2), we deduce
that

o

Omax < —Qmin. (3.7)
141

Having established this property, we now return to the proof of Theorem 4 itself. If ay, [z] =
g, [z], then (3.3) is trivially satisfied. We thus only consider the case where

A, [3] < Qp, [zjr (38)
say. In this situation, we will show that both d; and d,, two vectors satisfying the relations
ar, [z] = —(Vf(z),d1) ffdilley <1, z4+d;€X, (3.9)

11



and
ap,[2] = —(Vf(2),d2), |dalley <1, 2z+dz€X, (3.10)
are such that
a1 < ||difjl2 € o2 and oy < ||dy]2 £ 03. (3.11)
We note that the two upper bounds in these inequalities immediately result from (AS.3) and
(3.9)-(3.10). We therefore only consider the case where one or both lower bounds in (3.11) are
violated. Assume, for instance, ||d;}|2 < o1. This solution of the minimization problem associated
with ay, [z] is therefore in the interior of all the possible balls of the form (3.5). The only binding
constraint at this point must be z + d € X, and this is still true if the ball defined by || - ||s,) is
replaced by that defined by || - [|(x,). But this implies that (3.8) cannot hold, which is impossible.
The case where ||dz|l2 < o1 is entirely similar. The inequalities (3.11) are therefore valid, and we
obtain that
Omin < O, [2] € Omax a0d amin < ag, [2] < Amax- (3.12)

Combining these relations with (3.7) and (3.8), one deduces that
o o
ap, [2] < any[2] < Apax € —Qmin < 2y, [2) (3.13)
(51 o1
and (3.3) is proved with ¢; &f &2.0
The fact that ax[z] can now be used as a criticality measure results from the following lemma.
Lemma 5 Assume that (AS.1)-(AS.3) hold. Then, z. is critical if and only if
ag[z.] = 0. (3.14)

Proof. Consider first the minimization problem of (3.2) where we choose || - [|x) = || - ll2,
and let us denote the analog of (3.2) by ay[z].
The criticality conditions for this problem can be expressed as

0€2(d+ Vf(z)+ N(z+d), (3.15)
z+de X, (3.16)
lldlz <1 (3.17)
and
¢ (I3 - 1) =o. (3.18)

Assume now that az[z.] = 0. Then the choice d = 0 is a solution of the minimization problem.
The relation (3.1) then follows from (3.15).

Assume, on the other hand, that (3.1) holds. Then the conditions (3.15)—(3.18) are satisfied
with d = 0 and { = 0. It is then easy to verify that

azlz.] =0 (3.19)

follows.
As a consequence, z, is critical if and only if (3.19) holds. But Theorem 4 and the fact that
the £{z—norm can be considered as one of the (k)-norms then yield the desired result. O

Lemmas 3 and 5 and Theorem 4 have the following important consequence.

12



Corollary 8 Assume (AS.1)-(AS.3) hold and that the sequence {z} is generated by Algo-
rithm 1. Assume furthermore that there ezists a subsequence of {zi}, {zi,} say, converging
to z, and that

‘.l_iglo ag;[zk] = 0. (3.20)

Then z, is critical.

We note that, if formally equivalent, the criticality measures depending on k often differ from
the practical point of view, when used in a stopping rule. If the problem’s scaling is poor, a scaled
measure is usually more appropriate. This scaling can be taken into account in the definition of
the iteration dependent norms.

On the other hand, if the only first order information we can obtain is g; (under the proviso
(2.14)), then ai[z] is unavailable, and one is naturally led to use

o ¥ ap(1) = | min (g, d)l, - (3.21)
=\ +dEX
lidflxy <1
which represents the amount of possible decrease for the linearized model in the intersection of
the feasible domain with a ball of radius one. Clearly, a; = og[zi] when gi = V f(z), but this
need not be the case in general. a; was used in the “theoretical stopping rule” of Step 2 of
Algorithm 1.

The replacement of ag|zi] by ai has however a price. It may well happen indeed that an
iterate z; is a constrained critical point for the model m; although z; is not critical for the
true problem. In that case, Algorithm 1 will stop at the beginning of Step 2. The model m,
should therefore reflect the noncriticality of z;. The discrepancy between oy, and ap [#:] cannot
be arbitrary large however, as is shown by the following result.

Lemma 7 Let z;, € X be an iterate generated by Algorithm 1. Then
loe[zie] — k| < le(lpe- (3.22)
Proof. Define di and d, as two vectors satisfying

a[zi] = —(VF(z),di),  Ndilly <1, 2 +d} € X, (3-23)

and
e = —(g,di)y  ldellry <1, 2z +dr € X. (3.24)

Assume first that a[zk] > ax. Then, we can write that

0 < akzx] — ax (9k, die) — (V f(zx), di)
(gr, di — dip) + (ex, df) (3.25)

< {9k, di ~ di) + ekl

where we used the inequality (2.15). But the definitions of ay, di and dj imply that
(gk, dk) = —Qp S (gkvd;;)’ (326)
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and hence (3.22) follows from (3.25). On the other hand, if ai[zi] < a, then a similar argument
can be used to prove (3.22) with (3.25) replaced by

0 < ap — arfzi] < (VF(zr), di — di) + llerlin (3.27)

and (3.26) by
(Vf(zr), di) = —on[zi] < (V f(z), dr)- (3.28)

The bound (3.22) will be used at the end of our global convergence analysis.

3.2 The model decrease

The traditional next step in a trust region oriented convergence analysis is to derive a lower bound
on the reduction of the model value at an iteration where the current iterate z; is noncritical.
This lower bound usually involves the considered measure of criticality (a; in our case), the trust
region radius A, and the inverse of the curvature of the model m; (see [23], [19], [9], [21] and
[29] for examples of such bounds). To define this notion of curvature more precisely, we follow
[29] and introduce, for an arbitrary continuously differentiable function ¢, the curvature at the
point € X along the step v, as defined by

2 la(z + v) - a(e) - (Va(z), v)]. (3.29)
”””(k)

If we assume that g is twice differentiable, the mean-value theorem (see [16, p. 11}, for instance)

def
wh(Qi z, 'U) =

implies that

1 1 2
wk(qu)v) = 2/ / T2 (‘U, v Q(z -*; 7'17’21))‘0) d‘l’l de. (3.30)
° Jo ||””(k)

It is also easy to verify that, if ¢ is quadratic, then w(q, #,v) is independent of = and [lv]|(xy and
reduces to the scaled Rayleigh quotient of V2¢ with respect to the direction v. We note that
the Rayleigh quotient has already been used for similar purposes in the context of convergence
analysis, namely in [28], [29] and {7].

We then obtain the following simple result.

Lemma 8 If (AS.1)-(AS.3) hold, then there exists a finite constant ¢; > 1 such that
wi(f, 2k,8) < e2 (3.31)
for all k > 0 and all s such that z;, + s € L.
Proof. The Lipschitz continuity of V f(z) implies that
@kt ) = £@) = (T H(2n), 9] < 2 Ll (3.32)

where Ly is the Lipschitz constant of V f(z) in the norm || - ||;. We may then deduce from (3.29)
that

wi(f,z >< L kﬂ%—
k() 2k, 8) < f“s”? ), (3.33)
k

which gives (3.31) with ¢; = max[1,07L], by using (AS.3). O
We are now in position to state our main result of this section.
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Theorem 9 Assume that (AS.1)-(AS.3) hold. Consider any sequence {z} produced by Algo-
rithm 1, and select a k > 0 such that z, is not critical in the sense that a, > 0. Then, if one
defines

C def wk(mk,zk,sf) if skc satisfies (2.36),
W = . (3.34)
] otherwise,
one obtains that
wf >0. (3.35)
Furthermore, there ezists a constant cg € (0,1] such that
. g
mi(2k) ~ mp(zr + si) > czoq min [Ak, ——C] , (3.36)
14+ wy

for allk > 0.

Proof.  Let us first consider the case where £, > 1. In this case, we obtain from (2.34),
(2.33), the first statement of Lemma 2 and the definition (3.21) that

mi(2k) — mi(zk + 5f) > prusan(te) 2 ppsan(l) = ppsag. (3.37)

Assume now that ¢, < 1. We first note that, because of (2.33) and the second part of Lemma 2,
this last inequality and (3.21), we have that

C
, 8 aplt a(l
I(gk k)l > us k( k) > u3 k( ) = paag. (3.38)
ity tx 1
Combining this inequality with (2.34), we obtain that
c
s
mi(zk) — me(zi + 5§ ) > '-(‘q—"t’futk > papsapty. (3.39)

Now, if condition (2.35) is satisfied, we can deduce, by using (3.39), that
me(2) — my(zh + $) > prpson minfvsAyg, vy]. (3.40)
On the other hand, if sf satisfies (2.36), we observe that
¢ » 21— pa) g o) 2(1 - pa) g, sE)
AN E{D ti ti

where we used the definition of w{’ and (2.36). Hence (3.85) is proved and, using (3.38), we have
that

(3.41)

Qe Qe
1 > 2u3(l - —= 2 2u3(1 — . 3.42
ke > 2p3( #z)wg 2 2p3( “z)1+wf (3.42)
Substituting this bound into (3.39) then yields that
2
a
mi(zi) — my(zp + sC) > 2u1p3(1 — pg)— ok (3.43)
1+ wp

The inequality (3.36) now results from (3.37), (3.40), (3.43), (2.39) and v4 < 1, with

€3 = pypapa minfvy, vg, 2u3(1 — pp)] < 1. (3.44)

a
We end this subsection by stating an easy corollary of Theorem 9, giving a lower bound on

the decrease in the objective that is obtained on successful iterations.
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Corollary 10 Under the assumptions of Theorem 9, one obtains that

f(zk) — f(zr+1) = mesar min [Ak, ‘{—E%a] , (3.45)
p

forkeS.

Proof. The inequality (3.45) immediately results from (3.36), (2.41), (2.40) and (2.42). O

3.3 Convergence to critical points

This section will be devoted to the proof of global convergence of the iterates generated by
Algorithm 1 to critical points.

For developing our convergence theory, we will need to introduce additional assumptions on
the curvature of the models m;. These assumptions, and the rest of our convergence analysis,
will be phrased in terms of the quantity

Br=1+ max [max{w?, lwi(mi, i, 5:)]]] (3.46)

We note that B only measures curvature of the model along the sf and s; vectors. We also
observe that the sequence {8} is nondecreasing by definition.
We first recall two useful preliminary results in the spirit of [29].

Lemma 11 Assume that (AS.1)-(AS.3) hold and consider a sequence {z} of iterates generated
by Algorithm 1. Then there erists a positive constant ¢cq > 1 such that, for allk > 0,

|£(zk + i) — mie(ze + 81)| < caBrAf. (3.47)

Proof. We observe that

[f(zk+ se) — ma(zr + )l < UV F(zk) — gk 88}
+3 1k 1y lwr(f, 2k, 3) — wi(mmie, 2, 52| (3.48)
< llewllpe lsklie)

+5 skl [lwr( £, 2es sie)l + lwie(me, zie, s1)1],

where we used the definition (3.29), (2.13) and the inequality (2.15). But ||sz{lx) < »1A%, and
hence we obtain from (3.48), (2.14), (3.46) and Lemma 8 that

1
|f(z + s) — me(er + si)| < k1nAf + Euf(Cz + Br)AR (3.49)

which then yields (3.47) with

1
ca=2 (c; + ﬂ) max[1, 2. (3.50)
1 %41 2
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Lemma 12 Assume that (AS.1)-(AS.3) hold and consider a sequence {zi} of iterates generated
by Algorithm 1. Assume furthermore that there exists a constant € > 0 such that

ap > € (3.51)

Ap> 2 (3.52)
for all k.

