|

MENF

BEPART
DEPARTMENT
DEPARTMENT

LLALILLILLI

SN

IVERSITY OF WATERLOO COMPUTER SC

58 CRpHES

YL

gF

Y
Iy

11
1

VERS

HNIv
UNIV
UNIV

Tensor Product Slices

R.F. Pfeifle
R.H. Bartels
R.N. Goldman

Research Report
CS-89-56

November, 1989

Tensor Product Slicest

Ronald Pfeifle
Richard Bartels
Ronald Goldman

Computer Graphics Laboratory
Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada, N2L 3G1

ABSTRACT

Tensor products are widely used in computer graphics and computer aided
geometric design for representing freeform surfaces. Standard tensor product surface
patches retain vestiges of the original rectilinear shape of their domains. This feature is
not always desired.

We introduce a variant of the tensor product, called the tensor product slice,
which can be used to create multi-sided surface patches of non-rectilinear shape. We
give examples to show that this variant retains many desirable properties of standard
tensor products.

+This research is part of that being supported at the University of Waterloo Computer Graphics Laboratory by Canada’s
NSERC Operating, Strategic, and Infrastructure programs, by the Province of Ontario’s ITRC program, by industrial
grants from General Motors and Digital Equipment Corporation, and with equipment contributed by Digital Equipment
Corporation and Silicon Graphics, Inc.

1. Introduction

A common technique used to represent surfaces in CAGD is tensor product splines [Béhm84].
Tensor products, however, retain vestiges of the geometry of their domains, producing four-sided
surface patches with discernible corners. Domains can be trimmed so that individual patches are made
to align properly with one another, but this is usually difficult to arrange.

Many properties are known about tensor products over rectilinear domains, as is information
about the parametric and geometric continuity at joints in tensor product splines [Farin88]. Our purpose
here is to find a method of specifying tensor product domains of ‘multi-sided’ shape, which still have
predictable properties at their boundaries, that is, at the image of domain edges. We can do this if we
ensure that the boundaries of the multi-sided domains we are trying to create coincide with the
boundaries of some rectilinear domain. This leads us to consider cross sections of rectilinear domains,
where the dimension of the rectilinear domain is greater than that of the domain we eventually wish to
construct. For example, in Figure 1 we take a cube and slice it with a plane to obtain a triangle. Each
edge of the triangle lies on the rectilinear boundary of the cube.

\ /
\ /
N
{4 T P Y = = - ——
yi \; /I \\
! \\ ’ \
! N \ /7 \ /
! N \ y \ /
1 N \ / \ ‘
! ~ \\ / N ,/
1 N / \
! N\ (4 \y
! po mmsR-—------- e
- AR 7\
- / \ / \
/ \ / \
in 3-space in the slicing plane

Figure 1 — Creating a Triangular Domain by Slicing a Cube

If we examine such domain slices, and their images under tensor product mappings, we find that
they indeed inherit most of the desirable properties of the original tensor products, including continuity
properties along their boundaries. Moreover, by choosing the appropriate slice of a rectilinear domain of
high enough dimension, we can form 2-dimensional surfaces with any number of sides.

To form triangular domains, we intersect a plane with a 3-dimensional box, as in Figure 1. To

create a 2-dimensional on\rn with n >4 sides, we consider the intersection of a pJane with a rectilinear

region of dimension % over points (ug, ...,U,)€ R”, where m = % ~ 1, defined by the

inequalities @, <u, < b, for k =0,...,m (|x{is the smallest integer greater than or equal to x). A
region of the intersecting plane that satisfies one such pair of inequalities is a ‘strip’ in the plane. The
intersection of all the strips is the set of all points both in the plane and the rectilinear domain. New
strips can be introduced to increase the number of edges to the domain (see Figure 2 for the construction
of a five-sided domain). This idea can be used constructively in order to generate domains for multi-
sided patches — the intersecting plane is given a default parameterization, and the strips (and the
variable associated with each strip) are defined in terms of this parameterization.

intersecting plane

Figure 2 — Five-Sided Domain for a Surface Patch

Other approaches to multi-sided patches have been proposed. However, these techniques suffer
either because they are complicated [Dahmen83, Dahmen84, Bohm84a, Hosaka84], or because they
only produce patches with a fixed number of sides [Charrot84].

Our approach most closely resembles DeRose’s S-patches [DeRose89]. However, DeRose uses
arbitrary (non-planar) slices of high dimensional Bézier tetrahedra, while we use planar slices of
arbitrary tensor products. The advantages of our approach are its simplicity and generality — a domain
with an arbitrary number of sides can easily be created by slicing a tensor product of sufficiently high
dimension.

