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Abstract

This paper presents a new replication method. Our major goal was to
achieve performance similar to systems that do not employ replication and, at
the same time, enjoy the availability benefits that result from replication. To
reach our goal two mechanisms have been developed: 1) a priority-based
preemptive, optimistic concurrency control algorithm and 2) an extended loca-
tion service, which is incorporated into the transaction processing facility. The
method achieves the above performance goal, exhibits good availability
characteristics, satisfies the one-copy serializability correctness criterion, is
easily proved correct, and is easy to implement.

1 Introduction

Throughout this paper the concept of transactions (atomic actions) is
extensively used. Briefly, a transaction consists of a set of primitive operations
and is characterized by the properties of recoverability and serializability. Dif-
ferent researchers assign different properties to transactions (see [Taylor86] for
a related discussion) but, in essence, all these properties amount to recovera-
bility and serializability. Recoverability ensures that either all or none of the
operations that are included in the transaction have taken effect. Serializability
ensures that any execution of concurrent transactions is equivalent to some
serial execution.

A distributed system is a collection of computers (nodes) which are inter-
connected by communication links. These nodes store data and process
requests to access their data. Distributed systems are subject to node and
communication-link failures. A node failure makes data stored at a failed
node inaccessible for the duration of the failure. Similarly, a link failure may
cause a node and thus the data contained in it to become inaccessible from
some other nodes of the system. The primary motivation for introducing repli-
cation in a distributed system is to increase availability.

In distributed systems concurrent access to shared data is common. When
one concurrent access is a write access then the system must enforce some con-
currency rules in order to protect the internal consistency [Thomas79] of the
data. In one-copy distributed systems, serializability [Papadimitriou79] is
widely accepted as the correctness criterion. In multi-copy (replicated) systems
there exists the additional requirement that the functional behaviour of a
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replicated object must be equivalent to the behaviour it would exhibit if it
were not replicated. Hence, the correctness criterion for systems with repli-
cated data is one-copy serializability [Bernstein83]. Informally, one-copy serial-
izability states that any concurrent execution, of actions accessing a replicated
object, that is allowed by a replication method must have an effect equivalent
to some serial execution of these actions over a non-replicated object.

It is conceptually convenient to view multi-copy objects as a single logical
object. Operations on a replicated object, although they may be directed to
one or more physical copies, can be conceptualized as being applied to the
corresponding logical object. It is exactly this abstraction of the logical objects
that replication control methods attempt to support. Note that by ensuring that
the functional behaviour of replicated objects is equivalent to that of single-
copy data and by using any one of the concurrency control aigorithms that are
already available [Bernstein81] we can effectively guarantee correctness.
From the above discussion it should be apparent that in order to achieve
correct behaviour a distributed system with replicated data must have mechan-
isms to provide the following:

1)  Concurrency control in order to preserve the internal consistency of the
data, and

2) Replication control to ensure that the functional behaviour of multi-copy
objects is equivalent to that of single-copy objects (one-copy equivalence).

There are, however, replication methods that do not attempt to ensure
one-copy serializability. They allow replicated objects to have mutually incon-
sistent copies [Oppen81, Demers87, Shroeder84]. In this work we only con-
sider methods that ensure one-copy serializability.

The balance of the paper is organized as follows. Section 2 briefly
discusses related work. Section 3 presents the two mechanisms that allow our
method to have the desired performance characteristics and presents the
method itself. Section 4 reviews the serializability theory for replicated data-
bases and proves the method correct. Section 5 compares the performance
and availability characteristics of our method to those of well-known methods.
Section 6 outlines the contributions made by the new replication method and
contains concluding remarks.

2 Related Work

Quorum-based methods are, probably, the most well known methods.
Quorum consensus [Gifford79] was the original work introducing the quorum
concept and presenting a quorum-based replication method. A quorum is sim-
ply a collection containing a specified number of copies of a replicated object.
A read operation is performed by first accessing a read quorum, containing r
copies. Subsequently, the copy with the highest version number is read. A
write operation is performed by writing a write quorum, containing w copies.
One-copy serializability is satisfied provided read and write quorums always
intersect, thus » and w must be chosen so that r+w>n, where n is the total
number of copies. The designer gains added flexibility by manipulating r and
w and thus the system can be fine-tuned to support query-intensive
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applications at the expense of update-intensive applications and vice versa.
Note, however, that for each operation significantly more work is required for
replicated objects, compared to the work required to execute operations on
non-replicated objects.

The basic quorum consensus method was extended by Herlihy in several
ways. General quorum consensus [Herlihy86] introduced the concepts of initial
and final quorums and locks, with new and less constraining conflict rules. In
this way, greater concurrency can be attained and the performance advantages
of this are obvious. In [Herlihy87a] a new method is presented that allows the
dynamic adjustment of quorums so that availability can be maximized as a
response to network partitions. In [Herlihy87b] two new methods are
presented (consensus locking, which has good availability characteristics, and
consensus scheduling, which has good concurrency characteristics) and it is
shown that concurrency and availability cannot be maximized simultaneously.
It should be pointed out, however, that for each operation within a transaction
an initial and a final quorum must be contacted and these additional two
rounds of message exchange increase the transaction execution cost signifi-
cantly.

El Abbadi and Toueg [Abbadi86, Abbadi89] developed a variant of
quorum consensus which is based on the concepts of read and write accessibil-
ity thresholds, A, and A,. As before, reading (writing) requires physically
accessing a read (write) quorum of copies. In addition, however, in order for
a read (write) operation to be performed, there must exist at least A, (4,,)

accessible copies. The quorum and accessibility threshold values may be
defined in a way that gives the designer added flexibility. With the introduc-
tion of accessibility thresholds fewer physical operations are needed, since it is
never necessary to access more than a single copy during reading. The authors
introduce the concept of a view that makes the method more robust so that it
can tolerate partitioning. The view of a site s is an approximation of the set of
sites with which s can communicate. As failures occur, a view-change protocol
is invoked and the read and write quorums can be defined with respect to a
particular view. This method is referred to as the virtual partitions method.

