BEbARHMENT
DEPARTMENT

DEPARTMENT

ER SEENGE
SR

|
ur
UT
uT

Updating
Approximately Complete Trees

M
OMP

Tony W.H. Lai
and
Derick Wood

ATERISS €

WA
W
ITY OF WATERLOO C

3

Data Structuring Group
Research Report CS-89-57

Y
Iy

10

November, 1989




Updating Approximately Complete Trees”

Tony W. Laif Derick Wood!

Abstract

We define a k-complete binary search tree to be a tree in which
any two external nodes are no more than k levels apart; we say that it
is approzimately complete. While 1-complete binary search trees have
an amortized update cost of @(n), we demonstrate that 2-complete
binary search trees have an amortized update cost of O(log n). Thus,
they are an attractive alternative for those situations that require fast
retrieval, that is, logn 4+ O(1) comparisons, and have few updates. We
also prove that the amortized cost of updatmg an f(n)-complete binary
search tree for any f(n) = o(logn) is O(log” n/ f(n)), and we explore
approximately complete external search trees.

1 Introduction

Many kinds of binary search trees have been devised to guarantee that the
worst-case search and update cost is O(logn); for example, red-black trees
[5], height-balanced trees [1], and weight-balanced trees [8]. However, none
of these data structures ensure that the worst-case search cost is logn+O0(1).
If searches are performed much more frequently than updates, it may be
advantageous to employ a slower updating algorithm that ensures the search
cost is logn + O(1).

Gerasch [4] devised an insertion algorithm for minimum internal path
length binary search trees, or 1-complete trees. The use of 1-complete trees
ensures that searches require [log(n + 1)] comparisons in the worst-case,
but the worst-case and amortized cost of his insertion algorithm is ©(n).
A deletion algorithm analogous to Gerasch’s algorithm for 1-complete trees
can be devised, but the amortized cost of updating a 1-complete tree is still
O(n).

*The work of the first author was supported under an NSERC Postgraduate Scholarship
and that of the second under a Natural Sciences and Engineering Research Council of
Canada Grant No. A-5692 and under an Information Technology Research Centre Grant.
A preliminary version of this paper will appear in STACS ’90. (6]

tData Structuring Group, Department of Computer Science, University of Watetrloo,
Waterloo, Ontario N2L 3G1, Canada. ‘



2 Lai and Wood

We consider updating algorithms for binary search trees in which any
two external nodes are no more that two levels apart; we refer to these trees
as 2-complete. Such trees have two advantages: their worst-case search cost
is 1 + [log(n + 1)], and their amortized update cost is O(log® n).

The schemes we propose are types of dynamization [12]. In particular,
they are partial rebuilding schemes in the terminology of Overmars [9]: we
have a balance criterion and we reconstruct subtrees that become unbal-
anced with respect to our criterion. Other partial rebuilding schemes have
been devised by Overmars and van Leeuwen [10] using a weight balance
criterion, and by Andersson [3] using a height balance criterion. However,
both schemes ensure only that the height of a tree is O(logn) rather than
1+ [log(n+1)].

We propose a simple, novel technique for updating 2-complete trees
called k-layering. One interesting aspect of this scheme is that it requires
no additional balance information and that it needs to compute only sub-
tree sizes. We also discuss a variant of k-layering called level-layering that
achieves an amortized update cost of O(log? n).

By modifying the scheme of Overmars and van Leeuwen, we obtain an-
other partial rebuilding scheme that updates (f(n) + O(1))-complete trees
with an amortized cost of O(log?n/ f(n)), for any f(n) = o(logn). In partic-
ular, this modified scheme also allows 2-complete trees to be updated with
an amortized cost of O(log? n).

2 Definitions and notation

We define the depth of a node z of a tree to be the number of edges in the
root-to-z path; the depth of the root is 0. The nodes on level l of a tree are
the set of nodes of depth [ in the tree. The height, h(T), of a tree T is the
number of internal nodes in the longest root-to-leaf path in the tree, so that
a tree of one external node has height 0. A tree is complete if all external
nodes are of the same depth.

In the following, we consider the class of approzimately complete trees.
A tree is k-complete, or in the set AC|k], if every two external nodes are no
more than k levels apart. Clearly AC[k;] C AC[k,] if and only if k1 < ks.
Observe that a 0-complete tree is a complete tree, and a 1-complete tree is
a tree of minimum internal path length.

A tree T is perfectly balanced if for each node p in T, the number of
nodes in p’s left and right subtrees differ by at most one. We use |T'| to
denote the number of nodes in T and use n(T,r) to denote the number of
descendents of a node 7 in a tree T, including » itself.

To discuss Gerasch’s insertion algorithm, we introduce some more ter-
minology. A slot-extenston of T is a tree T’ such that:



Approximately Complete Trees 3

insertion window
and deletion window

™ indicates that the node has a node descendant in the deletion window.
s indicates that the node has a slot descendant in the insertion window.

Figure 1: Gerasch’s scheme for updating 1-complete trees.