2. Tensor Products
A set of blending functions (of size j+1) over an interval D ={a,b] in R is a set of functions
J

{B; j(u):i=0,..,j}suchthat 3.B; ;(u)=1forallu € D.
i=0

Let n be a positive integer, and [a,.,by] be real intervals, where k =0,.,n. Let
D =[agbolxlab1x - - - x[a,,b,]. Let j, be positive integers for k =0,..,n, and B,-':_j. (u) for
it =0,...,j be blending functions over u; € [a;,b,]. The superscript k in B} is present to emphasize

that even if j, = j, the sets of blending functions {B} ; :i; =0,...j } and {B] ; :i; =0,...,j] are not

U/

.....

k=0,.,n.

Definition:
Jo Jn 0)
Fuguy,..u,)= 3, Z ey Pio_i, in Bi,,j,, (uo)Bi,_j, (uy)--- B.':,,',, (u,)
ig=0 i ;=0 in=0

is the n+1-dimensional tensor product of the blending functions B,": i, () over the domain D and the
control vertices P;

oo fenin

When n = 1, this definition gives us a standard tensor product surface [Farin88 p. 200], and when
n =2, this formulation describes a solid. Tensor products of arbitrary dimension will be necessary for
our application of slicing.

3. Tensor Product Slices

Definition: Let m be some integer in the range n—k+1,....,n, and let v, : R"* 3R, An n—k+1-
dimensional slice of the n+1-dimensional domain D are those points (ug,u ;,...,4,) € D that satisfy a set
of constraints

U = Y (UM 15eestin) fOTrm =n—k+1,...,n

Definition: Let F be an n+1-dimensional tensor product over domain D. The n—k+1-dimensional
slice of F is the set of points that form the image of the domain of the slice defined by the constraints
Ym» m = n—k+1,...,n under the tensor product mapping F .

Definition: A linear slice of a domain D is a slice of D with the property that each v,, in the set of
constraining functions is linear in its arguments.

The term slice will mean linear n—k +1-dimensional tensor product slice unless otherwise stated.

The definition of a tensor product slice requires that the dependent parameters of the slice occur in
the final k positions. However, by reindexing, we can always force the dependent parameters to be the
last k parameters. If the set of constraints is empty (k = 0), we obtain the original tensor product.

In general, the set of blending functions in n—k+1 variables formed by constraining the original
blending functions of the tensor product will not be linearly independent, but will form a spanning set
for a certain collection of functions. This is true even if the original set of blending functions was
linearly independent.

Linear slices already give rise to interesting multi-sided domains for the case of 3-dimensional
tensor products. We illustrate this phenomenon in the following two examples.

1 1 1
Example 1: Consider ¥, ¥ 3 P;,;,;, Bi,1(u)B; 1(v)B;, 1(w), where B; y(u), B; ,(v), and B; y(w)
ig=0 i =0 i,=0
are the linear Bernstein polynomials. Let w =y(u,v)=1%2—u —v. This results in the 2-dimensional
slice over a hexagonal domain (see Figure 3 for a diagram of the domain) given by

= Pogo(l=uY1—v)(Va=u-v) + Poo (1-u Y(1-v)(1V2a—u—v) — Pg 1 o(1-u v (V2 —u-v)
+ Py (1-uyv(1Va—u-v) — Pigou (1-v }(Va—u-v) + Py g) u (1-v }(1V2 —1-v)

= Pyyouv(Ve—u—v)+ Py v (12 -1-v)

0,0,1) (0,4,1)

0<us<1 |
(*4,0,1) N '
N 1
0,1,%) RN
/ w — . \‘1\ 0<v<I1
SEV)) (00v0) (0,1,0) 2 NN
”»e (1/2 10) u ‘\\ ‘\\
] it 0<1V2—u-v <1

(1,0,0) (1,%,0)
Figure 3 — Hexagonal Domain given by w = 1Y2—u—v

Example 2: The domain defined in the previous example can be used to tile the plane, as shown in
Figure 4. Using cubic B-splines as our blending functions, we can create a surface with C*-continuity.
These domains do not line up with one another. Not shown in Figure 4 is the domain substructure,
which is appropriately aligned.

Figure 4 — Tiling a Plane with Regular Hexagons Embedded in Cubes

4. Generally Inherited Properties

Slicing preserves a number of tensor product properties. The value of a tensor product at a
domain point is unaltered by slicing, so the original tensor product can be used to evaluate the tensor
product slice. The only change in the method is that the values of dependent l)arameters must first be
computed from the constraint equations. The slice of a tensor product with C”-continuity will still be
C*-continuous. Polynomials of degree n (the sum of the powers of the variables of any term of the
polynomial is < n) remain polynomials of degree n (the sliced polynomial has fewer variables, but they
are of higher degree).

Since the blending functions of the tensor product sum to one over the domain of the tensor
product, they also sum to one over the slice domain; therefore slices are affine invariant. If the blending
functions are also non-negative over the domain, then slices will also have the convex hull property. If
some control vertex is interpolated by a tensor product at some domain point that is in the slice domain,
then that vertex is interpolated by the tensor product slice. Special evaluation techniques, subdivision
algorithms, degree elevation formulae and other blending-function specific operations are also directly
applicable to the slices of tensor products.

