Parallel Algorithms and Subcube Embedding
on a Hypercube

Eleanor Chu
Alan George

Department of Computer Science

Research Report CS-89-59
December 1989

Parallel Algorithms and Subcube Embedding on a Hypercube *

Eleanor Chu
Alan George

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

Research Report CS-89-59

December 1989

Abstract

It is well known that the connection in a hypercube multiprocessor is 1ich enough to allow the
embedding of a variety of topologies within it. For a given problem, the best choice of topology is
naturally the one which incurs the least amount of communication and allows parallel execution of
as many tasks as possible. Efficient parallel algorithms for performing QR factorization on a hyper-
cube multiprocessor are proposed in [E. Chu and A. George, STAM J. Seci. Statist. Comput, 11:4
(July 1990)], where the hypercube network is configured as a two-dimensional subcube-grid with an
aspect ratio optimally chosen for each problem. In view of the very substantial net saving in exe-
cution time and storage usage obtained in performing QR factorization on an optimally configured
subcube-grid, similar strategies are developed in this work to provide highly efficient implementa-
tions for three fundamental numerical algorithms: Gaussian elimination with partial pivoting, QR
factorization with column pivoting, and multiple last squares updating.

*This work was supported in part by Canadian Natural Sciences and Engineering Research Council grant
OGPO0008111, by NASA Grant NAGW-1457, and by a research grant from the University of Waterloo.

Contents
1 Introduction

2 Gaussian elimination with partial pivoting
2.1 A new parallel implementation
2.2 Parallel partial pivoting step
2.3 Communication complexity result

3 Parallel QR factorization with column pivoting

4 Multiple least squares updating
4.1 New data mapping strategy
4.2 A dynamic parallel data relocation scheme
4.2.1 The parallel algorithm
4.2.2 Communication complexity results e e e e e

References

i

O -~ - D

10

11
11
12
12
13

13

1 Introduction

It is well known that the connection in a hypercube multiprocessor is rich enough to allow the
embedding of a variety of topologies within it. Some commonly known embedded topologies
are linear array, mesh, toroid, ring and tree as demonstrated in Fig. 1 for a hypercube of di-
mension three. A two-dimensional mesh can be distinguished from a two-dimensional torus
in a hypercube of a dimension higher than three as illustrated in Fig. 2. Since each of the

6 7

[¢] 1
A hypercube with d = 3

0 1 3 2 6 7 5 4
——o— o 0o —9o o —0o—
A linear array

0- 1 3 2
1 3 A 2-d-mesh 0

5 7

2t 3
o [1 [3 |2 0o [1 3 |2
4 |5 |7 |6 4 [5 {7 |6
12 [13 |15 |14 12 {13 [15 |14
-8 19 111 Y¢ 8 9 11 10

Figure 2: A 4 X 4 torus versus a 4 X 4 mesh-connected processor array.

topologies above employs a different subset of the communication channels in a hypercube

network, the communication algorithm is necessarily different for each topology in order to
minimize the latency in message transmission. Consequently one important decision to be
made in the process of developing parallel algorithms for a hypercube multiprocessor is the
embedded topology. The topology of choice and the precedence relationship between the
computing tasks will normally dictate how the data should be distributed in order to achieve
high parallelism. With the topology and the data distribution fixed, the communication
algorithm can be tuned to reduce the latency in message transmission.

For a given problem, the best choice of topology is naturally the one which incurs the
least amount of communication and allows parallel execution of as many tasks as possible.
However, it may not be easy to evaluate the tradeoff between different topologies beforehand.
In particular, even for the same problem one topology may be better than the other for only
a specific range of problem sizes. This phenomenon is evident in the literature on parallel
numerical algorithms.

In this paper, we advocate a topology which is very closely related to the two-dimensional
mesh and torus, but enjoys a number of distinct features important in designing efficient
parallel algorithms. We obtain this topology by configuring the hypercube network as a
two-dimensional subcube-grid. A subcube-grid is not a mesh-connected processor array.
Although a 7; X 7 subcube-grid has 4; processors in each column and -, processors in
each row, the neighboring processors in the grid may or may not be physically connected;
instead, each row and each column of processors are required to form a hypercube of smaller
dimension, which is a subcube. The apparent difference between the two is illustrated
by an example in Fig. 3, where each processor is denoted by a “e” and each physical
communication channel is represented by a solid line between two processors. The diagram
on the left in Fig. 3 shows a 4 X 4 subcube-grid and the diagram on the right shows a 4 x 4
mesh-connected processor array.