1. the nodes of T' are partitioned into T'-slots and T-nodes;
2. T' is O-complete;

3. if T is 0-complete, then A(T') = h(T) + 1; otherwise, h(T") = h(T);
and

4. if all T-slots of T’ are removed, then 7" = T.

Observe that the slot-extension of T is unique. When discussing Gerasch’s
algorithm, we always refer to the slot-extension T’ of T; we refer to T-nodes
of T as nodes of T" and to T-slots of T’ as slots of 7.

3 1-complete binary search trees

Gerasch [4] showed that insertions can be performed in 1-complete binary
search trees in O(n) time in the worst case. For a binary tree of height h,
his scheme maintains a window at level A if the tree is complete, otherwise
at level h — 1; we refer to it as the insertion window. Gerasch’s scheme uses
one bit for each node to indicate whether the node has a slot descendant
in the insertion window. To insert some value z, first search for z in the
tree; then insert 2 by sliding data values in the subtree rooted at the lowest
node on its root-to-frontier path that has a slot descendant in the insertion
window. Finally, adjust the flags of the binary tree appropriately and move
the insertion window if the tree has become complete.



4 Lai and Wood

An analogous deletion algorithm is a straightforward modification of this
approach. We assume that only leaves are deleted; to delete an internal node
z, we find the successor or predecessor y of 2, move y’s contents into 2, and
delete y instead. For a tree of height h, we position the deletion window
at level h — 1. We maintain an additional bit for each node to indicate
whether the node has a node descendant in the deletion window, as shown
in Figure 1. To delete a leaf with value z, first search for z in the tree;
then delete z by sliding data values in the subtree rooted at the lowest
node on its root-to-frontier path that has a node descendant in the deletion
window. Finally, adjust the flags of the binary tree appropriately and move
the deletion window if necessary. This deletion algorithm requires O(n) time
in the worst case.

These two algorithms give us a fully dynamic 1-complete binary search
tree structure. Unfortunately, not only is the worst-case update cost of any
1-complete binary search tree ®(n), but also, so is the amortized update
cost.

Theorem 3.1 The amortized update cost of a 1-complete binary search tree
is O(n).

Proof: It is sufficient to show that the amortized cost is Q(n). Consider
any complete binary tree of size no less than n. If we delete the maximum
element and insert an element smaller than any element in the tree, then
all elements in the tree must be moved to maintain of the total order of the
binary search tree. This pair of operations requires ®(n) time and can be
repeated indefinitely. Therefore, the amortized update cost is Q(n). a

The simplicity of Gerasch’s scheme is seductive, yet its cost is prohibitive
in almost all situations. Jan Munro [7] suggested that by allowing more in-
complete levels, the resulting elasticity could lead to polylogarithmic update
costs. The key restriction is that the number of incomplete levels is fixed for
all n. This is in contrast to the scheme of Overmars and van Leeuwen, who
allow a number of incomplete levels proportional to log n. In their scheme,
the larger the value of n, the more incomplete levels there are. We partially
validate Munro’s conjecture for 2-complete trees, in the following sections,
by presenting a novel scheme that allows updates in 2-complete trees in poly-
logarithmic amortized time, and by modifying Overmars and van Leeuwen’s
scheme to restrict the number of incomplete levels to a constant.



Approximately Complete Trees 5

|

hl A A A\ update window

Figure 2: A schematic diagram of 3-layering.

4 2-complete trees and k-layering

4.1 An example: the 3-layering scheme

We propose a class of schemes for updating 2-complete trees called k-layering
schemes. In the k-layering scheme, where % is some positive integer, we allow
subtree reconstructions on only k distinct levels of the tree. As an example
of k-layering, we discuss the 3-layering scheme.

To maintain a 2-complete tree, we maintain a two-level update window
at the bottom of the tree and ensure that the tree is complete if the nodes
in the window are excluded. Hence we guarantee that the tree is 2-complete
by ensuring that all insertions and deletions take place inside the update
window. Note that we assume that only leaves are deleted; to delete an
internal node z, we find the successor or predecessor y of ¢, move y’s contents
into z, and delete y instead.

In the 3-layering scheme, we allow subtrees to be reconstructed only if
they are rooted on levels 0, h/3, or 2h/3, where h is the height of the tree.
A schematic diagram is shown in Figure 2. Observe that a subtree rooted
on level 0 is of size n, a subtree rooted on level h/3 is of size approximately
n2/3, and a subtree rooted on level 2h/3 is of size approximately nl/3.

We claim that updates in the 3-layering scheme have an amortized cost of
O(n'/3), assuming that we have an O(n) worst-case time perfect rebalancing
algorithm. To show this, we consider the amortized cost of reconstructions
at levels 2h/3, h/3, and 0. To simplify the analysis, we assume that the
update window is positioned on levels A — 1 and h, and that only insertions



6 Lai and Wood

are performed.

To compute the amortized cost, we first count the minimum number,
m(T'), of insertions we can perform in a subtree T before being forced to
reconstruct a proper supertree of T'. Observe that m(T') is approximately
the number of nodes of 7" that can lie in the update window. Because the
update window is two-leveled, it contains some subset of the leaves of T and
their parents, which implies that the number of nodes of T that can lie in
the update window is ©(|T|). Therefore, m(T) = Q(|T).