4.1, Dimension Raising

The shape of the n—k+1-dimensional slice domain depends upon the number of n-dimensional
boundaries of the n+1-dimensional domain intersected by the slice. Increasing the dimensionality of
the original domain increases the potential number of domain boundaries that may be intersected by the
slice, and therefore allows for more complex slice domains. We can increase the dimension as follows:

Fuguy,...,u,)

jo Jn
=1x z E Z [PR 'o]o(uO)B'lll (uy) -~ i:.j. (un)
'0=0 lld) "u=0
ju#l jo j'
= z B‘:.:I win4t (un-ﬂ) X Z Z Z P'o-'l ----- 'o-.lo (uo)B‘lll(ul) ‘:-j» (u")
in4s=0 i¢=0 i =0 in=0
jo Ji Jasr '
=Yy X P ‘Mo (uo)B,lj| (uy) - '.u ,,,,, (#n41)
I'od) iy=0 in+|$
=F(u0vu]: L :un+l)

The original slice introduced k dependencies into n+1 dimensions, leaving a subdomain of dimension
n—k+1. After raising the dimension of the tensor product by one, the parameter space of the slice will
also have increased in dimension by one, and we will be left with a formula which implicitly defines the
n+1-dimensional control vertices of the new tensor product in terms of the control vertices of the

original tensor product.

Let L, ..., (where i =0,..j, t=0,.,n+1) be the control vertices of the new n+2-

dimensional tensor product. Then

jn+l 1 jnﬂ

z P"o-il vvvvv in B’u+l]u+l (un+l)= Z L"o."| ----- ins1 B'uuhu(u"“)

i,+|=0 i»ﬂ*
which implies that

Jnst "
. n+
Pio-il ''''' i z L"o~"| ----- inet B, inatidnat (Un41)

ina=0

iod e e = i,» for i 41 =0 to j, 4, because blending
functions sum to one. If the blending functions form a basis, then this is the only solution.

These equations have the solution L;

5. Blending-Function Specific Inheritance

We will consider a few blending-function specific examples of inheritance: For Bézer tensor
products: recursive evaluation, subdivision, degree elevation and blossoming; for B-splines: recursive
evaluation, knot insertion and blossoming.

5.1. The de Casteljau Algorithm

Recursive evaluation is an inherited property. The de Casteljau Algorithm, [Farin88 p. 27] can be
used directly on any Bézier tensor product. The following pseudo-code illustrates the algorithm for a
degree j Bézier curve with control points Py through P; at parameter u.

decastelgauo(Py,...Pj, u) :={
for i s
S_ «P;

) 1
for ke« 1,...j {

for i 0,..
i_ (1= u)P""1+uP,+,
}

} ,
return (P})

The value returned is the point on the curve at parameter «. In the multi-dimensional case, we treat the
n+1-dimensional tensor product as a ‘curve’ over n-dimensional tensor products and apply the de

Casteljau algorithm to this curve.
J1 Jn .
Let Po=3 - X P,i Biju) B ;u,) for k=0,.,jo, Then one stage of the
=0 =0
algorithm appears as
(l—u)Pk+u Pk+l
jl ju
=(1-u) Z z Prj,,....i.Bij) B ;) +u 3 - 3 Peyr, .. i, Biyj, (1) By (un)
i=0 in=0 i=0 in=0
Il n
=3y [(I—U)Ph i Y Pegy . i,]Bi.,j,(ul) B, j(un)

i=0 iy=0
Thus the de Casteljau algorithm can be applied dimension-by-dimension to the original control vertices.

The value computed is independent of the order in which dimensions are processed. However, the
total number of affine combinations required by each different ordering of dimensions is not necessarily
the same. We will show how to determine the most cost efficient ordering in Section 5.5.

5.2. Bézier Subdivision

Subdivision is also an inherited property. For Bézier tensor products, subdivision is a procedure
for finding new Bézier control vertices for rectilinear portions of the original tensor product. In the
course of ﬁndmg a point on a curve using the de Casteljau algorithm, the intermediate points
PSP} --- P§ and P} P{' - P° are generated. These points are the Bézier control vertices for

the portions of the original curve from [O,u] and [u,1], respectlvely That is, ZPo ijuv), for
v € [0,1], is the same curve as ZP B; j(v), forv € [O,u], and ZPJ“ B; j((1-v)u+v), forv € [0,1],

is the same curve as EP,- B,-J(v), forv € [u,1] [Lane80].
i=0
This technique extends easily to multi-dimensional tensor products. The same algorithm can be
used to subdivide Bézier tensor product slices, since the algorithm depends only on the values of the
control vertices of the original tensor product.

