Gréobner Basis Methods
For Solving
Algebraic Equations
Stephen Richard Czapor
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

Research Report CS-89-51

November, 1989

GROBNER BASIS METHODS
FOR SOLVING ALGEBRAIC EQUATIONS

by

Stephen Richard Czapor

A thesis
presented to the University of Waterloo
i ful fillment of the
thesis requirement for the degree of
Doctor of Philosophy
n
Applied Mathematics

Waterloo, Ontario, 1988
©S. R. Czapor 1988

Abstract

In this thesis, we examine methods of solving systems of algebraic equations
(over rational numbers or rational functions) by computing Grébner bases for
the associated polynomial ideals. We give particular attention to the develop-
ment of practical improvements to the algorithm of Buchberger, when the lexi-
cographic term ordering is used.

A classical method for solving algebraic equations (using resultants) is
described, to provide insight into the nature of nonlinear elimination. Motivated
by the problem of polynomial simplification modulo side relations, Buchberger’s
algorithm for the computation of Grébner bases (over a field) is described as a
basis completion procedure for which the polynomial ring is structured with an
ordering of multivariate terms. In this context, the choice of term ordering is
insignificant. Therefore, the graduated ordering (with which GrSbner bases are
most easily computed, in general) is usually chosen. We see, though, that the
methods used to determine the solutions of a system from its Grébner basis do
depend on the choice of ordering; furthermore, for the lexicographic ordering
the method is simpler and more widely applicable. We therefore consider (and
provide detailed algorithm descriptions for) ways to control the explosive degree
and coefficient growth endemic to this ordering. These include careful formula-
tion of the algorithm variant, "criterion” use, S-polynomial selection and reduc-
tion strategies, and coefficient arithmetic. Empirical results (using the Maple
algebra system) indicate that vast improvement to the performance of the (lexi-
cographic) algorithm is possible. Algorithms are presented which combine the
use of multivariate factorization with Buchberger’s algorithm. We see that the
subsequent computation of a lexicographic Grébner basis decomposition is gen-
erally much more efficient. This technique, along with those above, is incor-
porated into the construction of a solver (.e., elimination algorithm). Using the
full range and flexibility of the methods at hand, we then discuss the solution of
a number of previously intractable problems.

(iv)

Acknowledgements

I would like to thank my supervisor, Dr. K. O. Geddes, for his guidance and
generous financial support throughout my Ph.D. studies. I would also like to
acknowledge many fruitful discussions with my colleagues in the Symbolic Com-
putation Group at the University of Waterloo: in particular, Michael Monagan,
who suggested the idea of using fraction-free arithmetic and explained the effi-
cient computation of contents, and offered much advice on the Maple implemen-
tations used in this thesis; also, Greg Fee, for providing a number of useful test
problems and suggestions regarding the use of the Maple system. Finally, I wish
to thank the Natural Sciences and Engineering Research Council for financial
support in the form of a Postgraduate Scholarship.

(v)

Table of Contents

Chapter 1: INtrodUuction .iieicciieiiccciiieeeceeeec ettt e e eeee e e e e e eseeeeeseeeessssenenes 1
L1 MOIVALION tiiiiiiiiiiiiiiiiiiiiiieiieieeeeeee e eeeer et eeeeseasaaessssesnnsensnsesennns 1
1.2 History and Related WOTK w.iuciieiiiierieieeeeeceeeeeeeeeeeeeeeeeeseenensnnnnsnns 3
1.3 OULIIE oottt ettt e e e e e e e e e e e e s e e essesenennnereeees 5
Chapter 2: Classical ElIMIination ...c.ecovccieeiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeseeee s esesenns 7
2.1 The Theory of ReSUILANIS cvecvuiieiiiiiiiiiiieseeciieeeeeee e eee ettt eeseeeseeeeeeeseesssnenes 7
2.2 Resultant Algorithms and Polynomial Remainder Sequencesc......... 13
2.3 Solving Algebraic Equations via Resultantscccccceeeervmveverneeeeseeeseesereeess 19
Chapter 3: GroDNer BAseS ..ciiiiiciccieeeeeeiieieieieienreeesseeeeesereseseesesseseessssesssssneses 26
3.1 Polynomial Ideals and Standard Bases ..c.cieeccieeieeeeeeereeeeeemmieeeeeeeeeseeessenes 26
3.2 Buchberger’s AIGOrIthm ..occeeceeeiieieeiiieiiecetee ettt e e 33
3.3 The Lexicographic Ordering: Criteria and Selection Strategies 43
3.4 The Reduction Sub-algorithmceiiiiiiviiiieiiieeeeeeee et e e e e e e e e e e 55
Chapter 4: Solving Algebraic EQUAtiONs ...ciiccevvveeerieeeeecreeeeeeeesessesrreeeseessesensens 71
4.1 Grobner Bases and Systems of Algebraic EQuations ..oeveeeveeeeeeeeveeeeveennnnnn, 71
4.2 The Use of Multivariate FactoriZationcoeeeeceeereeeeeevessereeseeesssseeeeesesesans 84
4.3 A Variant AIZOTIERIN weeeeeiiceeee e eeeee e eeeeeeeeeees e et 93
4.4 The Construction of a Solver; Further EXamples ..cocccveeeevvvveereveivreesarnreenns 98
Chapter 5: CONCIUSIONS ..vvuueeiiiiiieeii ittt e e e e e e e eeeeeeeeeesees e eee s 106
Appendix: List of Test Problemscccccvvvieeeimiireeieiieeieieeeeeeeeseseeeesssssessesenneeess 109
REETEIICES woiiiiiitiiice ettt te e e e s e e e e e e areeeeeeseesseeees 126

Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:
Table 3.5:
Table 3.6:
Table 3.7:
Table 3.8:
Table 3.9:
Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:
Table 4.5:

List of Tables

standard vs. modified use of Criteria ...ccevverirreervereeecreeeerereree e 48
comparison of algorithm variants for <z ..cceevceereiieiiceeriiicccreeen. 52
algorithm variants and selection strategies for <ycccevrvvvrerrueennne. 53
<g-reduction over rational NUMbErS....ccceeerrecreeeeeniireeeeeieeeeeeee 62
<g-reduction over rational NUMbErS ..ccceveveeurieiecinrreireei e, 63
<g-reduction over rational functionS...uccceeeeervvuveeeereiiceieeeee e, 63
<g-reduction over rational functionscccceeceeeeeeicerrercvereesireensenen. 64
the effect of basis sorting on <j-reduction (integer coeffs.)............. 68
the effect of basis sorting on <;-reduction (polynomial coeffs.) 69
decomposition times for <;-Grobner bases......cccevveveeivereerereeseeenn. 76
decomposition times for <;-Grébner basesceveeerivieeieeveeerereneens 80
the effect of factorization in < -Grébner bases (integer coeffs.)...... 91
the effect of factorization in <;-Grdbner bases (polynomial coeffs.) 92
a hybrid decomposition algorithmceeeeeeeeeiriieerceereeeeeeeeseeeeeeeeeannns 96

(vii)

List of Algorithms

Algorithm 3.1: reduction (sub-) algorithm (reduce) ..cccoceeevvvereciriinceeiecerereennne, 31
Algorithm 3.2: simple variant of Buchberger’s algorithm (Gbasis)...c..cuerruuuen.... 35
Algorithm 3.3: inter-reduction of basis (reduceset)......ccccverevveeiieevererecceneneennee. 40
Algorithm 3.4: Buchberger’s algorithm with criteria (Gbasts)....ccoocvvevvurerernnnee. 41
Algorithm 3.5: normal selection strategy (normselect) ..occcvveveeevecieeeeeccneneennee. 45
Algorithm 3.6: selection with exhaustive criterionl (selectl)...cccervuerreecrennn.... 46
Algorithm 3.7: selection with exhaustive criterion?2 (select?)....cccovvvvruerrcunnnne. 47
Algorithm 3.8: Buchberger’s algorithm with modified normal selection

(GDASTS) cuviiniiieiineiiciiet ettt sttt ettt s e e saeesaeas 47
Algorithm 3.9: Buchberger’s algorithm with full basis inter-reduction

(GBASTS) curenriiiitcnriiitintec ettt s e 50
Algorithm 3.10: heuristic selection strategy (selectd).....cvvvvreevvmrevrercceeeeennnenne. 51
Algorithm 3.11: reduction over fraction field (reduce)...cc.cccervvvevvuiesrrecreenreennne, 55
Algorithm 3.12: probablistic content computation (content)....ccevveeveeereeruvennene. 58
Algorithm 3.13: computation of test divisors by division (extendi).....ceeu...... 59
Algorithm 3.14: computation of test divisors by factorization (extend?)........... 59
Algorithm 3.15: fraction-free reduction (7reduce)...uierecverereccereeveirerreerieeeeeennen. 60
Algorithm 3.16: fraction-free reduction (7reduce)...cceereceerevrereeeceeecrreirieeeeievenen. 61
Algorithm 3.17: fraction-free reduction with trial divisions (reduce)................. 61
Algorithm 3.18: fraction-free reduction with trial divisions (reduce)................. 62
Algorithm 4.1: construction of univariate polynomials (finduni).......cceeuuu...... 73
Algorithm 4.2: decomposition of <g-basis (decomPG)..ecvveeeeeevrvenerereirereenenan, 74
Algorithm 4.3: system solution via <g-bases (S0VEG) .cccovvrevrerirverrreerrrecerrerenn, 75
Algorithm 4.4: decomposition of <j-basis (decOmMPL)...cccevrrerivrevvererrenrrecrernnane, 77
Algorithm 4.5: system solution via <j-bases (SOIVEL) .ccceecvrvvrvrreveereenreeeeesnenne. 78
Algorithm 4.6: Buchberger’s algorithm with factorization (partdecomp)........... 86
Algorithm 4.7: improved use of factorization (partdecomp)....ceceeerereeuverveenenns 88
Algorithm 4.8: hybrid decomposition algorithm (hAdecomp)cccceeveeereeueervennene. 94
Algorithm 4.9: input pre-processing (Subdivide) ...covvvvveevuereceresireseiseeseeenene 99
Algorithm 4.10: improved system solution via <j-bases (Gsolve)ceeuren..... 101

(viii)

Chapter 1: Introduction

1.1. Motivation

In this thesis, we will consider a number of related methods for determining
the exact solutions of a system of algebraic equations over a field K. We note
that such a system, say

fzyh2g,002,) = 0,
f2($1,$2,...,xn) =0,
fk(xl’xQ’--wxn) =0 ’
may also be viewed as a set of polynomials F = {f1 ey [} i-e. a finite subset

of K[zy,...,x,] (the n-variate polynomial ring over K). Recall that a solution of
F'is an n-tuple (04, ,...,0,) of elements from a suitably chosen extension field
of K such that

fl(ab""an) = . = fk(al""7an) — 0.

For various reasons (e.g. the unsolvability of univariate equations of degree
higher than four), it is not always possible to obtain the solutions (or roots) of F
in explicit form. We can, however, obtain various representations of these solu-
tions from which explicit roots may often be derived. We will concern ourselves
primarily with the problem of obtaining these representations (some of which
are more useful than others), and not with the subsequent matter of their
exploitation.

The algorithms we discuss are valid for any coefficient field in which arith-
metic may be performed effectively. However, we will restrict our considera-
tions to the types of equations which are (arguably) most mathematically com-
monplace: namely, those with integer coefficients and those with integer coeffi-
cients which also contain symbolic (or "free") parameters. Typical examples
might be systems in variables z, y such as

Fy == {2° + 2y® — 9, 32%y — y° — 4} (1.1)
or

Fy = {az? + bxy + ¢, by® — cay +d}. (1.2)

Clearly, any equation with rational number or rational function coefficients may
be re-scaled to remove the fractions. Since the solution domains must involve
fractions, though, we will consider @ and Q(a,b,...,d) (i.e. the set of rational
functions in parameters g, ..., d) to be the fundamental domains in these respec-
tive cases. Obviously, other types of equations which may be reduced to these
forms by substitutions or other rearrangements may also be considered.

The need for exact (rather than numerical) solutions is clear in the case of
the system (1.2) above, since we cannot find solutions in terms of q, <., d by
numerical means. It can also happen that a system (with or without free param-
eters) has ¢nfinitely many solutions; that is, the solutions can only - be
represented by solving for a subset of the original indeterminates, while consid-
ering the others as parameters. Even when there exist only finitely many solu-
tions, numerical methods do not guarantee that all solutions will be found, or
offer a proof of inconsistency when none can be found. For example, it is diffi-
cult to determine all real roots of the system (1.1) by fixed-point iteration, due
to the proximity of some of these roots. Numerical difficulties, such as those
arising from ill-conditioned input, are another possibility. Finally, it may some-
times be crucial to know that a solution value of a certain variable is, say, V2.

1.2. History and Related Work

The problem of solving algebraic equations is, of course, the fundamental
issue of classical algebra. Up to the end of the eighteenth century, progress was
more substantial on the solution of linear systems and of univariate equations of
low degree. However, the basic ideas of nonlinear elimination seem to have been
known to Euler and Bezout during this time. The elimination theory based on
polynomial resultants was developed by Sylvester during the mid-nineteenth
century. Historically speaking, this was well into the "modern" era of algebra.
However, to distinguish this work from the more modern approach of Hilbert,
we refer to the resultant technique as the "classical" method.

In the work of Hilbert, an algebraic system F was treated as a basis (i.e. a
generating set) of a polynomial ideal, and the set of zeros as the algebraic mani-
fold of the ideal. It is clear that systems which generate the same ideal have
identical roots. However, this observation alone did not provide a new approach
to finding these roots, since (until recently) there were few constructive results
in polynomial ideal theory other than those of [Herm26]. In [Buch65], Buch-
berger not only presented the notion of Grdbner bases of polynomial ideals
(named after his supervisor, Prof. W. Grébner), but also an algorithm for their
computation. He thus provided algorithmic solutions to a wide variety of prob-
lems in polynomial ideal theory, including that of solving algebraic systems.
Since then, many papers on various aspects of Grébner bases (and Buchberger’s
algorithm) have appeared. (See [Buch85] for an extensive bibliography.) How-
ever, most of the subsequent improvements to the algorithm have been carried
out by Buchberger and various co-workers. Other workers have concentrated
chiefly upon extending it to new domains, and upon new applications.

We mention also a number of other recent methods, although we will not
attempt to describe them here. In [Laza79] and [Laza81], Lazard describes an
approach based on Gaussian elimination in certain matrices, which is in a sense
related to Buchberger’s algorithm. A method for determining the real roots of a
system based on the cylindrical algebraic decomposition technique of [Coll75]
was first implemented in [Arno84]; see also [Dave85] for a deseription of the
method. More recently, a geometric method based on the computation of
"affine compounds" (which depends on the earlier algorithms of Lazard) was
presented in [Chis83]. Other than the preliminary investigations of [Savi87], no
implementations of this algorithm are known at this time.

In the Maple system for computer algebra [Char83], a solver based on a
heuristic/substitution approach [Gonn86] has succeeded in solving several large
systems such as Problems 16, 17 of the Appendix. The relative efficiency of this
scheme when applied to such problems (z.e. those whose structure it can readily
exploit) serves to illustrate the potential importance of heuristic techniques in
the current problem.

1.3. Outline

We have already briefly discussed the nature and origins of several exact
methods for solving algebraic equations. In the succeeding chapters, we will
further motivate, develop, and refine the Grébner basis methods of Buchberger.
Knowledge of basic algebraic and computational concepts is assumed
throughout; the reader is referred to [Waer70], [Waer53], [Gedd83] for more
information on the theory and algorithms of algebraic computation.

In Chapter 2, we discuss various aspects of the resultant method of Sylves-
ter; this provides a useful background against which to develop the more
modern methods. We first present the fundamental properties of polynomial
resultants. Recent improvements to algorithms for the computation of resul-
tants are then discussed, with particular attention to the role of division
processes. We see, for example, that through the use of pseudo-division the
integral domains Z and Z[a,,...,a,,] need not be embedded in their respective
quotient fields. Finally, the use of resultants in solving algebraic systems by
elimination is described. We see that although the computation of a single
resultant may be very efficient, the corresponding elimination algorithm will
exhibit serious limitations.

In Chapter 3 we develop (in an independent setting) some of the theory of
Grobner (or standard) bases for polynomial ideals, as well as Buchberger’s algo-
rithm. We include some known complexity results, although study of this
aspect of the algorithm is extremely difficult and few such results exist. The
practical behaviour of the algorithm depends strongly on the type of structure
imposed on the polynomial ring, namely the ordering of multivariate terms.
Typically, either the so-called graduated or lexicographic orderings are chosen.
A number of studies have found (e.g. [Buch85], [Kapu86], [Boge86]) that Grébner
bases with respect to the former term ordering are usually much easier to com-
pute in practice. However, it turns out that the latter term ordering has pro-
perties which make it invaluable for our present purpose of solving algebraic Sys-
tems. We therefore formulate a number of improvements to the algorithm when
using the lexicographic ordering. Many of these are suggested by analogies with
the material of Chapter 2. For example, even though we work intrinsically over
a (fraction) field, it is more practical to avoid explicit fractions (e.g., work over
the sub-ring Z instead of @). The cumulative effect of our improvements is
that, for many practical examples, the comparison against the graduated order-
ing becomes much more favorable.

In Chapter 4, we present Buchberger’s methods for solving algebraic equa-
tions by computing Grébner bases, both for the graduated and the lexicographic
term orderings. Since these require that a permutation of the variables be fixed
(to establish an ordering of terms), we describe also a heuristic of [Boge86] for
choosing the permutation. We then explore the use of multivariate factorization
in the lexicographic algorithm. This, once again, is suggested by analogy with
the resultant approach. We show that such an approach readily lends itself to
further improvements, and new variants of the algorithm. Lastly, we discuss
the formulation of a "solver" based upon the lexicographic elimination scheme.
Some simple supporting algorithms for pre-processing raw input are given.

In Chapter 5, we briefly summarize our results, and discuss some possible
directions for future research.

Throughout this work, our conclusions are supported by extensive empirical
evidence. Clearly, such results depend on the nature of the implementations
used to gather the data. All of our implementations have been done in the
Maple system ([Char83], [Char86b]), a general purpose computer algebra system
(and programming environment) which has been under development at the
University of Waterloo for about eight years. Since all of our algorithms have
been stated in an Algol-like pseudo-code to a reasonable degree of detail, the
corresponding Maple code will not be presented here. Every effort has been
made to ensure that direct comparisons have been conducted on a fair basis.
(For example, common code is used for common sub-algorithms whenever
appropriate.) A fairly broad set of test problems is used, which is listed in the
Appendix. While only a few of these were previously unsolved, many were pre-
viously intractable by Grébner basis methods (or without considerable interac-
tion, via other methods). We have deliberately avoided consideration of trivial
problems, from which no significant insights may be obtained. We have also
tried to limit our use of contrived problems, since systems which arise in prac-
tice often possess structural attributes which are difficult to simulate.

Chapter 2: Classical Elimination

2.1. The Theory of Resultants

In this section, we provide a brief introduction to the basic tool of classical
elimination theory, namely the polynomial resultant. Resultants were devised
during the last century in connection with the polynomial greatest common divi-
sor (GCD) problem. Accordingly, there now exists a considerable body of theory
on the resultant (only some of which will be mentioned here). Resultants have
remained an important mathematical tool, with applications in algebraic elimi-
nation [Waer53|, quantifier elimination [Coli83], and computing in algebraic
extensions [Loos83b] to name a few. Hence, resultant algorithms, too, have
undergone considerable development in recent years. The relationship between
the classical elimination method for solving algebraic equations (based on resul-
tant theory) and the more general ideal-theoretic methods of the succeeding
chapters is not yet completely understood. However, we will see that many
analogies are possible which allow worthwhile practical improvements to the less
well-developed Grobner basis algorithms. Although we are most concerned with
the domain of polynomials over a field, many of the classical results readily gen-
eralize to other domains. We will therefore endeavor to state these results in
the most general possible form.

Let R be a commutative ring with identity, and let f, ¢ € R|[z] be non-zero

m . n .
polynomials such that f = Y7 a;2' and g = 3 b;2".
i=0 i=0

Definition: The Sylvester matriz of f, g is the m+n by m+n matrix

am Clm_l al ao
Ay, A1 eeneres ay do
Ay severer veninae Qg
M = 2.1
by byy e b, by (2.1)
bn bn—-l bl bo
by e e by

where the upper part of the matrix consists of n rows of f coefficients, the lower
part consists of m rows of g coefficients, and the entries not shown are zero.

Definition: The resultant of f, g (written res(f, g)) is the determinant of the
Sylvester matrix (2.1). We also have

res(a,b) = 1, a,b ER
res(a,g) = a", a ER .

We note the obvious but important fact that res(f, g) € R; that is, it does not
contain the indeterminate z.

Example: For the polynomials
J=3yx? -y’ —4, g=2"+ 4% —9,

considered as elements of Z[y|[z] := (Z[y])[z], we compute

3y 0 —y3—4 0

0 3yg 0 —y3—4
TBS(f,g) = det 1 y3 —9 0
0 1 ¢ —9

= —3y'% —12y" + 48 — 54y* + 8y + 72042 — 216y + 16 .

Obviously, resultants will be cumbersome to compute by hand except in very
simple cases. It is little wonder, then, that the practical limitations of the elimi-
nation theory were not well understood until the advent of symbolic computa-
tion. We now develop the relationship between resultants and GCD’s which is
fundamental to resultant theory.

Lemma 2.1: Consider polynomials f, ¢ € R[z] (where R is an integral domain)
of degrees m, n respectively:

f(z) = a,z™ + ... + qy,
g(z) = byz™ + ... + by,

where a,, % 0 % b,. Then 3 o, § € R such that of and B¢ have a non-
constant common divisor iff 3 nonzero polynomials p(x), ¢(z) such that

degree(p) <n , degree(q) <m ,

and

p(z)f(z) = q(z)g(x) . (2.2)

Proof: If such a divisor h(x) exists (with degree(h) > 1) we set

_ % _ B
R h

Conversely, if v = ged(f, g) € R, we have

Yp = ged(pf, pg) = gcd(qg, pg) .