Oki and Liskov [Oki88a, Oki88b] have recently presented a replication
method, viewstamped replication, which has performance characteristics similar
to those of non-replicated systems. It is based on the primary-site paradigm
for replication. Operations are executed only at the primary site and results
are returned immediately to the client. The other replicas are informed of
state changes in the background. During the execution of the two-phase com-
mit protocol, each primary that performed an operation ensures that enough
replicas (a majority) know of the effects of that operation before agreeing to
prepare. Stable storage is avoided and, instead, the replicas are used to con-
tain the information that would, in non-replicated systems, be written in stable
storage. The claim is made that the cost of writing to stable storage is similar
to the cost incurred during a round of message exchange between a majority
of replicas. A view-change protocol is also provided to handle problems that
arise when failures occur.
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The available copies method [Bernstein83] requires reading from any
available copy and writing to all available copies. Special system transactions
execute upon the detection of failures to update the information that sites
keep regarding the availability of copies. A variant of this method is
employed in ISIS [Birman85]. The method is built on top of special broadcast-
ing protocols to ensure that replica coordination occurs in the proper order.
Both methods, however, do not guarantee correctness in the presence of net-
work partitions.

The true-copy token method [Minoura82] distinguishes between the copies
of an object. True copies always have the current state and updates can be
performed only on true copies. True copies can be moved from one site to
another so that updates can be performed from all sites. Different partitions
may update different objects. When the network partition is eliminated the
mutually inconsistent states are reconciled by special operations and tools.
The method tolerates node failures and network partitioning but the availabil-
ity of the operations is limited by the number of true copies.

Of the above replication methods, only viewstamped replication exhibits
performance characteristics similar to non-replicated systems. This is made
possible by employing the primary-site paradigm for replication. However, the
method must account for the possibility of failures of the primary node and
network failures that may make the primary inaccessible. For this reason, a
view-change protocol is developed so that a new primary can be appropriately
selected and the effects of committed transactions will survive the failures.
This makes the method more complex and difficult to implement. It also lim-
its the availability of the service since replicas remain inactive during the exe-
cution of the view-change protocol. Furthermore, viewstamped replication
suffers from the well-known disadvantages associated with methods based on
primary sites. Most notably, primaries may become performance bottlenecks.

3 Optimistic Location-Based Replication

Our goal was to develop a method that has performance similar to that of
non-replicated systems and, at the same time, avoids the disadvantages of the
viewstamped replication method. The source of these disadvantages lies in the
choice of the primary-site paradigm for replication. However, there are two
major benefits of designating one of the replicas as a primary replica. First, it
allows transaction operations to execute at only one site (with replica coordina-
tion taking place in the background). This results in correct behaviour since
the primary always stores the up-to-date information about the replicated
objects that it handles. Secondly, it eliminates the need for an expensive tran-
saction synchronization mechanism; replicated lock acquisition to avoid serial-
jzability and deadlock problems is not needed. Therefore, we focused our
attention on developing
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1) A mechanism that allows our method to access only a single replica and
still obtain the most recent state for the referenced object, and

2) An inexpensive transaction synchronization mechanism that avoids the
need for replicated lock acquisition.

Before we proceed with the description of these two mechanisms, we first
present the system model, define some terminology and discuss transaction
processing in the model.

3.1 The System Model

A distributed system consists of many sites interconnected by a communi-
cation network. We assume that information stored in it is replicated at many
sites. As a result, replicated data objects are managed by a group of replica
sites. Access to a replicated object can only be provided by the group of repli-
cas that manage it. Thus, using the client-server model we say that the
managing replicas provide a service and can view each replica group as a
replicated server.

Computations in the distributed system execute as transactions. Each
transaction consists of a number of operations, which are classified as read or
write depending on the effect the operation has on the object. The site at
which a transaction originates is responsible for determining and communicat-
ing with the appropriate replica group managing a referenced object and for
requesting that the transaction operation be performed on the object. The ori-
ginating site is referred to as the client and during the execution of a transac-
tion the client will communicate with a number of replicated servers.

The client, before starting to process transaction operations, typically must
obtain location information that will inform it of the appropriate replica group
to be accessed for each object in the transaction. This information is provided
by a location service. Location servers maintain the location tables which con-
tain the desired information. This service should naturally be highly available
since its availability constrains the availability of transaction operations. The
desired availability, in turn, is achieved through replication.

When all transaction operations have been executed and the client has
received the results it will initiate the two-phase commit (2PC) protocol. The
client will be the coordinator of the 2PC protocol. Transaction operations
acquire locks at different sites throughout the system. These locks are held
until the transaction is either committed or aborted.

The replicas within a replicated server (eventually) record the effects of
transaction operations in a local event history log. The use of stable storage is
avoided because it is unnecessary: the effects of committed transactions will be
reflected in the replicated event history logs and thus reliability can be
achieved.
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3.2 Location-Based Replication

The essence of our first mechanism lies in the extension of the basic loca-
tion service, and in the incorporation of this service into the transaction pro-
cessing facility. For this reason we refer to our method as the location-based
method. Before we discuss our extensions to this service let us first review its
traditional responsibilities.