5.3. Bézier Degree Raising

The inheritance of degree raising is only slightly less immediate. The degree of a Bézier tensor
product can be increased one dimension at a time [Forrest72). Consider raising the degree in dimension
l,of

Jo In
22 0 X P, i BijWoB juy): B ;)
i=0 i,=0 iy=0

Rewriting so that the sum in the / th dimension is outermost, we have

i Jrtl
Y P B i (w)=3 LB, ;)
=0 i=0

where the P;’s represent summation in the other n dimensions. The L’s and the P’s are related as
follows:

Lo=Py
= ————i--‘P- + l—; P; fori =1]
{ j{+1 i=1 j/+l i reeeo it
Ljn=P;
This yields
Llol, W=0,..., in =Plol| =0, ..., in
L i .= |—— i-——1P, ;. fori=1 j
1 0ol fyonesd yeorsipy j[+.|. £oud gymeend =1 unesin]l+l [V ST S 1 yeoos i
Ll'o,i|,...,j,+l iy Pto,l, J1aeesin

The subsequent restriction to an n —k -dimensional slice results in

jo Ji ! Jn
22 X XL, i BijuoBijuy) B () B ;(u,)
io=0 i =0 i=0 =0

where u,, =, (ug, ..., Uy_x), form =n—k+1,...n.

5.4. Blossoming a Bézier Tensor Product Slice

Blossoms were introduced by Ramshaw [Ramshaw87). We review his terminology briefly and
extend it to suit our needs.
Definition: Let d; > 0 for i =0,...,n, and let D = Ug°xU7{'x - - - xU;", where U;" is U;xU;x - - - xU,
d; tmes, and U; is some real interval [aq;,;] Let F:D >R, and let
(100,10, 15+s10,d 151 1.0:l4 L1seosld 1,d —1yeeestly 0l 13- Un 4 -1) € D. Then F is symmetric in dimension i,
if, for any permutation ¢ : {0,....d;-1} = {0,....d; -1}, '

F(UO‘o, e ,u,-,o,u,-'l,...,u,"di_l, - ,u,,'dn_l) =F(uo.0, e ,u,-‘,,(o),ui.am,...,u;'0(4‘__1), e u,,'d‘_l) .

F : D — R is dimensionally symmetric if it is symmetric in every dimension.

Let j; be a set of positive integers, for | € {0,...,n }, and let i, be an integer in the range 0,...,j;.
Furthermore, let B; ; (¥;) be polynomials of degree j; in u;, and let F (ug,u,...,u,) be a tensor product
over these blending functions, and over a set of control vertices P; ; i, rom R™, fori; =0,...,j;.

igipnees

Definition: The blossom of F is the unique polynomial

.....

which is
» affine in each parameter u; ;,

. symmetric in each dimension /; that is, for each fixed / € {0,...,n }, fr is symmetric over the
collection of parameters i, ; whose first index is /, and

. F is the diagonal of fr; that is:

(semi-colons are used to separate variables in different dimensions).

A tensor product is transformed by the blossoming operation into a multi-affine polynomial which
is ‘‘essentially equivalent’’ to the original polynomial [Ramshaw88 p. 3]. Ramshaw demonstrates that
the blossom of a tensor product (over polynomial blending functions) exists and is unique, and gives
methods for finding the blossom explicitly.

Given the blossom of a tensor product, it is easy to determine the Bézier control vertices of the
tensor product. Let F (uy,...,4,) be an n-dimensional Bézier tensor product over the domain [0,1]"*
with control vertices P; ;,» and having degree j; in dimension /. Then

0rf Josensd

fr(1,1,..,,1,0,0,..,05 - - -5 1,1,...,1,0,0,....0) = P; _;

Lgud fyerniy

when, in dimension / of the blossom, the number of variables which have been set to one is #; and the
number set to zero is j,—i; [Ramshaw88]. (Because of dimensional symmetry, the actual order in which
ones and zeros are substituted into the parameters of the blossom for a given dimension is immaterial.)

A slice of a tensor product F is simply F constrained by a set of linear restrictions
Unm =Y (Uososllnk) = Cypllo+ " "+ Cmpp Unk + Cmuts1 fOrm =n—k+1,.n .

In order to simplify upcoming discussions, we will adopt the convention that when ¢, ; = 0, the variable
u; will not be given as a parameter of ¥,,,.

Let Fo be the polynomial which results when substituting the constraints of the slice into the
tensor product F. There must be a blossom corresponding to it, which we will call fr_. We want to
find fr_ in terms of the blossom fr and the set of constraints C .

Let 7, be the maximum degree of F. in dimension ! (where /€ {0,..,n-k}). Let u, be the
variable for dimension /. The degree of F in dimension ! was j;. If u,,, where m € {n—k+l1,...,.n}, is
constrained to depend on i, by an equation in C, then the degree of ; in F(is the degree of u; in F,
plus the degree of each u,, that depends on u;,. By examining ¥,,, we know that u,, depends on ¥, when
cm, # 0. We can state this formally by defining a function € as follows:

L whenc,,; #0
0 otherwise

e(m ,l)={
Then the maximum degree of i, in F is

h[=jl + Z j,,,E(m ,1)

m=n-k+]

The blossom of the slice must have the form

’ un-k,o---un-k,h,,_,-,l) D

where f_ is dimensionally symmetric, multi-affine, and the diagonal of f£_ is Fc.