However, the degree of the quantity on the right hand side is at least n, which
contradicts the assumption that degree(p) < n O

Note that in generalizing this result from the form stated in [Waer70] (i.e. from
a field to an integral domain), we essentially end up working over the fraction
field of R; given a field, the proof is valid with o — B =1.

Theorem 2.2 ([Waer70]): The polynomials f, g defined in Lemma 2.1 have a
non-constant common divisor (when working over the quotient field) iff res(f, g)
= 0.

Proof: By Lemma 2.1, we require the existence of p, ¢ as defined in (2.2). Let
us write

. m-—1 .
p = Mgz, q = > d;zt
) 1=0

10

Then the condition (2.2) is equivalent to m+n linear, homogeneous equations (in
the indeterminates ¢;, d;) with coefficient matrix (2.1). Neither p nor ¢ may
vanish identically, since (for example)

p(z)=0 = gq(z)g(z)=0 = g(z)=0

The system above has a nontrivial solution iff its determinant (i.e., res(f, g))
vanishes. Note also that res(f, g) = 0 if, contrary to assumption, either forg
vanish identically O

The connection between resultants and the (extended) Euclidean algorithm is
suggested by the next identity.

Theorem 2.3 ([Waer70]): Let f, ¢ € R[z] be polynomials of degree m, n > 0,
respectively. Then 3 polynomials h, k£ € R[z] with degree(h) < n, degree(k) <
m such that

hf + kg = res(f,g) . (2.3)

Proof: For f, g (with coefficients qa;, b;, respectively), we form the equations

:I:n_lf — ammm+n—1 + am_lxm+n—2 + ...+ aoxn—l ,
" 7if = Q™2 a2
m
f = apz" + ..+ aq,
xm—lg — bnxm+n—1 + bn_lxm+n—2 + ...+ boxm—l ,
g = bz + ...+ by .

If we write this system in matrix form, we note that its determinant is res(f, g).
We then obtain a relation of the form (2.3) by solving for the last unknown (z.e.,
"1") by Cramer’s rule O

11

The relationship shown above is fundamental, and suggests a slightly more gen-
eral approach.

Definition ([Roth84]): Let f, g be polynomials in R[z] where R is an integral
domain. Then p € R is a pseudo-resultant of f, g if 3 polynomials h, k € R|z]
such that

degree(h) < degree(g) , (2.4a)
degree(k) < degree(f), (2.4b)
hf +kg = p. (2.4¢)

It turns out that if R is a unique factorization domain, the set of pseudo-
resultants of a fixed f, g is a principal ideal. (See Chapter 3 for the definition.)
Hence, there is a "minimal resultant” of f and g, namely the generator of the
ideal. While such results are of theoretical interest, the conjecture that this
minimal resultant will be easier to compute in practice than the resultant has
not (except, perhaps, in the case R = Z) been supported.

Finally, we show that the resultant of f, ¢ may be written as a symmetric
function of the roots of f, g.

m n
Theorem 2.4 ([Loos83b]): Let f(z) = a, [[(z—c;) and g(z) = b, [[(z—B;) be
. i=1 i=1
polynomials over an integral domain R with indeterminates o, B;. Then

res(f,9) = ap [aer) . (2.52)

res(f,9) = (=)™ 87 T1/(8:) , (2.5b)
1=1

res(f,9) = af o7 T TT(e—8;) - (2.5¢0)

i=17=1

12

Proof: See [Waer70] or [Loos83b] for the details, which do not require that the
indeterminates o;, §; actually be the roots of f, ¢ O

Of course, the above result is of greatest interest to us when the roots are sub-
stituted for the indeterminates.

13

2.2. Resultant Algorithms and Polynomial Remainder Sequences

Since the advent of symbolic computation roughly thirty years ago, there
has been a resurgence of interest in the computation of polynomial resultants.
This has been motivated primarily by their use in the solution of systems of
algebraic equations (which we discuss in the sequel). Also, progress has been
hastened by their close connection with the more fundamental polynomial GCD
problem. For practical reasons, one usually re-scales equations (or polynomials)
with rational coefficients to remove fractions. Accordingly, previous research
has concentrated chiefly on the polynomial domain Z|zy,...,z5|, which requires a
more complex approach than that of polynomials over a field. Since one may
view such polynomials alternately as elements of

R[xs] = Z[xl""’xs—l7xs+13"'vxr][xs]

for 1 < s < r, we will sometimes write degree(f; zs) or res(f,g; z;) to avoid
ambiguity.

Algorithms for computing resultants are of two basic types: those based on
evaluation of determinants, and those based on polynomial division. The former
class obviously includes the very simple approach of directly evaluating
Sylvester’s determinant (e.g. by minor expansion). However, a superior
approach involves the construction of a condensed quantity known as Bezout’s
determinant. Given py, p, € R[z] of degrees m, n respectively with m > n, this
will be a determinant of order m formed from the coefficients of P1, Po in such a
way as to exploit the structure of the matrix (2.1). It is equivalent to Sylvester’s
determinant in the sense that by evaluating either we obtain res (p1, po)- Note,
however, that Sylvester’s determinant may be as large as order 2m. A descrip-
tion of the procedure for constructing and evaluating Bezout’s determinant may
be found in [KuAd69].

Since division processes themselves are of interest in the present setting, we
will examine them (and the corresponding resultant algorithms) in somewhat
greater detail. We use the terminology of [Loos83a], which differs from that of
[Coll67] and others. Let K be a field and Py, P2 € K|z| be nonzero polynomials
of degrees m, n respectively, with m > n. We recall that Euclid’s algorithm
allows us to compute the GCD of p,, p, by constructing a sequence such that

Pi = qPiy1 + Digo (2.6)

14

where degree(p; o) < degree(p;,,) for 1 <7 <k—2 and py,,; = 0. Here the
quantity p;,, is just the remainder upon dividing p; by p;,;. The sequence
P1y - Pi is therefore known as a polynomial remainder sequence (PRS) for
P1, P2, which ends with p, = ged(py,p,). Of course, the domain Zy,...,7] is not
a field and requires a different treatment. One approach is to embed the above
[integral] domain in its quotient field, and proceed as in (2.6). We refer to this
as the FEuclidean PRS for p,, p,. Unfortunately, the cost of performing arith-
metic over Q(y,...,z) is much greater than that over Z[y,...,2]. This is made
worse by the fact that the coefficients grow in size with each step of the pro-
cess. Some improvement is possible by making each remainder monic before the
next division step. That is, we divide through by the leading coefficient
leoeff(p; o). This corresponds to a sequence

Pi = ¢iPiy1 + BiPiyo s (2.72)

B; = leoeff(p; —a;ipiv1) (2.7b)

which we call the monic Euclidean PRS. One effect of the re-scaling is that the
new coefficients (after removing GCD’s) are typically much smaller (Z.e. coeffi-
cient growth is minimized). Also, the division itself is simpler since the leading
coefficient of the divisor is 1. (See also Section 3.4 for some details in a slightly
different setting.)

Another (more practical) approach, when working over an integral domain
R which is not a field, involves use of a modified pseudo-division process.
m . n .
Namely, if p; =)] a;3', py = Y] b;z' where m > n, then a division step with
i=0 i=0
po only requires that the dividend be divisible by b, at least m—n+1 times. We
can therefore construct a remainder sequence

p; = ¢iPit1 + Piyo, (2.8a)
o = (lcoeff(piﬂ))l , | = degree(p;)—degree(p; 1)+1 (2.8b)

(where each quotient is constructed by exact divisions over R), which we call
the pseudo PRS. Although such arithmetic is much simpler than that over the
quotient field, this particular PRS is thoroughly unsuitable in practice; it can
be shown (see [Knut69], Vol. 2) that the coefficients of each pseudo-remainder in
(2.8) grow exponentially. This can be alleviated if we divide out common divi-
sors of the coefficients of each pseudo-remainder. Since Zy,...,7] is a unique
factorization domain, we have the following.

15

Definition: A polynomial f € R[z] (where R is a unique factorization domain)
is called primitive if it is either O or its coefficients are relatively prime. If f =

m .
37 a;x', we further define the content and primitive part as
1=0

content(f) := ged(ag, ..., a,,) = ged(ged(agy s Grp_1)s @y), (2.9)
pp(f) == f feontent(f) (2.10)

where we adopt the convention that the leading coefficient of the primitive part
is unit normal (e.g. positive, in the case of integers).

By Gauss’ Lemma (7.e., the product of primitive polynomials is primitive), we
can then define the primitive PRS

%p; = qiPit1 + BiPiye s (2.11a)
oy = (lcoeff(pz-ﬂ))l , | = degree(p;)—degree(p; 1)+1 , (2.11b)
B; = content (4 p; —¢;P;i 1) » (2.11c)

which (applied to primitive p;, p,) yields p, = ged(py,pg). Although such a
sequence requires many GCD sub-computations (over the coefficient domain R),
it minimizes coefficient growth through the sequence while avoiding fractional
arithmetic. According to Knuth ([Knut69], Vol. 2), the primitive PRS is there-
fore generally superior in practice to the monic Euclidean PRS. In [Hear79], a
further improvement was proposed by Hearn. He suggests that, instead of for-
mally computing the content in (2.11c), much of it can be removed by trial divi-
sions with the set

{lcoeff(p1), lcoeff (pg), -y leoeff (pir1)} -

That is, we may build up the factor 8; (which is removed from the raw pseudo-
remainder) from these coefficients to the extent that they divide the pseudo-
remainder exactly. Following this, the left-over content can be computed by
(2.9) more cheaply, since it involves the GCD of smaller coefficients.

Finally, we mention a pair of sequences discovered by Collins ([Coll67]),
which have been the most widely used in computer algebra systems. The
reduced PRS is defined by

16

&%GP; = ¢Piy1 t+ BiPiye (2.12a)
oy = (lcoeff(pz-ﬂ))l , | = degree(p;)—degree(p; .1)+1, (2.12b)
=1, Bipy=0, 1<i<k~1. (2-12¢)

This sequence removes a portion of the content of each pseudo-remainder which
can be obtained without GCD sub-computations. It is usually better in practice
to avoid content computations and work with slightly bigger coefficients. So,
the reduced PRS is much faster than the primitive PRS for all but exceptional
cases. A related (but much more complicated) sequence, the subresultant PRS,
computes a quantity which is at least as large as (2.12¢) for very little additional
cost. Derivation of these sequences is quite complicated; the details may be
found in [Coll67], [Brow71], [Brow78].

We now return to.the question of how resultants may be computed by poly-
nomial division. This is made possible by the following result.

Theorem 2.5 ([Loos83b]): Let R be an integral domain and p;, p, € R[z] be
polynomials such that degree(p;) = m, degree(p,) = n. Further suppose that
leoeff(py) = a,, and degree(p,q+py) = I. Then

res(py, pra+ps) = al™ res(py, py) . (2.13)

Proof: Let o; be the roots of p;. Then using equation (2.5a) we have

res(py, o) = arrrlzﬁPQ(ai) = agzﬁ(Pl(O‘i)Q(O‘i)""pQ(ai))
i=1)

=]

n—I

= a,, res(py, p1g+py) O

Suppose that ged(p,,p;) € R. If we apply Theorem 2.5, along with the observa-
tions that

res(py, p2) = (—1)mn7'65(172, P1)

and

dk—y
res(pr—1, pp) = leoeff(pg)™

17

(where d; := degree(p;), and d = 0) to the polynomial remainder sequence
(2.6), we obtain
di_, 52 d;dipy d;—dip
res(p1,p2) = leoeff (pg) ™ TT(—1)"“*lcoeff(p;s1) . (2.14)
=1

A similar expression for the reduced PRS may be found in [Coll67].

The last resultant algorithm worthy of note is the modular method of
[Coll71], which uses homomorphisms and the Chinese Remainder Theorem
[Gedd83] to compute multivariate polynomial resultants over Z. We recall that
for commutative rings with identities R, 1%, a homomorphism ¢ of R into R
induces a homomorphism of R[z] into R[z] by

¢(_§j] a;z') = §0¢(ai)xi.

We then have the following result, proved in [Coll71].

Theorem 2.8: Let p;, p, be as defined in Theorem 2.5, and let ¢ be a
homomorphism as stated above. Then if degree(d(p;)) = m and degree(d(p,)) =
k, 0 <k <n, we have

Hres(prp)) = Ban)" Fres(d(p1), #(p2)) - (2.15)

First, Collins’ algorithm makes use of modular homomorphisms of the type ¢,,:
Z — Z,, defined as the remainder upon division by m. Using the Chinese
Remainder Theorem, we can compute res(p,,p,) if P (res(py,pq)) is known for

sufficiently many prime moduli m,;. This also requires a bound on the coeffi-

l ,
cients of the resultant, which is easily obtained. For ¢ = ¥} ci(Zqy o)y €
i=0
Z[2q,...,x,] we define

lq | , 4 € Z (s=0)
lall, = |

l
Dllelly ,s2>1.
=0

18

Then if A := maz{||a;|l; |0 <7 <m} and B := maz{||t;||. |0<i <n} we
have

lres(pi,p9;)ll+ < (m+4n) A”B™ . (2.16)
Next, the algorithm uses evaluation homomorphisms of the form
Vo) Znlrsestss] — 7
and the natural isomorphism
Rlzy,...x,| = R[z,..,tr_q][z,]

to reduce a problem in Z,, [z,...,z,] to one in Z,[z,]. In the latter (Euclidean)
domain, the resultant can easily be computed via the simple PRS (2.6) using the
formula (2.14). This result is then lifted back to Z,,[z,...,2,] by interpolation
(see [Gedd83]), using also the degree bound

degree(res(py,pg; o,); o) < degree(py; x,)degree(py; x,) (2.17)
+ degree(py; x;)degree(py; z,) ,
for1 <s <r.

The various resultant algorithms have been analyzed and compared in
[KuAd69], [Coll67], and [Coll71]. If the number of variables is considered to be
fixed, then the PRS and modular algorithms require only polynomial time (with
the latter having the lower worst-case complexity). In contrast, [Coll69] shows
that the worst-case behavior of the Bezout method is exponential. Indeed, for
sufficiently dense and large problems the modular method is clearly superior in
practice as well. However, the determinant methods might still be preferable on
very sparse problems. Similarly, the PRS methods would perform well on
univariate problems, or those in which the polynomials involved contain any
variables of low degree.

19

2.3. Solving Algebraic Equations via Resultants

The solution of systems of algebraic equations by nonlinear elimination has
been known since the last century. Early computer implementations such as
[Will62], [Mose66] marked a renewed interest in the method, and began explora-
tion of its practical limits. Later, the implementation of [Yun73] (which
comprises the "algsys" sub-system of Macsyma [Mart71]) made use of improved
algorithms for the computation of resultants, polynomial GCD’s and polynomial
factorization. In spite of such improvements, the practical limits of the method
remain modest. This is due in part to the intrinsic difficulty of the problem,
and in part to the limitations imposed by the use of resultants to achieve the
elimination. In this section we describe this (essentially) classical method,
before presenting the Grébner basis methods (with which it is closely related) in
the succeeding chapters. We will not attempt the lengthy task of completely
specifying an algorithm. Rather, we describe the basic ideas of the process with
the goal of clarifying (and providing a contrast to) the latter methods.

The basis of the method is the following result, often called the Fundamen-
tal Theorem of Resultants:

Theorem 2.7 ([Coll71]): Let K be an algebraically closed field, and let

m . n .
f = Zai(xl""’xr—-l)x; y g = Zbi(xl’"wxr—l)x;
i=0 i=0

be elements of K [zy,...,z,] of positive degrees in z,. Then if (oy,...,,) is a com-
mon zero of f, g we have

res(f,9;)04,y e_y) = O. (2.18)

Conversely, if the above resultant vanishes at (oy,...,a,_;), then at least one of
the following holds:

(a) ap (o, 0py) = ... = ag(0y, ., 0p_q) = 0,
(b) bn(a’l,...,a,._l) = .. = bo(al,...,ar__l) — O,
(¢) am(ogyeytp_y) = by (0. a,_q) = 0,

(d) 3 o €K such that (oy,...,o_;,q,) is a common zero of f, g.

Proof: The first part of the result is obvious using Theorem 2.3. Now assume
that (2.18) holds, and that a,,(0y,...,0_;) # 0. Denote by ¢ the homomorphism
corresponding to evaluation at (oy,...,a,_;). Then by Theorem 2.6 we have

20

res(¢(f), #(g); =) = 0. If degree(d(g)) = 0, this implies (by the definition of
the resultant) that

(¢(g))m =0 = bo(ah""o‘r——l) =0,

t.e,, that (b) holds. If degree(4(g)) > 0, then (by Theorem 2.2) ¢(f) and ¢(g)
have a non-constant common divisor A € K|[z,]. Since K is algebraically closed,
this has a root which we denote by «,. It follows that f, g have a common root
at (Qq,...,00_1,0,), ¢.e. that (d) holds.

Similarly, if we assume that (2.18) holds and b,(¢y,...,o._;) # 0, we find
that either (a) or (d) holds. The case (c) is the remaining possibility O

As a consequence of this result, we see that given a system of algebraic
equations f;(zy,...,x,) = 0, 1 <17 < k, we may successively eliminate the vari-
ables , x,, ..., without losing information about the common zeros of the origi-
nal system. For example, given three equations in three unknowns, say

F o= A{f1, [o fa} C Z[zy,2],
we may form
91(y,2) ==res(fy, fo5), 9ay,2) i=res(fy, f3)
and
h(z) :=res(gy, 995 y) ;

then all z-values (in an algebraic extension of @) which may occur in solutions
of F are roots of h(z). We mention that by Theorem 2.7, if we were to elim-
inate all of the variables to obtain a non-zero constant as a resultant, then there
would be no solutions to the given system. If we follow the computation of A by
also finding univariate polynomials p(y), ¢(z), then the zeros of F are contained
within the set of triples of roots of ¢, p, h. This obviously presents the problem
of somehow deciding which triples are, in fact, solutions. One possible method
(suggested in [Coll71]) is a decision method of [Tars51]. It may also happen that
it is not possible to obtain a univariate polynomial in this manner for at least
one of the unknowns. Namely, if there are not at most finitely many solutions
(which may happen even in the "usual” case of n equations in n unknowns), then
no such finite inclusion of the roots can exist. Finally, the elimination may
(because of degree considerations) be much more difficult for some permutations
of variables than others - and is generally a time-consuming process. For such
reasons, the following (more direct) approach is usually taken.

21

Definition ([Yun73]): A reduced system of a set of multivariate polynomials F
= {f1, - fi} C K{z;,...,z,] (where k > n) is a list of n sets of polynomials G
= {E,, .., E,} where E; = {e¢;;, ..., Cilk—i+1)p 1 <7 < nis a set of k—i+1
polynomials in the n—i/+1 variables z;, ..., =, such that the polynomials in E;
contain all roots in those variables which are possible values for common roots
in E;_;.

We note that G is the nonlinear analogue of a triangulation of the original sys-
tem. Therefore, if a reduced system for F is known, then the problem of finding
the roots of F can be reduced to a series of univariate problems. These
comprise a process which Yun refers to as back-solving. For example, a root of
E,, say oy, is substituted into the polynomials of E, _; to obtain a collection of
polynomials in K|z, _;]. From these polynomials (¢.e. from their univariate
GCD) we obtain a set of roots, each of which corresponds to a pair (o, _;,).
Each pair is in turn substituted into the polynomials of E, 5, and so on. We
thus obtain a collection of n-tuples (o, ...,,), except for partial roots which
cannot be extended (e.g., when some polynomial becomes a non-zero constant
after the subtitution). We note that since the number of solutions of F is, in
general, an exponential function of the degrees of its polynomials, the back-
solving process is inherently exponential. We also note that even when a system
of equations over the integers yields a univariate polynomial of degree less than
5, explicit back-solving may become too complicated to produce useful results in
practice.

Given a system F' = {f, ..., f;,} C K|zy,...,x,], Theorem 2.7 allows us to
construct a reduced system by computing sets of resultants. If &k < n (.e. the
system is under-determined, or for that matter if F contains free parameters),
we only expect to be able to eliminate zy, ..., z;_;. However, even if the coeffi-
cient domain is actually @ (xgyq,...,2,)2 y,...,z;], it is typical (for computational
reasons discussed in the previous section) to work over Z[zy,...,x,] with the
understanding that only the permutation of z, ..., x; is significant. Let us first
suppose that initially each f; contains all variables, so that E; = F. Then we
might construct E, by choosing the polynomial of lowest degree in z; (say f,
after a re-labelling), and setting

Ey = {res(f1,fo; 1), res(fy, fas Ty)y ey res(f1, S 1)} -

22

If there is an element of F free of z;, we simply insert it directly into E, and
compute one fewer resultant from the remaining polynomials. So far, we have
neglected to consider the possibility that this procedure does not yield k—i+1
non-zero polynomials in the ¢-th step; this will be dealt with at a later point.
The above process is then repeated until the last stage of resultants yields only
0, or a non-zero constant is obtained.

It should be clear that the choice of permutation of variables (i.e., the order
in which they are eliminated) is of practical significance. Given the bound
(2.17) and the pairing scheme suggested above, it is fairly easy to devise a simple
heuristic to select the next variable to be eliminated. For example, we might
choose the variable for which the sum of the degrees over E; is a minimum.
(Clearly more complicated schemes could also be constructed.) However, even if
the permutation is chosen so as to minimize the growth of intermediate polyno-
mials, it is clear from (2.17) that this growth can be extremely rapid. We should
therefore try to reduce it (and hence the cost of the forward elimination) when-
ever possible.