The amortized cost of reconstructing a subtree rooted on level 2h/3 is
O(n'/3), since the size of the subtree is O(n!/?), and we may have to perform
a reconstruction after each update. The cost of reconstructing a subtree
rooted on level h/3 is O(n?/3), but this is necessary only when we cannot
update a subtree rooted on level 2h/3. Since a subtree on level 21/3 allows
~ nl/? insertions before it is too large or = nl/3 deletions before it is too
small, Q(nl/ %) updates must have occurred previously, so the amortized cost
is again O(n!/3). Finally, the cost of reconstructing a subtree rooted on level
0is O(n), but this is required only when we cannot update a subtree 7" rooted
on level h/3. Q(|T|) = Q(n??3) updates must have occurred previously,
which implies that the amortized cost of reconstructing the entire tree is
O(n'/?).

An update simultaneously affects subtrees rooted on levels 2h/3, h/3,
and 0, which implies that the total amortized cost is the sum of amortized
costs at each level, which is O(n!/?) + O(n!/3) + O(n1/3) = O(n!/3). In gen-
eral, for any positive integer k, the amortized cost of the k-layering scheme
can be shown to be O(kn'/*) = O(nl/*).

From the above analysis, it appears that the cost of the k-layering scheme
is O(knl/¥), so that we have an amortized cost of O(logn) if we set k =
O(logn). However, our time bound is actually a factor of k too low. The
problem is that if we reconstruct a proper supertree of some subtree T
only when forced to, then there are pathological sequences of very high
cost. To avoid this difficulty, we introduce a balance criterion to ensure that
Q(|T|/k) updates have occurred since the last time a proper supertree of
T was reconstructed. In the next section, we discuss the k-layering scheme
more formally to obtain an exact analysis.

4.2 The general scheme

In the previous section, we neglected the problem of choosing the location
of the update window. For a binary tree of height A, we choose the levels of
the window as follows. If level h—1, that is, the lowest level, contains no less
than 2h=1 — 14 2. (2% 4 2%} nodes, then we position the window at levels
h — 1 and h; otherwise, we position it at levels A — 2 and h — 1. Suppose
that we have placed the window at levels [ and [ + 1. This way, we ensure



Approximately Complete Trees 7

that the number of nodes in the window is between 2! — 1+ [2 - (2! + 2!+1)]
and 212 — 1 — [Z. (2! + 2141)}, inclusive.

In the k-layering scheme, where k is some positive integer constant, we
choose constants p; = 0 < pp < --- < pr = 2/9 and functions Ly,..., L of
positive integers such that I > Ly(!) > La(!) > --- > Li(l) = 0. Note that
we require [ > k. The functions Lj, Ls, .. ., Ly determine the levels at which
we may reconstruct subtrees, and the constant p; determines the balance
criterion applied to subtrees on level L;, fori =1,2,... k.

We define the update window density p(T,r',1) of a subtree T’ of T rooted
at node r’ to be the proportion of 7”’s nodes in the update window to the
maximum possible number of nodes; actually, if 7’ is on level I/, then we
define / -

p(T, ’I‘I, l) — ln(T’:r ) - (2 ,_ 1) ]
2i2-1 1 - (21— 1)
Observe that we allow p(T,7',1) < 0 and p(T,#',1) > 1.

Our imbalance criterion is: for any subtree T” rooted on level L;(l),
the update window density of T’ is restricted to the interval [p;,1 — p;], for
i=1,2,...,k. This interval is smaller for subtrees rooted on higher levels, so
that costly reconstruction high in the tree ensures that subsequent updates
are inexpensive. More precisely, we reconstruct a subtree if it satisfies the
following imbalance criterion.

1. Any update imbalances the subtree rooted at level L;(!) in which the
update takes place.

2. A subtree rooted at node 7 on level L;(l), where ¢ > 1, is imbalanced
if there exists some imbalanced subtree rooted at a descendant r;_;
of r on level L; 1(l) such that n(T,r;_1) ¢ [2"1"’—1(1) -1+ p;1-3:
2I—L,'_1(l)’zl—-L,'__1(l)+2 11— Pi1 - 3. 2l—L,'_.1(l)]'

This imbalance criterion yields straightforward insertion and deletion
algorithms. As an example, suppose we want to insert some key z into
T. We first insert z naively. Let r; be the ancestor of depth L; of . We
determine the highest node »; such that p(T,7;,I) < 1— p; and for all j > %,
p(T,7;,1) > 1 — pj, and then reconstruct the subtree rooted at r;. If we
reconstruct the entire tree, then we reposition the update window.