Proof. Assume, without loss of generality, that

c4BoDo

1ea(l - n2)’ (3:53)

where 71 and 5, are defined in the algorithm [(2.30) and (2.29)]. In order to derive a contradiction,
assume also that there exists a k such that

Brli < nes(l—m), (3.54)
Cq
and define r as the first iteration number such that (3.54) holds. (Note that » > 1 because of
- (3.53).) The mechanism of Algorithm 1 then ensures that

r 1-—

BB < g clom) (3.55)
N Cq

where we used the relations 8,_; < 8,, (2.46), (3.54) with k = », c3 < 1 and ¢4 > 1. Combining

the inequalities (3.51), (3.36) and (3.55), we now obtain that

€

ﬂr—l
The relations (2.40), (3.47), (3.56) and the middle part of (3.55) together then imply that

Mp_1(2r—1) — Me_1(2,—1 + 8,1) > c3emin [A,-h ] = c3€A,_3. (3.56)

|f(Zr-1 4+ 8,-1) — mp_1(2r1 + 351 < caPr_18,_4
Ime_1(2r-1) — mes(2rm1 + 20y)| — c3€

|pr—1— 1] = <1-1n,. (3.57)

Hence, p,_1 > 7, and thus A, > A,_;. But we may deduce from this last inequality that

ca3(1 —
ﬂr—lAr—l S ﬂrAr S 11—3(64—”2)6, (3-58)

which contradicts the assumption that r is the first index with (3.54) satisfied. The inequality
(3.54) therefore never holds and we obtain that, for all ,

71e3(1 — 772)6

BrAk > (3.59)
2
The inequality (3.52) then follows from (3.59) by setting
s = D681 m)e (3.60)

Cq
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We now formulate our first assumption on the model’s curvatures.

AS.4 The series
1
- 3.61
> (3.1

is divergent.

As shown in [29], this condition is necessary for guaranteeing convergence to a stationary
point. It is clearly satisfied in the common case where a quadratic model of the form (247) is
used, whose Hessian matrix H; is bounded. This last assumption obviously holds when f(z) is
twice continuously differentiable over the compact set X and Hy = V? flz) .

Before proving one of the major results of this section, we recall the following technical lemma,
due to Powell [24] (proofs can also be found in [9] or [31]).

Lemma 13 Let {Ag} and {8} be two sequences of positive numbers such that BrlAy > c5 for
all k, where cg is a positive constant. Let ¢ be a positive constant, S be a subset of {1,2,...} and
assume that, for some constants y; < 1 and 73 > 1,

Ak+1 L 13Ag for ke S, (3.62)
Ak+1 S 72A]¢ for k ¢ 5, (3.63)
Bi+1 > Br forall k (3.64)
and
3" min [A,,, ] < oo. (3.65)
ics P
Then
=1
>+ <o (3.66)
k=1 ﬂk

Using this lemma, we now show the following important result.

Theorem 14 Assume (AS.1)-(AS.4) hold. Then, if {21} is a sequence of iterates generated by
Algorithm 1, one has that
liminf oy = 0. (3.67)
k—+00
Proof.  Assume, for the purpose of obtaining a contradiction, that there exists an ¢ > 0

such that (3.51) holds for all £ > 0. Corollary 10 and the fact that the objective function is
bounded below on £ imply that

. €
mese 3" min [A,,,B-] < S [F(21) - flers)] < oo (3.68)
kes ki kes
The sequences A and S, then verify all the assumptions of Lemma 13, which then guarantees
that

Z B <o (3.69)

This last relation clearly contradicts (AS.4), and hence our initial assumption must be false,
yielding (3.67). ©
This theorem has the following interesting consequences.
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Corollary 15 Assume (AS.1)-(AS.4) hold. Assume furthermore that {z:} is a sequence of
tterates generated by Algorithm 1 that converges to z., and that

klim ]|ek||[k] = 0. (3.70)
— 00
Then z, is critical.

Proof.  This result directly follows from (3.70), Lemma 7, Theorem 14 and Corollary 6. O

Corollary 16 Assume (AS.1)-(AS.4) hold. If {2} is a sequence of iterates generated by Algo-
rithm 1 and if S is finite, then the iterates z), are all equal to some z, for k large enough, and
z, is critical.

Proof. If S is finite, it results from (2.45) that z; is unchanged for k large enough, and
therefore that 2, = 2, = 2,4, for k sufficiently large, where j is the largest index in S. The
relations (2.46) and (2.30) also imply that the sequence {A;} converges to zero. Hence (2.14)
ensures (3.70) holds. We then apply Corolla.r—y 15 to deduce the criticality of z,. O

If we now assume that S is infinite, we wish to replace the “lim inf” in (3.67) by a true limit,
taken on all successful iterations, but this requires a slight strengthening of our assumption on
the model curvature.

AS.5 We assume that

Jm Bulf(24) — f(zh41)] = 0. (3.11)
As discussed in [9], this assumption is not very severe, as we always have that (3.71) holds

with the limit replaced by the limit inferior. Also (AS.5) is obviously satisfied when using a model
with bounded curvature, as is assumed in [20] for example.

Theorem 17 Assume (AS.1)-(AS.5) hold. Then, if {z,} is a sequence of iterates generated by
Algorithm 1 and if the set S is infinite, one has that
lim oy = 0. (3.72)

ko0

kes

Proof. We proceed again by contradiction and assume that there exists an ¢; € (0,1) and
a subsequence {m;} of successful iterates such that, for all m; in this subsequence,

am; > €. (3.73)
If we define
def 1
cg = max[l — e 1], (3.74)
1

where ¢; is given by Theorem 4, and if we choose

€1
€& € (0, /——), 3.75
2 ( 2(c6 + 1)) ( )
Theorem 14 then ensures the existence of another subsequence {£;} such that
ar > €3 for m; <k <{; and oy < €. (3.76)
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We now restrict our attention to the subsequence of successful iterations whose indices are in the
.‘,.l
KE¥{kes|m<k<t}, (3.77)

where mm; and ¢; belong respectively to the two subsequences defined above. Applying Corollary 10
for k ¢ K, we obtain that

f(zr) — f(Zr+1) > mesez min [Ak, g—;—] . (3.78)
But (AS.5) then implies that
E..IE,’B"A" =0, (3.79)
kex
and hence,using (3.78), that
f(zx) — f(zh+1) 2 Mmeae2Age (3.80)

for k € K sufficiently large. As a consequence, we obtain, for ¢ sufficiently large, that

4—
l2m; — zallz < i, l12hes — ll2
< e YETL (A,
L-1 (K) (3.81)
S c7 Ek:m.‘ [-f(zk) - f(zk-i-l)]
< alf(zm) - f(z6)]
where the sums with superscript (KC) are restricted to the indices in X, and where
T (3.82)
1C3€2

Since the last right-hand side of (3.81) tends to zero as ¢ tends to infinity and because of Lemma 3,
we deduce that
€1
2] — G [22]] € ———— 3.83
amifom] = o]l < 5= (3.:83)
for i sufficiently large. We note now that (3.79), Bi > 1 and (2.14) imply that g,,; is arbitrarily
close to V f(2.n,), and hence Lemma 7 gives that

€1

. — . N < 3.84
Iam, am,[zm‘]| = 2(66 + 3) ( )

for i large enough. We observe also that, because of (2.14) and (2.43),
Heellfe) < KAy < 81738k, (3.85)

where k; is the largest integer in K that is smaller than £;. As before, we now deduce from (3.79),
Br > 1, Lemma 7 and (3.85) that

€1
c—ag ]l K ———— 3.86
log, — ag[zg]) < (e £3) (3.86)
for large ¢. Hence, using Theorem 4, we obtain that
€1
mlze] — agfze ]l < cearlze] < L 3.87
lom,[ze,] — agfzi]l < ceay[ze] < ce |ag + T 3)] (3.87)
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for i sufficiently large. Using the triangular inequality together with (3.84), (3.83), (3.87) and
(3.86), we obtain that, for large enough ¢,

1
Om; — ay < |om; — ag| < coay; + 551- (3.88)

We then deduce from (3.76) and (3.75), that, for large enough ¢,

1
am; < agce+1)+ -2-61 < &, (3.89)

which contradicts (3.73) and proves the desired result. O
As above, we can obtain conclusions about convergent subsequences where the first order
information is asymptotically correct. If S is finite, the convergence of the iterates to a critical

point results from Corollary 16. Hence, we now restrict our attention to the case where S is

infinite.

Corollary 18 Assume (AS.1)-(AS.5) hold. Assume furthermore that S is infinite, that {24} is
a convergent subsequence of the successful iterates generated by Algorithm 1 and that

Lm [lex[|x;) = O (3-90)
Then z., the limit point of {zy,}, is critical.

Proof. The proof of this result is entirely similar to that of Corollary 15 except that we
have to consider only the successful iterates. O

Finally, we are interested in what can be said on the criticality of limit points of {z} if we
do not assume (3.70).

Corollary 19 Assume (AS.1)-(AS.5) hold, that {z,.} is a subsequence of successful iterates
generated by Algorithm 1 and that {4} converges to z.. Then

lim sup oy, [.] < lim sup ||, ||k, (3.91)

1200
Proof. If S is finite, then the result immediately follows from Corollary 16. Assume

therefore that S is infinite. Because of Lemma 3, Lemma 7 and Theorem 17, we have that

lim sup;_, o, o, [2.] lim sup;_, o auk; [,

< limsup; ., |lox[zr] — ak,] (3.92)
< limsup;_, . [lekllik-
a
Keeping in mind that the dependence of || - ||, on k;, and hence on i, is irrelevant because

of Theorem 4, Corollary 19 thus guarantees that all limit points are “as critical as the scaled
accuracy of g as an approximation to V f(z,) warrants”.
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4 A model algorithm for computing a Generalized Cauchy Point

A major difficulty in adapting the framework given by Algorithm 1 to a more practical setting is
clearly the definition of a practical procedure to compute a GCP satisfying all the conditions of
Step 2.

As indicated already, such procedures have been designed and implemented in the case where
the projected gradient path defined by the classical £-norm is explicitly available (see [10], [11]
and [1], for example).

We now consider the more general case presented in Sections 2 and 3, and we wish to find, at
a given iteration, a GCP satisfying (2.31)-(2.36). The difficulty is then to produce a point that
is not too far away from the unavailable projected gradient path. This cannot be done without
considering the particular geometry of this path, which may very closely follows the boundary
of the feasible set. As a consequence, linear interpolation is often unsuitable and a specialized
procedure is presented in this section.

For the sake of clarity, in this section we will drop the subscript k, corresponding to the

iteration number.

4.1 The RS Algorithm

We first define the following restriction operator associated with the feasible set X and a centre
x € X. This operator is defined as

def

Rafy] % argmin |z - y]l; (41)

for any y € R"™, where the minimization in (4.1) is carried out on all vectors z such that z € X
and is a vector of the segment [z,y]. The definition of R.[y] uses the £,-norm, but any other
norm can be used because the associated minimization problem is unidimensional. The action of
the restriction operator (4.1) is illustrated in Figure 3. It should be noted that computing R.[y]
for a given y is often a very simple task.