Since we have, by Theorem 2.4,

res(fg, h) = res(f, h)res(g, h),

an obvious way to reduce growth is by performing complete system subdivision
before each stage of resultants. An additional benefit of this approach is that
the removal of common factors eliminates the problem of resultants which van-
ish identically. Such an approach was far less practical before the rapid
advances in algorithms for polynomial GCD’s and factorization of the last
decade. The principles of system subdivision are fairly obvious, and will not be
discussed here; some details are given in [Yun73] (and also in Section 4.2).

A small example has already been given in the first section of this Chapter.
However, more insight is provided by examining a slightly larger problem.

Example: Consider the polynomials of Problem 2 (a system of 3 equations in 3
variables, of degree 2; see the Appendix). Since these are dense polynomials,
we may as well use the permutation of variables x > y > 2. We then compute

23

g1:=res(fy, fo; x)
= —177083561152z + 2008912290149 22 + 1225722380248y

— 4135529281094y> — 1574842963988y%2 — 169479375968023y
+ 2332622022652%y% + 625875357534y%2 — 1036313617570y3
— 29688026499642° 4 48316632957622%y + 13139626143642%
+ 161918845417y* + 1480091137981y — 152471471260 ,

g2 :==res(fy, fa)

(where the second polynomial is of the same form as the first). Both of these
polynomials are primitive and irreducible. If we then compute h; :=
res(g1,99; ¥), we obtain a univariate polynomial in z of degree 16 with 100 digit
coefficients. Performing these calculations in the Maple system (version 4.1, on
a VAX/8650 processor) requires only 1 or 2 seconds, not including the attempts
to factor ¢g; and go. However, the fact that the above system only has 8 solu-
tions implies that as many roots of h;(z) are extraneous. The presence of
extraneous roots is easily understood if we notice that common roots of fi1s [o
are not necessarily common roots of f;, f,, f3. In this case, this troublesome
aspect of using resultants can be dealt with (if not completely avoided) by the
additional computation of

g = res(fQ, f3; II)) , hQ = 7‘68(91, 935 y) ’
lzl = ged(hy, hy) .

Still, we see that all intermediate computations will suffer from expression
swell due to the presence of extraneous roots. The magnitude of this growth is
easily established if we consider a system of n homogeneous polynomials (in n
variables) of degree d. By a theorem of Bezout ([Waer53]), the number of solu-
tions of such a system (and so, the required degree of a univariate polynomial in
a reduced system) is d". On the other hand, we see that the use of resultants
will yield a final univariate polynomial of degree d2"". However, it is not clear
that the extraneous roots may always be removed in the above manner (e.g., if
the system has infinitely many solutions). We further note that as the number
of variables and their respective degrees increase, we expect an exponential
increase in the number of sub-systems arising from subdivision (in accordance
with the greater number of extraneous roots and, probably, factors).

24

Example: Consider the equations of Problem 7(a) (a system of 4 equations in 4
unknowns, of degrees 1 in z, y and 2 in z, w). If we proceed as before to elim-
inate x, y, z (in that order), then factorization of intermediate results gives rise
to 4 distinct sub-problems before the elimination of z occurs. It happens that
all of these except the largest contain extraneous factors (.e., those which con-
tain no common roots of the original system). If we proceed on the largest sub-
problem, we obtain a univariate polynomial in w of degree 36 from bivariate
polynomials of degree 6 in z, w. In fact, it is known that the system has only 14
solutions.

We see from the above example that as the size of the input grows even
slightly (in the number of variables or in degree), the size of the intermediate
results and number of sub-problems can grow quite rapidly. For larger systems
such as Problem 7(b) (a version of Problem 7(a) which contains a few more
terms) or Problem 13(d), the intermediate results become too large to be
represented. We note also the remarks in [Rime84] regarding the difficulty of
using resultants (both within, and independent of, the algsys sub-system of
Macsyma) to solve Problem 13(d). We found that, for example, Problem 4(a)
(which has infinitely many solutions) could not be solved by algsys (using Unix
Macsyma Beta Test Release 308, on a VAX/785 processor with 16Mb. of main
memory) in over 23000 sec. of CPU time due to space limitations. In fact, as
simple a system as Problem 11 is rejected by algsys as "too complicated". This
is not really surprising, since it would be difficult to formulate an algorithm
which offers the flexibility of interactive calculations (spoken of in [Mose66] and
[Yun73]). For example, the trick of computing extra resultants and GCD’s is
probably not used. Suppose also that an n by n system with infinitely many
solutions does not admit a reduced system. Then the partial triangulation
obtained will nonetheless often allow the solutions to be represented, by consid-
ering the non-eliminated variables as parameters. However, the elimination
algorithm may still compute many more than the n(n—1)/2 resultants implied
by the definition, in an effort to produce a true reduced system.

The last matter to be discussed is that of the back-solving procedure. We
recall that in our first example, each of the 8 zroots would have to be substi-
tuted into bivariate polynomials of degree 4. But since it is known that only 8
complete roots exist, it is clear that much of the work entailed in this phase is
due to the presence of extraneous information in the intermediate (bivariate)
results. The numerical effects of substituting approximations to the (complex)

25

z-roots during back-solving are not known. And, even if the final univariate
polynomial were of degree less than 5, it may not be possible to carry out the
back-solving effectively (e.g., when nested radicals are involved). Finally, if the
solutions (and hence, univariate polynomials) contain free parameters, such diffi-
culties become insurmountable. We conclude that a reduced system is some-
what lacking as a representation of the roots of an algebraic system. In the fol-
lowing chapters, we present a more flexible elimination scheme due to Buch-
berger which yields a more refined counterpart to the reduced system.

Chapter 3: Grobner Bases

3.1. Polynomial Ideals and Standard Bases

In his famous paper, Hironaka [Hiro64] presented the concept of a standard
basis of an ideal of formal power series. Buchberger [Buch65] later introduced
the same concept for polynomial ideals, which he named Grébner bases. In
[Buch65] and [Buch70] he presented an algorithm for computing such bases, and
produced related results on the solvability of algebraic equations. The notion of
Grobner bases was then further refined and analysed in [Buch76a] and
[Buch76b], after which it became more widely known as an important construc-
tive technique in polynomial ideal theory.

Herein, we concentrate on the computation and applications of Grdbner
bases for ideals of polynomials over a field K. In practical terms, this will usu-
ally be either the field of rational numbers Q, or the field of rational functions
Q (a,b,...,c). We begin by motivating the notion of standard bases.

Consider a set of "side relations':
wdyz = z2? | wyls = zyz , o2y? =22,

or equivalently

fi1:= x3yz — 222 =0 ,

foi=2y’z —zyz =0 ,

fai=a%y?—22=0.
Consider also the polynomials

3

p = z2%y?z — 2 , q = xz? — zyz> .

It is obvious that p = z f3; hence, p is equivalent to 0 modulo the side relations
{f1s [o f3}. However, it is not at all clear whether q is equivalent to O under
the same conditions, or if {f{, f,, f3, ¢} forms a broader set of side relations.
Formally, what is desired is the following:

Definition: A canonical simplifier on a class of objects T with respect to an
equivalence relation ~ (on 7) is a function o: T — T such that

26

27

(1) o(t) ~t
(2) s ~t = o(s) = oft)
for all s, t € T.

Here "=" is used in the sense of equivalence of form. Hence, for each
equivalence class in 7, o determines a unique representative. The value o(t) is
called the canonical form of t. For our example, the following would suffice.

Definition: A zero-equivalence (or normal) simplifier is a function o: T — T

satisfying

(1) oft) ~t,

(2) t ~0 = oft) = 0(0)
forallt € T.

Clearly any canonical simplifier is also a normal simplifier. In either case, one
would find that

o(g) = o(0)

with respect to the relation “equivalence modulo {f;, f,, fs}". It may seem
that the computational difficulty here arises solely from the lack of structure
present. For example, a univariate side-relation such as '":2 + 1 = 0" may be
applied using pseudo-division. However, we shall see that the addition of such
structure is only a first step. In fact, it has been proven (see [Rich68]) that for
some broader (but still simple) classes of expressions, the zero-equivalence prob-
lem is undecidable (and therefore that no canonical simplifers exist).

We recall that a non-empty subset I of a commutative ring with identity R
is called an ¢deal if

(l)f_gel’
2) pfeI

for all f, g € I, p € R. The simplest examples are the null ideal (consisting of
the O element) and the unit ideal (consisting of the entire ring R). The set

28

<p>:={pg ¢ €r}
of all multiples of p € R is called the principal ideal generated by p. (Clearly

the unit ideal is <1>.) Similarly, for ring elements S s fr € R, the ideal
generated by these elements is

k
<Sueaf5> = {Xnfi |pi ER}.

i=1
Hence, a set of polynomials (side relations, or algebraic equations) F = {fy, ...,

[} may be viewed as generators of <F'>; it is therefore referred to as an ideal
basts. The equivalence relation

p=qmodl] <= p-—q€l]l

divides the ring into cosets (equivalence classes) which form the quotient ring
R/I. Clearly, the statement "¢ is equivalent to 0 modulo {fi, fo f3}' is
equivalent to "¢ € < fy, fo, f3> ". It turns out that a number of other (basic)
computational problems in polynomial ideal theory are solved by the construc-
tion of a canonical simplifier.

Define the set of n-variate terms by
T, := {lel s xfl" | i1, ooty €N}
Then, fix a total ordering <p on T, which satisfies
1) 1<zt
(2) su <ptu whenever s <t

for all s, t, u €T,, where 1 = :v? cee :c,g. Any ordering satisfying the above
conditions will suffice. (The reader is referred to [Robb85] for a more complete
discussion of term orderings.) However, in practice one of the following two
examples is almost always chosen. The lexicographic term ordering is defined

by

s=uxz' < it g = = (3.1)

3l such that 4, < g and 4, =g, 1 <k <.

Note that this establishes (or alternatively, is induced by) the precedence of
variables

29

Ty > Ty >t >y,
in the ring K{z,z,,...,z,]. In the case of terms in [z, y], for example,

1<py <p9°<g " <ge<pay < '+ < 22<,
The graduated (or total degree) term ordering is defined by

s <gt = (3.2)
degree(s) < degree(t) , or

degree(s) = degree(t) and

3l such that 4, > 7 and i = g, | <k <n .

- That is, terms of like total degree are "graduated" using an-inverse lexicographic
ordering. For terms in [z, y], we have

1<gy <gz<gy®<gay<ga?<g

Any polynomial p € K [z,...,z,] contains a term which is maximal with respect
to the chosen term ordering <;. We refer to this as the headterm of p Wwith
respect to <p, and write Aterm(p). Let hcoeff(p) be the corresponding coeffi-
cient, so that

M(p) := hcoeff(p) hterm(p) (3.3)

is the leading monomial of p (with respect to <7z). It is conventional to write
hterm(0) = 1 (and of course, hcoeff(0) = 0). Further define

M(pyy) i= lem(M(p,), ..., M(p,,)) . (3.4)

Example: For the set of polynomials of Q[z,y,z] defined previously we have,
with respect to the lexicographic ordering,

hterm(f,) = z%yz , hterm(fq) = zy?z hterm(f3) = z%y?,
and M(fy, fq) = 23y%2 .

30

If we view them as polynomials in @ [z,y,z], then
hterm(f,) = z2?,
for example. With respect to the total degree ordering on terms of Q [,y,2],

hterm(f,) = 2®yz and hterm(q) = zyz® .

Definition: We say that p reduces with respect to g (and with respect to a
fixed term ordering) if there exists a monomial in p which is divisible by
hterm(q).

In particular, if p =at+r where « € K, t € T,, r € K|z,,...,z,,] and
t = hterm(q)u then we write

q '
P > p — ot = p'. (3.5)
! M(q)
Otherwise, we say that p is irreducible with respect to q. If p reduces to p’
modulo some polynomial in F' = {f, ..., [}, we say that p reduces modulo F

and write p 3> p'; otherwise, p is in fully reduced form modulo F. If M(p)
reduces modulo F, we say that p is M-reducible modulo F.

We note that since the process of reduction involves subtracting an appropriate
multiple of one polynomial from another, it may be viewed as one step in a gen-
eralized division.

A fundamental property of reduction is the following:

Lemma 3.1 ([Buch65]): The relation 3 is Noetherian; ¢.e., there is no infinite
sequence

P 2 P > po 3

Let 3 denote the associative closure of >-. Then as a consequence of the
above lemma, we may construct an algorithm reduce(p, F) to return ¢ such that

31

p 3 q and q is irreducible modulo F. That is, we form a finite sequence

Po =P > p;y > " > q = p,

An example of such an algorithm is as follows.

Algorithm 3.1:
procedure reduce(p, F)

qp
while 3 f,, € F such that ¢ >, ¢' do

choose o, ¢, fi such that ¢ >, ¢’ and
¢t is maximal with respect to <p
ot Sk
g «—q —aa——"—
M(f)
return(q)

We note (following [Buch85]) that choosing maximal ¢ for reduction is not neces-
sary for correctness; it is, however, necessary for efficiency. This algorithm
turns out to be extremely important in what follows. It will be examined more
closely in Section 3.4.

Example: Suppose we adopt the total degree ordering for polynomials of
Q [z,y,z], and consider once again the polynomials

3 2 2 2,2 2
fi=2%z —a2®, fo=ay’z —ayz, f5=a’ -2,

3

p=zfs= o2y’ — 28, r = —xf, = —x%y’z + 2%yz .

Then

3

D >f3 z?y?y — 23 — z(nyz—-zz) = 0, and

r>sz.

32

However,

p+r = x2yz —z3,

which is irreducible modulo {f, fo, f3}-

The fact that p+r is irreducible when p, » 30 suggests that theorems on reduc-
tion will generally be difficult to prove. It also demonstrates that while

p B0 = peEF>,

the converse does not hold. Hence, reduce(, F) is not a zero-equivalence sim-
plifier. This motivates the following definition:

Definition: An ideal basis G is called a Grobner basis if

J ESG> = reduce(f,G)=0.

Since clearly reduce(f, G)—f € <G>, this states that G is a Grébner basis pre-
cisely when its reduction algorithm is a normal simplifier on Klzy,...,x,]/ <G >.

Example: For the polynomials F = {f1, fo f3} and p, r of the previous
example,

2 3 3 2
G:={f1’f27f37 T Yz — 27, 2T — T2,

3 2 2,2 4

yz3—z, a:yzz—a:z, T2t — 27, z5—24}

is a Grébner basis (with respect to the total degree ordering for terms in [%,y,2])

such that <F> = <G>. Note that p 3, 0, r 3: 0, and p +r 3. 0, irrespec-
tive of the sequence of reductions that is followed.

33

3.2. Buchberger’s Algorithm

The above definition for Grébner bases presents some obvious difficulties.
For example, it does not give a means of testing whether a given ideal basis is a
Grobner basis. Moreover, it does not tell us how to construct a Grobner basis
for a given ideal <F>. The first of Buchberger’s many contributions was to
show that completion of the ideal basis to standard form only requires that a
certain type of "resolvent" be considered for finitely many pairs of basis polyno-
mials. Specifically, we have the following.

Definition: The S-polynomial of p, ¢ €K |z,,...,z,] is

Spoly(p, 9) = M(p, 0) [s = 7] - (3.6)

A theorem of Buchberger then provides alternative characterizations of Grobner
bases.

Theorem 3.2 ([Buch76a]): The following are equivalent:
(1) G is a Grébner basis;
(2) If reduce(f, G) = g and reduce(f, G) = h, then ¢ = h;
(3) reduce(Spoly(f, g), G)=0forall f, g €Q.

The proof is non-trivial, and will be omitted for brevity. (Only the implications
(1) = (2) and (1) = (3) are easily shown.) The connection between (2) and (3)
becomes plausible if we view Spoly(p, q) as the difference between reducing
M(p, q) modulo p and reducing it modulo q-.

Corollary 3.3: If G is a Grdbner basis, then
reduce(f, G) = reduce(g, G) <= [f—g € <G>.

34

Proof: Suppose h = reduce(f, G) = reduce(g, G). Then f—h € <G> and
g—h € <G>. Hence

(f=h)—(g=h) = f—g € <G>.
Now assume that f—g € <G>. Then f—g 3, 0. Hence, by a result of
[Buch76a], f and g have a "common successor" with respect to the reduction pro-

cess modulo G; i.e., 3 k such that f 3, k and ¢ 3. k.
Therefore

[3¢ k 3¢ reduce(k, G)

and

g 3 k ¥ reduce(k, G) .

Hence, by characterization (2), reduce(f, G) = reduce(g, G) O

We see that if G is a Grébner basis, then reduce(, G) is not only a normal sim-
plifier, but also a canonical simplifier. Hence we can use it to decide ideal
membership, congruence modulo an ideal, and ideal inclusion (since <E> C
<F> <= reduce(e, G) = 0 for all ¢ € <E>). Furthermore, if we view T, as a
basis for K [z,...,z,], then the set

U := {[u]| v is not a multiple of a headterm of any poly. in G}, (3.7)

where [u] is the congruence class of u modulo G, forms a linearly independent
vector space basis for K [z,...,2,]/<<F’>. This is so since for any dependence

erfur] + oo ey U] =0,

where ¢; € K, u; €U for 1 <% <m, there corresponds a polynomial f :=
Ciugtetenu, € <G>. Hence reduce(f,G)=0, which implies that
C; = 0, 1 S’L S m .

Equally important is the observation that characterization (3) provides a
means of algorithmically constructing Grébner bases, appropriately known as
Buchberger’s algorithm:

35

Algorithm 3.2:
procedure Gbasis(F)
G «—F; k < length(G)
B—{lhd1<i<i<k}
while B # ¢ do
[¢, 5] < selectpair(B, G); B «— B — {[i, j|}
[« reduce(Spoly(G;,G;), G)
if f # 0 then
G—GU{f}; k—k+1
B+—BU{[k|1<i<Ek}
return(G)

Since Spoly(G;, G;) and f are in <F>, G remains an ideal basis for <F>.
Also, if

g §G h #: 0,
then

9 Zeum O-

To see that this algorithm terminates, we consider the set
P, := { headterms of polynomials in G after the k-th extension }.

Then we see that
<P;> C <Py,> C

is a strictly increasing sequence. Hence, by a theorem of Hilbert (see [Waer53],
p. 20) on ascending chains of polynomial ideals, it must terminate.

Many connections between this and other algorithms have been noted. It
specializes to Euclid’s algorithm in the case of univariate polynomials, and to
Gauss’ algorithm in the case of linear polynomials. The connection with other
division/elimination processes (e.g. pseudo-division and resultants) was explored
briefly in [Pohs81], and more completely (for the bivariate case) in [Laza85].
Generalizations to polynomials over various Euclidean rings are discussed in
[Kand84], where the connection with the Knuth-Bendix algorithm [Knut67] is
also mentioned. In [Buch83b] and [LeCh83] the Knuth-Bendix and Buchberger

36

algorithms are both viewed as algorithms of a more general ‘“critical
pair/completion” type. When F consists only of polynomials of the form s —t¢
for s, t €T, (i.e. differences of terms), Buchberger’s algorithm specializes to an
algorithm for the uniform word problem for finitely generated commutative
semigroups. (See [Ball81].) Through this relationship, it is shown in Mayr82]
that the congruence problem for polynomial ideals is exponentially space com-
plete: in the worst case "a degree bound growing exponentially in the number of
variables is unavoidable”. Hence, the problem of constructing Grdbner bases is
an intrinsically hard one.

However, this poor worst case behavior does not mean that the algorithm
will always behave poorly in practice. The progress of the EEZ-Hensel factoriza-
tion algorithm [Wang78] should serve to demonstrate that much depends on the
development of practical improvements, and upon the nature of the particular
problem at hand. Indeed, with the implementations reported in [Boge85] and
[Kapu86] a number of interesting problems have already been solved. (See
[Boge86], for example.)

One finds, upon applying the algorithm to some examples, that it can
indeed produce complex calculations for apparently simple input. We observe
that most of the computational cost comes from the reduction step (7.e. where
polynomial arithmetic is performed). Also, as the number of polynomials grows,
the number of S-polynomial pairs which must be considered grows rapidly.
However, as the algorithm progresses, more and more of these reductions will
lead to 0. For such reasons, worthwhile improvements will include:

(1) predicting (7.e. avoiding) reductions which will necessarily yield 0;
(2) improving the efficiency of the reduction sub-algorithm;

(3) minimizing the overall complexity of the calculations (¢.e. the number
and degree of polynomials).

Not surprisingly, Buchberger has made important contributions, particularly
with regard to item (1) above. Specifically, in [Koll78], [Buch79a], [Buch79b] he
(along with various co-workers) developed a set of criteria for determining a
prior: a large proportion of those pairs whose reductions will vield 0. (Note the
recommendation in [Buch76a] that "one should first concentrate more on estab-
lishing criterions ... which reduce the complexity of the algorithm, rather than
trying to obtain complexity estimations for crude versions of the algorithm".)
His criteria are made possible by the following results.

37

Lemma 3.4: If M(p, q) = aM(p)M(q), then

Spoly(p, q) Fp g O.

Proof: Define R(p) := p — M(p). Then we have
o' Spoly(p, q) = M(q)p — M(p)g
= M(q)R(p) — M(p)R(q) -
The result then follows from the observation that all of the terms in M(q)R(p)
and M(p)R(¢q) must be distinct, and the fact that

M(p) » R(p) O

Lemma 3.5: For arbitrary p, q, r,

M(,q,) M(, ,r! M(, ,r!
L.or Spoly(p,q) + P9 Spoly(q,r) + L. Spoly(r,p) = 0.
M(p,q) M(q,r)

M(r,p)

Proof: A straightforward application of the definitions yields

D _ q q _ r r _ p
M(p,q,r) [M(p) M((]) + M(q) M(T) + M(’I‘) M(

p)] = of

Each lemma suggests that under certain conditions, certain pairs [i, j] (i.e. the
S-polynomial Spoly(Gi,G']-)) may be skipped. We therefore reduce the
S-polynomial only if the pair [¢, 5] meets the following criteria:

criterion1([t, 7], G) <>
lem(hterm(G;), hterm(G,)) # hterm(G;) hterm(Gy) ;

criterion¥([7, j), B, G) <>
= 3k, 1 <k <length(G), such that
t #Fk# 7,
M(Gy) | M(G;,Gy),
[7, k| & B, [k, J] ¢ B.