In a non-replicated distributed system, a client that is about to execute a
transaction interacts closely with the location service. For every object,
accessed by one of the operations in the transaction, the client queries the
location server in order to determine which site in the system stores this
object. Subsequently, the operation is forwarded to the storing site where it is
executed and results are returned to the client. In a replicated distributed sys-
tem, the location server may provide the client with a list of sites any (or all)
of which are capable of performing an indicated operation. For example, in
the viewstamped replication method the location server provides the client
with information regarding the group of replicas that control access to a repli-
cated object. It is left to the client to consult enough of these replicas in order
to determine the primary site.

In location-based replication, the client interacts with the location server
to obtain a list of (one or more) sites that contain an up-to-date copy of each
replicated object referenced in the transaction. Having obtained this list, the
client proceeds with the forwarding of the operations to the appropriate repli-
cas, where they will be executed.

Note, however, that for availability and flexibility reasons we cannot
require that there be a fixed set of replicas for an object that will store the
most recent information. Therefore, as operations execute there will be a
changing set of replicas that have the most recent information about replicated
objects. Thus, we must allow for updating the location tables so that the infor-
mation provided by the location server to the client is always correct. We
satisfy the latter requirement by modifying the traditional two-phase commit
protocol. In our replication method the client coordinates the execution of
2PC. The method guarantees that at commit time the client knows, for each
updated object, which replicas where involved in the execution of the update.
Thus, the client knows which replicas are currently aware of the new object
state. Hence, along with the commit messages, the client submits a request to
the location server so that it can appropriately update the relevant portion of
the location table. In addition, we further modify the protocol so that the tran-
saction is not considered committed until all of the replica participants have
replied with a "committed” message and the location server has replied with an
"update o.k." message indicating that the location tables have been appropri-
ately updated.

More precisely, the interface of the location server is defined by the fol-
lowing two operations:

e  server?(list-of-objects) returns list-of(object, list-of-replicas) ;
®  update-table(list-of(object, list-of-replicas)) returns ack ;
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The "server?” function is simply the query submitted by the client in order
to find out the set of replicas that store an up-to-date copy of the objects
involved in the transaction. "list-of-objects” is the list of the objects involved in
the transaction. "list-of(object, list-of-replicas)” is a list of pairs. The first
component of each pair is one of these objects and the second component is a
list of the replicas that store the current state for this object.

The transaction submitting the "server?” query will acquire a read lock at
the location server replica where the query is served.

The "update-table” function represents the command submitted by the
client during the commit phase of the 2PC protocol that instructs the location
server to update the relevant portions of the location table with the informa-
tion included in the argument. As mentioned earlier, the "update-table” opera-
tion involves the cooperation of the location server replicas which collectively
perform the update. The leader location server replica is the one that received
the "update-table” command from the client. The leader will broadcast the
command to the other replicas. Before each server replica performs the
update, a write lock is first acquired locally and then the update is (tenta-
tively) performed. Subsequently, each replica replies to the leader with an ack-
nowledgement. The leader waits until enough replicas acknowledge the
"update-table” message. When enough replicas acknowledge the "update-
table” message the location server sends a positive acknowledgement to the
client indicating that the update operation was performed. Finally, the leader
initiates a second phase of cooperation with the replicas with the following
results: 1) the updates to the replicated location table are permanently
installed, and 2) all the pertinent locks held by the transaction executing the
"update-table” command are released. Note that the second phase occurs after
the leader replies to the client and thus it does not delay the execution of the
transaction.

Now that we have discussed the first mechanism let us examine how this
mechanism meets its objective. Recall that the motivation for building this
mechanism was to enable execution of transaction operation at only one
replica. This will result in a correct behaviour only if this replica has up-to-
date information about the object upon which the operation is performed.
Through the "server?” query the client can be informed of a proper replica that
could correctly execute the transaction operation. Through the "update-table”
command the client ensures that the location table reflects the most recent
information. In this way, the next query of the location server will return the
correct information. The discussion presented so far does not, however, pre-
clude the possibility of a transaction using stale location information to access
an object. The reason for this staleness lies in timing problems with regard to
the execution of "server?" and "update-table" commands issued from different
transactions. Remedies for this uncommon phenomenon will be discussed at
the end of this section. It suffices to say that no incorrect transaction
behaviour results due to the occurence of the above phenomenon.

Earlier we touched on the need for replicating the location server. Thus, a
replication method is needed to guarantee correct replica coordination. In
principle, any one of the well-known one-copy serializable techniques could be
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used to implement the replicated location service. However, our method has
an additional performance constraint: transaction execution in a system
employing our method should incur a delay similar to that of non-replicated
systems. This, in turn, implies that the cost of obtaining the location informa-
tion in a replicated system must be similar to that in a non-replicated distri-
buted system. Therefore, we require that location service queries not require
access to more than a single copy of the appropriate location table. Using a
simple quorum technique would suggest that updates to the entries of the loca-
tion table should be applied to all copies, since the read quorum must be one.
This not only increases the performance cost of "update-table” operations but
also limits their availability. Although it is evident that the performance
trade-off between queries and updates is inevitable (recall that read and write
quorums must intersect), it is not necessary to sacrifice availability. El Abbadi
[Abbadi86, Abbadi89] presented a one-copy serializable replication method in
which reading from only one copy is made possible without worsening the
availability of the replicated service. The availability of read and write opera-
tions is defined by the read and write accessibility thresholds. Using these
variables one can enforce the desired levels of availability independent of the
quorum sizes. In addition, this method dynamically adjusts to network parti-
tions so that operations remain available. For these reasons we consider this
method to be appropriate for our location service.