The insertion and deletion algorithms are as follows. As in the discussion
of the modified OvL scheme, we assume that only leaves are deleted, since
the deletion of an internal node can be transformed into a deletion of leaf.
For brevity, in the following we refer to L;({) as L;, for i =1,2,...,k.

insert(T, z)
11



8 Lai and Wood

insert x

r «— ancestor of z on level L; in T

while i < k and n(T,7) > 2" Lit2 —1—p; . 3. ol-Li
7 —1+1
r «— ancestor of r on level L;

end

reconstruct subtree of T rooted at 7

if i = k, then reposition update window

end insert

delete(T, z)
71
r « ancestor of z on level L; in T
delete z '
while i < k and n(T,r) < 2" — 14 p;- 3. 2071
1—1+1
r « ancestor of » on level L;
end
reconstruct subtree of T' rooted at r
if ¢ = k, then reposition update window
end delete

To reconstruct a tree T, we use a perfect rebalancing algorithm, such
as Stout and Warren’s algorithm [11]. In the next two sections, we prove
that the amortized update cost is O(kznl/ *) in the k-layering scheme, for

2(z—1

any positive integer k, if we choose L; = [(1 —4/k)l] and p; = éﬁ%’ for

i=1,2,...,k; and the amortized update cost is O(log® n) in the I-layering
scheme if we choose L; = [ — % and p; = ';J(%lll), fori=1,2,...,1L

Observe that with the above choice of p; and L;, only the parameters k
and I need be kept in the k-layering scheme, since p; and L; can be computed
from i, k, and [ in constant time. Similarly, only ! need be kept in the I-

layering scheme.

5 Analysis

To perform an amortized analysis we first prove two technical lemmas. The
first bounds the number of nodes in the window in an updated subtree
after reconstruction of one of its layered ancestors. The second bounds the
number of updates that must have occurred since the last reconstruction of
a layered subtree.



Approximately Complete Trees 9

Lemma 5.1 If after some update the tree T; rooted at node r; at level
L; s the largest subtree of T reconstructed, where i > 1, then after the
reconstruction, for any j < i and any node r; at level L;, n(T,r;) €
[2I—LJ- -1+ LPi .3. 21—L,~J’2I—L,-+2 -1 — |,Pi .3. 21_1’"]].

Proof: Immediately after the reconstruction of T}, we know that

n(T,r;) € [2’*’4 14 p;-3.2 D gL _q g 21_14] .
Since T is perfectly rebalanced, we know that
n(T,rj) € [[275 — 14 pi-3- 2175, [27 52 — 1 — gy 3. 9714
= [2l—Lj —14|p;i-3- 21—LiJ,21—L5+2 —1—|p;-3- 2I—L]-J] .

O

Lemma 5.2 If a subtree T; of T rooted at node r; at level L; is reconstructed,
where i > 1, then at least (p;—p;_1)-3-2'-Li-1 —1 updates must have occurred
since the last time a supertree of T; was reconstructed.

Proof: If T; is reconstructed, then there must have been an update per-
formed in some subtree T;_; of T; rooted at node r;_; at level L;_;. There
are two cases to consider.
1. A deletion has caused the reconstruction of T;.
Immediately before the reconstruction we know that
n(T,riq) <270 — 14 iy 3. 200,
which implies that
n(T,r;—1) < ol=Li1 _ 94 [pi—1-3- 2"1"”1].

Immediately after the last time some supertree of T; of T; rooted at
r; on level L; was reconstructed, we know that

n(T,ri—1) > ol=Li~1 14 lpj-3- 2I_L"—‘J.
Since j > i, we must have performed at least
2o — 1 g3 2l = [o B _ 24 [py 30200
>p;-3-20lin _p g0l g
updates.

2. A insertion has caused the reconstruction of T;.
Immediately before the reconstruction we know that
(T, ri_q) > 27 Fim1t2 1 4 p; -3 20 L1,
which implies that



10 Lai and Wood

n(T,rioq) > 270142 — [y 3. 207 ki,

Immediately after the last time some supertree of T; of T; rooted at
r; on level L; was reconstructed, we know that

n(T,r;_q) < 27limt2 g |ps 3. 20 Li
Since 7 > i, we must have performed at least
ol=Liy+2 _ [pi_1 - 3. 9l-Li- 1] - [2I—L;_1+2 —1—|p;i-3- 2l—L,—_1J]
>pi-3-2bi-n _p. glothie g
updates.

O

Theorem 5.3 The amortized update cost of the k-layering scheme, for con-
stant k, s O(k2n1/ k), for an appropriate choice of parameters p1, ps, ..
Pk, Ll, Lz, ey Lk.

Proof: Suppose that we have a reconstruction algorithm that requires en
time in the worst case. We choose p; = % Q and L; L% -], for
i=1,2,...,k. Let A be the amortized update cost

)

c- 21 —L;+2
i) -3-2-Lict —1

A< -2t +
Z (pz 1~
k . L
.. 2I—L1+2 4c - 2Lt—1 L;
= 3(pi—1 — pi) — 2Li1

l/k k ol/k
= (2 )T 2—(i‘-1)l/k) :

=2 3 k-1
For sufficiently large I, we know that 2~ (=1)i/k << . Thus
k .
A=0 (2’/’c +> (k-1)- 2”’“) :
=2 :

Since | < logmn,
A =0(n* 4 (k —1)2n1*) = O(k(k — 1)n'/*) = O(k?n1/*).