38

We note that if M(r) | M(p,q) in Lemma 3.5, then
M(p,q,r) M(p,q,r)
Spoly(p,q) + Spoly(q,r) + Spoly(r,p) = 0,
P20+ Tpsqry WD) ¥ Ty Srolu(rp)

since M(p,q,7) = M(p,q). So, if Spoly(q,r) and Spoly(r,p) have already been
reduced to f, g, respectively, it seems plausible that

Spoly(p,q) Seyuire O -

However, a rigorous proof that this use of criterion2 is correct is rather
involved; the details may be found in [Buch79b]. Roughly speaking, the practi-
cal effect is to reduce the number of S-polynomial reductions from O(N?) to
O(N), where N is the length of the basis. Recently, a slightly different formula-
tion of these criteria was presented in [Geba86] which appears to further reduce
the number of O-reductions.

To this point, we have not discussed the procedure selectpair, which
chooses the next S-polynomial pair for reduction from the set B. In fact, any
pair may be selected without affecting the correctness of the algorithm. How-
ever, the manner in which it is chosen can certainly affect the complexity of the
algorithm, in that some pairs will lead to more complicated polynomials than
others. Moreover, it can affect the effectiveness of the criteria themselves.
Buchberger has recommended that at each iteration we choose [, j] such that

M(G;,Gj) = ming {M(G,,G,) | [u, v] €B}, (3.8)

henceforth referred to as the normal selection strategy. Deviation from this
strategy can affect the power of criterion2 since it becomes less likely that, at a
given point, the appropriate pairs [¢,] and [k, J] have already been considered.
In addition, it can be shown [Buch79b] that if this strategy is followed, the
reduction sub-algorithm must produce a unique result. Therefore, if a criterion
rejects a pair, then all possible reductions of the corresponding S-polynomial
must lead to 0. (If this were not guaranteed, it is argued that it might some-
times be preferable to ignore the criterion and generate the new polynomial.)
Buchberger therefore refers to criterioni and criterion2, when applied in con-
junction with the normal selection strategy, as "good" criteria.

In order to bound the computational complexity of the algorithm, it is
necessary to determine a bound on the maximum degree of any polynomial
which the algorithm may produce. (This yields a bound on the maximum
number of polynomials, and also the maximum number of reduction steps for

39

each.) Since this is extremely difficult, research has concentrated primarily on
the bivariate case. In [Buch79a], Buchberger examines the algorithm using
another criterion (which is equivalent to criterion2 when the normal selection
strategy is used), with the total degree term ordering. He finds that the degree
of any polynomial produced is bounded (roughly) by 4Dp, where

Dy == maz {degree(F;) | 1 <i <length(F)}.

(Actually, he also produces a tighter but more complicated bound.) It can then
be shown that the number of computational steps required is bounded by

Cp = 2(length(F) + 16D2)* .

In [Buch83a], these results are refined and expanded to include the following.

Theorem 3.6: For every natural number D, 3 F C K [z,y] with D = Dp such
that

(a) for all Grébner bases for F with respect to <g, Dg > 2D — 1;
(b) for all GrSbner bases for F with respect to <;, Dg >D? —D + 1.

Hence, in the bivariate case, quadratic growth is intrinsic to the lexicographical
ordering. In [Wink84], Winkler showed that for F C K [z,y,2],

Dg < (8Dp + 1) 2%,

where dp := min{degree(F;) [1 <:i < length(F)}, when the total degree order-
ing is used. Other useful complexity results include those of [Laza83], [Moll84],
[Gius85].

We conclude this section with the issue of uniqueness. It should be fairly
clear that in general, Grbner bases are not unique. For instance, in our previ-
ous example, G —{f} is also a GrSbner basis for <F>. We now show that this

is easily remedied.

Definition: A Grébner basis G is reduced if for all / € G, f = reduce(f,
G—{f}) and hcoeff(f) = 1.

40

Theorem 3.7 ([Buch76b]): If <G;>=<G,>, and G, G, are reduced
Grobner bases, then G|, = G,,.

Clearly, the specification that the polynomials be monic is arbitrary, and could
be replaced by some other normalization. Let us assume that this is done in
some consistent manner by the reduction sub-algorithm. Then a set F (not
necessarily a Grdbner basis) can be transformed to reduced form with the fol-

lowing:

Algorithm 3.3:

procedure reduceset(F)
return(normalize(minimize(F))) ,

where we have

procedure minimize(F)
R+«F; P+g
while R # ¢ do
h «— selectpoly(R) ; R «— R — {h}
h < reduce(h, P)
if & # 0 then
Q <« { ¢ EPsuch that M(h) | M(q) }

R—RUQ
P«—P—QU {h}
return(P)

and

procedure normalize(F)
S—F; T+—g
while S # ¢ do
h < selectpoly(S) ; S «— S — {h}
h «—reduce(h, F—{h})
T—TU {h}
return(7)

41

The procedure minimize ensures that all dependencies are removed from the
basis. If it is applied at the end of Algorithm 3.2, we can limit the number of
dependencies (and therefore the number of reductions) in a simple manner. We
note that if M(q) | M(p), then Spoly(p,q) is equal (up to a rescaling) to the
reduction of p modulo ¢q. Suppose then that in Algorithm 3.2, we choose a pair
[¢, 7] such that M(G;) | M(G;), and compute

Spoly(G;, G;) > f.

Then G; has been reduced to either O or a new basis element, and is therefore
redundant. Such polynomials may be removed from the basis before invoking
reduceset. From these remarks it is also clear that the procedure selectpoly
parallels the normal selection strategy if it chooses the polynomial A which is
<r-minimal. But, it is important to realize that (unlike S-polynomial reduction
under normal selection) the result of reduceset will not be unique if F' is not
already a Grobner basis.

An arbitrary input set F may also contain unnecessary polynomials (due to
trivial dependencies) or extremely simple polynomials (e.g. of degree 1). It is
therefore reasonable to apply the above algorithm not only at the end of Algo-
rithm 3.2, but at the beginning as well. Buchberger’s algorithm (including the
use of criterionl and criterion2) then takes the following form:

Algorithm 3.4:
procedure Gbasis(F)
G <«—reduceset(F) ; k «—length(G); R «—g¢
B—{lidl1<i<j<k)}
while B # ¢ do
[, 5] < normselect(B, G) ; B «— B — {[i, 7]}
if hterm(G) | hterm(G;) then R — R U {G;}
else if Aterm(G;) Ihterm(G]-) then R — R U {G,}
if criterion([1, j], G) and criterion([i, 7], B, G) then
[« reduce(Spoly(G;, G,), G)
if f %% 0 then
G—GUI{f}; k—Fk+1
B—BU{[}k|1<i<k}
return(reduceset(G —R))

42

The inter-reduction of the basis polynomials may be carried even further.
In [Buch85] it is recommended that it be performed after each new non-zero
polynomial is formed in Gbasis. This slightly complicates the algorithm, in that
any M-reductions will require transformation of the set B. (See [Buch85], p.
6.13 for the details.) It is hoped that by keeping the polynomials as reduced, and
as few, as possible the complexity of the algorithm may be reduced. Still, it
should be noted that the precise effect of such a modification might be difficult
to predict, in general. We will examine this additional variant of the algorithm
more closely in the next section.

43

3.3. The Lexicographic Ordering: Criteria and Selection Strategies

It should be clear from the previous sections that a Grobner basis with
respect to one term ordering <p is not necessarily a Grébner basis with respect
to another term ordering. In fact, Buchberger’s algorithm using <, will tend to
display much different behavior than when using <g5. For example, the avail-
able complexity results and empirical evidence suggest that the overall complex-
ity of the algorithm is greater when using <;. When using <4, the algorithm
benefits from the fact that a bound on the total degree of a polynomial yields a
bound on the number of terms in the polynomial. Specifically, we note the fol-
lowing.

Lemma 3.8 ([Knut69], Vol. 1): The number of distinct n-variate terms of total
degree k is
k+n —1) .
n— ’
hence the number of distinct terms of degree less than or equal to d is

S = (1)

Therefore, if hterm(p) <g hterm(q) we can say that p is simpler than g in the
above sense. Moreover, this fact simplifies many details which arise in the
implementation of Algorithm 3.4. Whenever some degree of freedom exists (e.g.
in the selection of S-polynomial pairs), a reasonable approach is to "minimize
with respect to <g". For <, there is no counterpart to Lemma 3.8; it is possi-
ble that hterm(p) <; hterm(q), but that p is much more complex in many
senses. For this reason, the above strategy may prove to be a poor one when
<r is used. In order to develop more practical strategies, it is becomes neces-
sary to better understand the nature of the algorithm when using <;. The
remainder of this section will deal primarily with this term ordering.

We have already noted that an S-polynomial (or reduction) may be viewed
as one step of a generalized division. This is made clearer if we consider the
specialization to univariate polynomials (cf. one step of a polynomial division).
Noting also the specialization to linear polynomials (i.e. Gauss’ algorithm), we
see that there is a connection between S-polynomials and other nonlinear elimi-
nation processes. This is illustrated by the following example.

44

Example: Consider the polynomials
1 :=3:1:2y —y3—4, Po :=.7:2+xy3—9,
where z > y. Then
r = res(p,py; o) = — 3y1° — 12y7 + & — 54y* + 8y° + 729y2 — 216y + 16;
p3 == prem(py,pg; &) = — 3wy* — y° + 27y — 4, prem(po,pg z) =71 .
However, we may also compute:
Spoly(py, py) = B2y — y* —4) — 3y(a? + 2y® — 9) = p,
Spoly(py, p3) = — 3y*(a® + zy® — 9) — x(— Bzy* — y® + 27y —4)
= — 3:1:y7 + a:y3 —27zy + 4z + 27y4

5, 09’ — 2Ty + 4z +° + 4° = p,,

Spoly(ps, p4) = 8lay® — 12y — 3y" — 12y + y® — 27y +4 = p;,
Spoly(pys ps) = 122y® — 2187xy + 324z + 3y® + 81y% + 12y° — y* + 32443

+ 27y% — 4y
19667 4 5 s 7 4 8744 4
> — 324 — 81 12 — —_—
B 9xy+ x+gy+ y + y+gy+27y
16
27y? — —
TV -5

~ 59001zy — 8748z — 81y® — 12y7 — 218745 — 324y° — 21y
— 8744y® — 72992 + 16 = pg ,

559872 z
6 19667

~ 768z + 59001y° + 8748y® + 1296y” + 236196y° + 15325y°
+ 2268y* + 1062354y> + 64y — 14337243y + 2122308 = p.,

Spoly(ps, pe) = 192zy + ... 3

Spoly(pg, p7) = — 2239488z — ... 33 — 1160372667y'" + ... ~ r

Here, ~ denotes similarity in @Q[z,y] (¢.e., equivalence up to a re-scaling), and
prem is the pseudo-remainder given by (2.8).

45

We observe that just as a resultant may be computed via a series of pseudo-
remainders, a pseudo-remainder may be computed via a series of reduced
S-polynomials. Note however that the S-polynomial sequence contains many
more steps than the single resultant computation. We also mention that in the
course of Algorithm 3.4, the S-polynomials will be chosen and reduced in dif-
ferent sequences than that above. Hence, the exact relationship with resultants
is elusive. (See [Laza85].) Roughly stated, though, we see that the effect of the

algorithm is to eliminate and separate the variables Xy, Ty, w., T,_; (according to
the precedence which induces the lexicographical ordering). Therefore, if there
exists a permutation of variables Tr(1)s »+» Tr(n) such that with respect to the

associated lexicographical ordering the input basis F is "nearly triangular" (7.e.
contains polynomials of successively fewer variables), the algorithm may be very
fast. Accordingly, the complexity of the calculations produced by the algorithm
depends very strongly on the permutation of variables. For the purposes of the
present discussion, we will simply regard this ordering (and the induced lexico-
graphic order) as fixed.

We now note that the polynomials of the previous example have the follow-
ing structure.

Definition: An M-chain is a finite subset {p1s «oy P } € K[2},..p,,] such that
M(p;41) | M(p;) for 1 <4 < k—1.

Since the elimination and separation of variables tends to proceed by small
steps, there will (at a given point in Algorithm 3.4) often exist many subse-
quences of polynomials in the partial basis G which form such chains. Hence
there will exist many pairs for which the quantity M(G;, G]-) is identical.

Let us now apply these observations to modify our use of Buchberger’s cri-
teria. Recall that we begin the main loop of Algorithm 3.4 by choosing a pair
according to the "normal” selection strategy:

Algorithm 3.5:
procedure normselect(B, G)
return([1, 5] | M(G;, G;) = min {M(G,,G,) | [u, v] EB})

46

The pair must then pass both criteria before reduction of the S-polynomial
proceeds. Due to the ongoing separation of variables, pairs which fail to satisfy
critertonl should be fairly common. While the main cost of the algorithm is
that of the reduction step, there will nonetheless be an "overhead" associated
with adding, selecting and removing pairs from the set B. Since no new polyno-
mial will ever result from one of the above pairs, this overhead is essentially
wasted in such cases. As criterionl does not depend on the set B, these pairs
could in fact be detected before they are added to B. We must be careful,
though, that such a modification does not adversely affect the complexity of the
calculations which follow.

Let us suppose that we partition the set B by
B .= {[{, 5] €B | —eriterioni(fs, 7, G) },

B := B — BW
Then omitting pairs which do not satisfy the criterion is equivalent to a new
selection strategy, namely:

Algorithm 3.6:
procedure select1(B, G)
if B # g then return([, j] € B)
else return(normselect(B, G))

If at some point BW is not empty, we might choose a pair which is not minimal
(in the sense of (3.8)); hence the S-polynomial is not guaranteed to reduce
uniquely to 0. However, the existence of such a reduction suggests that the pair
should be rejected. Moreover, we are only avoiding a computation which would
also be avoided under the normal selection strategy.

When all B pairs have been rejected, we have
select1(B, G) = normselect(B, G) .

At this point, the pair must pass eriterion?2 (which is, under normselect, a
"good" criterion). (In fact, since it depends on B, the absence of B() pairs may
even increase the power of criterion2.) Still, there may exist many pairs which
are <p-minimal, especially if G admits many M-chains. It is then possible that
some (but not all) may fail to satisfy criterion2. Since the criterion is relatively
inexpensive to apply, and since it becomes more powerful as pairs are removed
from B, it would be feasible to apply it exhaustively to the set of <g~minimal

47

pairs. We write the corresponding selection strategy (and re-phrasing of Algo-
rithm 3.4) as follows.

Algorithm 3.7:
procedure select2(B, G)
W B; Ry
while C(¥ £ 5 # B do
C —{[i,] €B]| [, 5] = normselect(B, G) }
c® —{[i, €C | =eriterion([i, 5, B, G) }
B«—B-cW?
for [7, 7] €ec® do
if hterm(G;) | hterm(G;) then R +— R U {G,}
else if hterm(G;) |hterm(G’j) then R — R U {G,}
if B # ¢ then return(| normselect(C, G), B, R])
else return([, B, R])

Algorithm 3.8:
procedure Gbasis(F)
G «—reduceset(F) ; k <« length(G); R «—go
B —{[i, 4 |1 <i <j <k and criterion1([s, 5], G) }
while B # ¢ do
[[5, 5, B, Q | «—select2(B,G); R+—RU Q
if B # ¢ then
BB — {['Lr J]}
if hterm(G;) | hterm(G;) then R «— R U {G;}
else if hterm(G;) |hterm(G]-) then R — R U {G,}
f «—reduce(Spoly(G,, G,), G)
if f # 0 then
G—=GU{f}; k—k+1
B «—B U {[i, k] |1 <7 <k and criterioni([s, k], G) }
return(reduceset(G —R))

It remains to be seen if such changes will actually yield any substantial
practical improvement. Let us compare the standard formulation (Alg. 3.4) with
Algorithm 3.8 (where all other sub-algorithms are identical) on a variety of prob-
lems with integer coefficients (which are described in the Appendix).

Term Ordering

Problem <o <z,

Alg. 3.4 Alg. 3.8 Alg. 34 Alg. 3.8

O-reductions 5 3 3 1

1 time (sec.) 3 3 3 2
space (Kb.) 336 303 320 262
0-reductions 5 5 17 10

2 time 11 10 169 84
space 680 696 1188 1073

0-reductions 110 101 74 35

3 time 723 636 216 123
space 1442 1360 1122 1073

O-reductions 20 20 77 53

4(a) time 40 40 930 498
space 992 975 1565 1318

O-reductions 21 21 83 55

4(b) time 40 40 1038 530
space 983 975 1507 1327

0-reductions 16 16 6 2

5(a) time 45 41 24 13
space 1057 1032 1016 876

O-reductions 16 16 31 15

5(b) time 58 57 1216 474
space 1090 1064 1810 1671

O-reductions 16 16 67 40

5(¢) time 60 58 8616 3653
space 1065 1065 2630 2638

O-reductions 16 16 54 44

6(a) time 43 42 379 250
space 992 991 1212 1180

0-reductions 18 18 68 63

6(b) time 49 48 749 534
space 1024 1016 1704 1335

O-reductions 18 18 152 110

6(c) time 50 49 18121 10262
space 1057 1032 2990 2703

O-reductions 18 18 48 16

7(a) time 77 76 11914 3070
space 1148 1147 3064 2810

Table 3.1: standard vs. modified use of criteria
(Maple 4.1 on a VAX/8650 processor.)

48

49

We first note the obvious difference between the times for the two term
orderings: in general, Grébner bases are much easier to compute with respect to
the graduated term ordering. Note also that in this case the algorithm is largely
insensitive to permutations of the variable ordering. We remark, however, that
if we choose a permutation of variables which is highly favorable for the lexico-
graphic ordering (due to sparse input), the lexicographic basis may actually be
easier to compute. For this reason, a dense problem of low degree in few vari-
ables may be much more difficult than a structured problem in many more vari-
ables, when < is used. (Compare Problems 3 and 7(a), for example.) Finally,
we note that our modified application of Buchberger’s criteria can result in
much lower computing time for a wide range of problems when using the lexico-
graphic ordering.

To this point, we have not discussed the manner in which we should choose
from among the equivalent, admissible pairs left at the end of Algorithm 3.7.
Once agaln, an approach is suggested by our previous example. After the poly-
nomial "pg" is formed, the set contains a number of M-chains. Accordingly there
are several pairs for which M(p;, p;) = xy®, for example. We have only to com-
pare Spoly(py, ps) and Spoly(p,, p7) to see that some pairs will lead to polyno-
mials of higher degree than others. This is unavoidable, since the
elimination/separation of headterms causes an increase in the degree of the vari-
ables which are subordinate in <;. The procedure normselect should therefore
take into account the degrees of the polynomials in each pair. A reasonable
heuristic is then to always choose the pair which was created first (i.e. from
"earlier" polynomials), when a choice exists. Throughout this chapter, we use
this approach implicitly for Algorithm 3.5. By the same token, we see that the
manner in which the input is pre-reduced (by reduceset) can affect the degree of
the input to the main loop of Algorithm 3.8 (and thereby the overall complex-
ity). But since a general strategy is not clear, we will continue to use our previ-
ous approach in what follows.

It is also important to note that the above degree of freedom (in selecting
S-polynomials) is lost if the basis polynomial are inter-reduced during the main
loop. This suggests that the algorithm might produce more complex calcula-
tions than if the polynomials were not inter-reduced. We consider the following
variant of the algorithm. (See also [Buch85], p. 6.13.)

50

Algorithm 3.9:

procedure Gbasis(F)
G <« reduceset(F) ; k «— length(G)
B«—{[i,4|1<i<j<kand criterioni([i,), G) }
while B # g do
[¢, J] <= normselect(B, G) ; B «— B — {[i, j|}
if criterion([¢, j], B, G) then
[« reduce(Spoly(G;, G,), G)
if f # 0 then
P «—reduceset(G U {f})
Q «—{he€P | 3 g €G with hterm(g)=hterm(h) }
k «—length(Q)
S «—P—Q
C +«—g
for [, j] €B do
if 3 [[,m] with hterm(G;)=hterm(Q,), hterm(G j)=hterm(Q,,)
then
C«—CU{[l,m]}
for s €5 do
Q+—QU{s}; k—k+1
C—CU{[i, k] |1 <4 <k and criterioni([i, k], G) }
G «—Q; B+—C
return(G)

Finally, the previous argument also suggests that the normal selection stra-
tegy itself may not always be optimal, in the sense of the overall complexity of
calculations produced. It is possible that by forming S-polynomials of lower
degree we can minimize the degree growth as the elimination proceeds. Instead
of select2, Algorithm 3.8 could use the following heuristic selection strategy.

51

Algorithm 3.10:
procedure select3(B, G)
D® «— B; Ry
while D2 # ¢ #+ B do
d «— min { degree(Spoly(G,,G,)) | [u, v] EB }
D «—{[i, j] € B |degree(Spoly(G;,G;)) = d }
D® —{[i, €D —criterion([i, 5], B, G) }
B+ B-D?
for [4, J] eD® do
if Aterm(G;) | hterm(G;) then R «— R U {G;}
else if hterm(G;) | hterm(G,) then R +— R U {G,;}
if B # ¢ then return([normselect(D, G), B, R])
else return([, B, R])

In Tables 3.2 and 3.3, we compare selection strategies and algorithm vari-
ants for each term ordering. Note that, once again, identical code is used for
common sub-algorithms such as reduction. It is apparent that when the gra-
duated term ordering is used, the behaviour of Algorithm 3.9 is not markedly
different from that of the other formulations. The overhead of many extra calls
to the reduce procedure has made our implementation slower than Algorithm
3.8; but it is reasonable to expect that for some problems (or different imple-
mentations), Algorithm 3.9 might yield an improvement.