The GCP Algorithm relies on a simple bisection linesearch algorithm on the restriction of
a piecewise linear path with respect tc a given center, called the RS Algorithm {which stands
for Restricted Search Algorithm). Because of the definition of the restriction operator, this
last algorithm closely follows the boundary of the feasible domain, as desired. It finds a point
T, = r+z in the restriction of a non-empty piecewise linear path consisting of the segment [}, 27]
followed by [zP,z%], where z}
respect to the centre z and the resulting vector z is such that (2.34) and (2.36) hold with s{ = z.
The RS Algorithm can be applied under the conditions that (2.36) is violated at R.(z') and that
(2.34) is violated at R.(z*). It therefore depends on the three points z‘, 2P and z* defining the

, zP and z* are defined below. The restriction is computed with

piecewise linear path, the centre z, and on the current model m (and hence on its gradient g). It
also depends on an arbitrary bijective parametrisation of the path [z}, 2?, 2¥|. For example, one
can choose the parameter to be the length of the arc along the path measured in £»-norm. More
formally, if

&g = lja? — €EiH2 and &, = &, + |jz% — 2P|, {42}

p]
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ys = Ra(ys)

Figure 3: The restriction operator with centre 2

we can define

S .0 — £l i
def | 2P+ (- &) if § <6,
2:(6) = ;_6 " 14 5—s » ] P (4.3)
3—3?—‘_,: +(1——3—{;‘_ l')z: if §>6,

for any § € [0, §,). The inner iterations of Algorithm RS will be denoted by the index j.

RS Algorithm
Step O : initialization. Set Iy = 0, up = §, and § = 0. Then define §; = %(lo + ug).

Step 1 : check the stopping conditions. Compute z; = R,[z(§;)] using (4.1) and (4.3). If

m(z;) > m(z) + p1(g,2; — =), (4.4)
then set
Liyi=1; and ujyy =5, (4.5)
and go to Step 2. Else, if
m(z;) < m(z) + pa(g,z; — =), (4.6)
then set
lj 11 = 6; and ujyy = uj, (4.7)

and go to Step 2; else (that is if both (4.4) and (4.6) fail), set 2. = z; and STOP.

Step 2 : choose the next parameter value by bisection. Increment j by one, set
1
b5 = E(Ij + u.j) (4.8)
and go to Step 1.
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The fact that a vector z,. has been produced by the application of the RS Algorithm on the
path [z}, 2P, 2] with respect to the centre z and the model m will be denoted by

z. = RS(z, m, 2!, 2P, z%). (4.9)
We have the following simple result.

Lemma 20 Assume that the RS Algorithm is applied on a piecewise linear path [z}, 2P, 2*] sat-
isfying the conditions stated in the paragraph preceding ils description, with centre ¢ and model
m. Then this algorithm terminates with a suitable vecior z. = z + z at which (2.34) and (2.36)
hold in a finite number of iterations.

Proof. The validity of this result directly follows from the inequality p; < p2, the conti-
nuity of the model m on the restriction of the path [2', z?, z%], and from the fact that the length
of the interval [I;, u;] tends geometrically to zero while its associated arc on the restricted path
always contains a fixed connected set of acceptable points. O

4.2 The GCP Algorithm

We now describe the GCP Algorithm itself. It depends on the current iterate z € X, on the
current model m and its gradient g, on the current norm (|- || and also on the current trust region
radius, A > 0. Its inner iterations will be identified by the index 1.

GCP Algorithm

Step O : initialization. Set i = 0, lp = 0, z}, = 0 and up = »;A. Also choose z3 an arbitrary
vector such that ||z§[| > v2A and an initial parameter t5 € (0,22A].

Step 1 : compute a candidate step. Compute a vector z; such that

lz:]| < &, (4.10)
c+zn€eX (4.11)

and
(9, z;) < —paa(t;). (4.12)

Step 2 : check the stopping rule on the model and step. If

m(z + z;) > m(z) + (g, z), (4.13)
then set
Uiy =t Z,F_H =z (4.14)
and
yp=b 2y, =4, (4.15)
and go to Step 3. Else, if
m(z + z;) < m(z) + p2(g, ) (4.16)
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and

t; < min(y3A, vy), (4.17)
then set
Uiy = Uz = 2 (4.18)
and
L=t 2’.’.!_‘h1 = z;, (4.19)

and go to Step 3. Else (that is if (4.13) and either (4.16) or (4.17) fail), then set
2 =z+z (4.20)

and STOP.
Step 3 : define a new trial step by bisection. We distinguish two mutually exclusive cases.

Casel: z},, =z, or 2, = zg. Set

1
tiyn = Sl + uina), (4.21)

increment 7 by one and go to Step 1.

Case 2 : z},; # 2z} and 2z}, # z§. Define

Zp = [ —ﬂ%] Zi1 (4.22)
i+1
set
¢ = RS(z,m, 35+1:3f+1’z:’+1) (4.23)
where
sla=etady, o=+ 2l and 2, =2+ 2, (4.24)
and STOP.

We note that linear interpolation between z} +1 and 2§, cannot be used in general in Step 3
(Case 2), because the geometry of the boundary of the feasible domain may imply that the
(unknown) projected gradient path considerably departs from the segment [z}, ,,2¥,]. This is
the reason why a call is made to the RS Algorithm, which closely follows this boundary.

We emphasize that this GCP Algorithm is only a model, intended to show feasibility of our
approach, but is not optimized from the point of view of efficiency. Many additional considerations
are possible and indeed necessary before implementing the algorithm, including

¢ the details of the all important solver used to determine z; in Step 1,
¢ a suitable choice of tg,

¢ more efficient techniques for simple models (linear or quadratic, for instance), and also for
specific choices of the norm |} - ||.
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The solver used in Step 1 obviously depends on X and the norm ||-||. For example, Step 1 reduces
to a linear programming problem if X is polyhedral and a polyhedral norm is used; the classical
projected gradient is also obtained when the £;-norm is used, g3 = 1 and the projection on X is
easy to calculate.
If we denote by
¢ = GCP(z,m, | -|,A) (4.25)

the fact that the vector € has been obtained by the GCP Algorithm for the point z, the model
m, the norm || - || and the radius A, we then replace Step 2 of Algorithm 1 by the simple call

:tk = GCP(zk, my, || - ||(k), Ag). (4.26)

4.3 Properties of the GCP Algorithm

We now wish to show that the GCP Algorithm converges to a point satisfying (2.31)—(2.36) and
does terminate in a finite number of iterations.
The first result shows that, if a step z satisfies (2.33), then all prolongations of this step, that

is all vectors of the form 7z with T > 1, also satisfy the same condition.
Lemma 21 Assume that there exists a t > ||z|| such that
(9,2) < —p3a(t) (4.27)

for some z # 0. Then
{g9,72) < —pza(rt) (4.28)

forT > 1.

Proof. Using successively (4.27), the inequality » > 1 and the second part of Lemma 2,

o) ¢ _ypri2lrt)

we obtain that

(9,72) < —psTt——= (4.29)

yielding the desired bound. O

We are now in the position to prove that the GCP Algorithm is correctly stated, finite and
coherent with the theoretical framework presented in Sections 2 and 3.

Lemma 22 The GCP Algorithm is correctly stated.

Proof. We have to verify that all the requested conditions for applying the RS Algorithm
are fulfilled when a call to this algorithm is made. We first note that the RS Algorithm can
only produce a feasible point because of the definition of the restriction operator. We also note
that the mechanism of the GCP Algorithm ensures that the piecewise path to be restricted is
non-empty, that (2.34) is always violated at R.{z¥ ] = z¥,; and, similarly, that (2.36) is always
violated at R[z; +1] = z . The RS Algorithm is therefore applied in the appropriate context.
]

We now prove the desirable finiteness of the GCP Algorithm at noncritical points.
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Theorem 23 Assume that a > 0. Then the GCP Algorithm terminates with o suitable 2€ in ¢
finite number of iterations.

Proof. Assume that an infinite number of iterations are performed. We first consider the
case where
z} =z} forall i> 0. (4.30)
In this case, the mechanism of the GCP Algorithm implies that
1., .
t; < (5)'V2A. (4.31)
Hence we obtain that 21 )
. - a
sl < 8 < min 2, E2 L]
m

for all i > 4;, say, where L,, is the Lipschitz constant of the gradient of m with respect to the
norm || - ||. For all i > 0, we have that

(4.32)

m(z + %)~ m(e) - (g, %) < (1= p)(g,3) + 5Ll (4.33)

where we have used the Taylor’s expansion of m around z and the definition of L,,. But the
second part of Lemma 2 implies that

a(t;)) _ a1)
> —-—" = .
= (4.34)
for all i > 4;, and hence that
a(t;) 2 aflz|| (4.35)

for i > i;, because of the inequality ¢; > ||z||. Condition (4.12) then gives, for such i, that
(9,2z) < —psa(t;) < —paa||z]. (4.36)

Introducing this inequality in (4.33), we obtain that

1
m(z + z) - m(z) - mi(g, %) € ~(1 - m)psal ]l + 5 L= (4.37)
for i > i;. Using (4.32), we now deduce that
m(z + z;) —m(z) — w(g,z) <0 (4.38)

for all ¢ > ;. As a consequence, (4.13) is always violated for sufficiently large 7 and (4.30) is
therefore impossible.

We thus next consider the case where z}' = z¥ for all 4. This implies that (4.13) is always false
and that the algorithm either stops through (4.20) (in which case the convergence is clearly finite)
or uses (4.19) at each iteration. But the effect of (4.19) is that I; tends to »,A as i grows, and
therefore (4.17) must fail for sufficiently large ¢ because v3 < v;. The algorithm then terminates
with (4.20) after finitely many iterations.

We conclude from these two arguments that, for the algorithm to be infinite, then one must
have that I;, > 0 for some i; > 0 and also that z; # zy must be defined for some i; > 0. But,
because the mechanism of the algorithm guarantees that the sequence {I;} is nondecreasing and
that the sequence {u;} is nonincreasing, Case 2 in Step 3 therefore occurs for i = max(i,iz).
The RS Algorithm is thus used in (4.23) and Lemma 20 again ensures finite temination. O
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Theorem 24 The call ({.26) can be used as an implementation of Step 2 of Algorithm 1.

Proof. We have to verify the compatibility of the GCP Algorithm with the conditions
of Step 2 in Algorithm 1, that is we have to check that the step sf = a:f — 23, produced by
(4.26) does indeed satisfy the conditions (2.31)—(2.36). All these conditions except (2.33) are
clearly enforced by the mechanism of the GCP and RS algorithms. We can therefore restrict our
attention to the verification of (2.33) for the two different possible exits of the GCP Algorithm
and their associated sy = zf —23,. Dropping again the subscripts k, we have to verify that (4.27)
holds with z = z€ — z.

The first case is when the GCP Algorithm terminates using (4.20). Then (4.12) ensures that
(4.27) holds for z = z.

The second and last case is when the algorithm terminates through (4.23). The condition
(4.12) again ensures that, in this case, {4.27) holds for z = 2, for some ¢!, > ||2},,]|, and for
z = 2}, for some t¥; > ||z} {|. For clarity of notations, we drop the subscript i + 1 below.

We analyze the situation in the plane H containing z, z! and z*, and define, for £ > 0, the

convex sets

2 % {2+ 2 € H|(g,2) < ~pa(t)}, (4.39)
S, % {z+z¢ Hlz+z€ X and ||2z|| <t} (4.40)
and
def
Cg = H¢ N St' (441)

For a given ¢t > 0, H, is the half plane of all vectors z + z € H such that z satisfies (4.27),
irrespective of the constraints t > ||z|| and z + 2 € X, while C, is the subset of H; for which these
constraints hold.