We create a candidate for the blossom of F¢ by substituting the constraint equations into the
blossom of F:

Fr(<0>:<1>s<n =k > <Yy 4 11> <Tnk 42233 <Yn >)

where <!> stands for the parameters of the independent dimension /, and <¥,,> stands for the
substitution of one instance of the expression for ¥,, for each of the j,, parameters fr has for dimension
m.

There are precisely as many parameters of the independent dimensions and all the instances of the
constraint equations substituted into the blossom of F, as there are variables in Equation 1. Let
1=0,.,n~k,m =n—-k+l1,..,n,and i =0,...,j,,~1, and let H be a function which computes index values
defined as follows:

m-1

t=n—k+1
(The summation is zero if n—k+1>m-1.)

The indices given above assign unique variables of f_ to each parameter of the modified blossom

of F, and H provides precisely these indices. Furthermore, the greatest index H provides for
dimension [is h;—1. Therefore, H gives us unique subscripts for each independent dimension /.

Consider
8 (o0 sUong-15 """ Unk 0serslbnk py 4—1) =
fr ["0,0’---"‘0,;'0— 3T Un ke goeeesln k15
Yk 41080 H (n -k +1,00)++sln —k H(n—k 41,0 4,00 « - + » Yk 41(HOH (nk 41,0,j, 4 ~1)s+-+sln —k H(n—k+11—k jy_4-1)) 5
5 Y (MO H (n 0.0y tn—k Hinnk 0D+ » ¥n (WO H (1 0,j, =1y sBn—k H(n n=k.jy=1)]

where u, ; appears as a parameter of y,, only if u,, depends on i; in F. The function y,, is substituted
once into every variable of dimension m , that is, j, times. Each substituted ¥,, has different variables
from every other v,,, and from any y, whenm #p,and m,p € {n—k+1,...,n }. This follows from the
construction of the function H .

The function g is affine in each of its variables u; ;, because fr is multi-affine and each v, is
multi-affine. However, g is not dimensionally symmetric. Let 6,,:{0,....n} = {0,...,n} denote a
permutation of the first n+1 natural numbers. To introduce dimensional symmetry we form:

2 X X gog, 0pMog, (h1) T lnk o, Orlhnk oy (1)

Vo, ch,. . Vo,.H

holthy! - h, !

This expression is dimensionally symmetric; this follows as a direct result of the way we
constructed the summation. Because g is multi-affine, this expression is multi-affine. Moreover, its
diagonal is F-. We can see this by substituting u; for each u;; where j =0,...,h;—1. The above
expression reduces to

But because the diagonal of fF is just F, this must be
F(u()suls-"’un—k,Yn—k-i-l(u()!ulo---,un-k): e v‘Yn(u()»ulq--'vun—k))

which is just F evaluated at a point on the slice. Therefore F is the diagonal of the above expression.

Finally, the degree of F- in u is h;, which matches precisely the number of variables in
dimension !, for each I € 0,...,n—k. Therefore, this expression must be fr_, the blossom of Fc.

Notice that g already has some dimensional symmetry, but we did not take advantage of this
symmetry when forming the blossom of F.

The same blossoming procedure can be performed for polynomial slices instead of linear slices. In
this case, we use the blossom of each 7¥,,, instead of ¥,,, in the construction, because a general
polynomial v, is not multi-affine, whereas the blossom of ¥, is.

Example 3: Consider a 4-dimensional Bézier tensor product F(u,v,w,x), linear in u,v and x and
quadratic in w, with the blossom f (u¢;vo;wo,W 1:x0), sliced by the constraints w = 3+u and x =2—v.
Then the blossom of the slice will have the form:

Sr (uou 1, u2v0,v 1)

= # [2f (uo;v 0;(3+ll 1),(3+u 2);(2—\) 1)) + 2f (u I;VO;(3+M 2),(3"‘“0);(2—\1]))

+2f (Uasv s (BHu), (3+1)i 2—v) + 2f (v 1:(3+u), (3+u,); (2-vo))
+2f (uy3v 15(3+u2),(3+u0)i(2-v0)) + 2f (u2v1;(3+uo),(3+u1):(2-v o))]
To find the value of the control vertex fr_(0,1,1;0,1) we compute:
-(l; [f 0;0,4,4;1) + £ (0;1;4,4,2) + 2 (1;0;3,4;1) + 2f (1;1;3,4;2)]

Each specific invocation of the blossom of F can be written exclusively in terms of the Bézier
control vertices of F, by making use of the multi-affine and symmetry properties of the blossom. For
example,

£ (0;0;4,4:1) = £ (0;0; 4x1 + (=3)x0 ,4;1)

10

= 4f (0;0;1,4;1) - 3f (0;0;0,4;1)
= 4(4f (0;0;1,1;1) — 3F (0;0;1,0;1)) ~ 3(4f (0;0;1,0;1) — 31 (0;0,0,0;1))
= 16f (0;0;1,1;1) — 24£ (0;0,1,0;1) + 9 (0;0;0,0;1)
We can solve for each of the other instances of the blossom of F in terms of control vertices of F
and find that
fr.(0,1,1,0,1)= 'tlt) [9f (0;0;0,0;1) — 247 (0;0;1,0;1) +.16f (0;0;1,1;1) — 9 (0;1;0,0;0)