When the lexicographic ordering is used, we find a surprising difference
between algorithm variants and selection strategies. Algorithm 3.9 does indeed
suffer from a large intermediate degree growth (¢.e. expression swell) on many
problems. We find that it only performs well on problems of special structure.
It is therefore clear that this approach should not be used in the stated form. It
may still be possible to combine it with a heuristic to decide when to inter-
reduce the basis. However, Algorithm 3.8 is a more practical variant. (In fact,
any variant in which the "redundant” polynomials are removed from the basis
before termination will suffer from this expression swell, to some extent.)

Algorithm
Problem

3.4 3.8 3.9
max. degree 4 4 4
2 time (sec.) 11 10 12
space (Kb.) 680 696 614
max. degree 4 4 4
3 time 723 636 1952
space 1442 1360 1262
max. degree 4 4 4
4(a) time 40 40 61
space 992 975 926
max. degree 4 4 4
4(b) time 40 40 80
space 983 975 877
max. degree 3 3 3
5(a) time 45 41 68
space 1057 1032 1032
max. degree 3 3 3
5(b) time 58 57 83
space 1090 1064 1024
max. degree 3 3 3
5(c) time 60 58 88
space 1065 1065 1065
max. degree 5 5 5
6(a) time 43 42 78
space 992 991 1008
max. degree 5 5 5
6(b) time 49 48 96
space 1024 1016 1049
max. degree 5 5 5
6(c) time 50 49 96
space 1057 1032 1049
max. degree 4 4 4
7(a) time 77 76 123
space 1148 1147 1155
max. degree 11 11 11
9 time 226 218 1015
space 1188 1196 1212

Table 3.2: comparison of algorithm variants for <g
(Maple 4.1 on a VAX/8650 processor.)

Alg. 3.8

Problem Alg 3.9

select2 select3
max. degree 12 8 10
2 time (sec.) 84 28 68
space (Kb.) 1073 934 1548
max. degree 9 8 9
3 time 123 392 115
space 1073 1417 950
max. degree 29 9 >40
4(a) time 498 55 | >14812
space 1318 1040 >12000
max. degree 31 11 57
4(b) time 530 41 12188
space 1327 1008 6234
max. degree 12 10 11
5(a) time 13 17 15
space 876 983 1155
max. degree 21 10 >31
5(b) time 474 57 >60000
space 1671 1286 >6176
max. degree 24 10 >29
5(c) time 3653 119 >36000
space 2638 1655 >12000
max. degree 20 13 >27
6(a) time 250 83 >3404
space 1180 1335 >12000
max. degree 23 13 27
6(b) time 534 129 2081
space 1335 1245 3097
max. degree 42 13 >42
6(c) time 10262 226 [>25026
space 2703 1319 >12000
max. degree 31 14 >47
7(a) time 3070 219 >60000
space 2810 2253 >11305
max. degree 70 >19 69
9 time 46019 >60000 16180
space 9280 >8528 8217

Table 3.3: algorithm variants and selection strategies for <
(Maple 4.1 on a VAX/8650 processor.)

54

What is perhaps more surprising is the degree of success of the (somewhat
crude) heuristic selection strategy. By minimizing degree growth, it often
results in computations of lower overall complexity (and therefore lower comput-
ing time) than the normal strategy. We expect that the relative density of
O-reductions will be larger (e.g. Problem 3), since ecriterion2 is no longer as
powerful. It may also happen that S-polynomials chosen in this manner will
require reduction paths which contain many more (single reduction) steps than
would a <z-minimal S-polynomial. So, this strategy could still be slower than
the normal strategy despite the degree reduction (e.g. Problem 9). Still, it shows
that to some extent the sensitivity of the algorithm to permutations of the vari-
able ordering is a consequence of the degree growth which (unavoidably) results
from a normal selection strategy. The development of a more effective general
strategy for the lexicographic ordering (possibly as a compromise between the
normal strategy and a heuristic) is an important problem for future study.

55

3.4. The Reduction Sub-algorithm

It should be clear that for a given variant (and selection strategy) the effi-
ciency of Buchberger’s algorithm depends to a large extent upon the efficiency
of the reduction sub-algorithm. We note that Algorithm 3.2 appears simple only
because the awkward details of this process (which are not mentioned in Algo-
rithm 3.1) are hidden in the procedure reduce. After presenting a clearer state-
ment of the reduction process, we will examine ways in which its general effi-
ciency may be improved. Once again, it happens that when <, is used, much
greater attention must be devoted to the details of the sub-algorithm.

Following Algorithm 3.1, we see that a polynomial p is fully reduced iff:
(1) M(p) is irreducible, and
(2) p—M(p) is fully reduced.
We recall that M(p) is reducible (modulo F) iff the subset

R, = { [€F st. hterm(f) | hterm(p) } (3.9)
is non-empty. A convenient criterion for full reduction is then that
Rp = Rpl = cee = 143 3
where p, = p—M(p), p;y; = p;—M(p;). Algorithm 3.1 may then be

re-phrased as follows:

Algorithm 3.11:
procedure reduce(g, F)
p—gq; h+<0
while p # 0 do
R, «—{ f €EFs.t. hterm(f) | hterm(p) }
while R, # ¢ do

f « selectpoly(R,)

p—p—M(pp)f/M(f)

R, —{ f €EFs.t. hterm(f) | hterm(p) }
if h=0and p # 0 then p «—p/heoeff(p)
h+h+ M(p); p«—p— M(p)

return(h)

56

The details of the procedure selectpoly (which need not be identical with that of
Algorithm 3.3) will be discussed later in this section. For now (and in the previ-
ous section as well) we assume that it simply returns the first available f ER,.

The first detail to be considered is that of the type of arithmetic used in
the reduction step (3.5). It is common in the literature to perform the arith-
metic precisely as stated above. We must realize, however, that if the coeffi-
cient field K is one of rational numbers (@) or rational functions (Q(a,b,...,c)) -
which are arguably most common - a single K-multiplication requires several
integer (or rational polynomial) steps. For example, to compute the product

L.
f b d
(where a/b and c/d are already in lowest terms), we must compute either

e=ac, f=0bd, u=gcde,/f),

or
u = gecd(a, d), v =ged(c,b),

N a ~ b . ¢ -
.a=——, b=—’ C=_, d=
u v v

d
D)
u

e=aé, f=bd
(The latter may be more efficient if the integers involved are large.) Therefore,
for these two important fields, the cost of coefficient operations may be rela-

tively large. This is, in part, the reason for the re-scaling done at the end of
Algorithm 3.11 (as suggested in [Buch85]). Since

f _ heoeff(p) hterm(p)
Mip) M(f) heooff(f) hterm(f) *

the requirement that hcoeff(f) = 1 (where fis a generic element of a reducing
basis F) immediately saves a multiplication and a division in (3.5). Hence, if fis
used in many reductions or S-polynomials, the cost of the re-scaling becomes
worthwhile. Moreover, in a manner analogous to the monic Euclidean PRS, the
cancellation of greatest common divisors in the remaining coefficients of S helps
to control coefficient growth.

57

The analogy with polynomial remainder sequences (which is particularly
appropriate when < is used) suggests another approach: in the manner of the
primitive PRS we might avoid explicit fractions when K is the quotient field of
a unique factorization domain (e.g. Z when the field is @). Let us suppose, for
example, that p, f € Q[zy,...,z,] contain 7, ¢ terms, respectively. Suppose
further that f is monic and that we use the simpler formulation of rational
arithmetic. Then the reduction step (3.5) requires (¢—1) rational multiplica-
tions, and up to (m+@—2) rational additions. In terms of integer operations, this
translates to (74+2¢—3) GCD computations, (37+5¢4—8) multiplications,
(2m+4¢—8) divisions and (7+¢$—2) additions. If, on the other hand, we take p, f
€ Z[zy,...,x,] where f is primitive (i.e. the GCD of its coefficients with respect
to the basis 7, is 1) and compute

hterm(p

p > heoeff(f)p — heoeff (p) m{;} 7, (3.10)
then only (7+¢) multiplications and (7+¢—2) additions are required. Of course,
this says nothing of the relative size of the integers involved in these operations
(which we expect to be smaller in the rational arithmetic). However, noting the
superiority of the primitive PRS in the context of Chapter 2, we hope to make
similar gains in the present one. In fact, there may be an even greater advan-
tage to the fraction-free approach to reduction.

In practice, the primitive PRS is rarely used because of the availability of
such schemes as the reduced and subresultant PRS, which remove a smaller (but
more easily obtained) quantity than the full content from each pseudo-
remainder. (No counterpart to these schemes currently exists for reduction.)
The success of these schemes depends on the fact that they will usually remove
a large proportion of the content at each stage; otherwise, the leftover content
is carried into the next pseudo-remainder and produces rapid expression swell.
In contrast, the linear coefficient growth in (3.10) may be well controlled if the
reducing basis F' consists of primitive polynomials. Therefore the overhead of
content sub-computations need not be prohibitive if the required frequency of
these computations is low.

Secondly, it is usually possible to remove the content from a polynomial
much more cheaply than the definition (2.9) suggests. Specifically, we will
examine the computation of content by a probabilistic algorithm [Mona86], and

T
the removal of content by trial divisions. Consider a polynomial p = Mot
i=1

58

where p;, EK, t; €T,. We obviously have

g1 = ged(py, pg) = ged(py,..,pqx) = content(p) .

However, we also note that if g, IPi for 3 <+ <, then g, = content(p). So,
we might obtain the content at a cost as small as that of (r—1) divisions; on
the other hand, it will not exceed (m—1) GCD’s and

r—1 T
S k) = (=1 (5 - 1)

k=2
divisions. The likelihood of early success is clearly greater if p;, p, are "small"
compared to the rest of the coefficients. Rather than incur additional overhead
by sorting, we can in practice use the fact that the head coefficient itself is
often the smallest. An example of such an algorithm is as follows.

Algorithm 3.12:
procedure content(p)

g1 < heoeff(p)

C—{py -y Pr} — {91}

for C; € C while g; # 1 do
if g; | C; then next
else g, «—ged(g;, C;)

return(g;)

Note that over K = Q(a,b,...,c), for "divisibility" we require exact divisibility in
Zla,b,...,c].

We now observe that by working in Z[a,b,...,c] in the above case, we may
use a trial division method similar to that of [Hear79] for the primitive PRS.
While Hearn’s scheme uses only the leading coefficients of sequence polynomials
as trial divisors, it is necessary in the present case to use ratios of head coeffi-
cients of the reducing basis. The set of trial divisors could be obtained by mul-
tivariate factorization of the head coefficients. However, a much cheaper
method is to perform the decomposition by trial divisions as well. If H —
{hcoeff(G,), ..., heoeff(G})} are the head coefficients of a basis G, we obtain a

set of trial divisors as follows:

59

Algorithm 3.13:
D «—g; for h €H do D «— extend1(D, h)

where we define

procedure extendi(Dg, h)
D«—Dy; R—{h}—2Z
while R # ¢ do
k « selectpoly(R) ; R «—R — {k}
for d €D do
k

whiledlkandkﬁZdok«—E—

if £t ¢ Z then
E —g
for d €D do

if k| d thenE«—Eu{d};R*—RU{%}

D—D-EU{k}; R—R—2Z
return(D)

In our experience, it seems that that the set D obtained as above (and
updated during the course of Algorithm 3.8) often accounts for all of the con-
tent which occurs during the reduction of S-polynomials, when < is used. So,
further decomposition would only slow the trial division process. However, when
<¢ is used we do not expect the head coefficients of (consecutive) basis polyno-
mials to be related in the same manner. Suppose D C Z[a,b,...,c] contains only
primitive polynomials which do not factor. Then it may be extended with
respect to a new primitive polynomial as follows.

Algorithm 3.14:
procedure extend2(D, c)
k—c
for d €D do

whiledlkandkﬁZdok«—%

E « { distinct factors of k }
return(DUE)

60

Once again, the set of possible divisors may be updated as new polynomials are
added in the course of Algorithm 3.8. Then during reduction, we may attempt
to remove content by trial divisions with such a set as described in [Hear79).

At this point, a wide range of choices exists for the frequency and type of
content removal in a fraction-free reduction scheme. Since each variation com-
plicates the sub-algorithm in a slightly different way, we present only one ver-
sion here. (This should make the construction of the other possible schemes

clear.)

Algorithm 3.15:
procedure reduce(q, F)
if ¢ = O then return(0)
[p, 0, K] <= Mreduce(q/content(q), F, 1)
h«—Mp); p—p—nh
contin «—1
while p # 0 do
[r, o, K] «— Mreduce(p, F, contin)
if k # contin then
hcont «— content(h) ; & «— hcont o
Y «—gcd(o, k)
if ¥ % 1 then
K
K +——;
K h

hcont
contin «— kK

h «—och + kM(r); p«~—r— M(r)
return(h)

h «—

where we define

61

procedure Mreduce(q, F, contin)
p+—q; O+—1; K<«—contin; cflag — true
big <« 3 maz{ length(hcoeff(F;)) |F; €F }
R, «+{ f €Fs.t. hterm(f) | hterm(p) }
while R, # ¢ do
cflag «— false
f — selectpoly(R,)
u «— hterm(p)/hterm(f)
Y +—gcd(hcoeff(p), heoeff([))
- heoeff(f) ;g — heoeff(p)

~ >
pe—mip — mouf

O «—m,o
if p # 0 then
if length(hcoeff(p)) > big then
pcont «— content(p) ; cflag «— true
p <—p/pcont ; K — K pcont

m,

else
return([0, o, 0])
R, «—{ f EFs.t. hterm(f) | hterm(p) }
if cflag then return([p, o,])
else
pcont «— content(p)
return([p/pcont, o, Kk pcont])

With the above algorithm, we hope to remove content only when the coefficients
become large compared to those of the polynomials in F. For our implementa-
tion, we have used the Maple function length, which returns the number of
digits of an integer and the "internal path length" (of the Maple representation)
of a polynomial. Other formulations worth considering are:

Algorithm 3.16: compute and remove the content (via Alg. 3.12) after
each single reduction step; after secondary calls to Mreduce, remove any
accumulated overall content as above.

Algorithm 3.17: after each reduction step, attempt to remove content by
trial divisions (using divisors computed by Alg. 3.13 for <z, or Alg. 3.14 for
<g), followed by Algorithm 3.12; at the end of each secondary Mreduce

62

call, remove any overall content as above (preceding content calculation by
trial divisions).

Algorithm 3.18: attempt to remove content by trial divisions only when
the coefficients become large; if the coefficients remain large, remove the
left-over content by Algorithm 3.12; before the next Mreduce call, remove
the overall content as above.

We will now compare reduction schemes on problems with both integer and
polynomial coefficients, using the framework of Algorithm 3.8 with the normal
selection strategy.

Reduction Algorithm
Problem
3.11 3.15 3.16
(monic) | (primitive) | (primitive)
2 time (sec.) 1269 282 317
space (Kb.) 950 1106 1081
3 time 501 500 491
space 1049 1065 1073
4(b) time 2618 2157 2152
space 1360 1335 1327
5(a) time 134 52 54
space 713 934 901
5(b) time 7346 1725 1815
space 1786 1630 1671
5(c) time 63164 13351 13884
space 3465 2580 2515
6(a) time 1629 954 1035
space 1081 1212 1180
6(b) time 3401 2077 2224
space 1114 1343 1335
6(c) time 90759 35809 37295
space 2802 2703 2736
7(a) time 60002 11290 11391
space 4762 3056 2826

Table 3.4: <; - reduction over rational numbers
(Maple 4.0 on a VAX/785 processor.)

Reduction Algorithm
Problem
3.11 3.15 3.16
(monic) | (primitive) | (primitive)
2 time (sec.) 57 40 40
space (Kb.) 590 704 688
3 time 2705 2642 2595
space 1327 1360 1368
4(Db) time 176 174 167
space 951 983 983
5(c) time 315 236 238
space 893 1097 1065
6(c) time 221 210 202
space 958 1057 1049
7(a) time 393 304 309
space 926 1171 1139

Table 3.5: <, - reduction over rational numbers
(Maple 4.0 on a VAX/785 processor.)

Reduction Algorithm
Problem
3.11 3.15 3.16 3.17 3.18
10 time (sec.) 50 16 35 42 13
space (Kb.) 1000 803 1032 1000 827
11 time 159 54 75 80 53
space 1057 1098 1106 1081 1098
12 time 200 548 647 327 124
space 1155 1589 1573 1253 1237
4(c) time 4576 1348 1441 1781 1212
space 1992 3270 2187 2154 2146
13(a) time 10396 2517 2793 3467 2607
space 2482 2428 2424 2548 2449
13(b) time 2620 1651 1780 1953 1172
space 2024 2646 2613 2514 2408
13(c) time >79655 >87438 >150000 55493 15084
space >16000 >16000 >6209 4710 3637
14 time 1029 852 934 698 534
space 2531 3604 3612 3285 3039
15 time 4976 4931 5104 2793 2375
space 6914 7528 7750 7627 7512
Table 3.6: < - reduction over rational functions

(Maple 4.1 on a VAX/8650 processor.)

63

64

Reduction Algorithm
Problem

3.11 3.15 3.16 3.17 3.18
10 time (sec.) 25 177 164 157 198
space (Kb.) 844 1294 1270 1368 1335
11 time 15 16 19 23 18
space 788 868 893 868 860
12 time 11 10 14 18 12
space 648 688 778 860 712
4(c) time 3536 2640 2287 2740 3089
space 2425 2580 2449 2368 2531
13(a) time 43 31 34 44 37
space 910 958 950 909 926
13(b) time 19 17 18 23 19
space 804 885 885 868 868
13(c) time 30 32 33 37 33
space 868 933 934 917 909
13(d) time 446 269 315 451 301
space 1622 1737 1745 1728 1745
14 time 25 23 27 37 27
space 803 892 925 868 900
15 time 27 24 30 45 30
space 828 909 958 909 942

Table 3.7: < - reduction over rational functions
(Maple 4.1 on a VAX/8650 processor.)

It is apparent that for <, there is little consistent difference between
reduction schemes. This is largely because in this case the coefficient growth is
not extreme. For example, the coefficients of the primitive polynomials pro-
duced by the algorithm during Problem 7(a) do not exceed 45 digits. By com-
parison, the lexicographic algorithm will produce (primitive) polynomials with
470 digit coefficients, when applied to the same problem. Hence, for <g, there is
a noticeable difference between the monic and primitive schemes. This may
appear to be more pronounced in the integer case because space limitations
prevent us from displaying the asymptotic behavior of the polynomial class. We
mention that in the implementations of these schemes, the integer operations
such as ged and content are part of the compiled kernel of the Maple system;
therefore they are relatively fast. (The integer content function is in fact simi-
lar to Algorithm 3.12.) For this reason, there is little (or no) advantage to Algo-
rithm 3.15 over Algorithm 3.16 in this case. (The latter was used throughout
the previous section.) The different details of rational polynomial arithmetic

65

make reduction speed somewhat more dependent on individual problem struc-
ture. Since rational function coefficients may be kept in factored normal form
[Gedd83], their simplification may be very fast ¢f they consist only of simple fac-
tors (e.g. Problem 12). We mention that the monic approach is much slower if
the re-scaling is done more often (see [Czap86a]), or if the rationals are kept in
expanded normal form. We also note that coefficient growth in problems with
free parameters is quite often extremely rapid. So, the monic scheme may again
be very slow asymptotically. Moreover, if we choose to avoid rationals, the
removal of content by trial divisions can result in substantial savings by avoid-
ing expensive multivariate GCD computations. (Univariate GCD computation is
relatively efficient in Maple due to the gedheu algorithm [Char84].) It seems that
Algorithm 3.15 can sometimes be slower than Algorithm 3.16, since the content
sub-computations (as well as the reduction arithmetic) become more complex if
content is allowed to accumulate. The cost of trial divisions does not seem to
be similarly affected; however, for large problems (i.e. with several parameters)
the more conservative Algorithm 3.17 might be appropriate. Recently, some
progress has been made towards the development of p-adic and modular
methods for Grébner basis computation (see [Trin84), [Wink87], resp.); for obvi-
ous reasons, this is of particular importance for <;.

We will now consider the details of the procedure selectpoly of Algorithm
3.11 (which differ from those of its counterpart in Algorithm 3.3). Namely, the
degree of freedom present when R, has many elements leaves the problem of
choosing a particular f € R,. There are two obvious possibilities: we can either
choose f such that Aterm(f) is minimal among the headterms in R, (as in Alg.
3.3), or choose f such that it is maximal. If we use the graduated term ordering,
the former strategy is reasonable by virtue of Lemma 3.8 (and perhaps also the
observation that extreme coefficient growth is less of a problem than for <7)-
However, if we use the lexicographic ordering there are once again many reasons
why this may not work well in practice.

Example: Suppose that >; y, and consider the polynomials
p= —3zy' —y® +27y —4,

and

66

fi= :vy3—27:1:y + 4z + ¢ 4+ 443 ;

fo= 8lay® — 122y —3y" —12y* + % — 27y + 4 ;

f3= 59001zy — 8748z — 81y® — 12y7 — 2187y — 3244°
— 21y* — 8744y® — 729¢y% + 16 ;

compare the reduction of p modulo (in sequence) f;, f,, f3 to the reduction
modulo f3 alone.