3.3 Preemptive Optimistic Concurrency Control

Our second mechanism is developed so that our method can enjoy inex-
pensive transaction synchronization. Recall that the method in this paper
requires that each operation be executed at only one site. The goal is to avoid
replicated lock acquisition without introducing serializability and deadlock
problems. Serializability problems may surface since transaction operations
execute at only one site and since there is no guarantee that a conflicting
operation from another transaction will execute at the same site. Thus, there
exists the danger of undetected conflicting locks. Note that this danger does
not exist in the viewstamped replication method since the conflicting transac-
tions will be serialized at the primary replica. Deadlock problems may surface
since conflicting transactions may obtain locks at different replicas and each
may be waiting for the other to release them. Again, this is not possible in
viewstamped replication since the transaction that has the lock at the primary
site will always be allowed to proceed.

What follows is a description of the three major features of the con-
currency control mechanism, employed by the location-based method, along
with a short informal justification for its correctness (the method will be
proved correct in a later section). There are three major characteristics:

L optimism
L] off-line replicated lock acquisition
®  preemption
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Our concurrency control algorithm belongs in the general category of
two-phase locking (2PL) algorithms, since the lock-acquisition phase is distinct
from the lock-release phase. Concurrency control is optimistic in that it
assumes that lock conflicts are rare. This assumption may be justified by con-
sidering the relatively short transaction execution times and the large number
of objects within the system. The appropriate lock is only obtained at the
replica where the transaction operation is executed. During 2PC, at the
prepare phase, the appropriate locks will be obtained at a majority of the
replicas for the object. We call this feature off-line replicated lock acquisition.
Note that since majorities intersect, conflicting locks will be detected at
prepare time.

Our concurrency control mechanism is preemptive. When a conflict
between two transactions is detected the transaction with the lower priority is
aborted. The abortion of transactions precludes the deadlock possibility, since
transactions are not allowed to wait in order to acquire locks. In addition, seri-
alizability problems cannot occur since the off-line replicated lock acquisition
feature guarantees that conflicting locks are always detected and the preemp-
tion feature of the mechanism guarantees that a transaction that would create
serializability problems will not be allowed to commit.

Transaction priorities can be easily assigned in a manner that would
enforce a total order among them. Since for every transaction there exists a
unique client the transaction priority may be defined to be the transaction id
appended to the site id hosting the client process. The transaction id is, in
turn, composed of two fields: the client process id followed by the transaction
count. The latter is simply a counter maintained by each client process which
is incremented every time a new transaction is started at this client.

Having described the two major mechanisms incorporated in the optimis-
tic, location-based replication method we can now proceed to describe the
method.

3.4 The Replication Method

We describe our method by examining the behaviour of the main
processes during transaction processing.

Processing at the client

Clients are responsible for finding the appropriate replica group for each
transaction operation. This is accomplished by sending the "server?” query to
the location server with arguments the objects that are referenced in the tran-
saction. Subsequently, the client will select from the replicas returned by the
location server one replica, (hereafter referred to as the leader) for each
object, to which it will submit a request for executing the operation. Clients
are also the coordinators of the two-phase commit protocol. For simplicity
assume that clients are not replicated. After a client has received the replies
back from the leaders, for all requests, then it starts the execution of the two-
phase commit protocol. In the first phase, a client transmits prepare messages
to each leader that communicated with it. Each leader eventually replies with
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an indication of whether it agrees to prepare and, if it is involved in updating
an object, it also includes in the same message a list of the replicas that parti-
cipated in the update. If all leaders agree to prepare then phase two (the com-
mit phase) is initiated. The client sends an "update-table” message to the loca-
tion server. This message contains a list identifying, for each object, which
replicas store the recently-updated state. Subsequently, the client reliably
broadcasts a commit message and waits until all leaders acknowledge it and
the location server acknowledges the "update-table” message.

If some leaders refuse to prepare, the transaction is aborted by (reliably)
sending an abort message to all the leaders that communicated with the client.

Processing at the leader

Upon reception of a request, the leader will start serving it, acquiring
(locally) the required locks. As soon as the results are computed they will be
immediately returned to the client. The propagation of the updated object
states occurs in the background. We assume, at this point, the existence of an
update propagation process. Its main task is to maintain a buffer of messages
containing updates that should be communicated to the other replicas. This
process operates periodically, attempting to transmit the updated object states
to the replicas. It also maintains a response list containing the ids of those
replicas that have acknowledged the reception of the updates. The leader
interacts with the update propagation process through the message buffer.
Before replying to the client, the leader enqueues the updated state to the
communication buffer. When a sub-majority (i.e., a majority less one) of
replicas have acknowledged the updates, the appropriate messages are
removed from the buffer by the update propagation process.

After receiving a prepare message, the leader is responsible for verifying
that a sub-majority of the replicas know of all the updates that it has per-
formed on behalf of the preparing transaction. This is accomplished by having
the leader examine the response list for a sub-majority of responses for each
update. Actually, the leader may first rebroadcast the updates to the replicas
and then check the response list. It is likely that, by this time, a sub-majority
of replicas have already received and acknowledged the updates. Thus, typi-
cally, the waiting time for the leader will be small. When and if the leader
receives a sub-majority of acknowledgements from the replicas it replies with a
"prepared” message to the client. This message will also contain the list of
replicas that updated each object. Otherwise, it refuses to prepare, sending a
"refuse” message to the client.

After receiving a "commit" message from the client the leader will broad-
cast a "commit” message to the replicas, write the pair (transaction id, "com-
mitted") to the event history log, and wait until a sub-majority of replicas ack-
nowledge the message. At this point, the leader will release any pertinent
locks and reply with a "committed” message.
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Processing at other replicas

Replicas that are not leaders are also involved in the processing of the
transaction. This involvement takes place during the execution of the 2PC pro-
tocol and during update propagation. When a replica receives an update pro-
pagation message, it obtains the required locks for the objects that will be
accessed. Subsequently, it will perform the indicated operations and then ack-
nowledge the update messages (or the "prepare” message if it has been
received). In the case of read operations the replica will only obtain the read
lock — actual reading of the object is not required.