+ 18 (0;1;0,0;1) + 241 (0;1;1,0;0) — 481 (0;1;1,0;1) — 16 (0;1;1,1;0)
+ 327 (0;1;1,1;1) + 121 (1;0;0,0;1) — 34f (1;0,1,0;1) + 241 (1;0;1,1;1)
- 12f (1;1;0,0;0) + 241 (1;1;0,0;1) + 341 (1;1;1,0;0) - 68f (1;1;1,0;1)
- 24f (1;1;1,1;0) + 481 (1;1;1,1;1)

Example 3 illustrates that an explicit expression for the blossom of a polynomial function is not
required in order to evaluate it. [Ramshaw88a] shows that, in general, all points on a blossom are
computable by forming affine combinations of control vertices.

11

Example 4: Consider the tensor product F(u,v) =Y, 3 P; ; B; (u)B; (v), where B; (u) and B; \(v)
i=0 j=0

are the linear Bemstein polynomials. Let v =y(u) =Il—u. This results in the 1-dimensional slice (a

quadratic curve), given by

Poo(1-u)(1-v)+ Poy(1—u)y + Piou(1—-v)+ Py u v
=Poou(1-u)+Po (1-u Y + Py ou? + Py u(l-u)
=Pos(1-u) + (PogtP 1, Ju(1-u) + Py ou’
This slice can be re-represented in Bézier form, using the quadratic Bemstein polynomials, as

2 PogtPy

z L,' B;_z(u), where Lo = Po.l’ Ll = T‘, and L2 = PI,O'
i=0

Now examine the slice of F using blossoming. Note that since F is bi-linear, its blossom f will
be 2-dimensional, having a group of variables for each dimension. Since the original tensor product
was linear in each dimension, its blossom will have only one variable for each dimension, and, by
definition, F(u,v)=fr(u;v).

Since the slice constrains the second dimension of the tensor product in terms of the first, the slice
is one dimensional, but is of degree two. Therefore, the blossom of the slice will be of the form
fr (ugu,) and be symmetric over both parameters (unlike the blossom of the original tensor product),

giving:

Froluoun = [fr (oY1) + Fr (i 5:90))]

11

Since the slice blossom is the blossom of an equivalent ordinary tensor product, the control
vertices of the equivalent tensor product must be fr.(0,0), fr.(1,0) and fr_(1,1). Performing the

appropriate substitutions, we obtain:

Lo=fr 00 =5 [£r@xO)+frOFO) |=fr@1)=Ps,
Li=fr(10)= 5 [Fr(0) +Fr @) | =7 [Pri+Poo)
L2=fpc(1,1>=—;— [£r (L) + Fr (YD) | =Fr(1:0) =P

5.5. Evaluation of a Bézier Tensor Product Slice

We will consider the computational cost of evaluating the tensor product slice as it stands against
that of evaluating its equivalent form with the constraints already substituted and assimilated. The two
costs are not, in general, the same. Moreover, for any collection of degree and dimension, the
evaluation cost is sometimes more in the tensor product form and sometimes more in the equivalent
form.

For example, in two dimensions, using cubic polynomials and constraining one dimension in
terms of the other (giving a curve), the equivalent tensor product requires 21 affine combinations to
compute a curve point, while the original tensor product requires 30. Whereas in three dimensions,
using cubic polynomials and constraining one dimension in terms of the other two (giving a surface),
the equivalent tensor product requires 168 affine combinations to compute a surface point, while the
original tensor product requires 126. However, given a chosen form, there is always an optimal
ordering of dimensions.

Consider a cost function A:Z*—Z*, where A(d) represents the number of affine combinations
required to compute the value of a point on a curve of degree d, and where A(d) grows quickly enough,

. Ad+k) _d+k A(t+k) _t+k
that is T(d——ZT for k>0. Note that WZT = (t+k)A()-tA(+k) <0, for £>0. Also
observe that the de Casteljau cost function has this property:
Ad+k) (d+kNd+k+1) (d+k) (d+k+1) S (d+k)
Ad) d(d+1) d d+1) — d

Given that the dimension ordering is n,n—1,..,1,0 and given that the maximum degree in
dimension &k of a blending function is j;, the cost of finding a surface point is:

AGoHA(Ut DHAG DG Dot D - - - HAG R Y+ D). (1D g+

We shall show that this expression will be minimized when 0 is the dimension of highest degree,
1 the dimension of the next highest degree, and so on.