Observe that the amortized update cost increases by at most a constant
factor if we determine n(T,r) in time proportional to n(T,r). a

This scheme is attractive because of its simplicity — it is simpler than
Gerasch’s scheme, yet it performs better. However, it still has super-polylog-
arithmic behavior. In the next section, we give a simple modification that
achieves polylogarithmic behavior.



Approximately Complete Trees 11

6 Level-layering

The update cost of our layering scheme can be greatly improved if we use
all levels as layers; we refer to this as I-layering or level-layering. We choose

the number of layers to be the number of levels [ and, for i = 1,2,...,1, we
choose p; = % - %’—_‘—i— and L; = [ —i. To perform an amortized analysis, we

first prove a lemma showing that at least two updates must occur between
reconstructions of any subtree rooted at level L;, for all i > {logl] + 3.

Lemma 6.1 Ifi > [logl| + 3, then
3(pi — picy) -2t —1> 2.

Proof: It is sufficient to prove that
3(p; — pi_1) - 2Lt —1>13/3

or (pi — pi_1) - 2" Ti-1 > 16/9.
Recall that I < logn and ¢ > {log!] + 4; therefore,
2.1 ol—(I-i+1) 5 2.1 9i-1
9 I-1 -9 1
> 2.1 . oflogl]+3
-9 1
2 1
>Z.-.81
9 1
16
> —.
-9

]

Theorem 6.2 The amortized update cost of the level-layering scheme is
O(log? n).

Proof: Let A be the amortized update cost. Observe that the above lemma
implies that for all z > [log!] + 3,

$(ps = pica) 2Bt —1 3 2(p; = pia)2 B

Also, any subtree rooted on level L; can be reconstructed at most once per
update, for 7 < [logl] + 3.
Let £ = [logl] + 3. Recall that I < logn; hence:

c- 21_L3+2

£ l
A<c ol-Li+2 + .
; i:%;ﬂ (Pi - Pi—1) .3.9-Lix _q

C - 2I—Li+2

l
<e- 2I—L[,+3 + :
B i:zzz;n 2(pi = piza) - 21T



12 Lai and Wood

l L; 1-L;

2¢ - 2Vi—1 i

S C'ZI_LL+3+ Z &S
i=C+1 Pi— Pi—1

I-(1-log] -3) S _2c-2
_ . ol~(1-TlogN]-3)+3 | Z _ac-a
i=L41 2/9-T}T
!
< 128clogn + Z 18clogn
1=L+1
= 128clogn + (I — [logl] — 3) - 18clogn

= O(log® n).
a

Therefore, the use of the O(logn)-layering scheme leads to an amortized
update cost of O(log?n) for 2-complete trees.

7 Overmars and van Leeuwen’s scheme

Overmars and van Leeuwen [10] devised a method for updating a binary
search tree that has an amortized cost of O(;log,_sn), for any constant
0 < § < 1, while ensuring that the height of the tree is at most log,_;n. To
bound the height, they place a weight balance constraint on each subtree:
if a subtree T contains n nodes, then no proper subtree of T' has more
than |n/(2 — )| nodes. Observe that their scheme requires that weight-
balance information be kept at each node. To achieve the claimed time
bound, Overmars and van Leeuwen require an O(n) time perfect rebalancing
algorithm.

Their update scheme works as follows. To insert a node z, insert it
naively and perfectly rebalance the subtree rooted at the highest ancestor
of # whose balance criterion has been violated. The deletion of a leaf is
analogous, and the deletion of an internal node can always be transformed
into a deletion of a leaf, as in the case of 1-complete trees. Stout and
Warren [11] devised an algorithm to perfectly rebalance a binary search tree
of n nodes in O(n) time in the worst case.

In the Overmars-van Leeuwen scheme, hereafter referred to as the OvL
scheme, the weight-balance constraint ensures that the height of the tree
is at most log,_sn + O(1), and the number of complete levels is at least

log__1_n+ O(1) = logz-s n + O(1). Hence the number of incomplete

=I7G=9 =

levels is no more than log,_;n —logs—s n+ O(1) = g(8)logn + O(1), where
1-46

g(8) = 1/log(2—6)—1/[log(2—8§)—log(1—6)]. Therefore, with an appropriate

choice of §, we can ensure that a tree has at most f(n) incomplete levels for



Approximately Complete Trees 13

any function f(n) = ©(logn), since for any ¢ > 0, there exists § > 0 such
that g(§) < c. Unfortunately, the OvL scheme is insufficient to restrict the
number of incomplete levels to o(logn).

We modify the OvL scheme by making § dynamic. We do this by per-
fectly rebalancing the entire tree after every n/2 updates, and by choosing
a new value of § every time the entire tree is rebalanced. This increases
the amortized update cost by at most a constant. To restrict the number
of incomplete levels to f(n) + O(1) some for some function f(n) = o(logn),

we choose §(n) = 2 — 257:151‘?_"575. Observe that for sufficiently large n, the
height and number of complete levels change by at most a constant after
n/2 updates.