We again distinguish two cases. The first case is when
21 > flz¥))- (4.42)
Using the first part of Lemma 2, we deduce that
(g, 2*) < —paa(t*) < —paa(t), (4.43)

and therefore, using the inequality t' > ||2!|| > ||z*|l, that the complete segment [z!,z*] belongs
to the convex set C,. Hence {4.27) hoids for ¥ at every point of the segment [z!,2*], which is
the restriction of [z!,zP, 2%], denoted R,[z!, 2P, z¥].

The more complicated second case is when (4.42) fails. The proof proceeds by showing the
existence of a continuous feasible path between z' and 2*, depending on the parameter #, such
that, for each point on this path, there is a t € [t!,#¥] for which (4.27) holds at this point. To
find this path, we first define, for all ¢ € ¢!, t¥],

z, % arg min |ly — z*|;, (4.44)
yeCy

that is the projection of z* onto the convex set C;. We note that both z! and z,: belong to Cy,
and hence that the segment [z!,z,] lies in C,y. We also note that 2% = z4 € Cpe. Finally, z,
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clearly belongs to C; for all ¢t [t', t¥], because of (4.44). Furthermore, this set of z; determines a
continuous path, as can be seen by applying Lemma 1 to the minimization problem (4.44). The
desired path from z! to z* then consists of the segment [2!, 2,1] followed by the path determined
by z. for t € [t!,t¥].

To complete the proof of the theorem for this second case, we use the path just obtained
to show that (4.27) holds for some ¢ at every point of the restriction of [z!, zP,z%]. We observe
here that this restriction belongs to the plane H. We successively consider three parts of the
“restricted path”, and show the desired property for each part in turn. This restricted path is
that used by the GCP Algorithm. A typical case where ||- || = || - ||oo is illustrated in Figure 4.

The first part of the restricted path consists of the segment [z, 27| defined as the restriction
of the segment [z!,z?]. Using Lemma 21 and the fact that 2? is a multiple of 2!, we deduce that,
for each point y € [z}, z7], there exists a ¢ such that {4.27) is satisfied at this point for z = y — z.
We also note that the same argument implies the existence of t* > ||2?|| = ||z%|| such that (4.27)
also holds at 27,

The second part of the restricted path consists of the segment [¢/,2%], where zf = R.[z7]is
the first feasible point on the segment [2?, z¥]. (Note that [/, 2%] may be equal to [z?, z*] when
2P is feasible or may be reduced to the point z* if this is the only feasible point in [2P,2%].) The
segment [zf,z¥] is also contained in X and is therefore equal to its restriction. Because (4.27)
holds with ¢ = min[¢?, t“] both for 2? and z¥, it must also hold, with the same t, for all z such
that z = y — z where y € [zf,2%] C [z?, zY].

The third part of the restricted path consists of the restriction of the segment [zP, zf]. If 2P
is feasible,then the path reduces to 2/ = 2P, and the desired property results from the analysis of
the first part of the restricted path. Assume therefore that z? is not feasible. Then the restriction
of [z?,27] lies on the intersection of the boundary of X with H. It can therefore be viewed as
the prolongation (as defined before Lemma 21) of a part of the path defined by z,, t € [t ¢¥].
Lemma 21 then guarantees the existence, for each point y = z + z on the restriction of [z?,27],
of a ¢ such that (4.27) holds for z. This finally completes the proof. O

The proof of this last theorem also shows that the path used by the GCP algorithm is not
the only possible one. This can be seen, for example, by choosing Il = || - ll2, in which case the
projected gradient path (see [29]) is also acceptable and may be different from that used by the
GCP Algorithm.
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the path R [z}, z?,zY]

Figure 4: A restricted path with the £, -norm
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5 Identification of the correct active set

In this section, we consider the case where the convex set of feasible points X is defined as the
intersection of a finite collection of larger convex sets X;, that is

X=X (5.1)

We will be interested in the behaviour of the class of algorithms presented in Section 2 as the
iterates {z;} approach a limit point z,. More precisely, if we denote the boundary of an arbitrary
convex set Y by bd(Y), we can define the set of active boundaries, or active set, at the point
z € X by

A(z) ¥ {ie {1,...,m}|z € bA(X))}. (5.2)

We note that A(z) may be empty if X has a non-empty interior that contains z. The question
we wish to analyze can then be phrased as “Is A(z3) = A(z.) for k large enough?”

5.1 The assumptions

Clearly, our present assumptions are too general for such an analysis, and we need to strengthen
them both from the algorithmic and the geometric point of view.

We first state precisely the additional conditions that are required in Algorithm 1. The idea
is that the active constraints at the GCP z{, indexed by A(z§), should be a good guess of the
constraints active at the limit point z, when k is large enough. To ensure this property, we need
to ensure that the GCP picks up the correct active constraints.

If the quantity af (t) is defined, for all ¢ > 0, by

f .
af ()| min (g, d)], (5.3)
sptdEX
lIdli(ay <t
where
XY N x. (5.4)
i€A(=f)

we can then formulate a requirement that will guarantee this property as follows.
AS.6 For all k sufficiently large,

(98, 35) < —msaf (), (5.5)

for some strictly positive t; > ||sf||(,,) and some constant u3 € (0,1).
Once the correct active constraints have been identified by the GCP, one must then make
sure they are not dropped at Step 3 of Algorithi 1. This is ensured by the following condition.
AS.7 For all k sufficiently large,

A(2$) C Azx + si). (5.6)

We note that, because X C X,f",
af (8) > aw(t) (5.7)
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for all t > 0, and hence condition (5.5) is stronger than (2.33): it can therefore replace this
condition, for large k, in the formulation of Algorithm 1. (This is the reason why the constant
jt3 has been re-used in (5.5).)

In a way entirely similar to that used in the proof of Lemma 2, one can deduce the following

properties of a(t) as a function of .
Lemma 25 Forallk > 0,

1. the function t — af (t) is continuous and nondecreasing for t > 0,

. ac(t) . . .
2. the function t — —£7— is nonincreasing for t > 0.
By analogy with (3.21), we can also define
of ¥ af(1). (5.8)

Using this quantity, we obtain the following counterpart of Theorem 9 and Corollary 10.

Theorem 26 Assume that (AS.1)-(AS.3) and (AS.6) hold. Consider any sequence {zi} pro-
duced by Algorithm 1, and assume that af > 0 for a k sufficiently large. Then there ezxists a
constant cg € (0,1] such that

. of
my(zi) — me(zi + 81) > cgaf min [A,., ko1, (5.9)
L Lt

for all k sufficiently large. Furthermore, one has that

. af
f(zk) = f(2r+1) > mecsaf min [Ak, ks (5.10)
1+ wy

for all k € S sufficiently large such that af > 0.

Proof. The proof is entirely similar to those of Theorem 9 and Corollary 10, with all o,
being replaced by af, Lemma 2 replaced by Lemma 25 and the references to (2.33) by references
to (5.5). O

We note that we can then pursue the development of Section 3.3 using af instead of ag, and

deduce a counterpart of Theorem 14.

Theorem 27 Assume (AS.1)-(AS.4) and (AS.6) hold. Then, if {z;} is a sequence of iterates
generated by Algorithm 1, one has that

h&gxfaf =0. (5.11)

Let us now examine the geometry of the feasible set. The relation {(5.1) does not actually add
any structure to X, because X; can obviously be chosen as X itself, and all other X; (i>1) can
be chosen as identical to R™. We therefore need to specify further the nature of the description
(5.1).
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AS.8 For alli € {1,...,m}, the convex set X is defined by
X = {z € R"*|hi(z) > 0}, (5.12)

where the function h; is from R" into R and is continuously differentiable.
We note that the active set at € X is now given by

Az) = {i e {1,...,m}hi(z) = 0}. (5.13)

We temporarily restrict ourselves to the case of inequality constraints only. This is indeed
the case where the constraints identification problem is most apparent. We w:il discuss the
introduction of linear equality constraints in Section 7.2.

We will use the strong constraint qualification based on the independence of the constraint
normals at the limit points of the sequence of iterates {z,} generated by Algorithm 1. We first
define L to be the set of all limit points of this sequence. Clearly, L is compact because of (AS.1).

AS.9 For all 2, € L, the vectors {Vhi(2.)}ica(e,) are linearly independent.

This assumption implies that the normal cone at any ., € L is polyhedral and of the form

NE)={yecRYy=- Y AVh(z.),\ >0} (5.14)

A
i€ A(ze)

We complete our assumptions by requiring Dunn’s nondegeneracy condition {13} at every limit
point z, € L. Before stating this condition, we recall that the relative interior of a convex set ¥
{denoted ri[Y]) is its interior when Y is regarded as a subset of its affine hull, that is the affine
subspace with lowest dimensionality that contains ¥ (see [26, p. 44] for further details). Using
this concept, we now express our condition as follows.

AS.10 For every limit point z, € L, one has that

— Vf(=.) € ri[N(=.)). (5.15)

As discussed in [3], this last condition can be viewed as the generalization of the strict comple-
mentarity assumption used in [9] and [18]. It was also used in [3] and in [2] in a similar context.
As in {3], we note that {AS5.9), (AS.10) and (5.14) together imply the existence of a unique set of
strictly positive multipliers. Thus, for every z, € L,

V=)= > AVhi(z.), (5.16)
1€ A{x.)
for some uniquely defined X; > ©
We finally assume that the gradient approximations are asymptotically exact.
AS8.11
li = 0. 5.17
Jm {leil|x) (5.17)

This assumption is not the weakest one for obtaining the results on constraint identification
presented below, but its presence simplifies the exposition. A weaker requirement will be discussed
in Section 7.

‘We note that none of the above assumptions require the feasible set to be polyhedral, or even
that it has quasi-polyhedral faces {cf. [3]).
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5.2 Connected sets of limit points

Using the assumptions presented in the preceding subsection, we examine the properties of the
unique connected set of limit points of L containing a given z. € L, that we denote by L,. We

first show the following remarkable fact.

Lemma 28 Assume that (AS.1)-(AS.10) hold. Then, for each connected set of limit points L.,
there exists a set A(L.) C {1,...,m} such that

A(z.) = A(LL) (5.18)
forallz, € L,.
Proof. Consider two limit points z.,y. € L, such that

A(z.) # A(y.) (5.19)

and assume, without loss of generality, that there exists j € {1,...,m} such that j € A(y.) but
j € A(z.). Because of the connectivity of L., we know that there exists a continuous path z(t)
such that

2(0) = z., z(1)=y. and 2(t) € L.Vt € [0,1]. (5.20)

The condition (5.19) and the definition of j also ensure the existence of t, € (0, 1] such that
JE A(2(t)) YVt € [0,¢4) and j € A(2(24)). (5.21)

Let us also consider ¢ € [0,¢,) such that A(z(t)) is constant, and equal to A_ say, on the interval
[t_,t4). (5.16) implies that

VHE®) = X2 AT () Vhi(2(t)) (5.22)

ieA_
for all ¢ € [t_,t,) and for some uniquely defined A; () > 0. Taking the limit for ¢ tending to ty
from below and using the continuity of z(¢), V f and Vh; then yields that

V() = 30 AT Vhi((t4)) (5.23)

i€EA-

for some uniquely defined set of A7 > 0. On the other hand, (5.16) implies that

VHE)) = 3 A Vhi(a(ts) (5.24)

i€EAL
for some uniquely defined set of A} > 0, where
def
A+ = A(Z(t+)) (525)

But the closedness of the set {z € R"|A(z) 2 A_} and (5.21) ensure that A_ C A,, and hence
(5.23) and (5.24) cannot hold together. Our initial assumption (5.19) is thus impossible, which

proves the lemma. OO
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We now define the distance from any vector z to any compact set Y by
dist(z,Y) % min ||z — y||2, (5.26)
veEY
and the neighbourhood of any compact set Y of radius § by
N(Y,8) % {2 € R™|dist(z,Y) < 6}. (5.27)

After showing that different active sets cannot appear in a single connected set of limit points,
we now show that connected sets of limit points corresponding to different active sets are “well

separated”.
Lemma 29 Assume (AS.1)-(AS.10) hold. Then there exists a ¢ € (0,1) such that
dist(z,, L) > ¢ (5.28)
for every z, € L and each compact connected set of limit points L, such that A(L.) # A(z.).
Proof. Consider any z. € L. To this z,, we can associate the sets
D; ¥ {z e Lli e A=)} (5.29)

for i ¢ A(z.). For each z, € L., there is only a finite number of such sets, and each of them
is compact. Because of Lemma 28, the sets D; and L, are disjoint for all i ¢ A(z.). From the
compactness of L, we then deduce the existence of ¥ > 0 such that
ggg‘.&g')ggg lzx — 2|2 > ¥ (5.30)

(Without loss of generality, we may assume that ¢ < 1.) Hence the distance from z, to any
L, C L such that A(L.) contains some index j ¢ A(z.) is bounded below by 1, which then
implies the desired result. O

We next show that, for ¥ large enough, every iterate z; lies in the neighbourhood of a well
defined connected set of limit points, and also that all constraints that are not binding for this
set are also inactive at z.