When a replica receives a "commit” message from the leader it appends a
(transaction id, "committed") entry to its event history log. At this stage the
replica will also release any locks that it holds pertaining to the committing
transaction. Subsequently, it will reply to the leader with a "committed" mes-
sage.

Discussion

As mentioned earlier, the description of the method given so far does not
preclude the possibility of a transaction executing with stale location informa-
tion. The following scenario can lead to this phenomenon. A client for a tran-
saction may receive up-to-date location information, but before the client uses
it to select a leader for an operation it is made obsolete due to an "update-
table" operation executed by another transaction. Before we proceed to discuss
the above scenario in more detail let us make two observations. First, all other
timing problems regarding transaction commands to the location server can be
resolved by the concurrency control algorithm employed by the replication
method. In other words, if there is a conflict at a location table entry, the
same conflict will be detected at the object represented by that entry and one
of the two transactions will abort. This ensures that the transactions which are
allowed to commit will always have obtained the most recent information from
the location service. Second, the above scenario that results in a transaction
executing with stale location information is very rare. The reason for this is
partly due to the first observation. In addition, however, it is instructive to see
that "update-table” commands occur as a result of some failure in the replica
group for a replicated object. The reasonable assumption that failures are
infrequent implies that "update-table" commands are infrequent. Furthermore,
the list of up-to-date sites for an object x returned in the "server?" query will
likely have many sites in common with the list of sites for x included in any
"update-table” message. Thus, it is likely that a client will indeed select a
leader that has the most recent state for the referenced object even if an
"update-table" command has been executed before the selection of the leader.

It is important to ensure correct transaction behaviour in the presence of
the above anomaly. Correctness can be easily guaranteed by using one of the
following two mechanisms. Recall that our method requires transactions to
hold read locks at location table entries until they commit. In this way, con-
flicts with "update-table” commands from another transaction will be detected.
The first mechanism requires the transaction holding the read lock to be
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aborted, thereby giving precedence to commiting transactions. The disadvan-
tage of this approach is that if read locks at the location table are kept until
commit time, dummy "update-table” messages are required to release them.

The second mechanism is based on the earlier observations recognizing
the rareness of the above anomaly. Therefore, it does not require the holding
of read locks at location table entries until commit time. Instead, the client
releases them immediately after the results to the "server?" query are received.
The event that the location information received by the client has become
obsolete due to a subsequent "update-table” operation of another transaction is
detected and dealt with as follows: Each replica site is required to store a ver-
sion number as part of the state of an object. When a leader propagates an
update to a replica the update includes the new version number. If the leader’s
version number for the updated object is less than or equal to the version
number of some replica for the same object then the transaction is aborted.
Thus, transactions receiving stale location information can never commit.

Having introduced the method and its individual components along with
some informal correctness arguments we now present a formal proof of the
method.

4 Correctness Proof

The replication method of the previous section is now proved correct. The
formal model and proof technique are taken from [Bernstein83]. We briefly
introduce serializability theory for non-replicated systems and, subsequently,
the extensions made by Bernstein and Goodman to obtain the theory for repli-
cated systems.

4.1 Correctness in Non-replicated Systems
Transaction executions are modeled by logs. For every read (write) opera-
tion on object x of a transaction i a r;(x) (w;(x)) entry appears in the log of i.

Two operations conflict if they access the same object and at least one of them
is a write. A transaction log is a poset T,=(%;, <;), with X, representing the

operations in transaction i and <; depicting the order in which these opera-

tions are performed. A database log over a set of transactions T={T 1,15, T}

is modeled by a poset L with the following properties: 1) L=(Z,<), with
n n

= Y 5 3;2)<D Y <; ; 3) for every r;(x) there exists at least one w;(x)

such that w;(x) < r/(x); 4) all pairs of conflicting operations are related
through < .

Transaction T; reads-x-from transaction T; if 1) L contains r;(x) and w;(x)
entries, 2) w;(x)<r;(x) in L and there exists no transaction T, with
w;(x)<wy(x)<r;(x). Two database logs are said to be equivalent if they have
the same read-x-from relation for all objects x.
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A log is serial if it is totally ordered and for any two transactions 7, and
T; either all operations of T; precede all operations of T; or vice versa. A

database log is serializable if it is equivalent to a serial log. The serialization
graph of a log L, SG(L), is a graph such that SG(L)=(V,E), with
V={Ty,...,T,} and E= {T;—T; | there exist conflicting operations op;, op; with

op;<op;}.

Theorem 1 [Papadimitriou79]: A concurrency control algorithm for non-
replicated databases satisfies the serializability correctness criterion if SG(L) is
acyclic.

4.2 Correctness in Replicated Systems

The serializability theory for non-replicated databases is easily extended to
the replicated case. The extensions are needed in order to formalize the dis-
tinction between a logical replicated object x and the copies of it. In general,
we say that a replicated object x, has the (physical) copies denoted by x,, x,,,

.vey Xq, Where a;, i=1,...,t represent the sites that store a copy of x. Two

operations are now said to conflict if at least one of them is a write and they
access the same physical copy. Thus, we have two kinds of operations, logical
and physical, and a translation function which, given a logical operation as an
argument, returns a set of physical operations needed to carry out that opera-
tion in a replicated system. Formally, the translation function ¢, is defined as:
t(r;(x)) = r/(x,) for some site a storing a copy of x; and t(w;(x))={w,(x,),
w;(xp), ..., w;(x,)}, where m copies are enough to guarantee correctness.