We first note that using a reducer of lower order headterm can result in a
reduced object of relatively high degree (and accordingly, more terms). So, if a
non-normal selection strategy is followed, the overall complexity of the algo-
rithm may increase unless we select each reducer carefully. An approach con-
sistent with Algorithm 3.10 would be to select f such that the total degree of
the reduced object is minimal (with ties broken lexicographically). Since this
essentially removes the degree of freedom in this case, we turn our attention to
the normal selection strategy. Although the final result must be unique with
this strategy, it is possible that the number of reduction steps may increase.
We further note that since the lower order polynomials necessarily appear at a
later point in the algorithm, and since there is (linear) coefficient growth associ-
ated with reduction, we expect that their coefficients will usually be relatively
large. Therefore, the cost of coefficient arithmetic may also be greater if we use
the lower order polynomials. (This is another reason, then, why Algorithm 3.9
may be slow.) In practice, the optimal choice will depend on p as well as R,.
However, given the apparent importance of coefficient operations in the <z,
reduction process, we will consider a heuristic which seeks to minimize the cost
of this arithmetic.

Let us consider a reduction step (3.10) in the particular case of polynomials
over the rationals (7.e. all coefficient arithmetic is done over Z). Suppose that
p, [have 7, v terms, respectively (where f €R,) and that

length(hcoeff(f)) = N', length(||f|le) = N,
length(hcoeff(p)) = P', length(|lp|le) = P .

Further suppose that the times required to multiply and add integers of lengths
M, N are (¢c;MN) and cy(M+N), respectively, and that the time required to
multiply two terms in n variables is bounded by (csn). (Note that, practically
speaking, the degrees of all monomials should be reasonably small.) Then the

67

total cost of the reduction (3.10) is bounded by
C = c;nN'P + ¢;vP'N + ¢y min(v, m)(N'P+P'N) + caon . (3.11)

Some simple experiments reveal that for the Maple system we have ¢; = .1 ¢,
and ¢3 << ¢,. In fact, since the Maple length function will compute a value
similar to mP for a polynomial p € Z[z,...,x,], We can (roughly) model polyno-
mial arithmetic in much the same way; in this case, we find that ¢; =~ ¢, and ¢,
<< ¢y. Although it is an abuse of notation, we will therefore write

I/ lloo == maz {length(f;) | 1 <i <wv'}

14
for f = 3] fit; where f; € Z[a,b,...,.c]. Now, if N' =~ N, then (3.11) is approxi-
i=1
mately
NleymP + ¢ ;vP' + ¢y min(v, m)(P + P')] . (3.12)

So, as-v becomes large, only the contribution of the second term in (3.12)
increases. Apparently, the cost is more strongly dependent on N than v. We
might therefore use a quantity such as

Nv* ~ (NN'v)*

as a heuristic measure of the cost of using f for the reduction. If N' << N,
then (3.11) is approximately

¢1P'vN + ¢y P'min(v,)N . (3.13)

Noting that NN’ is not much larger than N, and that P’ < P (i.e. (3.13) is
smaller than (3.12)), the quantity NN'v again seems appropriate. We therefore
define

complexity(f) = length(||f||e) length(hcoeff(f)) v . (3.14)

Then if the reduction basis F is sorted in order of ascending complexity,
selectpoly(Rp) will obtain the heuristically optimal reducer for p by taking the
first available element of R,. It v >> 7 or v K 7, the quantities VN and IV,
respectively, are better measures of the reduction cost. However, there is no
way to take this into account without considering also the object p. Moreover,
if p is an S-polynomial formed from the basis containing f, we expect that m ~
O(v).

68

Let us now compare reduction strategies for Algorithm 3.8 (with the normal
selection strategy), using a reducer based on Algorithm 3.16. The reduction

basis can be sorted:

(a) such that the headterms are <;-ascending,

(b) such that the headterms are < -descending,

(¢) such that the complexities (3.14) are ascending.

In order to ensure that the same input reaches the main loop in each case, the

initial pre-reductions are carried out using the descending order only.

Basis Order
Problem
<t - <g - (3.14) -
ascending descending ascending
2 time (sec.) 570 350 280
space (Kb.) 1164 1172 1057
3 time 646 632 636
space 1221 1222 1122
4(b) time 3164 2858 1979
space 1417 1417 1319
4(d) time 85271 128724 47175
space 4072 4956 3396
5(c) time 10911 13753 6061
space 2687 2507 2376
6(c) time 19490 43448 17195
space 2556 2744 2742
7(a) time 7675 12000 5826
space 2458 3202 3080
9 time 119770 207602 90238
space 7600 9636 8296

Table 3.8: the effect of basis sorting on <;-reduction,
integer coefficients

(Maple 4.0 on a VAX/785 processor.)

69

Basis Order
Problem
<g - <z - (3.14) -
ascending descending ascending
10 time (sec.) 1378 37 36
space (Kb.) 2859 1057 1032
11 time 287 77 82
space 1196 1106 1171
12 time 49616 636 678
space 3457 1548 1597
4(c) time 1378 1639 1182
space 1975 2252 2097
13(a) time 1903 2583 1181
space 1991 2482 1802
13(b) time 1226 1821 1019
space 1500 2539 1728
13(c) time 22579 >150000 18822
space 3216 >5844 2990
14 time 876 1038 1016
space 2499 3604 2949
15 time 4523 5697 5377
space 6300 7766 7600

Table 3.9: the effect of basis sorting on <;-reduction,
polynomial coefficients
(Maple 4.1 on a VAX/8650 processor.)

In constructing the above heuristic, we have neglected the fact that Algo-
rithm 3.16 actually removes a GCD before cross-multiplication. Nonetheless, it
seems to work well when one <;-based strategy or the other performs poorly.
Since the choice of a reducer with small coefficients limits coefficient growth,
such an approach also helps to minimize the cost of content removal after
reduction. Note that for problems with polynomial coefficients, the result of
using even slightly bigger coefficients can be quite dramatic. This presents yet
another reason why variants of the algorithm which do not (in general) remove
the "redundant” polynomials are preferable when < is used.

In the sequel, then, we will use [reduction] Algorithms 3.16 and 3.18 for
problems with integer and polynomial coefficients, respectively; the reduction
bases will be sorted according to the heuristic. We re-iterate, however, that a
completely different type of reduction heuristic is suggested for a non-normal

70

selection strategy. Also, our experience suggests that for <g, relatively little
improvement over a <g-ascending basis can be obtained using the heuristic,
when fraction-free arithmetic is used. It then turns out to be somewhat more
convenient to use Algorithm 3.11 in this case.

Chapter 4: Solving Algebraic Equations

4.1. Grobner Bases and Systems of Algebraic Equations

We have already discussed the applications of Grébner bases in algebraic
simplification. It has also been shown how they may be used in the computation
of polynomial GCD’s and factorization [Gian85]. However, our primary point of
interest (and historically, among the original applications) is their usefulness in
solving systems of algebraic equations. In [Buch70], it was shown that by
transforming an arbitrary basis of a [zero-dimensional] polynomial ideal into a
Grobner basis, certain questions about the solvability of the associated algebraic
system could be answered. Buchberger’s method was later applied by Trinks
[Trin78] to determine certain solutions of a system of six equations in six unk-
nowns. With the continued study of Grébner bases, it became clear that many
of Buchberger’s results were applicable also to ideals which were not necessarily
zero-dimensional. Nonetheless, it is noted in [Pohs81] that the methods were
not as suitable in practice as was originally hoped. These authors therefore
examined the combined use of Buchberger’s results with the classical elimination
theory. However, their ideas do not seem to have been pursued further.
Instead, the improvements made possible by Buchberger’s criteria (see Chapter
3) and his own consolidation of the various Grébner basis techniques [Buch85)
have allowed a number of fairly difficult systems to be solved in [Boge86]. In
what follows, we speak interchangeably of F as either a basis for an ideal in
K[zy,...,x,], or the associated system of algebraic equations over K.

The main principle underlying the results of this section is that if
<F>=<G >, then the common zeros of the sets F' and G are identical. This
alone is of little use, since the ideals are, in general, infinite sets. Hence, the
construction of a Grébner basis becomes quite useful.

Theorem 4.1 ([Buch85]): Let G be the reduced Grébner basis of F. Then F is
solvable (7.e. 3 (¢y,...,00,) in an algebraic extension of K such that [y, ay)
= Oforall f €F)iff 1 ¢ G.

Proof: Clearly the system is inconsistent iff there exists a combination of the
original polynomials which equals 1. This is equivalent to the requirement that
1 € <F>. However, <F>=<G >, which by the definition of Grébner bases
implies that reduce(1, G) = 0. This is only possible if 1 € G. In fact, since G
is, by assumption, reduced we must also have G = {1} O

71

72

Roughly stated, the dimension of <F> is the number of independent
parameters upon which the solutions of F' must depend. (See [Waer53] for a
more precise definition.)

Theorem 4.2 ([Buch85]): Let G be the reduced Grébner basis of F, and let H
be the set

H := {hterm(g) | ¢ €G }.
Then F' has finitely many solutions iff for all 1 <7 <mn, 3 k such that xzk € H.

Proof: Consider the set U defined in (3.7), which we recall forms a linearly
independent vector space basis for K|[z,...,x,]/<F>. Clearly this basis is fin-
ite iff H has the above property. But the quotient structure is finite-
dimensional (as a vector space) iff <F> is zero-dimensional, .e. F has finitely
many solutions O

Example: For the polynomials

2

F = {:vSyz — 222, zy’z — xyz, z2y? — 2 }

we find that using <; (where z >; y >; z) the reduced Grdbner basis is

G = {x2y2 — 2%, 2yz — 23, 2% — 24wyl — TYZ,

zyz? — z2%, x2° — x2?, y2® — 2%, 2% — 24} .

Since 1 ¢ G, the system does possess solutions. However, since the require-
ments of Theorem 4.2 are not met, there are infinitely many.

Example: For the polynomials
F = {3z% — y®* — 4, 2% + zy° — 9}
we find that with <5 (where z >4 y) the reduced Grébner basis is
G = {32%y —y® — 4, 92 — y* + 122y% — 812% + 27y% — 4y,
y° + 32% + 4y® — 27z, ay® + 22 —9}.

Therefore there exist finitely many solutions.

73

We note two important features of the above examples. First, they are indepen-
dent of the choice of term ordering. Second, neither result requires that the
solutions themselves be constructed. This latter point may be quite important
in practice, for the methods for constructing the solutions do depend on the
term ordering chosen (and may not be practical even if the Grébner basis con-
struction is; see Example 8 of Section 4.4).

Let us first examine the method for finding the solutions when the total
degree ordering is used. We assume that our system F has only finitely many
solutions, so that the reduced Grobner basis G satisfies the conditions of
Theorem 4.2. Then for each x; € {zy, ..., 7, } there must exist a univariate poly-
nomial r; € <F>MNK|[z;] which includes all possible values of ; which may
occur in a solution of F. We can, in fact, construct the smallest such polyno-
mial using a method presented in [Buch85].

Algorithm 4.1:
procedure finduni(G, x)
k «—0
do
p — reduce2(z®, @)
k
if 3 (dy,...,d}) # (0,...,0) s.t. 3 dip; = O then
J=0
return(—>)d;z’)

else
k—k+1

where we define

procedure reduce?(q, G)
p—q; h«<0
while p % 0 do
R, —{ [€G s.t. hterm(f) | hterm(p) }
while R, # ¢ do
f «— selectpoly(R,)
p—p—Mp)f/M(f)
R, «—{ [€G s.t. hterm(f) | hterm(p) }
h«—h+ M(p); p«—p— M(p)
return(’)

74

(The procedure reduce? is clearly just Algorithm 3.11 with no re-scaling of the
reduced object.) If we require that

k .
ro= Md! € <F>nNKlz],
j=0

then we must have

reduce2(r, G) = Ekj d; reduce2(z’, G) = 0.,
j=0
This condition yields a system of linear homogeneous equations (i.e. the coeffi-
cients of the associated polynomial in K|zy,...,z,]/<F>), which will have a
non-trivial solution iff such a polynomial r exists. We mention that if the
reduced forms of the powers z* were re-scaled by the reduction algorithm, we
would not obtain the true reduced form of r. Since "monic" reduction works
fairly well for <g, the simplest approach is to use reduce?2.

By constructing a univariate r; for each [in 1 <! < n, we obtain a finite
inclusion of the roots of F. Since not all n-tuples thus defined will be solutions
of the original system, it is noted in [Boge86] that the inclusion may be refined
by decomposition of the ideal. This may be accomplished using [univariate] fac-
torization, as follows.

Algorithm 4.2:
procedure decompG(F)
S «—{[Gbasis(F), g] }
for k£ € {n,n—l,...,l} do
T —¢g
for [G, U] €S do (refine G)
r «— finduni(G, x;)
R «{ distinct factors of r }
if R = {r} then
T«—TU{[G,UU{r}}
else
for R, €R do
T «T U { [Gbasis(GU{R;}), UU{R; }] }
ST
return(.S)

75

Whether or not the ideal is fully decomposed, we may explicitly obtain the roots
from a Grobner basis (or one of its components) by a method of [Buch85]. (Note
the similarity to Algorithm 4.2.)

Algorithm 4.3:
procedure solveG(F)
S —{IF,d }
for k €{n,n—1,..,1} do
T —g
for [G, (%41,)] €S do
H—{g(@}.mp,0,,...0,) | g €G}
H «— Gbasis(H)
r «— finduni(H, x;)
if r #* 1 then
T«—TU { [H, (O‘sO‘k+1a'"’O‘n)J Ir(a) =0 }
S T
U<+—g
for [H, (oy,...,®,)] €S do
U—UU{(oq,.,,)}
return(U)

Of course, it will not always be possible to solve the univariate polynomials
exactly. Also, the refinement of each Grébner basis may not be practical since
it might involve very complicated extensions of K. (Note, however, the method
suggested by Example 6.10, p. 6.22 of [Buch85].) For such reasons, we will not
consider Algorithm 4.3 further here. Still, these methods are obviously of great
practical and theoretical interest. In Table 4.1 we give some indication of the
cumulative cost of the ideal decomposition computed in Algorithm 4.2.

We note that Algorithm 4.1 is not always applicable, since it requires that
the ideal be zero-dimensional. It is also possible that a Grébner basis for a
"nearly triangular" system in many variables may be impossible to compute
using <g. And, even if the basis can be found using <g, it may happen that
the construction of the univariate polynomials is difficult because of the intrin-
sic structure of the ideal (4.e. its solutions) itself. (This occurs with Problem 9,

for example.)

76

Problem compute first second
Grobner basis refinement refinement
2 time (Sec.) 14 54 144
space (Kb.) 582 967 1040
5(a) time 48 238 291
space 893 1155 1270
6(c) time 54 198 407
space 950 1163 1253
7(a) time 99 670 5239
space 926 1573 2351
9 time 231 4584 >150000
space 1163 2351 >6259

Table 4.1: decomposition times for <;-Grébner bases
(Maple 4.1 on a VAX/8650 processor.)

The above limitations require that we also consider the use of <;-Grdbner
bases for determining the solutions - in spite of the difficulty of computing such
bases. Given the relationship with classical elimination techniques, the nature
of these methods should already be fairly clear. This is made more precise by
the following result (which is similar to Lemma 6.8 in [Buch85]).

Theorem 4.3: Let < be a total ordering on 7, which is such that s <rt for
all s €T, NK [z,], t €T, —K [2,...,2,], and let G be a Grébner basis with
respect to <p. Then

<G>N Klzgyyr,] = <G N Klzp,eyz,] > .

Proof: Take f € <G> N K|z,...,z,]. Since G is a Grobner basis, f > 0.
But since f contains only the variables zy, ..., z,, this means that there exist Dy
EK|z,...,z,], 9; € ¢*).— ¢ N K [zy,...,x,] such that

m
= Y9 »
i=1

which implies that f € <GW >

77

Conversely, if G' is a Grébner basis with respect to <p, then G*) must also
be a Grobner basis, since the premise clearly requires that

Spoly(p, q) Zw 0
for all p, ¢ eG¥) C @ (¢.e. by Theorem 3.2, part (3)) O

The meaning of the above result is that for any such term ordering (e.g. one
which is lexicographic in at least the first k—1 variables), the k-th elimination
tdeal of G is generated precisely by those polynomials in G which only depend
on the last (n—k+1) variables. For an arbitrary set F, this means that by
transforming to a <;-Grébner basis G (which has the same roots, since <F>
= <G'>), we may obtain the roots from an equivalent but triangular system.
Consider, for example, the conditions of Theorem 4.2. These dictate that if
<F> is zero-dimensional, G will contain a single univariate polynomial (¢.e. the
polynomial in <F> N K|z,] of minimal degree), and at least one polynomial in
each elimination ideal for which the appropriate variable is separated. In fact,
each subset G N K [zy,...,z,,] may contain other polynomials which are not fully
separated; however, because these are <;-Grébner bases it follows that no
simpler (¢.e. more fully separated) basis for <F > exists. The extent of separa-
tion will generally increase if we decompose the basis as in Algorithm 4.2.

Algorithm 4.4:
procedure decompL(F)

S «—Gbasis(F); T ¢

while S # ¢ do
p <« selectpoly(S); S «—S —{p}
P « { distinct factors of p }
if P = {p } then

T«—TU {p}

else

return(| J decompL(SU{P;}UT))
F;eP
return({ [T] })

78

We may then determine the roots through a "back-solving" process analogous to
that used with resultants.

Algorithm 4.5:
procedure solveL(F)
S —{[F, q }
for k E{n,n—l,...,l} do
T —g¢g
for [G, (1)) €S do
H ‘—'{g(mkaalc+l’"-7an) | g ec® — K (g y1502n] }
H <« Gbasis(H)
r «— selectpoly(H N K [zy])
if » # 1 then
T<—TU { (G (0 g1y eer)] I'r(a) =0}
S «T
U+—g
for [G, (o,...,a,)] €S do
U+—UU{ (. 0)}
return(U)

We mention that, in principle, this is equivalent to Algorithm 4.3. However,
after substituting each partial root, determination of the next univariate polyno-
mial only requires refinement of the next elimination ideal. Since this is a
univariate sub-problem, it is actually equivalent to computing the GCD of the
polynomials in H. In fact it has recently been shown ([Gian87], [Kalk87]) that
even this refinement is superfluous (since the GCD must appear directly in H).

It is apparent that the solution procedure used for <, is simpler than that
required for <;. This may be unimportant if computation of the <z, basis for a
given zero-dimensional ideal is not possible. However, the elimination property
of <;-Grobner bases means that the back-solving procedure will be applicable
even when there are infinitely many solutions. If, during back-solving, there are
not finitely many solutions in a particular variable T, we simply continue
back-solving for z;_; in the extended domain K (wy)[zy,...,;_;]. That is, by
transforming to a <;-Grébner basis, we make the reduction to a zero-
dimensional ideal transparent.

79

Example: For the polynomials of Problem 4(b), the (reduced) Grdbner basis
with respect to the lexicographic ordering based on ¢ >; ¢ >; p > d is

{157032¢ — 41791pd® + 79963pd* + 1831614pd? + 1750356p

+ 41791d°% — 79963d* — 1831614d% — 1907388 ,
3965058cp — 3965058¢ + 1609747pd’ + 12400589pd® + 26405460pd>

+ 15017706pd — 1609747d" — 12400589d° — 26405460d° — 15017706d ,

785160p% + 3760661pd® + 28249264pd* + 53588400pd? + 30005208p

— 3760661d° — 28249264d* — 5358840042 — 30790368 ,
520pd® + 4472pd® + 11244pd* + 11232pd? + 3888p

— 529d° — 4472d® — 11244d* — 112324% — 3888} .

We observe that the system has infinitely many solutions; however, the
Grobner basis property guarantees that this is the most refined result possible
for this permutation of variables. (Recall that when using resultants, it is not
always clear if a "reduced system" is possible or not.) Then, except for finitely
many values of d, we may solve the last polynomial for p; this yields the solu-
tions

{g—1,p —1}.

Otherwise, d must be a root of a univariate polynomial of degree 8. Decompos-
ing the basis by Algorithm 4.4 yields the corresponding solutions in the form of
the fully separated component

{785160¢9 — 3342751d° — 71904540d% — 29048894d* — 50649408 ,
3965058¢ — 1609747d" — 12400589d° — 26405460d° — 150177064 ,
785160p + 3760661d° + 28249264d* 4+ 5358840042 + 30790368 ,
529d° + 4472d° + 11244d* + 112324% + 3888} .

80

In contrast to the resultant method, the degree of the univariate polynomial
which must be solved at each stage of Algorithm 4.5 can be no larger than the
number of solutions. It is also important to note (following [Pohs81]) that the
extra freedom allowed by computing the elimination in smaller steps (z.e. by
S-polynomials) means that the intermediate results, too, may be of much lower
degree that those of the resultant method. (Compare the degree bounds in
Table 3.3 with the corresponding examples in Chapter 2, for example.) So, while
triangulation using resultants (when possible) may be much faster than comput-
ing a <g-Grobner basis, the latter may be possible when the former is intract-
able. And, the difficulty of back-solving will certainly be lower for Grébner
bases than for the reduced systems obtained via resultants. (In many cases, it
amounts to no more than a substitution.)

In Table 4.2, we give some examples of the cumulative cost (using the nor-
mal selection strategy) of decomposition of <;-Grdbner bases.

Problem compute first full

Grobner basis refinement refinement

2 time (sec.) 73 84 85

space (Kb.) 1057 1057 1057

5(a) time 14 35 36

space 940 940 940

6(c) time 4521 4542 4551

space 2768 2768 2768

7(a) time 1564 1584 1585

space 3096 3096 3096

9 time 23840 24763 24765

space 8828 8828 8828

Table 4.2: decomposition times for <;-Grébner bases
(Maple 4.1 on a VAX/8650 processor.)