Lemma 30 Assume (AS.1)-(AS.10) hold and that the sequence {z:} is generated by Algo-
rithm 1. Then there exists a § € (0, %1&) and a ky > 0 such that, for all & > k,, there exists a
compact connected set of limit points L., C L such that

2, € N(Luk,6) (5.31)

and
A(z) C A(Lug) forall z € N(Lup,6)N L (5.32)

Proof. Because of the bounded nature of the sequence {2} {ensured by (AS.1)), we may
divide the complete sequence into a number of subsequences, each of which converges to a given

connected set of limit points. For k large enough, z; therefore lies in the neighbourhood of one
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such connected set, L., say. The inclusion (5.31) then follows for § small enough and for &
sufficiently large. We then obtain (5.32) by using (5.30) and imposing the additional requirement
that § < /4. O

We now prove that, if an iterate 2, is close to its associated set of limit points but z{ has
an incomplete set of active bounds, then af is bounded away from zero by a small constant
independent of k.

Lemma 31 Assume (AS.1)-(AS.11) hold. Then there exists k; > k; (as defined in Lemma 30)
such that, if there ezists j € {1,...,m} with

7 € A(L.) and j & A(z$) (5.33)

for some k > ky, then
af > e, (5.34)

for some €, > 0 independent of k and j.

Proof. Consider, for a given 2, € L with A(z.) # 0 and a given i € A(2.), the quantity

def .
awi(z.) = I:‘gggm (Vi(zs), ), (5.35)
lldll(x)<1/2
where Xy is defined by
def
Xy = n x. (5.36)

Fe{t,..m}\{i}
@.; is the magnitude of the decrease obtained by minimizing the linearized ob jective from 2, in
a ball of radius 1/2 (in the norm || - fl(x)) when dropping the ith (active) constraint. Because of
(AS.10) and (AS.9), one has that
a.,-(:c.) >0 (5.37)

for all choices of z, € L and i ¢ A(z.). Lemma 1 and the continuity of V f also ensure that
a.i(2.) is a continous function of z,. We first minimize a.i(z.) on the compact set of all z, € L
such that ¢ € A(z.). For each such set, this produces a strictly positive result. We next take the
smallest of these results on all ¢ such that i € A(z,) for some 2z, € I, yielding a strictly positive
lower bound 2e,. In short,

miinnal:i‘n ai(2.) > 2e. (5.38)

for some €. > 0.

Consider now k > k;. Then, by Lemma 30, we know that we can associate to Z; a unique
connected set of limit points L. such that (5.31) holds. We then choose a particular 2, €
L.y N N(2z4, §), for which we have that

1
{2k +d € Xgnpllldllry < 3} C{an+d e Xyllldlny < 1} (5.39)
for all i € {1,...,m}, where we used the inequality § < 3- Observe also that (5.36) imply that
X € XP (5.40)
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for all i ¢ A(z{).

Given a k > ky and such that z; satisfies (5.33), we now distinguish two cases. The first is
when af > a.j(z.), in which case (5.34) immediately follows from (5.38). The second is when
af < a.;j(Z.k). If we define df and d. as two vectors satisfying

af = ~{gk, df): “dE“(k) <1, @+ df € XI?* (5.41)
and 1
Cj(zat) = ~(VH(z), A}, Nldullgy < 5 2okt de € Xy, (5.42)
we can write that
0< avj(zuk) —af = (g8, df) — (VF(2u), du)
= (gkvdf - d*) + <gk - vf(ztk)) d*) (5'43)
< (gr,df — d) + 3o = V (@)l

where we used the inequality (2.15). Combining now (5.39), (5.40) and the definitions of af, d{
and d,, we obtain that :
(gr,d5) = —af < (g, d.). (5.44)

Substituting this last inequality in (5.43), using (AS.11) and the Lipschitz continuity of V f
(reducing § if necessary), we can find ky > k; sufficiently large such that

0 < auj(2uk) —af <, (5.45)

when k > k3. The inequality (5.34) the follows again from (5.38). O

5.3 Active constraints identification

We now wish to show that, given a limit point 2., the set of active contraints at z., that is A(L.),
is identified by Algorithm 1 in a finite number of iterations.

We first show that, if the trust region radius is small and the correct active set is not identified
at z{ (k large enough), which implies, by Lemma 31, that (5.34) holds, then the kth iterate is
successful.

Lemma 32 Assume (AS.1)-{AS.10) hold. Assume furthermore that (5.34) holds and

ca€x(1 — 72)
Cq4

BeAr < (5.46)
for some k > ky. Then iteration k is successful (k € §) and Apq > Ag.

Proof. We first observe that (2.29) and the inequalities ¢4 > 1 and ¢g < 1 imply that

58(__1—_"2) <1. (5.47)
Cq
Using (5.34), (5.46), (5.47) and Theorem 26, one then deduces that
F(ze) — me(ze + s) > cgeAg. (5.48)
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But this last inequality, Lemma 11 and (5.46) then ensure that

A
loe ~ 1| < ﬁ'?‘;—i <1-m,. (5.49)

*

Hence p, > 712 and the conclusion of the lemma follows. O
We also need the result that the gradient projected onto the tangent cone at a point y having
the correct active set goes to zero as both this point and the iterates tend to a set of limit points.

Lemma 33 Assume (AS.1)-(AS.11) hold. Consider any subsequence whose indices form K C N
such that
lxerg dist(zx, L.) = 0 (5.50)
k—oo

for some connected set of limit points L.,

Lim flyi — 2ullw) = 0 (5.51)

k— 00

for some sequence {yx}reck such that y, € X and

A(ye) = A(L.) (5.52)
for allk € K. Then one has that
lien’% Prey(—g:) = 0. (5.53)
k—o0

Proof. We first note that (5.52), Lemmma 1 and the continuity of the constraints’ normals
imply the continuity of the operators Pr() and Py, as functions of {y|A(y) = A(L.)} in a
sufficiently small neighbourhood of L.. We also observe that the Moreau decomposition of —g;
gives that

= 9% = Preu(=98) + Prguu)(~g4)- (5:54)
This last equation, the limits (5.50), (5.51), (AS5.10) and (AS.11) then give (5.53) by continuity.
a .

Amongst the finitely many active sets {A(z.)}z.cL, We now consider a maximal one and

denote it by A,. This is to say that A, = A(z.) for some 2, € L and that

A g Alys) (5.55)

for any y. € L. We are now in position to prove that A, is identified at least on a subsequence
of successful iterations.

Lemma 34 Assume (AS.1)-(AS.11) hold and that the sequence {zr} is generated by Algo-
rithm 1. Then there exists a subsequence {k;} of successful iterations such that, for i large
enough,

A(zr;) = A (5.56)
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Proof. We define the subsequence {k;} as the sequence of successful iterations whose
iterates approach limit points with active set equal to A., that is

{3 ¥ (& € 5]A(Lu) = 4.}, (5.57)
and assume, for the purpose of obtaining a contradiction, that
Azi;41) # As (5.58)
for all j large enough. Assume now, again for the purpose of contradiction, that
A, C A(=R) (5.59)

for such a j. Using successively (AS.7), (5.58) and Lemma 30, we then deduce that, for j
sufficiently large,
A. C A(Lokj41)s (5.60)

which is impossible because of (5.55). Hence (5.59) cannot hold, and there must exist a p; €
A. = A(Lux,;) such that p; ¢ A(zf}.) for j large enough. From Lemma 31, we then deduce that
(5.34) holds for all j sufficiently large. But Theorem 26 then gives that

ﬁk,‘ [-f(zkj) - f(zk,'+1 )] 2> Thcses min[ﬂk,’ Akja 6-&], (561)
for j large enough, and thus, using (AS.5), that
lim By, Ag; = 0. (5.62)
J—ro0

The inequality Si; > 1 and (2.12) then give that

1
ks llgws) < maday < 56 < % (5.63)

for j larger than j; > 1, say. But this last inequality, Lemma 29 and Lemma 30 imply that 2,3
cannot jump to the neighbourhood of any other connected set of limit points with a different active
set , and hence z;.1 belongs to M(L.,#) again for some L, such that A(L.) = A.. The same
property also holds for the next successful iterate, 24,4, say, and we have that A(L.i;14) = A..
Therefore, the subsequence {k;} is identical to the complete sequence of successful iterations with
k > kj;,. Hence we may deduce from (5.62) that

lim BrAr = 0. : (5.64)
es
In particular, we have that
cgvied(1 — n2)
2(:4

for all k € S sufficiently large. But the mechanism of the algorithm and (5.64) also give the limit

Brdi < (5.65)

lim Aj = 0. (5.66)
k— oo
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As a consequence, we note that, for k large enough, z;, z$ and z4 + si all belong to N(L.,$)
for a single connected set of limit points L..
We also note that Lemma 32, the fact that (5.34) now holds for k € S and (5.64) together
imply that
keSS = Apy1 2 Os (5.67)

for k large enough.
We can therefore deduce the desired contradiction from (5.67) and (5.66) if we can prove that
all iterations are eventually successful.
Assume therefore that this is not the case. It is then possible to find a subsequence K of
sufficiently large k such that
k¢S and k+1€S. (5.68)

Note that, because of (2.46) and of the nondecreasing nature of the sequence {f}, one has that

cgm16x(1— 12)

5.69
208 (5.69)

1
BrBr < %ﬂk+1AI¢+1 <

for k € K sufficiently large, where we used (5.65) to deduce the last inequality. Now, if one has
that
A(zf) C A(Ly), (5.70)

then Lemmas 31 and 32 together with (5.69) and (2.30) imply that k € S, which contradicts
(5.68). Hence (5.70) cannot hold, and (AS.7) together with Lemma 30 give that

Az + s1) = A(2f) = A(L.) (5.71)

for all k € K sufficiently large. Observe now that, since k ¢ S, one has that 2,1 = z; because
of (2.45), and hence, using (2.13), that