We first prove that this choice of § restricts the number of incomplete
levels to no more than f(n)+ O(1). We then prove a bound on the resulting
amortized update cost.

logn
Lemma 7.1 Choosing §(n) = 2 — 20en+f75 implies that the height of a
tree in this class is at most logn + f(n)/3 + O(1).

Proof: The height of a tree is at most log,_sn + O(1) = log n/log(2 - §) +
O(1). Observe that

logn
2 — 5 — 92logntf(n)/3 ,

logn
)= — %%
log(2 - 4) logn + f(n)/3’
and, hence
logn f(n)
— =1 —r.
Tog2—3) _ 8"t 3
Thus the height of the tree is at most logn + f(n)/3 + O(1). O

Lemma 7.2 If f(n) < logn, then for sufficiently large n, the number of
complete levels of a tree in this class is at least logn — f(n)/2+ O(1).

Proof: The number of complete levels is at least logz—s n + O(1). Observe
1-4
that log £(n)/3
6 =2 - 2logn+f('u 3 =92 - 21-—logn+f n)/3 |

We claim that —log(l — §) < % -m‘fé—}?n—)/g. Let z = Eg%%; it is

straightforward to show that —log(2'~% — 1) < %z by observing that

—log(2'°-1)=0< -0

N | O

and that since 0 < z < }1—,

ad; [— log(2' ™% — 1)] =



14 Lai and Wood

1— 21

<3 (3)
dz 22

_5
=5
Therefore, we have
logn
loga_ =
%8322 T Tog(2 — 6) — log(1 - 6)
_ logn
- logn
logntf(n)/3 — log(l - 6)
log n:
logn 5/6-f(n)

logn+f(n)/3 + log n+f(n)/3
_ logn{logn + f(n)/3]
logn + %f(n)
log nllogn + £ f(n)] — Jzﬂlogn
logn + ef( n)
—%—llogn
logn + %f(n)
> logn — f(n)/2.

=logn —

Thus, the number of complete levels is at least logn — f(n)/2 4 O(1). O

Corollary 7.3 The number of incomplete levels at most f(n) + O(1).
Lemma 7.4 The amortized update cost is O(log? n/f(n)).
Proof: The amortized update cost of the OvL scheme is O(} log,_sn),

logn
where § = 2 — 2le»+f(»)/3, We claim that § < 2In2 - I‘Lf D Let
ogn+f(n)/3"

= W"%%%s)/—é’ it is straightforward to show that 2 — 217* < (2In2)z by
observmg t

2-2""%°=0<(2ln2)-0
and that p y
. _ 1-2 — 1-2z < . — .
- [2-2'77 =22 < —(2In2)z = 2n2

The update cost is therefore O({log—"j}%}?ﬁ]?) = O(log® n/ f(n)). a



Approximately Complete Trees 15

Theorem 7.5 For any f(n) = o(logn), the amortized cost of the modified
Overmars and van Leeuwen scheme for updating an (f(n) + O(1))-complete
tree is O(log® n/ f(n)).

Observe that because the number of incomplete levels is f(n) + O(1),
we cannot trivially obtain 2-complete trees by substituting f(n) = 1 in the
above choice of §. In the next section, we derive the choice of § necessary
to obtain 2-complete trees.

8 2-complete binary search trees and the OvL
scheme

We now attempt to update a 2-complete binary search tree using the mod-
ified OvL scheme. To prove that we actually obtain a 2-complete tree, we
first count the height and number of complete levels more carefully, since
we can no longer ignore constant terms. We then determine choices of § (n)
that yield 2-complete trees. We finally analyze the amortized cost resulting
from our choice of §(n).

Lemma 8.1 The height of a tree is at most 1 + |log,_sn|.

Proof: Immediate from the fact that no subtree of a tree of n nodes has
more than |;1-n| nodes. a

Lemma 8.2 The number of complete levels of a tree is at least 1+ [logz s =
logz s (4 - 0)].

Proof Observe that any subtree of a tree of n nodes must contain at least

— ls5nl - 1=8n] — 1 nodes. We determine a lower bound k on the
depth of the }ughest node that has at most one child; the number of complete
- levels is then at least 1 + k. If § < 1 , then the root of any subtree of 3 or
more nodes must have two children. Thus it suffices to find the highest root
of a subtree of 2 or fewer nodes. To obtain a lower bound, we underestimate
the smallest number d; of nodes in any subtree rooted at level i with some
function e;, and compute the highest level where ¢; < 2.

Let a = %. Trivially dg = n = e, and by induction, for i > 0,

i-1
diZadi_l—IZa’n—ZaJ:e,-.
: =
We solve ¢, < 2 for k.
exk=an—a*1-..._a-1
1—a*
=afn -
1—a

<2.



16 Lai and Wood

This implies that

1 ak

k
a <2
e

. 1 1
— Y< 924 -
a(n+1—~a)_ +1—a’
and

1 1
k+1 —3)>1 24 —).
loga(n + ) > log, (2 + -—)
We finally obtain

1 1
k>1 —) =1 —
> log,(2+ =) - log,(n+ ——)

1
1—a

1
2 logyja(n + 3——) —logy /(2 +

)

1

>1 —1 24+ —-

Z 1081/a 1 Ogl/a( + 1 — a)

> logz-s n — logz—s (4 — 6).