A replicated database log (rd log) over a set of transactions is a poset L
n
with the following properties: 1) L=(X, <), with 2=t(190 %;); 2) For each T,

and op;y, op;; if op;1<op;; then each physical operation in t(op;) is <-related
to t(opiy); 3) for every ri(x,) there exists at least one w;(x,) with
w;(x,)<ri(x,); 4) all pairs of conflicting operations are related through <.

A transaction T reads-x-from transaction T; in a replicated system if an rd
log L for this system contains ri(x,), w,(x,) for some copy x,, with
w;(x,)<ri(x,) and there exists no T with w;(x,)<w,(x,)<r;(x,).

An rd log is one-copy serializable if it is equivalent to a serial one-copy
log. The other definitions remain as before. The one-copy serialization graph
for an rd log L, 1-SG(L), is constructed as follows: 1) it contains the serializa-

tion graph of L, SG(L); 2) it embodies a total order of all transactions that
write object x, denoted by <<, for all objects x, and 3) for each x and tran-

sactions T;, T; and T, such that T; reads-x-from T; and w;(x) <<, wy(x),
1-SG(L) contains a path from T; to T;. This path is called a reads-before path
and models the need for enforcing r;(x) to precede w;(x).
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Theorem 2 [Bernstein83]: For an rd log L, if 1-SG(L) is acyclic then L is
one-copy serializable.

This is the main tool for proving that replication methods are correct.

4.3 The Proof

Since we use the virtual partitions method for the replicated location
server we are guaranteed that the location table is one-copy serializable. In
addition, via the use of version numbers or the holding of read locks at loca-
tion table entries until commit time the method can detect all events in which
a transaction would execute with stale location information. Since our method
aborts such transactions it is guaranteed that no transaction would execute
with stale location information. Thus, we know that the "server?” query will
always return the correct information. Knowing this, we concentrate on prov-
ing the one-copy serializability of the replicated objects handled by the
location-based method without modeling the interaction of the client with the
location service.

The proof requires four basic steps: 1) formalize the behaviour of the
replication method using an rd log L; 2) construct the serialization graph
SG(L); 3) construct the one-copy serialization graph 1-SG(L), and 4) show
that 1-SG(L) is acyclic.

Using the definition of an rd log that was presented previously and the
description of the replication method we construct an rd log L, corresponding
to transaction executions in a system using our method. L consists of

1) For every transaction T; that reads object x at replica site a, L contains
rd—locky(x,)—r;(xs)—{rd—lock,(xy),...,rd—lock;(x,)}, where [—'Z'—ng <n-1,

with n representing the total number of copies of x. This defines ¢(r;(x)). The

rd—lock operation represents the acquiring of read locks on the indicated
object.

2) For every transaction 7, that writes an object x, L contains
wr—locky (x,)—wi (x, )= {(wr—locky (x)) = wi(x1)), ..., (Wr—locky(xm,)—wi(x. )},
with m defined as above. This defines r(w;(x). The wr—lock operation
represents the acquiring of write locks.

3) If r,(x,) € L and T, subsequently writes x then r,(x,) — {w;(x;),...,w;(xs)}.
4) Every r;(x,) follows at least one w;(x,), where i»j.

5) All pairs of conflicting transactions are <-related: i) rd—lock;(x,) conflicts
with wr—lock;(x,), and ii) wr—lock,(x,) conflicts with wr—lock;(x,) and
rd—lock;(x,), for some copy x, and transactions T;, T;.
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Rules 1) and 2) define the translation function ¢ with respect to the specif-
ication of our replication method. Having introduced all the necessary physical
operations we simply follow the definition of an rd log to construct one that
corresponds to allowable executions of transactions in our method.

The construction rules for SG(L) have already been explained and will not
be repeated here. The following two lemmas play a central role in the proof.

Lemma 1: If T; — T; € SG(L) then T; committed before T,.

Proof: Since T; —T; € SG(L) we know that there exists at least one pair
of operations op;, op; € L, such that op;<op; and op; conflicts with op;. The

conflict implies the existence of a common copy on which both operations
were performed. This, in turn, implies that if the two transactions executed
concurrently (e.g., op; occurred before T; committed) the conflict would be

detected. Recall that the concurrency control algorithm employed in our
method forces the transaction with the lower priority to abort. If we assume
that 7, and T, executed concurrently then since op; is ordered before op;, T;

would be the aborted transaction and it would abort before op; was per-
formed. But this would imply that L does not contain the entry op; (recall that

L contains only the allowable transaction operations). Therefore, we can con-
clude that T; acquired the locks(s) necessary for performing op; after T; had

released them, that is, after T, committed. Thus T; committed before T;.0

Lemma 2: The serialization graph SG(L) is exactly the same as the one-
copy serialization graph, 1-SG(L).

Proof: To construct 1-SG(L) we first construct SG(L) and we subse-
quently add enough edges so that i) there exists in 1-SG(L) a total write
order (denoted <<,) among all transactions writing object x, for all objects x,
and ii) for all T}, T}, T, such that T; reads-x-from T; and T; <<, T, we must
have a (reads-before) path from T to T;.

First we claim that SG(L) already embodies a total write order for all
objects x. This is easily shown since majorities intersect. Our method requires
that logical writes be physically applied to a majority of the copies of the
updated object. This implies that for any two writes on any object x, w;(x),
wj(x), there must exist a copy x, such that w;(x,) € L and w;y(x,) € L. The
existence of this copy implies, by definition, that the two writes conflict (via
the wr—lock operations). From the construction of L we know that any pair
of conflicting operations are <-related. Finally, from the construction rules of
SG (L) we know that there exists an edge between the nodes 7; and T;.

Therefore, for any object x and for any two transactions writing x, either
T; = T;€SG(L), or T; — T; € SG(L). Thus, SG(L) contains a total write
order for all objects, as required.