Mpy1(Zhe1 + Sk+1) = Mi(Zi + 8k) = Mpg1(Te + Se41) — Mi(zk + i)
(ghr1s sk41) — (9hs s1) + Flllsndallfypy@ierr (Mics1, s Sie1)
~ i liywi (e, 2, 51)]
(k1 = Ghs Skt1) + (—Gh» 3k — Sk41) — VIBRAE — 3111884
(5.72)
But, using successively the identity z; = zi+1, the Cauchy-Schwarz inequality, (AS.3), (2.12),
(2.14) and (2.46), we have that

v

(gr+1 — VI(®R)s sk41) + (Vf(2k) — s Stet1)
(€ht1, Sk41) — (€ks Sk1)
—llers1lipeaillsr+1llger1y — lerllgergllsetalles)
skt llesny [lewslliess + oallerllpa)]
—V1Bk41 [K1AR41 + 0aK1AL]

—rs AL, [1 + %11]

(9k+1 = Gk 3k+1)

(5.73)

IV IV IV IV
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for all k € K, and also that

(—9ks Sk — 8k41) (Prza+a)(—98)s 8k — k41) + (PN(zytay)(— k) Sk — Sie41)

v i

|| Pr(zgtan)(—gi)llimll sk — Skl (i)
—(PN(zsta)(—98)s Pr(zys o) (Sk+1 — 3k)) (5.74)
> =l Pregron) (g6l sk — set1lle)
2 _(1 + -yl_l)”PT(:u+u)(—gk)”[k]V1Ak+1

for all k € K, where we have used the Moreau decomposition of —gg, the fact that spy 1 — s €
T(2k + s1), (2.15), the fact that the cone T'(z + s ) is the polar of N(z + si), and (2.46). Using
(2.46) again, (5.72), (5.73), (5.74) and the nondecreasing nature of {3,}, we also deduce that, for
such k,

Mp1(Zhe1 + Skt1) — me(r + 52)
> —1 Bk [m1(1+ 2)Aks1 + (14 2 Priayan)(—gillpg + 51+ ,,%)ﬂkn/lkﬂ] :
(5.75)
We now observe that, because of (2.38) and (5.66), we have that |s||(x) tends to zero when k
tends to infinity. Applying now Lemma 33 using (5.71) (with yx = 2 + s) to the subsequence
k € K, we deduce from (5.75), (5.53), (5.66) and (5.64) that

1
Mps1(Ze+1 + Skt1) — ma(@e + 52) > —Ecsf:Ak+1 (5.76)
for k large enough in K. On the other hand, we can also apply Theorem 26 to iteration k + 1

and obtain

J(Zr41) — meg1(Zrt + Sk41) > cs€alpya, (5.77)

where we used (5.64) and the fact that (5.34) holds for all sufficiently large k¥ € S. Hence we
obtain that

F(zx) — mp(zr + sz) F(Zrr1) — mes1(Zht1 + Skt1) + Mes1(Zrs1 + Ske+1) — mr(ze + s)
%cs&-AkH

1
3C8V16x Ak

v v

(5.78)
for all k € K sufficiently large. But then, using the definition of p;, Lemma 11 and (5.69), one

obtains that
2C4

€8Y1€x
and hence that pp > 7, for all k € K large enough. But this last inequality implies that k € S,
which contradicts (5.68). The condition (5.68) is thus impossible for k sufficiently large. All
iterates are eventually successful, which produces the desired contradiction.

o —1| <

BrAr <1 -1 (5.79)

As a consequence, (5.58) cannot hold for all j, and we obtain that there exists a subsequence
{ky} C {k;} such that, for all p,

A* = A(zkp+l) = A(zkp+q)7 (580)

where k, + ¢ is the first successful iteration after iteration k,. The lemma is thus proved if we
choose {k;} = {kp + ¢q}. O
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The last step in our analysis of the active set identification is to show that, once detected,
the maximal active set A, cannot be abandoned for sufficiently large k. This is the essence of
the final theorem of this Section.

Theorem 385 Assume that (AS.1)-(AS.11) hold and that the sequence {z:} is generated by Al-
gorithm 1. Then one has that
A(z,) = A, (5.81)

forallz, € L, and
A(zy) = A (5.82)

for all k sufficiently large.

Proof.  Consider {k;}, the subsequence of successful iterates such that (5.56) holds, as
given by Lemma 34. Assume furthermore that this subsequence is restricted to sufficiently large
indices, that is k; > k; for all i. Assume finally that there exists a subsequence of {k;}, {k,} say,
such that, for each p, there is a j, with

jp € A(Ck’) = A. and jp ¢ A(sz.H). (583)

Now Lemma 30, (5.55) and (5.56) give that A(L.x,) = A.. Using this observation and (AS.7),
we obtain that
ir € A(L.s,) and jp & A(e5) (5.84)

for all p. But Lemma 31 then ensures that
af e (5.85)

for all p. Combining this inequality with Theorem 26, one obtains that, for all p,

Bry[f(2k,) = F(2kp+1)] > Mcse. min[Be, A, , €] (5.86)
Using (AS.5), we then deduce that
pl_igxo Br,Ap, =0. (5.87)
Theorem 26 then implies that
F(2r,) — My (Zhy + Sk, ) > caeuAs, (5.88)

for all p sufficiently large. On the other hand, we have that, for all k,

F(zr) = mue(2ie + i) Haws si)l + Bellswlly
ar(|iselley) + Brviad (5.89)

ax(llsellx))
k”‘kﬁ“: viAg + ﬁkV]?Ai,

INIA A

where we used (3.29), (3.46), (2.19) and (2.12). Combining (5.88) with (5.89) taken at k = k,,
applying the third statement of Lemma 2 and dividing both sides by Ay, we obtain that

ca€x < V1| Przy ) (= 9k, liky] + By ¥3 Ay (5.90)
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Assuming that the sequence {z;,} converges to some z. in some L, (or taking a further subse-
quence if necessary), using (5.87) and Lemma 33 (with K = {k,}, y = zx and A(L,) = 4,), we
deduce that (5.90) is impossible for p large enough. As a consequence, no such subsequence {kp}
exists and we have that, for large 1,

Aw C A(zri41) © A(Luii+1), (5.91)

where we used Lemma 30 to deduce the last inclusion. But (5.91) and the maximality of A.
impose that
A. = A(Zri41) = A(Luki+1) (5.92)

for i large enough. Hence we deduce that, for sufficiently large <,
Azhitq) = Ad, (5.99)

where k; 4 ¢ is the index of the first successful iteration after iteration k;. Hence k; + q € {k;}.
We can therefore repeatedly apply (5.93) and deduce that

{k:} = {k € S|k is sufficiently large } (5.94)

and also that A(zx) = A. for all k € S large enough, hence proving (5.82). Moreover, A, is then
the only possible active set for the limit points, which proves (5.81). 0

6 Convergence to a minimizer

The purpose of this section is to analyse conditions under which the complete sequence of iterates
produced by Algorithm 1 can be shown to converge to a single limit point. By Corollary 18 and
(AS.11), this limit point is of course critical. We will assume in this section that there are
infinitely many sucessful iterations. Indeed, the convergence of the sequence of iterates is trivial
if all iterations are unsuccessful for sufficiently large k.
We define C,, the set of feasible points whose active set is the same as that of all the limit
points, that is ;
C. ¥ (z € X)A(2) = A.). (6.1)

We also define V(z) to be the plane tangent to the constraints indexed by A., that is
def n
V(z) = {z € R*|J.(2)z = 0}, (6.2)

where J,(z) is the Jacobian matrix whose rows are equal to {Vh(z)T }ica, .

As we wish to use the second order information on the objective function, we must clearly
assume that it exists.

AS.12 The objective function f(-) is twice continuously differentiable in an open domain
containing X.

We can now prove that if the model curvature along successful steps is asymptotically uni-
formly positive and if a limit point is an isolated local minimizer, then the complete sequence of

iterates converges to this single limit point.
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Theorem 36 Assume that (AS.1)-(AS.12) hold, that the sequence {zz} is generated by Algo-
rithm 1 and that the set S is infinite. Assume also that there is an € > O such that

lixgleinfwk(mk,zk,sk) > € (6.3)
k—oo
and that, for some z, € L, V2f(z.) is positive definite on the corresponding tangent plane V (z.).
Then
lim z = 2. (6.4)

k— oo
Proof.  We first observe that 2z, is a critical point because of (AS.11) and Corollary 18.
We consider {zx,}, a subsequence of successful iterates converging to z.. We now choose §; > 0
small enough to ensure the following two conditions. The first is that we can define Z(z) a
matrix whose columns form a continuous basis for the tangent plane V(z). The existence of such
a basis is ensured in a sufficiently small neighbourhood N (z.,8;) of z. by assumptions (AS.8)
and (AS.9). The second condition is that Z(z)TV2f(z)Z(z) (that is V2f() restricted to the
subspace V(z)) is uniformly positive definite in N (z., ;) N C..
We now introduce p
5. & 4—52-::; 8. (6.5)

and define fp to be the largest value of the objective such that the level set
P E {2 € N(2.,6) N C.|f(2) < fp} C N(2.,8.). (6.6)

We then use Theorem 35 and choose i; such that k;, > 0 is sufficiently large to guarantee
that, for all 7 > 1,

zi; €P, (6.7)
and also, for all k € S with k > k;,,
z € C. (6.8)
and 1
wi(mp, Tk, 3) > 3¢ (6.9)
We note that, for k£ > 0,
sk € T(zs). . (6.10)

Because of (6.8) and Lemma 33 with y;, = 4, we deduce that

N Przy)(—gr)ll < 6. (6.11)

for-all k € S larger than k;, > k;,, say.
Consider now

1
0> mu,(2h, + k) = ki () = (ks 8ha) + 5 l13kill ey s (s 2 91, (6.12)
where the equality results from (3.29) and the inequality from the definition of the step sj,. Using
successively (6.12), (6.9), the Moreau decomposition of —g;, and (6.10), we then deduce that
-2 (gki,sk‘.) é I(PT(zg'.)(_gki)73k-‘>|
i (M0 ;s S ) ”3’0.'”(’:;) T € ”'sk.'“(k,')

lsiilloes) < , (6.13)
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for i > i,. Hence, using (2.15) and (6.11),

4 46,
llskillrsy < <1l Pras) (=g )lpe) £ — (6.14)
€ M €

for 1 > i,. Using this last relation, the equivalence of norms and the triangle inequality, we obtain
that, for such %,

402
leners = 2l < llswlla + llon — 2l < [*22 +1] 8. = 8. (615)

We now observe that, k; € S implies f(zi,+1) < f(zx;) < fp. Hence, 24,41 € P and all conditions
that were satisfied at z,, are again satisfied at the next sucessful iteration after k;. The argument
can therefore be applied recursively to show that

Ti,+j € P C N(z.,81) (6.16)

for all j > 1. Since §; is arbitrarily small, this proves the convergence of the complete sequence
{zz} to z,.. O

7 Discussion and extensions

The purpose of this section is to discuss further aspects of the theory presented above, both from
the point of view of practical implementation and of interesting theoretical extensions.

7.1 A simple relaxation based test for inexact projections

A computational difficulty in the framework of Algorithm 1 is the practical enforcement of condi-
tion (4.12) in the GCP calculation. Indeed, if the left-hand-side can be readily calculated for any
vector z, the right-hand-side contains the quantity a(f;) which may not be available. However,
an upper bound on a(t;) can often be derived in the following way.

Assume, for example, that we have computed a candidate for the GCP step, z; say, such that

lzll < t: and (g, z:)| = a(]|=]]). (7.1)

The last of these conditions merely says that z; minimizes the linearized model in a “ball” of
radius [|z||. The aim is then to verify that z; satisfies (4.12), i.e. that z; gives a large enough
reduction of this linearized model compared to that obtained by the minimizer in a ball of radius
t; > |lzi||. Using the definition of a(t;) and the second part of Lemma 2, it is easy to see that

a(t;) < tiﬁﬁﬁ)—', (7.2)

and (4.12) can be thus guaranteed by checking the stronger condition

I(Islv;fli)l, (7.3)

(9,2) £ —pat;

which is equivalent to verifying that
llzill 2 pats. (7.4)
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The situation described by (7.1) is far from being unrealistic. It may arise, for example,
if a(t;) is computed by an iterative method starting from z and ensuring (7.1) at each of its
iterations.