Define p,, : Z*" — Z* as follows:

) =AkK)
M1 (X 0seee ¥) = Alx o HA(X)X o+ DHAX D)X+ D) (x g+ D - - - +

12

Ay Yxy 1 +D)..(xo+])
Then, forn > 1
P 41X 0re-eXn) = Alxg) + (X0 DR, (X 150 0Xn)
Furthermore

un-‘-l(xOv-"rxn) =H, (xO,...,X,,_]) + A(xn)(xn-l+l)---(x0+l)

Lemma: Let 6 : {0,....n) — {0,...,n } be some permutation of the first n+1 integers and let x,....x, be a
sequence of positive integers given in non-increasing order (x; 2x;, when i <j). Then
Hr 41X 0o Xn) S W 41(X g(0)s-+-X o))

That is, the value of 1, is minimized when its arguments are given in non-increasing order.
Proof: We use induction on n.
n =2: Let a £b. We want to show that py(b,a) <p,(a.b). If a =b, then this is certainly true.
Otherwise, a < b. Then

Ha(b,a) — Pofa b) = A(b H+A(a (b +1) — A(a }-A(b Xa +1)

=bA(a)aAb)

But we were given as a property of A that when a <b, this difference is non-positive, implying
that p,y(b,a) < py(a ,b). Therefore, when a<b, p,(b.a) Sps(a,b).
n+1, given n: Let T be some permutation of the first n+1 integers such that, for any other permutation o
of the first n+1 integers,

M +1(X 0)ree- X 2n)) SHa +1(-xo(0)7---rxc(n))
That is, T is a permutation which minimizes p, ., over all different orderings of the arguments x,,...,x, .
Recall that
Wn 41 (X 10X gin)) = AKX 0)) +.(X g0yt (X 21)se- X 2(n))

Since 7 is an ordering of arguments which minimizes the value of L, 1, R (X ¢(1)s-.-»X (n)) Must also be
minimal. By the induction hypothesis, the sequence x «),...,X ») must be in non-increasing order.

Also recall that

B 41(X 20y X 1(n)) = B (X 0)e-+sX wn=1)) + AKX g DX g -1y 1).. (X o) +1)

Then, W, (X op..»Xyn-1)) Must be minimal. By the induction hypothesis, the sequence X yo),-..»X gn-1)
must be in non-increasing order.

The fact that these two sequences are in non-increasing order unphes that the sequence
X g0y X t(n) IS alsomnon-mcreasmg order. Q.E.D.

The minimum number of affine combinations required for the de Casteljau algorithm (in
dimension-by-dimension evaluation) is P, 41(Jo(0)--+J o(n))» Where the permutation ¢ sorts the sequence
of j,’s into non-increasing order. Knowing this fact, and applying the definition of p,, , we can compare
the minimal cost for the tensor product and for the equivalent tensor product and use the least expensive
version for evaluating points on the surface.

13

5.6. The de Boor Algorithm

The de Boor algorithm [Boor87] is an evaluation scheme for B-splines, which is very similar to
the de Casteljau algorithm. The de Boor algorithm has the same form as the de Casteljau algorithm, but
uses different multipliers in each intermediate point calculation.

This algorithm can be applied to B-spline tensor products in precisely the same dimension-by-
dimension fashion as the de Casteljau algorithm is applied to Bézier tensor products. It is also inherited
in the same fashion from B-spline teasor products by B-spline tensor product slices,

Since the algorithm is structurally identical to the de Casieljau aigorithm, the cost analysis given
for that algorithm can be applied to B-spline evaluation as well.

5.7. B-spline Knot Insertion

The Oslo Algorithm and Bohm's Algorithm for knot insertion are described in
[Cohen80, Prautzsch84, Bohm80, Goldman89, Bartels87]. Both the Oslo algorithm and Bohm’s
algorithm can be extended to multi-dimensional B-splines tensor products in the same manner as the de
Boor algorithm.

A tensor product that has had knots inserted represents the same mapping from domain to range as
the original tensor produci. Therefore, a slice of a knot-inserted tensor product will represent the same
set of points as the same slice of the original tensor product. Thus knot insertici is a valid operation for
B-spline tensor product slices.

5.8. Blossoming a B-spline Tensor Product Slice

We have already developed at the blending function level most of the results we require for
blossoming B-spline slices. A B-spline tensor product is made up of numerous blending functions
domains. We can associate a blossom with each such domain. We aiready know how to evaluate these
blossoms if we are given the Bézier control vertices. [Ramshaw88a] shows that the blossom can also be
determined from the B-spline control vertices for the blending funciion domain and that B-spline
control vertices may be determined fzom a blosscan by evaluating it at sets of adjacent knots.

The blossom of a B-spline tensor product slice will also exist, in the same piecewise fashion that
the blossom of the original tensor product existed. The Bézier blossoming development tells us what
the blossom of the slice is over each blepding function domain in terms of the blossom of the B-spline
and the constraints over that domais.

6. Conclusions and Open Questions

It is not necessary to abandon the tensor product for surface representation in order to obtain
useful multi-sided patches. We have shown that tensor product slices can be used to create multi-sided
surface patches with arbitrary numbers of sides. The definition of a tensor product slice is firmly rooted
in the concept of a multi-dimensional tensor product. Therefore, tensor product slices inherit most of
the useful properties of general tensor products.