Second, we claim that no edges need be added to the edges of SG(L) to

create the reads-before paths. We actually make a stronger claim, namely, if
T; reads-x-from T; and T; <<, T} then T; — T, € SG(L), for any such transac-

tions T;, T;, T} and any object x.
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To show that the second claim holds recall that the method requires that
read locks be obtained at a majority of replicas (during the prepare phase) for
every read operation. Write locks are also obtained at a majority of replicas.
Recall that rd-lock operations conflict with wr-lock operations, provided they
are applied on (at least) one common copy. Since majorities intersect and T;

reads x and T, writes x we must have, for some copy x,, that either
ri(xg)<wi(x,) in L or vice versa. If we assume that wy(x,)<r;(x,) then
T,—T;€SG(L). From Lemma 1 we then conclude that T, commits before T;.
However, it is given that T, — Ty € SG(L), since T; <K, T;. The last two
statements then violate the assumption that T; reads-x-from T, because if T;
committed before T, and T; committed before T; then T; would read x from
T,. Thus, we have reached a contradiction. Therefore our assumption was
wrong. Hence, r;(x,)<wy(x,) which implies that T; — T, € SG(L).

From the above two claims it is easily seen that Lemma 2 holds. O

Having proved these two lemmas the main theorem follows, easily.

Theorem 3: 1-SG(L) is acyclic.

Proof: (by contradiction)

Lemma 2 implies that the statement of Lemma 1 holds also for 1-SG(L).
Assume that 1-SG (L) contains a cycle, say, Ty — T, — ... = T, — Ty. From

Lemma 1 we know that T; commits before T,, ..., commits before T,. Since

the "commits-before" relation is obviously transitive and irreflexive we obtain
the contradiction that T; commits before T, and T, commits before T;. Thus,

our assumption that a cycle exists was wrong. O

5 Comparison with Other Work

In this section we concentrate on the performance and availability charac-
teristics of the method described in this paper. We also compare this method
to other well-known methods.

5.1 Performance Considerations

Our method was developed out of our desire to minimize the cost of repli-
cation in distributed systems. This, in turn, translates to minimizing transac-
tion execution delay. Naturally, the goal was to achieve transaction delays that
are similar to those occurring in one-copy systems. This is only the second
replication method that can make this claim—the other being the view-
stamped replication method.

Let us discuss the relative performance merits of the location-based
method and the viewstamped method and at the same time indicate why they
have similar performance to non-replicated systems. Before a transaction starts
executing, the client requests location service. In a non-replicated system this
typically involves communicating with a remote site that stores the location
information. In viewstamped replication the client again obtains from a



Minimizing Replication Costs 17

remote site information regarding the replica group that implements the refer-
enced objects. Subsequently, the client consults enough of these replicas in
order to determine the primary replica. Determining the primary may be
costly and for this reason information regarding primaries of replica groups is
cached. However, the success of cache memories depends largely on the pro-
perty of locality of reference. Locality of reference has two dimensions: tem-
poral locality and spatial locality. Temporal locality refers to the property that
recently-cached information will be needed again by the client in the near
future. Spatial locality assumes that information is cached in blocks and that a
lot of the information contained in a recently-cached block will soon be
needed. In the viewstamped method, information is not cached in blocks and
thus the spatial locality property cannot hold. In addition, we do not believe
that temporal locality holds. It is, in general, doubtful that transactions that
access the same replicated objects will execute at a client within a short time
period of one another. Therefore, we believe that locating the primary replica
may be a significant source of performance degradation. This degradation will
be more severe for transactions involving a large number of objects.

After obtaining the necessary location information, the client submits
each operation to an appropriate site that can execute it. In non-replicated sys-
tems, as in systems that employ the viewstamped and location-based methods,
the operation is executed at only one site and the results are immediately sent
back to the client. In all three cases any concurrency that might be possible
within a transaction may be easily exploited. In the background, however,
location-based and viewstamped systems broadcast the effects of the executed
operation to the other replicas. Both methods require only a majority of ack-
nowledgements.

When all transaction operations have been performed the 2PC protocol is
initiated. A site participating in 2PC in a non-replicated system need not com-
municate with any other sites before replying to the "prepare” and "commit"
messages. It must, however, write transaction status information and the
effects of transaction operations to stable storage. In both location-based and
viewstamped methods an extra round of messages is needed instead of writing
to stable storage. Recall that the extra round of message exchange is needed
so that enough replicas are informed of the effects of the transaction opera-
tions. It is generally agreed [Birman85, Oki88] that stable-storage writes are
approximately as costly as this additional messaging round. Here lies the
essence of the claim that stable storage is not needed in a replicated system,
but can be successfully substituted by the replicated information. Hence, we
can see that the execution of the 2PC protocol will introduce similar delay in
both viewstamped and location-based replicated systems as in non-replicated
systems.

We should point out that the location-based method adds one more parti-
cipant to the 2PC process. In essence, the delay during the execution of the
2PC protocol is equivalent to the delay that would occur in the viewstamped
method if one more primary had to be included in the 2PC process. Thus,
2PC is slightly more expensive in our method than it is in the viewstamped
method. However, we expect that failures will be rare. This implies that in
most cases significantly more than a majority of replicas will know of an
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updated object state. Therefore, it is likely that the set of replicas that was
returned to the client from the location server will be identical to the lists
returned by the leaders to the client in the prepare phase. Thus, no "update-
table" message need be sent. As a result, there will often not need to be an
extra participant in the 2PC process.

As mentioned earlier, the location-based method avoids the disadvantages
associated with replication methods that are based on the primary-site para-
digm for replication. In particular, there exists the danger of performance
bottlenecks being formed at the primary sites. Furthermore, our method can
easily support load balancing since the client has the luxury of choosing a
leader from a set of replicas.