00 00
[

01 ‘¢ "o ‘¢ 01

10 -9 11

11 10
00 01 10 11

00 01 11 10

Figure 3: A 4 X 4 subcube-grid versus a 4 x 4 mesh-connected processor array.

As shown in Fig. 4, the

processors

of

a hypercube

of dimension

d = (dy + d2) can be easily configured as a y; X 72 subcube-grid, where y; = 2% and
v2 = 2% by mapping the p = 2¢ processors to the subcube-grid row-by-row following the

natural order of their processor id.

[
0000 0001 0010 0011 E
[- _+__

0100 0101 6110 0111
1000 1001 1010 1011
1100 1101 1110 1111

Py, P, P, P3 Py
Py Py Pip Pz Pra
Pig P17 Pig Prg Pao
Pyy Pys Pas Pyr Pag

I

3|

Ps Pg
Pz Py
P Pa
Pyy Py

Py
Pys

Psy

Py P, P, Ps
Py Py Pg Py
Py Py Pio Py
Py2 P13 P14 Prs

By
Py

Py
Py
Py
P
P17

b,
Py
Py
Pia
Prg

Figure 4: The configuration of a 4 X 4, a 4 X 8 and an 8 X 4 subcube-grids.

Since each column and each row of processors in a y; X y2 subcube-grid are hypercubes
of dimensions d; and ds respectively, the basic subcube-doubling communication algorithm
described below may be simultaneously employed by all y; subcube rows, each row consisting
of v, processors with 2d varied only in the rightmost d, bits. Similarly, it can also be
simultaneously employed by the v, subcube columns, each column consisting of y; processors
with id varied only in the leftmost d; bits.

{—d
while £ > 0 do

send (my message) to processor with id different
from my d in bit by_;.

Teceive a message

update (my message) as instructed by each different algorithm

L— (-1

In Fig. 5, we show the d synchronous communication steps in the algorithm above when
d = 3. In Fig. 6, we show that the four subcube rows concurrently perform the d, = 2
communication steps and that the four subcube columns concurrently perform the dy = 2
communication steps in a 4 x 4 subcube-grid.

Po P1 Pz P3 P4 Ps PG P7

001} (010 |O11 100, |101 110 111

000| (o001 010; (011 100 101‘ 110 111

C T

000| |001 010| (011 100| |101 110 111

Figure 5: The d communication steps in the subcube-doubling algorithm (d=3).

In our article [4] on implementing the QR factorization on a hypercube multiprocessor,
we observed that different communication algorithms may be built on top of the basic
subcube-doubling scheme by employing a variety of strategies in updating the message to
be forwarded to the next neighbor. In particular, we show how redundant update can
maintain data proximity so that exactly the same synchronous communication steps may
be followed by all processors throughout the computation for all possible choices of the
dimensions v; and 2. The communication scheme we proposed in [4] allows us to employ
the optimal aspect ratio “y1/72”, which is problem-dependent and is chosen at run time
according to the particular dimensions of an input matrix. Since all (p/2) disjoint pairs of
processors exchange one message per communication step, the total number of messages is
independent of the choice of the aspect ratio. The quantity that the optimal aspect ratio
aims at reducing is the message length and hence the total communication volume. Since
the price for minimizing the communication volume is paid in the form of computing the
redundant update by otherwise idle processors, the net gain is very significant.

The actual enhancement in the performance of the parallel algorithm is demonstrated
by the following timing results from [4]. Since the aspect ratio is simply a parameter to the
parallel QR factorization program, the reduction from 1557 seconds, for example, in the

JJ]
]

SR S S
LLLE
LLLE

Figure 6: The channels concurrently employed by subcubes in d = 4 communication steps.

case m = n = 1000, to 1011 seconds by changing the subcube grid from 64 x 1 to 8 x 8 is
indeed free. The reduction is even more impressive when m <€ n or m > n as seen in the
bottom two entries in Table 1. In addition, we show in [4] that the optimal aspect ratio
chosen in minimizing the communication volume also minimizes the storage requirement.

Table 1: Single-Precision Execution Times (sec) on Intel Hypercube iPSC.