1-4 1—4
Thus, the number of complete levels is at least 1+ [logz—s n — loga—_s (4 — §)].
1-46 1-4

(]

Lemma 8.3 If §(n) = @fm, where 0 < ¢ < In2 is some constant, then

there exists ng such that for any n > nyg, the tree is 2-complete.

Proof: To ensure that the tree is 2-complete, it is sufficient to ensure that
[logy_sn| — [logz—s n — logz—s (4 — §)] < 2
1-4 1-8
or log,_sn —logz—s n+logs-s(4 — §) < 3.
1-¢6 1—-4

Observe that logs-s(4 — §) < 2 and log(—f%g) > 1. Now,
1-6

logn logn
log(2 — §) log(2 — 6) — log(1 — §) <
[log(2 — §) —log(1 — §)]logn — log(2 — §)logn
log(2 — &){log(2 — §) — log(1 — §)]
—log(1 — §)logn
log(2 — §)[log(2 — §) - log(1 — §)]

3 —logz:-s(4 - 98)
1-4é

< 3 —loga-s(4—6)
i~6

< 3"10g21£(4—6)
-4
Hence,
) (2~5\
—log(1 — é)logn < |3 —logs_s(4 — &) IOg‘\l_g ] log(2 — §).
R — &/

For any 0 < a < 1, there exists n. such that log(2 — §) > a for any n > ny.
It is straightforward to show that —log(l — §) < &5 - ii—é for § > 0 by

In?2

<




Approximately Complete Trees 17

evaluating — log(1—¢) and El—- . i’f'g at § = 0 and comparing their derivatives

P
with respect to é for all 0 < § < 1. Hence, it is sufficient to choose § such
that

)
5 logn < [3 —logz-s(4 — §)] log(z——5> -aln2.
1—-46

1-46

) c

. . . . _ 6 _
We choose § = log—$1+E7 which implies 25 = Togm and 75logn = c. There-

fore, for any ¢ < In2, for sufficiently large n, we know that

log,_sn — 1og2__% n+ logg__g(él - §) < 3.
- g

Note that the above proof assumes that § = ﬁm_—c for the current value of n.
In general, we may perform up to n/2 updates since the last time § was cho-

sen. For the above proof to hold, it is sufficient to ensure 16T5 log(3n) < In2,

orc < ﬂm; if ¢ < In 2, this is clearly satisfied for arbitrarily large

values of n. a

Lemma 8.4 The amortized update cost is O(log? n).

Proof: The amortized update cost is O(}log,_sn) = 0(135;'—“"c -logn) =
O(log? n). O

Theorem 8.5 The modified Overmars and van Leeuwen scheme for updat-
ing a 2-complete tree has an amortized cost of O(log? n).

One disadvantage of the OvL scheme is that it requires weight-balance
information to perform updates efficiently, so that we need extra storage for
n integers, or O(nlogn) bits. We can eliminate the extra storage require-
ment with the following modification due to Andersson [2]. Let ng be the
number of elements immediately after the previous reconstruction of the en-
tire tree. We reconstruct the entire tree after € ng updates, where € < 1/3 is
some positive constant. We maintain two new invariants: the height of the
tree cannot be more than H = 1 + |log,_s(no + €np)|, and the number of
complete levels must be at least C = 14 [log%(no —€ng) — log%(4 - 8)].

To insert a node z, we insert it naively; if = is below level H — 1, then
we proceed up the root-to-z path, reconstructing each subtree rooted at a
weight-imbalanced node until the we reduce the height of the tree to H.
The deletion of a leaf # is analogous, except that if z is above level C, then
we perform reconstructions to increase the number of complete levels to C.
Observe that we may count subtree sizes on the fly without increasing the
update cost by more than a constant factor.

The height and complete level invariants imply that the tree is 2-complete
for arbitrarily large values of n if we choose ¢ < (1—3¢)-In2and § = Tognie:



18 Lai and Wood

The amortized update cost of this scheme is O(log?n), since only weight-
imbalanced subtrees are reconstructed, and a violation of the height or com-
plete level invariants implies a violation of the weight balance invariant for
some node.

9 External search trees

One problem with both the layering scheme and the modified OvL scheme
is that only leaves can be deleted, making deletions difficult for some tree
structures other than binary search trees, such as k-d trees. One solution to
this problem is to use external search trees. In this section, we discuss the
modifications required to use external search trees in both partial rebuilding
schemes.

9.1 The layering scheme

The layering scheme for external search trees is identical to the scheme for
internal search trees, except that we insert or delete two nodes (one internal
and one external) for each update. Note that in the level-layering scheme, at
least four updates must occur between reconstructions of any subtree rooted
on level L;, for any ¢ > [log!] + 3, so that inserting or deleting two nodes
at once is valid. The amortized update time increases by a factor of 2, so
we are able to update 2-complete trees with an amortized cost of O(log® n),
as in the case of internal search trees.