We also note that the use of interior point methods for linear programming (see [27], for
instance) seems quite attractive for solving the problem of Step 1 in the GCP Algorithm, in the
case where || - || is a polyhedral norm. These algorithms indeed provide a sequence of feasible
approximate solutions together with an estimate of the corresponding duality gaps, which can
then be used to stop the process as soon as condition (4.12) is satisfied.

7.2 Constraint identification in the presence of linear equalities

We now consider the case where the feasible domain X is defined not only by a set of convex
inequalities (as in (AS.8)) but also by a set of linear equalities of the form

pi(z)=0, i=1,...,q, (7.5)

where each of the p; is an affine function from R” into R.

We first observe that identifying the active p; at the solution is trivial: they are all active by
definition. The only remaining question is then to examine if their very presence can upset the
theory developed in Section 5. We also note that representing an equality by two inequalities of
opposite sign does not fit with this theory, because (AS.9) is then automatically violated. We
therefore need to discuss this case separately.

The simplest way to exploit the identification theory for inequalities is to “eliminate” the linear
equalities and view Algorithm 1 as restricted to the affine subspace, W say, where the equalities
(7.5) hold. We therefore consider the reduction of the original problem to W as follows. Assume
that Z is a n X n — ¢ matrix whose columns form an orthonormal basis of the linear subspace
parallel to W. The problem can now be rewritten as

min f(y) ¥ £(Zy) (7.:6)
subject to the constraints
hi(y) E hi(zy) 20 (i=1,...,m), (7.7)

where y € R™7 (see [15, p. 193] for an introduction to the variable reduction technique). The
idea is to show that, if an adapted version of (AS.6)—(AS.11) holds for the problem including
the constraints (7.5), then (AS.6)~(AS.11) hold for problem (7.6)—(7.7). The theory of Section 5
then applies without any modification.

(AS.6)-(AS.8) and (AS.11) need not be modified for handling the constraints (7.5). Therefore
they also hold for problem (7.6)-(7.7). (AS.9) however requires the following modification.

AS.9b For all z, € L, the vectors {Vhi(z.)}ica(z.) and {Vpi(2.)}L, are linearly indepen-
dent.

The formal expression of (AS.10) is unchanged, but the normal cone N (z.) is now defined by

q
Nz )={yeR"My=—- > AVh(z.)- 3 &Vpi(z.), N > 0} (7.8)
i€A(z.) =1
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instead of (5.14).
Defining z. 4f 7y, and A(y.) &f A(z.), we first note that (AS.9) holds for problem (7.6)—(7.7)
as a consequence of (AS.9b).

Theorem 37 Assume that (AS.9b) holds. Then the vectors {'Viz;(y,‘)}‘.e i) ve linearly inde-
pendent.

The proof of this result belongs to the folklore of mathematical programming, and an easy
proof is given in the Appendix A.

Similarly, (AS.10) with (7.8) implies that (AS.10) holds for problem (7.6)—(7.7), as expressed
in the following proposition.

Theorem 38 Assume that (AS.10) holds with (7.8). Then

— Vf(y.) € 1N (3.)], (7.9)
where
Fp) ¥ {zeR™Yz=- ¥ AVhi(y), X > 0} (7.10)
i€A(y.)

The proof of this result can also be found in the Appendix A.

The conclusion of this simple reduction exercise is that all the conditions required for the the-
ory of Section 5 to hold are satisfied for problem (7.6)—(7.7). The presence of equality constraints
therefore does not affect the identification of active inequality constraints in a finite number of
iterations of Algorithm 1.

7.3 Constraint identification without linear independence of constraint’s nor-
mals

One may note that (AS.9) is a rather strong constraint qualification, and wonder if it can be
weakened without affecting the result that “the correct active set” is identified in a finite number
of iterations.

In order to answer this question, we first note that Algorithm 1 and the GCP and RS algo-
rithms do not depend in any way on the particular parametrization (description) of the feasible
set X that is used. The constraints functions h; were indeed introduced only in (AS.8) and play
no role in the theoretical algorithm. As a consequence, one can clearly add redundant constraints
of the form

r(2) >0 (i=1,...,m,) (7.11)

to the set {h;}2, without modifying the result that the algorithm will identify the correct active
constraints in the set {1,...,m}.

Identification of the active redundant constraints in {r;}>, will then depend on the existence,
for each of these constraints, of a set A; C {1,...,m} such that

{z € X|ri(z) = 0} = {z € X]A(z) = 4;}. (7.12)
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If this property holds for r; and if A; = A., then the activity of »; will clearly be detected in a
finite number of iterations.

For example, if r;(z) is a multiple of h;(z), say, and if j € A,, then r; is identified as an active
constraint in a finite number of iterations. Another example is given by the problem

minz +y (7.13)

subject to
hi(z,y)=22>0, hy(z,y)=y >0 and r(2,y) =z +4y > 0. (7.14)

In this case, the constraint r, is saturated (satisfied as an equality) if and only if both h; and h,
are saturated (A; = {1,2}). It is therefore detected as an active constraint in a finite number of
iterations because the activity of h; and h; is.

On the other hand, if we consider the problem

miny (7.15)

subject to
hi(z,y)=y—2? >0 and r(z,y)=y >0, (7.16)

we note that the activity of r; at the solution may not be detected in a finite number of iterations.
This is because there is no subset 4; C {1,...,m} = {1} such that (7.12) holds.

It would be quite interesting to develop a purely geometric theory of nonlinear constraint
identification along the lines of [4], where the notion of polyhedral face of the feasible set X is used
to describe the geometry of X. This approach seems indeed possible, because a specialisation
of our identification results to linear inequalities shows that the “correct active face” of the
corresponding convex polytope is identified by Algorithm 1 in a finite number of iterations.
This geometric rephrasing of nonlinear constraint identification results is the subject of ongoing
research.

7.4 A further discussion on the use of approximate gradients

The technique for handling inexact gradient information, as proposed in Section 2.2, is identical
to that analyzed by Toint in [29], but is quite different from that proposed by Carter in [6] for
the unconstrained case, where he only requires that, for all k > 0,

D% Terllz < 711D 7 gkllz- ‘ (7.17)

for some 1 € [0,1 — 7;) and some symmetric positive definite scaling matrices D; such that the
norms || DT (-)|lz do satisfy AS.3. Convergence is proved under this remarkably weak condition
by using the property that

IDE T exll2 T

T gkllzcos 8, ~ cosby’

L 1- < 7.18
A,f_!.lo( Pr) < D (7.18)

where 8}, is the angle between Dps; and —D;Tgk. The next step in Carter’s development is to

show that 0, tends to zero when the trust region radius A, tends to zero, for a large class of
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trust region schemes applied on unconstrained problems. The relation (7.18) then nnplies that
Pk > 7 for small enough Ag, and hence the kth iteration is successful, the trust region radius
increases and the algorithm can proceed.

This line of reasoning unfortunately does not apply to constrained problems, where it may
well happen that the negative gradient and its approximation both point outside the feasible
domain. As a consequence, if z, lies on the boundary of X, the accuracy level 7 requested for e
may depend on i, which can be bounded away from zero as it depends on the angle of D;Tgk

with the plane tangent to the constraint boundary at zp. For example, if one considers the
problem

min —221 - 22:2 (7.19)
with the constraints
21 <0 and 2z, <3, (7.20)
and if one assumes that D), = I, zj is the origin and that m(s) = —2s; — Bs; for some § > 0,
it is not difficult to verify that
T < (1—1n3)cos b < (1 —nz)B/y/4 + B2 (7.21)

is required in (7.17) for the iteration to be successful with Apy1 > Ag, and this value depends on
the geometry of the feasible set at zj, (see Figure 5, where the shaded area corresponds to all steps
that produce a model decrease). A fixed value, as used in {6], is therefore insufficient to cope with

\ z. = (0,3)

—Vf(zw)
sk = (0,1) 61 —gk

z, = (0,0)

Figure 5: The impact of the feasible set geometry on the angle &;.

a possibly complex geometry of the feasible set X, and an adaptive scheme, as that suggested

by (2.14), is necessary. Furthermore, our purposely broad assumptions (2.38) and (2.39) are too
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loose to guarantee a well-defined (isotonic, for example) behaviour of §), as A, tends to zero.
Finally, Carter also exploits in his theory the fact that the problem is unconstrained, and thus
that IID;Tngg can be viewed as a criticality measure for the problem at hand. When constraints
are present, this is not the case anymore, and the lack of relation between a criticality measure
and the right-hand-side of (7.17) makes the direct adaptation of this criterion to the constrained
framework quite difficult.

Condition (2.14) also differs from the more abstract condition used by Moré in [19], namely
that e, should tend to zero for a converging sequence of iterates. This condition is related to
(3.70) and (3.90) in our analysis.

One attractive feature of Carter’s condition {7.17) is the fact that the accuracy requirement is
relative to the size of the approximating vector g, and hence also to the size of the true gradient
V (&), as can be seen as follows. From (7.17), we have that

-T -7 -
1D gl D exllz 7| D T gl

— < - < — , (7.22)
1DV #(=e)ll2 DTV f(24)ll2 1DV F(ze)l2
and hence, using the fact that r € [0,1),
- 1 -
IDETaulle < T IDETV £(2)la (7.23)

yielding the desired inequality.
It is important to note that our condition (2.14) can be made relative as well, in the form of
the criterion
llewllpy < min[xy A, k2] || gkllpe (7.24)

where &, € [0,1). This relative criterion does in fact imply (2.14). This implication is based on
the following simple result.

Lemma 39 Assume that (AS.3) and (7.24) hold. Then there ezists a constant cg > 0 such that

llgrllng < co (7.25)

for allk > 0.
Proof. Because of (7.24), we have that
lgrlly < NV F(@R)lliny + Newllpg < ;lgllvf(zk)llz + K2]lgillx (7.26)
and hence the compactness of £ implies that (7.25) holds with

c max ||V f(z)|2. (7.27)

®= 0'3(1 - K,z) zeL

As a result of this lemma, we obtain from (7.24) that

[lewlipr < comin[r; Ak, k2] < cok1 A, (7.28)
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and (2.14) therefore holds with k; replaced by cox;. The theory developed in this paper is
therefore also valid when condition (7.24) is imposed instead of (2.14).

We end this subsection by noting that (AS.11) can be omitted without altering the constraint
identification result of Theorem 35 in the case where the complete sequence of iterates converges
to a single limit point, z,., and where the model’s gradients, gi, converge themselves to a well
defined limit g, such that —g, belongs to the relative interior of the normal cone at .. This
amounts to replacing (AS.11) by the following.

AS.11b
k]ilg Tp = 2. (7.29)
and
k]ir?o gr = g« and — g, € ri[N(z.)]. (7.30)

The theory of Section 5 must then be adapted accordingly. In particular, the proof of
Lemma 31 is modified by replacing V f(z.) by g. in (5.35); the minimum over z, then disappears
from (5.38) and the rest of the proof follows.