When the ultimate goal of computing a <;-Grébner basis is to solve a Sys-
tem of algebraic equations, we must consider the problem of choosing a "suit-
able" permutation of variables Z1, ...y Ty. Unlike the resultant method, we must
fix the entire ordering before starting the elimination. But since it is impossible
to predict the structure of the results after reductions begin, it is extremely dif-
ficult to choose a good permutation a priori. We will therefore briefly discuss a
heuristic for this purpose which is due to [Boge86].

81

Definition: The incidence polynomial in a variable z; corresponding to a poly-

¢
nomial f = 3] a;t; (where ¢; EK, t; €T,) is
i=1

pe(zr) = ¢(1,..,1,2,1,...,1)

i
where g :=) t;. For aset F, the incidence polynomial in =z, is
i=1
Py = 3] pr(@e) -
fer

Note that these are polynomials over the natural numbers. A total ordering of
terms therefore induces an ordering of these univariate polynomials by:

p<yyg >

degree(p) < degree(q) , or
degree(p) = degree(q) and hcoeff(p) < hcoeff(q), or
M(p) = M(q) and p—M(p) <y ¢—M(q).

Definition: An ordering of variables z; > ... >; =, is heuristically optimal
for the polynomials in F C K [zy,...,z,] iff

Pily) <y Pyly) <y -+ <y Puly).

Example: For the polynomials
= {3x2y — y3 — 4, z? + xys - 9}
we find that
P,(z) = 22% + 1z + 3,
Py(y) = 20° +0y° + 1y + 3.

For example, y occurs in the system to the power 3 a total of 2 times. There-
fore, the heuristically optimal permutation is z > y.

82

The idea behind the heuristic is simple: it makes sense to try to eliminate
first those variables which occur in the lowest degree, and in the fewest places.
In [Boge86], 2 number of examples are given in which the <-basis can be com-
puted with respect to the heuristically optimal order. We add that this optimi-
zation involves only very simple computations. Clearly this type of tool is essen-
tial for the application of the <;-Grdbner basis method in an automated solver,
or when the system F' contains many variables. However, it seems that this
heuristic is most useful in avoiding very bad permutations, as opposed to select-
ing very favourable ones: it is not difficult to find examples where other permu-
tations are better. For example, the permutation used in Problem 6(c) of Table
3.1 is heuristically optimal, but the permutations of 6(a), 6(b) are much better.
Also, the non-optimal permutation used in Problem 4(d) of Table 3.8 is the only
one in which the <;-basis may be computed in practice.

A serious limitation of the heuristic is that it cannot determine the true lex-
icographic structure of its input. As an example, consider the system

F = {x2+yz+1, y2+xz3+1, z2+:vy+1}.
The incidence polynomials
P, = 2 +2¢ + 6,
P, = v +2y + 6,
P, =2+ 24+2+6,

suggest either the permutation x >y y >; z or y >; = > z. In fact, comput-
ing the basis in the first requires 28 S-polynomial reductions; in the second, only
21 reductions (and roughly half the time) are needed. It is not difficult (in hind-
sight) to see why the system

{V*+2 +1, yo +22+1, yz2+ 22+ 1)}
is simpler in the ordering y >; = >, z than is
{&®+yz+1, sy + 22+ 1, 2 + 42+ 1)
inx >p y > 2.
While the case of equal incidence polynomials is not uncommon, such con-

siderations of structure can completely outweigh those of the heuristic. For
example, consider the system

83

F = {®4aoyz+1, v’ +22+y + 1, 2+y+1}.

The heuristically optimal permutation is z >, y >, x. However, it is actually
much easier to compute the basis using # >; y >; 2z ! In this permutation, the
input contains a very simple polynomial (i.e. one of low order) which has a
bounding effect on all reductions which occur during the algorithm.

Another limitation (which is not, strictly speaking, intrinsic to this heuris-
tic) is that we cannot tell a priori what structure the basis will take once reduc-
tions begin. It can happen that after a few reductions (e.g. after the pre-
reduction step in Algorithm 3.8), another application of the heuristic reveals
that some other permutation may be more suitable. (For example, the permuta-
tion used in Problem 6(b) is obtained in this way from Problem 6(c).) We con-
clude that, in practice, several factors will influence which permutations are
truly optimal. If several permutations are tried (e.g. heuristically optimal ones),
then inspection of the degrees of intermediate results will suggest which is most
favourable.

84

4.2. The Use of Multivariate Factorization

We have seen that the lexicographic Grdbner basis method for solving alge-
braic equations cannot (and should not) be abandoned. Since the efficiency of
the algorithm can be significantly improved (by improving the sub-algorithms on
which it depends), it may not be quite as impractical compared to the total
degree method as was previously thought. We now examine the possibility of
improving the process further, by adapting Buchberger’s algorithm to the
specific goal of computing the decomposed elimination ideals. In this section,
we consider < exclusively.

Suppose that during the execution of the main loop of Algorithm 3.8, we
obtain a non-zero polynomial

fo=T000F I (4.1)

where the f; are distinct and do not factor. We immediately note the following
results.

Lemma 4.4: Let f be asin (4.1). Then

M(f) = [IM(7) .

i=1

Proof: It is sufficient to show that M{f) = M(p)M(q) when f = pq. Define
R(s) == s — M(s), so that

p = M(p)+ R(p), ¢ = M)+ R(q),
and
J = M(p)M(q) + M(p)R(q) + M(q)R(p) + R(p)R(q) -
Then
hterm(f) = hterm(M(p)M(q))
>, maz, { hterm(M(p)R(q)), hterm(M(q)R(p)) }
>p, hterm(R(p)R(q)) -
Clearly, the head coefficient will also be heoeff(M(p)M(g)) O

85

m
Theorem 4.5: If g 3, f = [[/f{,thenfor1<i <m,

i=1

9 Zeugy O-

Proof: Again, it suffices to show that if f = pgq, then f > 0. By Lemma 4.4,
we have M(f) = M(p)M(q). Therefore, f is M-reducible modulo p:

P
= M(p)M(q) + M(p)R(q) + M(q)R(p) + R(p)R(q)
M(p)M(q
~ M) (M(p) + R(p))
= pR(q) .

We see that this reduction cancels exactly the monomials of p M(q). Therefore
the result (if non-zero) is still M-reducible modulo p. But since reduction is
Noetherian, we must therefore obtain O (in a finite number of steps) O

The significance of this result is that, having obtained a factorization (4.1) dur-
ing the course of the algorithm, we may consider each factor in turn as a sub-
problem - in which none of the information computed to that point need be
re-computed. Given the exponential character of the algorithm (and its depen-
dence on the degree of the input), we expect that the time required to compute
the Grobner bases corresponding to all of the factors f; will be smaller than the
time needed to compute the single basis using f. Since the ultimate goal of
computing the Grobner basis is to obtain the decomposed elimination ideals, we
can in effect use a "divide-and-conquer" approach without the need to recon-
struct the results.

Let us assume, for the moment, that the polynomials in F do not factor
before or during the pre-reduction phase. (The reduceset procedure can obvi-
ously be modified to make use of factorization at a later time.) Then we can
compute a partial decomposition into component Grébner bases using the fol-
lowing variant of Algorithm 3.8.

86

Algorithm 4.6:
procedure partdecomp(F)
solbases «— ¢
splitGbasis(F)
return(solbases)

where we define

procedure splitGbasis(F, newpoly, A, Q)
if #arguments = 1 then (top level call)
G «—reduceset(F) ; k «length(G); R «—g¢
B —{[i, 5] |1 £ <j <k and criterioni([i, 5], Q) }
else (lower level call with one new polynomial)
G «—F U {newpoly}; k <« length(F)+1; R «—Q
B —AU{[i, k] |1 <¢ <k and eriterioni([i, k], G) }
while B # ¢ do
[[¢, 7], B, @] «—select?(B, G); R+—RU Q
if B # ¢ then
B B — {[Z) .7]}
if hterm(G;) | hterm(G;) then R +— R U {G;}
else if hterm(G;) | hterm(G;) then R — R U {G,}
[« reduce(Spoly(G,, G;), G)
if f = ﬁhf‘ # 0 then
i=1
H «—{hyy .oy hp}
if f # h, then (create sub-problems for distinct factors)
for h; €H do
splitGbasis(G, h;, B, R)
else (no factorizations; proceed as usual)
G—GU{f}; k+—Fk+1
B «—BU{[; k] |1 <{ <k and eriterion1([s, k], Q) }
solbases «— solbases U {reduceset(G —R)}
return

Of course, we know neither the expected frequency of successful factoriza-
tions, nor the cost of unsuccessful attempts. However, it turns out that in prac-
tice the polynomials produced split into factors (often non-monomial) reasonably
often. Furthermore, since fast heuristic irreducibility testing is possible
[Mona87], the overhead of unsuccessful factorizations need not be great. We

87

also find, though, that some factors (particularly those which correspond to
extraneous roots) will tend to re-appear at several points in the algorithm. This
could (potentially) cause an exponential increase in the number of sub-problems
created, and thereby significantly slow the algorithm. We will therefore attempt
to limit the number of sub-problems as follows. Suppose that f yields the dis-
tinct factors {fy, ..., fm}- Then we create m sub-problems, namely

{f1=0}’
{f1#07f2=0}7
{/1#0, «y fuo1#0, f, =0} .

Each sub-problem then contains a list of mon-zero polynomials which can be
rejected if they appear at a later point. Since the simplest (e.g. linear) factors
seem most likely to re-appear, the list of factors of f can be sorted so that the
smallest factors are treated first. We mention that this approach is also fol-
lowed in the solver of [Gonn86]; there it is further suggested that the list of
non-zero quantities may be initialized at the start of the algorithm (e.g. if only
non-trivial solutions are desired).

We now recall that in Section 3.3, we found that full inter-reduction of the
basis polynomials is not usually desirable. And, a suitable heuristic to determine
when to inter-reduce the basis may be difficult to construct. However, an obvi-
ous special case, for which limited inter-reduction is reasonable, would be the
appearance of a univariate polynomial. We note the following result.

Theorem 4.6: Suppose p € F N K|zj] where F C K{z,...,z,], and that p
does not factor. Then if <F> # <1>, p is the polynomial in <F> N K [z,]
of lowest degree.

Proof: Suppose the minimal polynomial is ¢ € <F> N K[xj] such that
0<degree(q)<degree(p). Then since p, q are univariate, p is M-reducible
modulo g. Now, it cannot happen that

p 3 r € <F>N K[z,

88

where 0<degree(r)<degree(q), since by assumption ¢ is minimal. Suppose then
that

+

p > 0
Then there must exist a¢; € K and numbers ¢ € N, such that

p = Ellaz- (z;) ¢ = ¢ (Zlai (=)')
1=0 1=0

which contradicts the assumption that p does not factor O

Corollary 4.7: If <F> contains univariate polynomials (in the same variable)
p, q¢ such that degree(p) > degree(q) and p does not factor, then <F> —
<1>.

When a factorization succeeds in Algorithm 4.6, it is not uncommon for
some of the factors to be univariate. This (in contrast to Algorithm 3.8) is true
even if <F> is not zero-dimensional, since the factor may be extraneous or
correspond to a sub-problem (ideal component) with finitely many solutions.
Moreover, if and when univariates appear during Algorithm 3.8, they are usually
of degree comparable to the rest of the basis. The above result implies that any
univariates obtained during Algorithm 4.6 are either minimal or extraneous. If
another such univariate appears, the sub-problem is extraneous and may be
abandoned without further computation. In any case, the partial basis should
definitely be post-reduced modulo the univariate, since it will be minimal for
that sub-problem. An improved version of the algorithm is as follows.

Algorithm 4.7:
procedure partdecomp(F)
solbases «—g ; nonzero «—g; F «— reduceset (F)
for 5 from 1 to n do
ifdp Eﬁ: N K{[z;] then U; « true else U; « false
splitGbasis(F, nonzero, U)
return(solbases)

where we define

89

procedure splitGbasis(F, nonzero, T, newpoly, A, Q)
U«—T
if #arguments = 3 then
G «—F; k «—length(G) ; R «—g
B —{[, 5 |1 <i{ <j <k and eriterioni([s, 5], G) }
else
G «—F U {newpoly}; k «length(F)+1; R «—Q
B «—AU{[, k] |1 <¢ <k and criterioni([s, k], G) }
while B # ¢ do
[[¢, 9], B, Q] «—select?2(B, G); R+—RU Q
if B # ¢ then
B +—B — {[7') .7]}
if Aterm(G,) | hterm(G;) then R — R U {G;}
else if hterm(G;) | hterm(G;) then R — R U {G,}
J <« reduce(Spoly(G;, G,), G)
if f = ﬁhf" # 0 then
i=1
if 3 j such that (f €K |[z,] and U;) then return
H «—{hy, .y by}
if f % h; then
for h,, € H—nonzero do
if 3 j such that h,, € K[z,] then
if U; then next h,,
else V «—U; V; «—true
E «—g
for g €G—R do
E —E U {reduce(g, {h,,}) }
if 1 ¢ F and E N nonzero = ¢ then -
splitGbasis(E' U {h,, }, nonzeroU{hy,....hp_1}, V)
else
splitGbasis(G, nonzeroU{hy,....h,,_1}, U, h,,, B, R)
else
G—GU{f}; k—k+1
B «—BU{[i, k] |1 <i <k and eriterioni([i, k], G) }
if 3 7 such that f € K|[z,] then U; < true
solbases +— solbases U {reduceset(G —R)}
return

90

We mention that the post-reduction could be approached differently. For
example, the set of redundant polynomials "R" need not be removed before
post-reduction. The algorithm will then be more space-efficient (for reasons dis-
cussed earlier). However, the number of subsequent O-reductions (and the cost
of the post-reductions) will also tend to be greater.

We will now compare the algorithms 4.6 and 4.7 with the standard algo-
rithm 3.8, using the normal selection strategy and [optimized] reduction algo-
rithms 3.16 and 3.18 (for integer and polynomial coefficient problems, respec-
tively). All of the timings were made using Maple version 4.1 on a VAX/8650
processor.

We see that when the normal selection strategy is used, the use of factori-
zation during the course of the algorithm can significantly improve its efficiency.
Since new factorizations may be possible after post-reduction, the decomposition
is not necessarily complete. However, in practice very little additional decompo-
sition is required. We observe that the changes made in Algorithm 4.7 do
indeed yield a practical improvement to this approach. The number of sub-
problems considered is controlled not only by storing non-zero polynomials, but
through the special handling of univariate factors. (See also [Czap86b] and
[Czap87] for some different comparisons.) We also note that Algorithm 4.7 is
slightly less sensitive than Algorithm 3.8 to permutations of the variable order-
ing. Even for systems with finitely many solutions, this approach is now com-
petitive with that based on the total degree term ordering (cf. Table 4.1).

Algorithm
Problem
3.8 4.6 4.7
sub-problems 1 3 3
2 time (sec.) 73 64 66
space (Kb.) 1057 | 1245 | 1351
sub-problems 1 13 7
3 time 128 93 55
space 1073 1232 1106
sub-problems 1 14 7
4(b) time 468 265 152
space 1311 1704 1564
sub-problems 1 56 15
4(d) time 11506 3642 2841
space 3359 2974 2736
sub-problems 1 3 3
5(a) time 14 41 36
space 940 1140 1073
sub-problems 1 5 5
5(b) time 352 | 214 | 146
space 1737 1548 1548
sub-problems 1 9 7
5(c) time 1504 692 397
space 2417 2023 1974
sub-problems 1 9 6
6(a) time 218 182 145
space 1188 1434 1540
sub-problems 1 31 12
6(c) time 4521 1518 818
space 2768 2761 2548
sub-problems 1 5 5
7(a) time 1564 717 579
space 3096 2458 2613
sub-problems 1 16 3
9 time 23840 3783 2152
space 8828 3940 4036

Table 4.3: the effect of factorization in <;-Grébner bases
(integer coefficients)

Algorithm
Problem
3.8 4.6 4.7
sub-problems 1 1 1
10 time (sec.) 13 14 14
space (Kb.) 827 999 999
sub-problems 1 2 2
11 time 60 73 73
space 1171 1253 1204
sub-problems 1 3 3
12 time 127 140 69
space 1245 1442 1180
sub-problems 1 5 3
4(c) time 832 | 730 | 960
space 2007 1925 2012
sub-problems 1 12 8
13(a) time 1035 | 222 | 160
space 1900 1400 1368
sub-problems 1 6 4
13(b) time 730 52 48
space 1819 1065 1139
sub-problems 1 12 8
13{c) time 2638 492 198
space 2335 1507 1384
sub-problems 1 3 2
14 time 698 70 63
space 3252 1344 1302
sub-problems 1 3 2
15 time 3529 149 141
space 8364 1785 1785

Table 4.4: the effect of factorization in <;-Grébner bases
(polynomial coefficients)

93

4.3. A Variant Algorithm

We have seen that the use of factorization during Buchberger’s Algorithm
yields a significant improvement when the lexicographic term ordering is used.
However, to this point we have not exploited the freedom to apply different
methods to distinct sub-problems, when a system subdivision oceurs. It is in
this context that hybrid methods such as that of [Pohs81] seem most attractive.
For example, when a polynomial of low degree appears (e.g. as a factor of a
larger polynomial), it would be reasonable to continue elimination of the
appropriate variable using pseudo-remaindering. In this section, we discuss a
different type of hybrid approach, and suggest reasons why it may be useful for
a particular class of problems.

In particular, consider systems in which the polynomials are dense. For
such input, the degree and coefficient growth during elimination is extreme -
particularly when resultants are used. Therefore, even an apparently modest
system of four equations in four variables (Problem 7(b)) cannot be triangulated
in this way. Using Algorithm 4.7 (with the normal selection strategy), progress
is somewhat better; however, the limits of the algorithm remain modest. In
problems such as the example above, one finds that the difficulty lies primarily
in sub-problems which correspond to extraneous factors. We recall that in Algo-
rithm 3.8, if fis a reduced S-polynomial formed from elements of G, then f €

m
<G>. However, if f = []h;, we have three possibilities for each factor:
i=1
(a) hz eE<G>;
(b) <G> C <G, h;> # <1>;
() <G, h;i> = <1>.
That is, the factor may be consistent, part of a larger ideal, or extraneous. It
seems that when the underlying ideal is <1>, the subsequent rate of coefficient
growth is often the worst possible. Otherwise, the constraint of ideal member-
ship usually requires that the intermediate polynomials have a certain structure
(e.g. the coefficients in an M-chain of polynomials will occasionally get smaller).
It would therefore seem preferable to continue the lexicographic elimination only

on sub-problems corresponding to cases (a) and (b). If only consistent subsys-
tems are considered, then Theorem 4.6 permits a slightly different approach.

Normally, the algorithm ensures maximal separation of variables by carry-
ing out an exhaustive set of S-polynomial reductions (only some of which will be
avoided by the standard criteria). Many of these reductions will occur after full

94

separation has been obtained, since the possibility still exists that
<G>=<1>. Excluding this possibility, we can often detect full separation of
variables directly.

Definition: The variable z; is (fully) separated in the set F C K [xy,...,z,] if:
(a) dp € FN K|z;] which does not factor, or
(b) 3 p €F such that hterm(p)==;, and all z; in p —M(p) are separated.

The above requirement is a strong one, but seems to occur commonly in practice
when factorization is used (and for sub-problems with finitely many solutions).
By Theorem 4.6, any polynomial which contains only separated variables must
reduce to zero. We may therefore ignore pairs which fail to satisfy

eriterion8([7, 5], G) <>
Spoly(G; ,-G]-) contains at least one variable which is not separated in G,
and criterioni([, j], G) .

There remains the question of how to detect the extraneous factors in prac-
tice. We recall that even for dense problems, it is often relatively easy to com-
pute the Grobner basis with respect to the total degree term ordering. (See
Table 3.1.) If (for each subsystem) the <g-Grébner basis is known, then the fac-
tors of any nmew polynomial can be tested for consistency by computing the
refinement of the basis with respect to each in turn. Let <g-Gbasis and <g-
reduce denote the total degree Grébner basis and reduction algorithms, respec-
tively. Then a hybrid variant of Algorithm 4.7 may be constructed as follows.

Algorithm 4.8:
procedure hdecomp(F)
solbases «— @ ; nonzero «—g; T «— <g-Gbasis(F)
if T = {1} then return({1})
else
hsplit(reduceset (F), nonzero, T)
return(solbases)

where we have

procedure hsplit(F, nonzero, T, newpoly, A, Q)
if #arguments = 3 then
G «—F; k «—length(G); R+—¢
B «—{[, 5] |1 <i <j <k and eriterions([i, 7], G) }
else
G «F U {newpoly}; k «—length(F)+1; R «—Q
B «—AU({[,k |1 <i<k and eriterions([i, k], G) }
while B # g do
[[¢, 9], B, Q| +—select2(B,G); R+—RU Q
if B # ¢ then
B—B—{i i}
if hterm(G;) | hterm(G;) then R «— R U {G;}
else if hterm(G;) | hterm(G;) then R < R U {G;}
if criteriond([1, j], G) then f «— reduce(Spoly(G;, G,), G)
else f <0
if f = [[h{* # 0 then
i=1
H «—{hy, ..., hy,}
if f % h,; then
for h,, € H —nonzero do
q — <g-reduce(h,,, T)
if ¢ % 0 then
T «— <g-Gbasis(T U {¢})
it T = {1} then next h,,
else T «— T
if 3 j such that h,, €K|[z;] then
E «—g
for g €G—R do
E —E U { reduce(g, {h,,}) }
if £ N nonzero = g then
hsplit(E U {h, }, nonzero U {hy,.coyhpy_1}, T)
else
hsplit(G, nonzero U {hy,...hpy_1}, T, By, B, R)
else
G—GU{f}; k+—k+1
B «—BU/{[k |1 <i <k and criterions([s, k], G) }
solbases «— solbases U {reduceset(G —R)}
return

95

96

Clearly, if new factorizations are possible after the pre-reduction phase, or
after post-reduction modulo a univariate, we may miss opportunities to apply
criterion8. Rather than complicate the statement of the algorithm, we will
assume that this does not occur often enough in practice to seriously affect the
efficiency of the scheme. We also mention that the separation criterion is easily
implemented by using a table which contains a "flag" for each variable (and
which is updated with each new polynomial). Some timings for Algorithm 4.8
are given in Table 4.5. We have used Algorithm 3.8 for the procedure <g-
Gbasis, Algorithm 3.16 for <g-reduce (with a <g-ascending basis), and Algo-
rithm 3.16 (heuristically optimized) for lexicographic reduction.