QR Factorization of an m X n matrix using y; X 2 = 64 processors

m n|(64x1[32X2|16x4{8x8 [4x162x32|1x64

1000 | 1000 | 1557 1215 1060 | 1011* | 1017 1084 1257

1200 800 | 1231 1012 922 905* 930 1030 1265

800 | 1200 | 1618 1183 986 907 891%* 924 1030

1980 | 100 41.7 | 39.8% | 42.0 48.5 64.4 99.6 175.0

100 | 1980 | 221.5 | 125.1 75.7 50.8 41.0 36.6 36.1*

*The minimum execution time

In view of the very substantial net saving in execution time and storage usage obtained
in our earlier work [4], a natural question to ask is whether the same topology can be
adapted to parallelize other numerical algorithms efficiently. In this paper, we propose new
subcube-grid algorithms for the efficient parallel implementation of the following numerical
algorithms.

1. Gaussian elimination with partial pivoting - In §2, we show not only that its subcube-

grid implementation enjoys the same saving as QR factorization, but also that partial
pivoting can be incorporated without incurring extra computing or communications.

2. QR factorization with column pivoting - In §3, we show that column pivoting can be
incorporated into our ‘parallel algorithms in [4] without additional communications.
We also show that the increase in computing cost is very small.

3. Multiple least squares updating - While the idea we use to develop the algorithms in [4]
can be immediately applied to multiple least squares updating, it is equally important
to have an efficient scheme to dynamically relocate the data of the computed Cholesky
factor as the aspect ratio of the subcube grid changes. In §4, we show that with an
appropriate mapping scheme, we can adapt the subcube doubling technique to obtain
a dynamic data relocation algorithm for the Cholesky factor, and have thus obtained a
feasible parallel algorithm for the continued process of multiple least squares updating.

2 Gaussian elimination with partial pivoting

Due to its fundamental and practical role in solving linear systems of equations, Gaussian
elimination is often the first numerical algorithm considered when experimenting on a new
computer architecture. Since 1985, the year in which hypercube multiprocessors became
commercially available, much work has been done on the efficient implementation of this
algorithm and its variants on hypercubes [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16]. The
topologies employed include the embedded ring, spanning-tree and two dimensional mesh-
connected processor array. The communication algorithms devised for these embedded
topologies often employ pipelining techniques to reduce communication delay in message
passing. The data mapping strategies considered include column and row-oriented block
or wrap mapping as well as submatrix block mapping. In [16], the theoretical lower bound
for communication complexity of the Gaussian elimination algorithm on a nearest neigh-
bor grid network was established to be O (n?/,/p) + O (n,/p) for a lock-step (synchronous
communication) Gaussian elimination algorithm, and O (n?/ \/p?) +0 (\/ﬁ) for any pipelined
Gaussian elimination algorithm, where p is the total number of processors. Optimal concur-
rent algorithms for Gaussian elimination with and without pivoting are also proposed in [7].
However, since the algorithms proposed in [7] achieve optimality only on large hypercube
machine with little latency and high communication bandwidth, they are not suitable for
INTEL iPSC or NCUBE which have substantial message-passing latency. While the partial
pivoting step is recognized to be crucial in maintaining stable computation in practice, it of-
ten causes extra communication and unwelcome disturbance in an otherwise well-pipelined
flow of messages. Thus, the reduction of the latency caused by pivoting has been the subject
of several studies. The parallel algorithm we propose in this paper offers a new implemen-
tation which incurs no extra communication while enjoying the significant saving in total

communication cost by embedding a subcube-grid in the hypercube network.

2.1 A new parallel implementation

Since the parallel Gaussian elimination algorithm can be easily adapted from the subcube-
grid algorithm we proposed in [4], we refer readers there for the algorithms originally deve-
oloped for the dense QR factorization and describe only the main features and modifications
here.

1. In [4], the aspect ratio of the subcube-grid varies with the dimension of the rectangular
matrices. Since we are dealing with only square matrices in Gaussian elimination
with partial pivoting, the dimensions of the subcube along each column and each row,
namely d; and ds, should differ at most by one. Note that di — dy if d = d; + dy
is an even number. Following [4], we use y; and 7, to denote the aspects of the
subcube-grid, i.e. 7; = 2% and v, = 2%.

2. In [4], the rows of the matrix are wrapped around the 74; subcube-rows. Within each
subcube-row, the elements are wrapped around the <, processors (which form the
subcube) according to their column subscripts. We employ the same data mapping
strategy here for parallel Gaussian elimination with partial pivoting

3. Following [4], we proceed to reduce an n X n matrix to its upper triangular form in
(n — 1) reduction steps. During each reduction step, (n — i) nonzeros from the 3**
column are eliminated, where 1 <7< n —1.