Many important properties of specific tensor product schemes are also inherited in the same
fashion. Bézier tensor product slices can use the same evaluation, subdivision and degree-elevation
algorithms that ordinary Bézier tensor products use. The notion of blossoming also gave us a method
for computing an alternate representation for Bézier tensor product slices, which can reduce the
computational costs of evaluation.

B-spline tensor product slices also inherit the same evaluation and knot insertion algorithms
available to ordinary B-spline tensor products. Blossoming, too, makes sense for B-spline tensor
product slices.

14

There remain many avenues for further exploration. Though we have not tried to do so, it is
conceivable that tensor product slices could be used for visualizing 3-dimensional data, by looking at
cross sections. The conditions under which a 2-dimensional tensor product slice can be constructed to
fill an n -sided opening in a surface, while maintaining some degree of continuity, are not known. Even
if such conditions were known, a method for constructing the desired patch is still required. The effects
of introducing dependencies among blending functions upon the ease of manipulation of tensor product
slices have yet to be explored. Lastly, the properties of tensor products sliced by more general
constraint equations have not been investigated here.

7. References

Bartels87
R. H. Bartels, J. C. Beatty, and B. A. Barsky, An Introduction to Splines for use in Computer
Graphics and Geometric Modeling, Morgan Kaufmann Publishers, Palo Alto, California (1987).

Boor87
C. de Boor and K. Hoéllig, ‘‘B-splines without Divided Differences,’’ in Geometric Modeling:
Algorithms and New Trends, ed. G. Farin, SIAM Press, Philadelphia, Pennsylvania (1987).

Bohm80
W. Béhm, ‘‘Inserting New Knots into B-spline Curves,’’ Computer-Aided Design 12(4)(1980).

Bohm84
W. Bohm, G. Farin, and J. Kahmann, ‘‘A Survey of Curve and Surface Methods in CAGD,”

Computer Aided Geometric Design 1(1)(1984).

Bohm84a
W. B6hm, ¢‘Calculating with Box Splines,”” Computer Aided Geometric Design 1(2)(1984).

Charrot84
P. Charrot and J. A. Gregory, ‘‘A Pentagonal Surface Patch for Computer Aided Geometric

Design,” Computer Aided Geometric Design 1(2)(1984).

Cohen80
E. Cohen, T. Lyche, and R. F. Riesenfeld, ‘‘Discrete B-splines and Subdivision Techniques in
Computer-Aided Geometric Design and Computer Graphics,”” Computer Graphics and Image
Processing 14(2)(1980).

Dahmeng§3
W. Dahmen and C. A. Micchelli, ‘‘Multivariate Splines — A New Constructive Approach,’’ in
Surfaces in CAGD, ed. R. E. Barnhill and W. Bohm, North-Holland, Amsterdam (1983).

Dahmeng4
W. Dahmen and C. Micchelli, ‘‘Subdivision Algorithms for the Generation of Box Spline
Surfaces,”” Computer Aided Geometric Design 1(2)(1984).

DeRose89
T. D. DeRose and C. T. Loop, ‘‘S-patches: A Class of Representations for Multi-Sided Surface
Patches,’”” ACM Transactions on Graphics 8(3)(1989).

Farin88
G. Farin, Curves and Surfaces for Computer Aided Geometric Design, Academic Press, Boston
(1988).

Forrest72
A. R. Forrest, ‘‘Interactive Interpolation and Approximation by Bézier Polynomials,’’ Computer
Journal 15(1)(1972).

15

Goldmang9
R. N. Goldman, Blossoming and Knot Insertion Algorithms for B-spline Curves. SUBMITTED FOR
PUBLICATION.

Hosaka84
M. Hosaka and F. Kimura, ‘‘Non-four-sided Patch Expressions with Control Points,’* Computer
Aided Geometric Design 1(1)(1984).

Lane80
J. M. Lane and R. F. Riesenfeld, ‘‘A Theoretical Developmet for the Computer Generation and
Display of Piecewise Polynomial Surfaces,”’ IEEE Transactions on Pattern Matching and
Machine Intelligence PAMI-2(1)(1980).

Prautzschg4
H. Prautzsch, ‘A Short Proof of the Oslo Algorithm,”” Computer Aided Geometric Design
1(1)(1984).

Ramshaw87
L. Ramshaw, Blossoming: A Connect-the-Dots Approach to Splines, Systems Research Technical
Report #19, Digital Equipment Corporation, 130 Lytton Avenue, Palo Alto, California, 94301,
USA (1987).

Ramshaw88
L. Ramshaw, Béziers and B-splines as Multiaffine Maps, Digital Equipment Corporation, 130
Lytton Avenue, Palo Alto, California, 94301, USA (1988).

Ramshaw88a

L. Ramshaw, Blossoms are Polar Forms, Systems Research Technical Report #34, Digital
Equipment Corporation, 130 Lytton Avenue, Palo Alto, California, 94301, USA (1989).

16

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