No other replication method can claim performance similar to non-
replicated systems. Typically, in other methods reads and/or writes are applied
to a number of replicas before the results are obtained. A notable exception is
the method employed by ISIS [Birman85]. ISIS uses the notion of a replica
coordinator which is similar to our notion of a leader replica. Operations are
only performed at the coordinator. However, an expensive two-phase protocol
is used for replicated lock acquisition and avoiding deadlock problems.

5.2 Availability

The availability of operations in location-based replication is constrained
by the requirement that a majority of replicas be available for each transaction
operation to prepare and commit during 2PC. In this respect, the availability
characteristics of our method are similar to those of viewstamped replication.
We should note that requiring a majority of sites to be available is not very
restrictive, since, in most cases, a majority of replicas will indeed be available.

Our method, can be easily modified so that, like most quorum-based
methods, it is flexible enough to allow trade-offs between the availability of
read and write operations. Read and write availability variables A, and A,, are

used instead of majorities of replicas. During the execution of transaction
operations, as before, only one replica is accessed. However, during the
prepare and commit phases of 2PC instead of contacting a majority of replicas
a read operation accesses A, replicas. Similarly, a write operation accesses A,,

replicas. As long as A,+A,>n and 24,,>n, where n is the total number of

copies, correctness is guaranteed. In this way, by manipulating the variables
A, and A, we can trade-off the availability characteristics of read and write

operations. This is not possible in the viewstamped replication method since
the view-change algorithm requires that a majority of replicas be involved in
2PC in order to ensure that the correct primary is selected. Therefore,
location-based replication is more flexible than viewstamped replication.

A few recent research efforts have been directed towards developing
methods whose availability characteristics degrade gracefully in response to
failures and, especially, network partitions. For example, [Abbadi86,
Abbadi89] present methods in which quorum sizes are adjusted (as failures
occur) so that the availability of operations is unaffected. El Abbadi and
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Toueg developed the concept of a view of a site which is an approximation of
the set of sites with which communication is possible (virtual partition).
Within each virtual partition read and write quorums may be redefined and
operations will still be available provided there are more than a (globally
defined) threshold value of accessible replicas. The method in [Abbadi86]
disallowed concurrent writes in more than one partition. The method in
[Abbadi89] fixes this deficiency. In [Herlihy87a], Herlihy uses a predefined
set of quorum assignments. It consists of levels of different read and write
quorum sizes. As failures and partitions occur and operations are made una-
vailable, given the current assignments, transactions can switch to another
level in which the currently unavailable operation has a smaller quorum size
and thus is available. This is called quorum inflation. All of these methods,
however, require special algorithms (either view-change algorithms or quorum
inflation/deflation algorithms). These algorithms are costly but on the assump-
tion that partitions are rare or that availability is the primary concern, repli-
cated systems may reasonably use such methods.

Availability is also affected by the locking mechanism which, in effect,
makes objects temporarily unavailable. This is the case for most other
methods. Location-based replication, as a result of the concurrency-control
algorithm that it uses, induces transaction abortions when a lock conflict is
detected. The drawback of this side effect is that some computation may
occasionally be wasted. Recall that our design is based on the assumption that
lock conflicts, in general, are rare. In comparison, viewstamped replication
does not abort transactions when lock conflicts are detected but induces tran-
saction abortions when nodes and communication links fail and a new view is
initiated. Moreover, while the view-change algorithm is in progress, replicas
are inactive and requests cannot be served. This disruption of service is even
more pronounced since, after the new view and primary have been esta-
blished, the client’s cache must be updated (to reflect the new primary) before
a transaction can start executing.

An important contribution made in [Abbadi86, Abbadi89] is the separa-
tion of availability concerns from performance concerns. Quorum sizes
represent the performance variables used to define the performance cost while
accessibility thresholds are the availability variables used to define the availa-
bility of operations. By fine tuning these variables the designer can address
these issues independently. In our method, the performance variables have
been optimized corresponding, in essence, to quorum sizes of one, while the
availability variables can be set to reflect the desired levels of availability of
read operations versus the availability of write operations.

6 Contributions and Concluding Remarks

The method presented here is a descendant of viewstamped replication. It
is a modification and extension of that method, which in turn, is a modifica-
tion and extension of the virtual partitions method. Viewstamped replication
adopted the concept of a view, introduced a primary replica and incorporated
the method into the transaction-processing mechanism. The introduction of a
primary replica facilitates the minimization of the replication cost, while a
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view-change algorithm ensures correctness in the presense of failures.
Location-based replication introduces two mechanisms that can be used in
order to provide a similar performance to non-replicated systems without using
the primary-site paradigm for replication. The first mechanism is a location
service with an extended functionality. The key idea is the incorporation of
this extended location service into the transaction-processing mechanism. The
end result is that transaction operations need only execute at a single replica
site. The second mechanism is a preemptive, optimistic concurrency control
algorithm, that introduces an efficient way of avoiding serializability and
deadlock problems.

Our method avoids the inefficiencies associated with methods based on
the primary-site paradigm for replication. In particular, viewstamped replica-
tion may cause performance bottlenecks, disallows load balancing and may
exhibit considerable disruption of service (especially in environments where
failures are more frequent). In addition, location-based replication is simpler
because it does not require any supporting algorithm, such as a view-change
algorithm. It is also easily proved correct.

Our method has good availability characteristics, in that only a majority
of replicas is required to be available. Location-based replication is also more
flexible than viewstamped replication in that it can allow the availability
characteristics of read and write operations to be traded-off. However, it is
not as flexible as some of the aforementioned methods that make availability
degrade gracefully with failures. We believe that there is no inherent restric-
tion in our method that would preclude the above desirable property for avai-
lability. This is an important area for future research.
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