4. During each reduction step, the %:—3] elements in the ** column are broadcast to the
¥2 processors within each subcube-row by the subcube doubling technique exactly as

proposed in [4]. We note that for Gaussian elimination without pivoting, the =]

elements in the i** row can now be broadcast to the 7; processors within each subcube-
column. After synchronous exchanges of dy messages of | %] reals and d; messages

of ["1_2"] reals, all 2¢ processors can now update their local data concurrently.

2.2 Parallel partial pivoting step

The implementation we propose here employs “explicit permutation” of pivot rows. As
noted in our earlier work [3], the explicit permutation of pivot rows balances the work load
as well as maintains the wrap mapping for the next stage of computation. The real issue
is how to do it without incurring extra communication. We show below that by employing
redundant but free permutations in the subcube doubling technique we can maintain data
proximity and accomplish the explicit permutation using exactly the same synchronous
communication steps as before. While there is no increase in communication cost at all,
we emphasize that there is virtually no extra computing cost either. To help explain the

idea of “free redundant permutation”, we demonstrate in Table 2 how the first reduction
step works on a 4 X 4 subcube-grid while factoring an 8 X 8 matrix. Considering the 4 x 4
subcube-grid as configured in Fig. 4, the processors shown in Table 2 are those in the second
subcube-column, namely Py, Ps, Py and Pi3.

Table 2: Parallel partial pivoting step.

Pivot column Explicit The last

P; & Local data | Message 1 | permutation | Message 2 | permutation | Local data

Py ail aiz aie ai1 @12 aie de1l Q62 Q66 | Q31 A32 36 a3z ase
as1 as2 ase as1 As52 056 a52 456

Py az1 @22 G26 az1 a2z a6 G22 G26
as1 462 066 ag1 G2 Ges | A11 A12 Q16 ae1 62 Q66 a1z Q16

Py aszy a3z Gs6 asy a32 ase a3l a32 036 ag61 Ae62 G66 a¢2 Q66
arl arz G476 ar1 arz G7e a7z are

Pi3 Q41 (42 G46 Q41 Q42 Q46 a3l a32 G436 42 046
agl asz2 Gse agz Age

Recall that the v, processors in each of the v; subcube-rows have the same segment
of the pivot column. Each processor can thus select the local pivot and the corresponding
segment of the pivot row. We shall assume that in case of ties, the lower numbered row
will be chosen as the local pivot row. In the i** reduction step, our algorithm requires
the processors who were assigned the 7** row to permute its segment with the local pivot
row segment so that the initial local winner is from row ¢. The reason will be clear later.
Thus, each of the v; processors in each subcube-column holds one segment from the v;
different local pivot rows initially. Using our example in Table 2 assuming |ay 1| > |as,1],
laz1| < |ag1l, las1| > |ar1] and |ag | > |ag;1], the four local pivot rows are row 1, row 6,
row 3 and row 4. Note that |a; 1| > |as 1| is ensured by the initially permutation in P;.

In the proposed subcube-grid communication scheme, the v, subcube-columns perform
d; exchanges of messages independently and concurrently. The message is initially composed
of the local pivot row segment. The initial messages are shown as Message 1 in Table 2 for
our example. After each exchange, each processor updates its message by the segment with
“larger” local pivot; in addition, vy, processors will ezplicitly permute their segments if the
winner originates from them and the segment with “smaller” pivot is from row “i” in the i*
stage of computation. Note that after each message exchange, the processors involved in the
explicit permutation have had both segments they need, so there is no extra communication
cost. Furthermore, the permutation is absolutely free of any computing cost because the
processors who need to overwrite their data by the current (losing) row ¢ are those who
own the current winner and they do not need to update the message itself. On the other
hand, the processors who own the (losing) row ¢ do not need to update their data until
after the last exchange because their message always contains the most recent row 7 chosen
from the permutation. This step can be seen from the “Explicit permutation” column in

Table 2, where we assume |ag 1| > |aq 1| and therefore processor Ps overwrites its local data
by the segment from row 1, while processor P; simply updates its message content to be the
segment from row 6. Therefore, only the updated local data of processor Ps is shown in the
“Explicit permutation” column The same explicit permutation is performed by processors
Py, Ps and P; which, together with P;, consist of the second subcube-row. ‘