We can simplify the layering scheme somewhat by redefining n(T,r) to
be the number of external nodes in the tree T that are descendants of r.
For a binary tree of height h, we choose the level of the update window as
follows. If level h, that is, the lowest level, contains no fewer than % . 2h
external nodes, then we position the window at levels h and h+ 1; otherwise
we position it at A — 1 and h. Assuming that we have placed the window
at levels I and ! + 1, this ensures that the number of external nodes in the
window is in the interval [} - 2/41 2. 2141],

In the k-layering scheme, where k is constant, we choose constants p; =
0 < pg < -+ < pr = 1/4 and functions I > Li(I) > Ly(l) > --- > Lg(l) = 0.
Our imbalance criterion is: a subtree rooted at node r on level L; 4(I),
where 7 > 1, is imbalanced if there exists some imbalanced subtree rooted at
a descendant r;_; of » on level L;(I) such that n(T,r) < p;_q - 28~ Li-1(0+1 op
n(T,7) > (1—pi_1)-2!"%-1(0+1; an update to a subtree rooted on level Ly (1)
imbalances that subtree, as before. The analysis of this modified layering
scheme is similar to the case of internal search trees, and the amortized

update cost is O(k?n'/*) if we choose L;(I) = [(1 —i/k)l| and p; = #k__ll—)

for 2 = 1,2,...,k. In our level-layering scheme, we choose the number of



REFERENCES 19

layers to be [, and, for 1 = 1,2,...,1, we choose p; = %% and L;(l) =1 —1.

The resulting amortized update cost is O(log? n), as before.

9.2 The OvL scheme

In the OvL scheme for external search trees, we ensure that if any tree
has n external nodes, then no proper subtree has more than 1 + 12‘:—;
external nodes. As before, this results in a tree of height log, sn + O(1),
and the number of complete internal levels is logf__% n + O(1). Thus, for

f(n)In2
logn+f(n)’
with at most f(n) + O(1) incomplete levels; the amortized update cost is

O(log? n/ f(n)), as in the case of internal search trees.

In particular, we can ensure that the height of the tree is at most
1 + [logy_s(n — 1), and the number of complete levels no less than 1 +
[log%__g(n -1)- log%(4 — §)]. As in the case of internal search trees, if

any f(n) = o(logn), if we choose § = then we obtain a tree

we choose § = log++c’ where 0 < ¢ < In2, then the number of incomplete
levels is no more than 2. Thus we are able to update 2-complete external
search trees in O(log? n) time.

9.3 Superlinear reconstruction algorithms

For tree structures other than binary search trees, we may need to use a per-
fect rebalancing algorithm that requires w(n) time in the worst case. Both
the modified OvL scheme and the level-layering scheme yield polylogarith-
mic amortized update costs when used with a O(nlog®n) worst-case time
perfect rebalancing algorithm, if ¢ is constant. In particular, it is straightfor-
ward to show that the modified OvL scheme allows ( f(n) + O(1))-complete
trees to be updated in O(log?*®n/f(n)) amortized time for any function
f(n) = o(logn) and 2-complete trees to be updated in O(log?*®n) time.
The k-layering scheme can be shown to require O(k*n!/*log®n) amortized
time to update 2-complete trees, and the level-layering scheme can be shown
to require O(log?*®n) amortized time.

References

[1] G. M. Adel’son-Vel’skii and E. M. Landis. An algorithm for the orga-
nization of information. Sov. Math. Dokl., 3:1259-1262, 1962.

[2] A. Andersson. Private communication.

[3] A. Andersson. Improving partial rebuilding by using simple balance
criteria. In Proceedings of the 1989 Workshop on Algorithms and Data
Structures, pages 393-402. Springer-Verlag, 1989.



20 REFERENCES

[4] T. E. Gerasch. An insertion algorithm for a minimal internal path
length binary search tree. Communications of the ACM, 31:579-585,
1988.

[5] L.J. Guibas and R. Sedgewick. A dichromatic framework for balanced
trees. In Proceedings of the 19th Annual IEEE Symposium on Founda-
tions of Computer Science, pages 8-21, 1978.

[6] T. W. Lai and D. Wood. Updating almost complete trees or one level
makes all the difference. To appear in the Proceedings of the 7th Sym-
posium on Theoretical Aspects of Computer Science, 1990.

[7] 3. I. Munro. Private communication.

[8] J. Nievergelt and E. M. Reingold. Binary search trees of bounded
balance. SIAM Journal on Computing, 2:33-43, 1973.

[9] M. H. Overmars. The Design of Dynamic Data Structures, volume 156
of Lecture Notes in Computer Science. Springer-Verlag, 1983.

[10] M. H. Overmars and J. van Leeuwen. Dynamic multi-dimensional data
structures based on quad- and k-d trees. Acta Informatica, 17:267-285,
1982.

[11] Q. F. Stout and B. L. Warren. Tree rebalancing in optimal time and
space. Communications of the ACM, 29:902-908, 1986.

[12] J. van Leeuwen and D. Wood. Dynamization of decomposable searching
problems. Information Processing Letters, 10:51-56, 1980.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