The second crucial adaptation is the observation that Lemma 33 merely requires that

Lim [lex[|pny = 0, (7.31)
k—oco
which is weaker that (AS.11). Condition (7.31) fortunately holds whenever Lemma 33 is used: it
is ensured by (5.66) and (2.14) in the proof of Lemmra 34, and by (5.87) and (2.14) in the proof
of Theorem 35 since B > 1 for all k.
Assumption (AS.11b) seems natural if the correct active set is to be identified at all, since

the vectors g, should clearly provide some consistent first order information for this property to
hold.

7.5 An extension to noisy objective function values

We note that equation (2.13) (specifying that the model and function values should coincide
at the current iterate) is not used anywhere in the convergence theory of Section 3, except in
Lemma 11. This leaves some room for a further generalization of Algorithm 1 where not only
gradient vectors are allowed to be inexact but also where the objective function values themselves
are not known exactly.

Indeed define the quantity E) by

def _ f(2k) — mu(2)
T mi(zk) — mi(zi + sk)

(7.32)

E,, is therefore a measure of the uncertainty of the objective function value relative to the pre-
dicted model decrease for the current step s;. Clearly, if |Ej| is of the order of one or larger, then
the predicted model reduction is comparable to the uncertainty in the objective, and the step
3y, is then likely to be completely useless: the algorithm might as well stop at z;. Conversely, if
|E| is small, then the predicted model reduction is significant compared to the uncertainty in
the objective value, and the algorithm may proceed.
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This argument is very nicely supported by the theory, as can be seen as follows. We first note
that the term |f(zx) — mi(z:)| now appears in the right-hand-side of (3.48) and (3.49), so that
(3.47) becomes

|F(2k + 31) — ma(2i + si)| < |F(24) — ma(2r)| + caBrAl. (7.33)
We then use this inequality instead of (3.47) to obtain that

cafr 18,1

-1 — 1| <2|E,_
lor1 = 11 < 2|y y| 4+ 222

(7.34)

instead of (3.57), and the right-hand-side of this inequality is smaller than 1 — 12 provided that
we assume the bound

1
1Bl < 56(1 - n2) (7.35)
for all k and for some ¢ € [0,1), and provided that (3.54) is replaced by
Buary < 1l —c'")(l 4., (7.36)
4

One then can deduce (3.52) with

o = el —m)(1—¢)
5 — €.
C4

(7.37)

The rest of the global convergence theory of Section 3 then follows as before. Hence we conclude
that, provided the relative uncertainty on the objective value E; satisfies the typically very
modest bound (7.35) (] Ex| < 0.1 for ¢ = 0.8 and 7, = 0.75), the Theorems 14 and 17 still hold.

8 Conclusions and perspectives

In this paper, we have presented a class of trust region algorithms for problems with convex
constraints that uses general norms, approximate gradients and inexact projections onto the
feasible domain. We have proved global convergence of the iterates generated by this class to
critical points. Identification of the final set of active inequality constraints in a finite number of
iterations is also shown under slightly stronger assumptions. Interestingly, this theory does not
assume the locally polyhedral character of the constrained set.

We have also considered practical implementation issues, including an explicit procedure for
computing an approximate Generalized Cauchy Point. Application of these ideas to problems
whose linear constraints represent the flow conservation laws in a network is presently under
study.
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Appendix

A Proof of Theorems 37 and 38
Considering the variable reduction introduced in Section 7.2, we first note that

Vi(y)= 2TV f(z) and Vh;i(y) = ZTVh(z). (A1)

A.1 Proof of Theorem 38

(AS.10) with (7.8) yields that
e

Vi) = Y AVhi(z)+ > &Vai(z.) (A.2)

. 1€A(zs) i=1

for some \; > 0 and & # 0. Applying ZT to both sides of this relation and noting that
ZTVp;(z.) = 0 by definition, we obtain the desired conclusion. O

A.2 Proof of Theorem 37

Assume that
Y $iVhi(y.) = 0. (A.3)
i‘ej(Vo)
Premultiplying by Z and using (A.1), we obtain that
> $iZ2ZTVh(z.) =0. (A4)
i€A(z.)
Assume furthermore, for the purpose of contradiction, that
S I - 22T)Vhi(z.) # 0. (A.5)
i€A(2a)

Since I — ZZT is the orthogonal projection onto the subspace spanned by the vectors {Vp;(z.)},
we can write that

Y (I~ 22T)Vhi(z.) = ix,-Vp;(z,..) (A.8)

i€A(z.) i=1 B
for some x;, not all x; being zero. Adding (A.4) to (A.6), we obtain -
q
2. $iVhi(z.) =) x:iVpilz.) =0, (A7)
iEA(Z-) i=1
which contradicts (AS.9b). Hence (A.5) does not hold, and
S ¢i(I-22T)Vhi(z.) = 0. (A.8)
i€A(xs)

Summing (A.4) and (A.8), and using (AS.9b), we deduce that ¢; = 0 for all ¢ € A(z.), which

yields the desired conclusion. O
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B Glossary

Symbol

I Newys 1l < Nes

a;(t)

Y1472,73

]
Ay
m,M

K1

By B2

He

n

V3, Vs

Pk
01,02,03,04
4

wi(g,z,v)

wi

Definition

Section 2.2

(2.19)

(3.21)

(5.3)

(5.8)
(3.2)

(3.46)

(2.43), (2.44), (2.46)
Lemma 30

(2.12)

(2.41), (2.43), (2.44)
(2.14)

(2-34), (2.36)

(2-33)

(2.39)

(2.12)

(232)

(2.35)

(2.40)

(2.17), (2.18)
Lemma 29

(3:29)

(3.34)

Purpose

iteration dependent norm and its dual

the magnitude of the maximum linearized model decrease achievable
in the intersection of X and a ball of radius ¢ centered at zx

ar(l)

the magnitude of the maximum linearized model decrease achievable
in the intersection of X{ and a ball of radius ¢ centered at zx

af (1)

the magnitude of the maximum linearized objective decrease
achievable in the intersection of X and a ball of radius 1 centered at =

monotonically increasing upper bound on the model’s curvature along
relevant directions (at iteration k)

contraction/expansion factors for trust region updating

the trust region radius

model accuracy levels

the model's gradient accuracy relative to the trust region radius
Goldstein-like constants for the projected search

the relative projection accuracy

model value relaxation w.r.t. value at the GCP

outer trust region radius definition parameter

inner trust region radius definition parameter

minimum steplength condition parameter

ratio of actual (function) to predicted (model) decrease

constants in the uniform equivalence of the norms || - ||(x) and || - i)
lower bound on the distance between connected sets of limit points

the curvature of the function g from z along v

= wi(me, s, 5% )
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Symbol

A(z)
A,
bd(Y)
By

(=}

€2

€3

Cs

Cs

Ce

cr

Cs

cs

C:

C.
dist(z,Y)
D;

€5

B

g

h;

Ju(z)

k1
k2

K,K°

Definition

(5.2), (5.13)
(5.55)

Section 5

(2.12)

Theorem 4, (33)
Lemma 8, (3.31)
Theorem 9, (3.44)
Lemma 11, (3.50)
Lemma 12, (3.60)
(3.74)

(3.82)

Theorem 26, (5.9)
Lemma 39, (7.27)
(4.41)

(6.1)

(5.26)

after (7.17)

after (2.14)

(7.32)

after (2.1)
after (2.13)
(AS.8), (5.12)
after (2.47)

after (6.2)

Lemma 30

Lemma 31

(2.4)

Purpose

the active set at z

the maximal active set at limit points
the boundary of the convex set Y

the trust region at iteration k

uniform equivalence constant for ax[z]
uniform upper bound on wi(f,zx,s)

model decrease parameter

upper bound on the model’s gradient norm

set of admissible GCP steps of length at most ¢

set of feasible points with active set equal to 4.

the distance from z to the compact set ¥

symmetric positive definite scaling matrix at iteration &
difference between the model’s and the objective’s gradients

uncertainty of the objective value relative to the predicted model
decrease

the objective function

the gradient of the model at iteration k, taken at z;
inequality constraint functions

symmetric approximation to the objective’s Hessian at z:

the Jacobian matrix of the h; restricted to rows whose index is in 4.

taken at z

cone and its polar
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Symbol

i(Y)

R.[]

Sk

tr
T(z)

V(=)

Definition

before (AS.9)

(2.3)

after (3.32)

after (4.32)
Section 5.2
Lemma 29, (5.28)
Section 2.2

(2.6)

(5.27)

(7.5)

before (2.5)
(7.11)

before (5.15)
(4.1)
(2.31)~(2.36)
(2.38)-(2.39)

end of Section 2.3
before (2.31)
2.7

(6.2)

Section 7.2
Section 4.2
Section 4.2

Section 4.2
Section 4.2
Section 4.2

Section 2.2

Purpose

set of all limit points

the intersection of the feasible domain with the level set associated

with f(zo)

the Lipschitz constant of the objective’s gradient
the Lipschitz constant of the model’s gradient
the connected set of limit points containing z.
connected set of limit points not containing z.
the model of the objective at iteration k

the normal cone to X at the feasible point =
neighbourhood of a compact set Y of radius §
linear equality constraint functions

the orthogonal projection onto X

redundant inequality constraint functions
relative interior of the convex set ¥

the restriction operator

the step from z, to the Generalized Cauchy Point
the step at iteration k

the set of indices of sucessful iterations

upper bound on the length of the GCP step
the tangent cone to X at the feasible point =

the linear subspace such that z -+ V(z) is the tangent plane at z to
the constraints indexed by A,

affine subspace determined by the linear equality constraints p;

the iterate of Algorithm 1 at iteration k
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Z(z)

Definition

(2.49)
(2.37)
(4.44)
(3.1)

after (2.2)

(5.1), (5.12)

(5.4)

Section 7.2

before (6.5)

Purpose

the projected gradient path starting from zx

the Generalized Cauchy Point

the projection of 2™ on the convex set C,

a critical point

the convex feasible domain

convex sets whose intersection is the feasible domain

relaxation of the feasible domain determined by the constraints active
at the GCP

matrix whose columns form an orthonormal basis of the linear
subspace parallel to W

matrix whose columns form a continuous basis for V(z)
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C Summary of the assumptions

AS.1 The set £ is compact.

AS.2 The objective function f(z) is continuously differentiable and its gradient V f(z) is Lipschits continuous
in an open domain containing £.

AS.3 There exist constants 01,03 € (0,1] and 03,04 > 1 such that, for all k; > 0and k; >0,
allzlly < llzlira) < ozlizllay) and os|lzilia,) < lzlling < odllziln,

forallz € R™.

AS.4 The series
o0
> 5%
k=0 P
is divergent.

AS.5 We assume that
Jim Bi[f(z4) — f(zanr)] = 0.

AS.6 For all k sufficiently large,
(g0, 85) < —msaf(ta),

for some strictly positive ¢4 > ||s{|(x) and some constant us € (0,1).

AS.7 For all k sufficiently large,
A(z£) C A(zs + a).

AS.8 For all i € {1,...,m}, the convex set X; is defined by
Xi={z¢ R”Ih,‘(:) > 0},

where the function k; is from R™ into R and is continuously differentiable.
AS.9 For all z, € L, the vectors {Vhi(z.)}ica(s.) aze linearly independent.
AS.10 For every limit point z. € L, one has that

-~V f(z.) € ri[N(z.)].

AS.11

h]ililc ”eh”[.] = 0.
AS.12 The objective function f(-)is twice continuously differentiable in an open domain containing X.
AS.9Db For all z. € L, the vectors {Vhi(z.)}ica(x.) and {Vpi(z.)}{_, are linearly independent.

AS.11b
lim z = =z., klim g9r = g¢. and — g. € 1i[N(z,)].

k— oo
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