Consequently, before each message exchange, there is always one segment from the
it" row during the it* reduction step. After dy exchanges, all processors will have the
corresponding segments coming from the same two rows — one of them is the final row 1.
The last explicit permutation can thus be performed by the processors who were originally
assigned row i and those who were assigned the other row simultaneously. Referring to
our example in Table 2, after the exchange of Message 2 between processors P; and P,
and between P; and Pi3, all four processors have the same two segments from row 3 and
row 6. Assuming |as 1| > |ag,1|, and recall that row 6 has taken the role of updated row
1, our algorithm thus requires processor P; to overwrite its segment from row 1 by the
final winner from row 3, and processor Py, which was originally assigned data from row 3,
overwrites its segment from row 3 by the segment {a¢,1, a6 2, as 6} from row 6, which is the
most up-to-date row 1. We display on the left in Fig. 7 the matrix resulting from multiple
redundant permutations. For easy comparison, we show on the right in Fig. 7 the matrix
resulting from one permutation as done in the sequential Gaussian elimination process. In
both cases, only the rows of coefficients which have been relocated are shown explicitly, the
other coefficients are marked by “x” for simplicity.

asi a32 Q33 434 435 QA3 Q37 Q38 a3y 432 @33 Q34 Aa35 Q3 A37 438
X X X X X X X X X X X X X X X X
g1 Qe2 QA3 Qea Q65 CQee g7 CA6S a11 a1z Qi3 ai4 ais Qieg Q17 Qis
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X x
a1; a2 @13 Q14 Q15 Q16 Q17 @18 X x X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X

Figure 7: The matrices resulting from multiple and single permutations.

Finally, we note that no explicit permutation will be performed if the matrix is positive
definite. This is the immediate result from the observation that when the winner is row 7
“in the i** reduction step, no permutation will be made using the algorithm proposed above.

2.3 Communication complexity result

The communication complexity can be immediately obtained from [4] by setting m = n
and v; = 72 = /p, assuming p = 2¢ and d is an even number. We thus obtain the total

communication cost as

2
T(n,p, A\ 0) = 2nlogypB+ 22PX 40 (nlog,p) | &
VP

where [is the start-up time for sending a message and A is the time needed to transmit a
floating-point number across one link between adjacent processors in the hypercube. Each
exchange is counted as sending two messages sequentially in our analysis. The communi-
cation cost can thus be further halved if the communication hardware supports concurrent

bidirectional transmission.

3 Parallel QR factorization with column pivoting

To incorporate column pivoting into the subcube-grid algorithm in [4], the communication
scheme is exactly the same as we proposed in §2 for Gaussian elimination with partial
pivoting except for applying the redundant (free) permutations to select the pivot column
segment instead of the pivot row segment. However we must note that the criterion for
choosing the local pivot column is now different and it uses the “column norm”. To avoid
communication in updating the column norms after each reduction step, we make use
of the important property that the two-norms of vectors are invariant under orthogonal
transformation. The modification to our original algorithm [4] is quite minor as described
below.

First, we compute the initial n column norms and distribute them to the appropriate
processors along with the data; i.e., the processor which is assigned data from the 3tk
column will be sent the initial norm of the #** column. Therefore, all of the v; processors
in each subcube-column have the initial norms of the same [%J columns. This amounts
to distributing one extra row segment to each processor, and the cost is not significant if
™ > 1, where m is the row dimension of the input matrix.

Secondly, we observe that since the norm is invariant under orthogonal transformation,
the norm of the remaining (n — 7) elements in each column can be computed by simply
subtracting the norm of the single it row element from the current norm. This can be
accomplished without communication because every processor receives the corresponding
segment from the 5** row after the last message exchange during the i** reduction step in
the original algorithm [4].

We can thus conclude that the communication complexity remains the same as our
results in [4], and that the extra computing cost incurred in updating the norms is evidently
small.

10

4 Multiple least squares updating

The implementation of the multiple least squares updating algorithm on the hypercube
was first studied by Kim et.al. in [14]. The proposed algorithms in [14] wrap-mapped the
Cholesky factor and the incoming rows to the p processors either following the processor
ids or the processor order of an embedded linear array. Thus the communication cost in
updating an n x n Cholesky factor by annihilating the input m X n matrix is O (n?log, p)
in either case. We obtain the same result in [4] when employing the hypercube as a p x 1
subcube-grid in reducing an m X n matrix to upper triangular form via orthogonal trans-
formation. Although the communication cost is independent of the row dimension m of the
input matrix and it would be the optimal choice if m > n, it is not the desirable algo-
rithm otherwise. Due to the usually stringent time constraint in engineering applications,
it is rare for m > n when the Cholesky factor must be updated by the newly available
data. Thus, it is very important that the parallel implementation be flexible and efficient
for all cases. Since the algorithm we proposed in [4] was designed to work equally well
for matrices of all possible dimensions, it is certainly a good candidate for multiple least
squares updating on the hypercube. We show here that by using a different data mapping
strategy for the computed Cholesky factor, we obtain a parallel algorithm which not only
always chooses the optimal aspect ratio for the embedded subcube-grid according to the
row and column dimensions of the newly available data but also allows dynamic relocation
of the Cholesky factor if the aspect ratio changes. We also show that the new data mapping
strategy maintains the work load as balanced as before.
Let us express the multiple least squares updating problem by

Ran Ran

where R results from modifying the upper triangular factor R by zeroing out all elements
in the m X n matrix A via orthogonal transformations. We describe the new data mapping
strategy and the dynamic data relocation scheme in the following sections.

4.1 New data mapping strategy

Instead of wrap mapping the rows and columns of R, v, and A,,x, to the vy, X 75 subcube-
grid, we propose block mapping for the rows while maintaining wrap mapping for the
columns. That is, each subcube-row of processors contains a block of [*] consecutive rows
from R, v, and a block of f%] rows from A,,x,. With each subcube-row, the data from
each block are wrap mapped to the vy, processors in the subcube according to their column
subscripts exactly as proposed in [4].

We want to emphasize here that the wrap mapping of rows was necessary to maintain
balanced work load in reducing a full m X n matrix to its upper triangular form, but it is

11

no longer necessary if the entire matrix A is zeroed out by updating an available triangular
R. The reasons are two-fold:

1. In the latter case, all elements in the same column of A,,x. are modified the same
number of times regardless of the row number.

2. The subcube-doubling communication algorithm as adapted in [4] has the unique
feature that all processors always perform log, p synchronous exchanges of messages
regardless of the location of the pivot row. Consequently, the fact that each processor
owns consecutive pivot rows from R will not affect the work load distribution at all.

4.2 A dynamic parallel data relocation scheme

Since the row dimension of the data matrix A varies with the amount of data available
at different times, the subcube-grid is to be dynamically configured to achieve the optimal
aspect ratio and the new input matrix will be distributed to the processors acéordingly.

When the aspect ratio differs from the one used in the previous update, it becomes
necessary to relocate the previously distributed Cholesky factor R. The mapping strategy
we proposed above allows us to relocate R to the new 47 X 45 subcube-grid efliciently. The
following observations are the keys to the design of the parallel algorithm.

1. 71 = 2d1 ,‘ and 7, = 2d~2, where di + dy = d, and d is the dimension of the hypercube.

2. 91 = 71 X 28, and 4, = 3 x 27%, for —d; < i < d,. By this observation, we simply
need an algorithm for 7 = 1, because the same algorithm can be executed 7 > 1 times
to get the resulting distribution. This observation contributes to the simplicity of the
algorithm.

3. The sequential ordering of processors on the subcube-grid following the processor id
row by row plays an important role in the parallel algorithm. ‘

4.2.1 The parallel algorithm

Since the row dimension of the input matrix is initially known to the host, we require the
host to compute the new aspect 77 and send it to all p node processors in the hypercube
together with the data from input matrix A. Therefore, there is no extra communication
involved in broadcasting the value 77 to all processors in the subcube-grid, and v, = p/71
can then be computed by everyone. The parallel algorithm can be best explained by an
example. We consider the case of changing a 4 X 4 subcube-grid to an 2 X 8 subcube-grid

12

as shown below.

Po P P, P
Py Ps P Py ____)Po P P, Py P P P P

Ps Py Py Pip - Pg Py Pygp Py P2 Pi3 Py Pys
Py Pz Py P

Since the columns of factor R were wrap mapped to the processors in each subcube row,
processors Py, Py, P, and P; can simultaneously send half of the data (corresponding to
appropriate columns) to Py, Ps, Ps and P;. Since a block of consecutive rows are stored in
each processor, processor Py, Ps, Ps and P; will send one half of their data (corresponding
to appropriate columns) to processors Py, Py, P, and P; at the same time. The processors
Pg, Py, Pigp and Py; will understandably exchange same amount of data with processors
Pyy, Pi3, P14, and Py5 at the same time. Again because of the subcube-grid connectivity,
this amounts to “one” synchronous message exchange between a pair of directly connected
processors. Each message consists of half of the data the processor previously has and thus
data distribution remains balanced.

4.2.2 Communication complexity results

We can thus conclude that for < = 1, the communication cost is one near-neighbor exchange
of one message of (n?/2p) floating-point numbers. Since 7 < d, the communication volume
for relocating R is ((n?log, p)/2p) in the worst case.

References

[1] A. Gerasoulis, N. Missirlis, I. Nelken and R. Peskin. Implementing Gauss Jordan on a
hypercube multiprocessor. In The third conference on hypercube concurrent computers
and applications, 1569-1576. The Association for Computing Machinery, 1988.

[2] R. M. Chamberlain. An algorithm for LU factorization with partial pivoting on the
hypercube. In Michael T. Heath, editor, Hypercube Multiprocessors Proceedings 1987.
The Society for Industrial and Applied Mathematics, Philadelphia, 1987.

[3] E. C. H. Chu and J. A. George. Gaussian elimination with partial pivoting and load
balancing on a multiprocessor. Parallel Computing, 5:65-74, 1987.

[4] E. C. H. Chu and J. A. George. QR factorization of a dense matrix on a hypercube
multiprocessor. SIAM J. Sci. Stat. Comput., 11, July 1990 (to appear).

[5] D. W. Walker, T. Aldcroft, A. Cisneros, G. C. Fox, and W. Furmanski. LU decormn-
position of banded matrices and the solution of linear systems on hypercubes. In The

13

[10]

[11]

third conference on hypercube concurrent computers and applications, 1635-1655. The
Association for Computing Machinery, 1988.

G. J. Davis. Column LU factorization with pivoting on a hypercube multiprocessor.
Technical Report 6219, Mathematical Sciences Section, Oak Ridge National Labora-
tory, Oak Ridge, TN 37831, 1985.

G. Fox, W. Furmanski, and D. Walker. Optimal Matrix Algorithm on Homogeneous
Hypercubes. In The third conference on hypercube concurrent computers and applica-
tions, 1656-1673. The Association for Computing Machinery, 1988.

G. A. Geist. Efficient parallel LU factorization with pivoting on a hypercube multi-
processor. Technical Report ORNL-6290, Mathematical Sciences Section, Oak Ridge
National Laboratory, Oak Ridge, TN 37831, 1985.

G. A. Geist and M. T. Heath. Parallel Cholesky factorization on a hypercube multi-
processor. Technical Report ORNL-6211, Oak Ridge National Laboratory, Oak Ridge,
TN, 1985.

G. A. Geist and M. T. Heath. Matrix factorization on a hypercube multiprocessor.
In M. T. Heath, editor, Hypercube Multiprocessors, Philadephia, PA., 1986. SIAM
Publications.

G. A. Geist and C. H. Romine. LU factorization algorithms on distributed-memory
architectures. In G. Rodrigue, editor, Parallel processing for scientific computing, pages
15-18. The Society for Industrial and Applied Mathematics, 1989.

M. T. Heath. Parallel Cholesky factorization in message passing multiprocessor envi-
ronments. Technical Report ORNL-6150, Mathematical Sciences Section, Oak Ridge
National Laboratory, Oak Ridge, TN 37831, 1985.

S. L. Johnsson. Communication efficient basic linear algebra computations on a hyper-
cube architecture. Technical Report YALEU/DCS/RR-361, Yale University, Depart-
ment of Computer Science, November 1988.

S. Kim, D. P. Agrawal, and R. J. Plemmons. Recursive least squares filtering for signal
processing on distributed memory multiprocessors. Technical Report Manuscript draft,
Department of Electrical and Computer Engineering and Department of Computer
Science and Mathematics, March 1988.

C. Moler. Matrix computation on distributed memory multiprocessors. In M. T.
Heath, editor, Hypercube multirpocessors 1986. The Society for Industrial and Applied
Mathematics, 1986.

14

[16] Youcef Saad. Communication complexity of the Gaussian elimination algorithm on
multiprocessors. Linear Algebra and its Appl., 77:315-340, 1986.

15

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