Algorithm
Problem
4.7 48
2 time (sec.) 66 56
space (Kb.) 1351 1212
3 time 55 912
space 1106 1450
4(b) time 152 249
space 1564 1516
4(d) time 2841 >50000
space 2736 >4512
5(c) time 397 407
space 1974 1760
6(c) time 818 642
space 2548 2351
7(a) time 579 543
space 2613 2367
7(b) time >30296 16135
space >16000 10124
8(a) time 20475 13502
space 10379 6796
9 time 2152 3075
space 4036 4210

Table 4.5: a hybrid decomposition algorithm
(Maple version 4.1 on a VAX/8650 processor.)

We note that only Algorithm 4.8 is able to cope with the dense Problem
7(b) (when normal selection is used). This is of interest because most problems
tend to become denser as the first few variables are eliminated. Surprisingly,

97

this scheme is also competitive on most of the other test problems - in spite of
the fact that it must also perform a separate total degree computation. Obvi-
ously, a more efficient deterministic algorithm for checking consistency would
make this approach even more competitive. And, there is probably a marginal
improvement possible by making the application of factorization and the use of
criteriond exhaustive. Finally, other variants may be useful in particular appli-
cations. For example, during a problem containing infinitely many solutions, the
appearance of a sub-problem with only finitely many (as revealed through the
parallel total degree computation) would allow the application of Algorithm 4.2
to that sub-problem.

98

4.4. The Construction of a Solver; Further Examples

Our previous results illustrate a number of ways in which the speed and
power of the [lexicographic Grébner basis] elimination method may be dramati-
cally improved. Still, it is not difficult to find examples for which the direct
application of Algorithm 4.7 is inadvisable. In some cases, it may be crucial to
pose the problem in the correct (or optimal) manner. In others, the raw input
must be pre-processed carefully before being passed to Algorithm 4.7. In this
section, we describe an approach to this pre-processing which seems appropriate
for the Grébner basis method. We then describe a number of examples which
help to illustrate the effective use of the range of Grdébner basis methods in
practice.

Given the inherent difficulty of the elimination process it seems clear that,
in general, we should attempt to simplify the raw input as much as possible.
Since this essentially simple task may become cumbersome for very large sys-
tems, we must consider how it might be automated (i.e. performed algorithmi-
cally). For example, an initial sub-division of the input into component subsys-
tems is recommended (except, perhaps, for the simplest of input). During this
process, it is useful to consider "nonzero" information as part of each sub-
problem (as in Algorithm 4.7). However, it is often possible to accomplish a
great deal more during the sub-division.

Consider, for example, an input set which contains the polynomial
22y + dzy + 4y = y(z+2)° = 0

The subsystems corresponding to {y=0} and {y 0, z=-—2}, respectively,
should obviously be simpler than the original system. This is especially so in
view of the fact that (modulo the corresponding substitutions for y, z respec-
tively) the subsystems will contain one fewer variable. The simplification "y =0"
can be made before choosing a permutation of variables (which will induce a lex-
icographic term ordering) for the subsystem. And, after such a simplification
the chance of making a good choice via a heuristic is probably much better.
Moreover, after one such substitution a number of further factorizations and
substitutions may be possible. It is important to note, though, that these
(trivial) substitutions are of a type that would be made during Algorithm 4.7
itself, irrespective of the permutation of variables. For example, if a system is
of high degree in x and low degree in y, then a substitution such as
"z = 2y341" could have a disastrous effect. It therefore seems best to restrict

99

the simplifications made in pre-processing to the class of trivial linear substitu-
tions, 7.e. those based on polynomials of the form

ar; + br; —c = 0,

where a, b, ¢ € K and z;, T; € {1, -y T, }. Then the simpler of the substitu-
tions

is a reasonable choice. Accordingly, the scheme presented below can be used to
perform the initial simplification and subdivision of a system F, where the input
quantities in nonzero cannot vanish.

Algorithm 4.9:
procedure subdivide(F, nonzero)

subsystems «— @ ; irreducible «— g
F—g
for f€F—{0} do

F «F U { f/content(f)}
if 1 €F then

return({| {1}, nonzero|})
else

split(irreductble, ﬁ’, nonzero)
return(subsystems)

where we define

100

procedure split(irreducible, reducible, nonzero)
G «—irreducible ; F «— reducible
if F' N nonzero # ¢ then return
if1 €F then G «—{1}; F «—g
for f = ﬁhf‘ €F do
i=1
FeF—{f}; H{hy, o h,}
if H # {f} or f trivial, linear then
if H N G # ¢ then next f
for h,, € H—nonzero do
if h,, trivial, linear then
G —g¢
for ¢ €G do
G «— G U { reduce(y, {hn}) }
D—GNG; E—G-G
for f €F do
E —FE U { reduce(f, {h,,}) }
F «—F — {O}
split(D U {h, }, E, nonzero U {hq,...;hp,_1})
else
split(G U {h,, }, F, nonzero U {hy,...;h,,_1})
return
else
G —GU{)
subsystems « subsystems U { |G, nonzero] }
return

The result of the above algorithm is a collection of simplified subsystems,
each with a set of non-zero polynomials. For each sub-problem, we may then
apply the heuristic of [Boge86] (see Section 4.1) to select a permutation of vari-
ables. Once a lexicographic ordering is defined, the subsystem may be treated
in the manner of Algorithm 4.7. We point out that the pre-reduction phase can
also be modified to utilize factorization in much the same way as Algorithm 4.7.
The remaining details of the resulting "solver" are presented below.

101

Algorithm 4.10:
procedure Gsolve(zero, nonzero)
solbases «— g
subsystems «— subdivide(zero, nonzero)
for [F, N] € subsystems do
if F = {1} then next
choose a permutation z, >; ... > =z,
reducedbases <— splitredset(F, N)
for [, N| €reducedbases do
for j from 1 to n do
ifdp Gﬁ:ﬂf([a:j] then U; < true else U; « false
splitGbasis(F, N, U)
return(solbases)

where we define

procedure splitredset(F, nonzero)
reducedbases «— @
splitmin(F, nonzero)
return(reducedbases)

procedure splitmin(F, nonzero)
R«—F; P+—g
while R # ¢ do
h <+ selectpoly(R); R+—R —{h}
h <« reduce(h, P)
if h €nonzero then return
if h = J[A% # O then
i=1
H «—{hqy cesy hyy}
if H # {h} then
for h,, € H—nonzero do
splitmin(R U P U {h,, }, nonzero U {hq,....hpy_1})
return
else
Q@ «—{ ¢ €P such that M(h) | M(q) }
R—RUQ; P«—P—-QU{h}
splitnorm(P, nonzero)
return

102

procedure splitnorm(F, nonzero)
S—F; T+«—g
while S # g do
h <« selectpoly(S); S+—S—{h}
h <—reduce(h, F—{h}) = ﬁhf‘
t=1
if h €nonzero then return
H «—{hy ., by}
if H + {h} then
for h,, € H—nonzero do
splitmin(S U T U {h,, }, nonzero U {hA1,....,hp,_1})
return
else
T+«—TU{h}
reducedbases < reducedbases U { [T, nonzero] }
return

We conclude this section with some final examples. (All of the timings were
made using Maple version 4.1 on a VAX/8650 processor.)

Example 1: A system of Shadwick (Problem 16 in the Appendix). This is a
very large system (65 equations in 22 variables) whose simple structure permits
many initial simplifications. We find that, using Algorithm 4.10, the resulting
(fairly simple) subsystems may be triangulated using the normal selection stra-
tegy and the heuristically optimal variable permutations.

Time required: 530 sec.

Space required: 1138 Kb.

Example 2: A system of Allaway (Problem 17 in the Appendix), containing 21
equations in 18 variables and 2 free parameters. This system helps to emphasize
the importance of posing the problem properly. In raw form, it could not be
solved by any Grobner basis method. But, noting the simple equation

togtas — 2a’tgs + atdy = 0,

103

(and the fact that tyy#05£¢s3), we find that t,,#2a%. Hence, the variable tas
may be determined in terms of toy. After removing o, from the variable list, we
find that Algorithm 4.9 succeeds (without losing any particular solutions).

Time required: 2257 sec.

Space required: 1442 Kb.

Example 3: A system of Filliman (Problem 18), containing 12 equations in 9
variables. A non-heuristically optimal permutation of variables (see the Appen-
dix) is chosen to exploit the partial triangulation of the input. Still, this system
could not be triangulated by a lexicographic method when using the normal
selection strategy. However, with the heuristic selection strategy (and
corresponding reduction strategy) we find that Algorithm 4.7 succeeds. In fact,
we may find the solutions directly from the Grobner basis with respect to the
total degree ordering (because of special structure in this case). (The latter
method is several times faster.)

Time required: 1142 sec. (for <g), 6923 sec. (for <;)
Space required: 1941 Kb., 5108 Kb., respectively.

Example 4: A system of Jayakrishna (Problem 19) containing 3 equations in 3
variables with 3 free parameters. Despite the small size of this system, it could
not be triangluated in the normal selection strategy because of the extreme
growth of the polynomial coefficients encountered. Using heuristic
selection/reduction (and, of course, content removal based on trial divisions), it
is easily solved by Algorithm 3.8.

Time required: 230 sec.

Space required: 1319 Kb.

Example 5: Randomly generated systems of 4 dense quadratics in 4 variables
(Problem 7(b)), and 3 dense cubics in 3 variables (Problem 8(b)). As discussed
earlier, such problems would require a special approach to be possible in the
normal selection strategy with the lexicographic order. The univariate polyno-
mials could possibly be computed using Algorithm 4.1; however, this process
would be time-consuming (c¢f. Problem 7(a) in Table 4.1), and even if possible
would not yield as elegant a representation of the solutions. Instead, we apply

104

the heuristic selection/reduction approach in Algorithm 3.8 to obtain the fully
triangulated and separated lexicographic Grébner bases.

Time required: 1483 sec., 9958 sec., respectively.
Space required: 2228 Kb., 3457 Kb., respectively.

Example 6: A system of Katsura (Problem 20) containing 6 equations in 6
variables. Given the success of the method used in Example 5, the same
approach is applied to this problem. The structural similarity with Problem 6
allows a good (non-heuristically optimal) permutation of variables to be chosen.
For example, we may precede the choice of permutation by pre-reduction
modulo a linear polynomial; we then notice that some polynomials do not con-
tain all of the remaining variables. Note that in this case the final Grébner
basis does decompose to a small extent; therefore, Algorithm 4.7 may have been
slightly faster.

Time required: 7284 sec.
Space required: 3965 Kb.

Example 7: A system of Rimey (Problem 13(d)) containing 3 equations in 3
variables, with 4 free parameters. We find that the growth of the polynomial
coefficients makes this problem extremely difficult, if not impossible. (See
[Rime84] for comments on an unusual method of solution.) It was not possible
to triangulate this system using Algorithm 4.7 in either the normal or heuristic
selection strategies. Neither was it possible to compute a univariate polynomial
from the total degree GrSbner basis. (Both schemes would require in excess of
16Mb. of storage.) We then note that, in the heuristic selection strategy, pro-
gress is actually quite good unti! (within the largest sub-problem) the algorithm
produces a polynomial with extremely large coefficients. If we revert to the nor-
mal strategy just before this point, the rest of the triangulation is completed
within our 16Mb. limit.

Time required: 27044 sec.
Space required: 15712 Kb.

105

Example 8: A system of Carminatti and McLenaghan (Problem 21) containing
3 equations in 3 variables. Because of the high degree and density of the input,
the solutions to this system could not be computed by any means. However, in
[Carm87] it is only required that the system possess at most finitely many solu-
tions. We may then use the total degree term ordering in Algorithm 3.8, and
halt the computation as soon as finiteness is established. (That is, as soon as
the partial basis contains three separated headterms, we know that the final
basis is either 1 or still contains three such headterms.)

Time required: 678 sec.

Space required: 2564 Kb.

Chapter 5: Conclusions

In this thesis, we have considered a pair of methods for solving systems of
algebraic equations by computing GrSbner bases. Compared to the older resul-
tant method, these schemes appear to be much more flexible, yield more refined
results, and have somewhat broader practical limits. This is in spite of the fact
that resultant algorithms have been well developed over the last 100 years or so.
We have also seen that the more widely applicable method based on the lexico-
graphic term ordering is extremely sensitive to a variety of factors which do not
affect the correctness of the algorithm (or its practical behaviour when the gra-
duated ordering is used). By considering it as, primarily, an elimination algo-
rithm (and through careful observation), we have formulated a number of
improvements which have broadened the limits and applicability of the lexico-
graphic method. These include:

(1) A demonstration that inter-reduction of the basis polynomials during the
course of the algorithm can cause a large intermediate degree growth. It
follows that any variant of the algorithm which removes redundant (in the
sense of Section 3.2) polynomials during the main loop will suffer to some
extent from this phenomenon. It also follows that in the simpler variant of
the algorithm (which is preferred), there will tend to exist many M-chains of
polynomials which may lead to extra unnecessary S-polynomial reductions.

(2) A sub-algorithm for applying Buchberger’s criteria (for avoiding O-reduc-
tions) in an exhaustive manner; when used in conjunction with the "nor-
mal" S-polynomial selection strategy, this can drastically reduce the number
of O-reductions. Hence, the possible problem described above is minimized.

(3) A number of fraction-free reduction schemes which exploit not only the
similarities with the primitive PRS, but also the difference in the required
frequency of content removal. In particular, a trial division approach of
Hearn, suitably modified, proves to be quite efficient. (Indeed, it is crucial
for large problems such as Problem 13(d).)

106

(4)

107

A heuristic for reducing the cost of coeffient arithmetic in the reduction
sub-algorithm, when the normal S-polynomial selection strategy is used.
This exploits both the large degree of freedom present in choosing a reduc-
ing polynomial (due to the presence of M-chains in the simple variant), and
the relative simplicity of fraction-free (as compared to rational) arithmetic.
This results in lower overall reduction times than strategies based on lexico-
graphic headterms.

A heuristic strategy for S-polynomial selection, which can result in lower
degree bounds on intermediate results (and hence much lower computing
time) than the normal strategy. Although not described explicitly, an
analogous strategy for reduction should be used in conjunction with this
scheme. While not clearly superior on all problems, this approach has
allowed a number of previously intractable problems to be solved.

The use of multivariate factorization in Buchberger’s algorithm, when the
ultimate goal is the solution of algebraic equations. This readily allows
further improvements (which, for example, help to minimize the number of
sub-problems), and suggests new variants of the algorithm. We see that in
this context, some inter-reduction of the (incomplete) basis and removal of
redundant elements is reasonable. Note also that this technique can be
applied to the inter-reduction sub-algorithms as well.

A possible algorithm for pre-processing raw input systems. By subdividing
into component subsystems and exploiting (only) trivial linear substitutions,
we strengthen the heuristic of [Boge86] for choosing a permutation of vari-
ables. Note that other types of preliminary substitutions may violate the
heuristic; however, those which do not will likely occur after the ordering
is imposed anyway.

It is not our intention to suggest that the use of the lexicographic term ord-

ering is to be preferred (in general) to the graduated ordering. We have, how-
ever, broadened the class of ideals for which the computation of lexicographic
Grobner bases may be considered feasible.

It is clear that much effort has been expended in order to reduce the cost of

coefficient arithmetic. Therefore, the development of complete modular or
Hensel-type Grébner basis algorithms is of obvious importance (for either term

108

ordering). Noting also the importance of selection strategies, further research in
this area is indicated. Parallel formulations of the algorithm, as discussed
briefly in [Watt85], may also offer a direct means of exploiting a number of dif-
ferent S-polynomial choices. Hybrid algorithms such as that of [Pohs81] (which
combines S-polynomial reduction with resultants) may also prove more efficient
than pure Grobner basis methods. We mention that the above hybrid, by
assuming a form similar to Buchberger’s algorithm, seems to offer a more robust
elimination scheme (than the one dicussed in Section 2.3) which will use
S-polynomials only sparingly, in practice. On one hand, it is clear that our
improvements to Buchberger’s algorithm can also be applied to such a hybrid
scheme. However, it seems likely that the extra flexibility (and lower degree
bounds) offered by pure S-polynomial reduction will lead to superior hybrids in
which this technique plays a dominant role.

Appendix: List of Test Problems

Although many of our test systems appear elsewhere, we list the entire set
here (in original form) for completeness. We specify the polynomials f; which
are the left hand sides of polynomial equations of the form "f; =0"; the alge-
braic system is then defined as a set FF = {fy, ..., fi}, together with a list of
variables (i.e. those indeterminates for which we wish to solve). We then define
a Grébner basis problem by ordering the list of variables. We will write >
instead of the more cumbersome >; to indicate lexicographic precedence. Note
that, in some cases, we have used a number of different variable permutations
or different simplifications to alter the difficulty of the problem. Note also that
no permutation is specified for Problem 16, since Algorithm 4.10 gives rise to a
number of sub-problems with distinet variable lists.

Problem 1 [Buch85]:
fi. =42 + oy’ — 2+ 1/4,
fo =2c+y2+1/2,
f3 = z?z —1/2z —y*,

using = >y >=z.

Problem 2:
f1 = 343 + 804z — 9192 — 996y + 705yz — 312y% — 252z + 526x%
+ 2022y — 76122,

fo = — 869 + 4437 — 1752? — 335y — 58yz + 893y% — 5662 + 544xz
— 174zy + 9152,
fs = —494 + 642z + 982 — 213y + 527yz — 880y% — 743z — 380zz

— 768zy — 46522
using x >y >=z.

109

110

Problem 3 [Boge86]:
f1 = bi+by+b3—(a+0b),
Jo = bgcg + bges — (12 + 120 + b2 —ab),
fa = bges + bged — (1/3a + ab? — 4/36 — b2 — b%) |
fq = bgagyes — (a(1/6+1/26+b%) —2/30 — b? — b3),
fs = bocd + bged — (1/4 + 1/4b + 5/20% + 3/26% + b* — a(b+8%)),
fe = bzegagocy — (1/8 + 3/8b + 7/4b% + 3/26° + b* — a(1,/2b4+1/26245%)),
fr = bgages — (1/12 + 1/12b + 7/6b2 + 3/26% + b* — a(2/3b +b2+5%)) ,
fs = 1/24 +7/24b + 13/12b% + 3/26° + b — a(1/3b +b2+0%)
using b1 >agg >by>by>a >cg3>c0 >0

Problem 4 [Czap86a):
f1 = 2—4b 4 2¢ + c% + 262 — 2¢b + 4pb — 2pq — 2p? — 2bde — 2gc?
+ 2¢qde — 2pdc — 4pb? + 2pgb + b2d* + 2gbdc + q%c? — 2¢%de
+ ¢%d? + 2pbdc + 2pbd? + 2pgdec — 2pqd? + p%d? + 2p%b?
— 2gbd? — 2pb2d? — 2pgbdc + 2pgbd® — 2p2bd? + p2b2d?
fo = 2¢c —bc —2bd — 2gc + qd + pc — pd + b%d + gbc + pbe + pbd
— pgc + 2pqd — 2p*d — 2pb%d — pgbe + p2bd + p2b3d
fa3 = 2—2¢ —b% —2pq + 2p% + 2pb? — p2?
fa = 4p + 3c¢? + 0% — 4¢® — 6bde — 6gc? — 2pb% + 3b%d? + 6gbde + 3¢2%c?
— 3¢%d? + 6pbde + 6pgd? — 3p%d? + p2b? — 6pb2d? — 6pgbde + 3p2b2d? ;
(a) substitute b =2, and use the ordering d >q >p >c.
(b) substitute b =2, and use the ordering g >¢ >p >d.

(¢c) wuse the ordering ¢ >¢ >d >p, so that b becomes a parameter.
(d) use the ordering ¢ >d >q¢>b>p.

Problem 5 [Trin78]:
Ji = 45p + 355 — 1656 — 36 ,

fa
I3
f4
[s
fe

= 35p + 40z + 25t — 27s ,

= 15w + 25ps + 30z — 18t — 165h2
= — 9w + 15p¢t + 20zs ,

= wp + 22t — 113,

= 99w — 11sb + 3% ;

(a) use the ordering w>p >z >t >s>b.
(b) use the ordering w>b>p >z >s>t.
(¢) wuse the ordering b >t >s>w >p >z.

Problem 6 [Boge86|:

f1
fo

fs =
fa =

[s

= ug —u0+2u12 +2ug2 +2u§ +2u2)
= 2ugu; + 2ujuy + 2ugug + 2uguy — uy
2uguy + u12 + 2uqusz + 2uouy — Uy,
2ugug + 2u Uy + 2ujuy — ug ,

= 'U/0+2'U/1+2U2+2’U/3+2U4—“1;

(a) use the ordering uy>uy>ug>us>u,.
(b) use the ordering u,>ug>uy>uz>u;.
(c) use the ordering u >ug>uz>uy>u;.

Problem 7:
fl = 4 + Sw

— Oz

— 10w® — 10z + 72w — 32° — 3y + Byw + 2yz + ¢y’
+ 5zw — 2xz — 4zy + dz?

fo = 9—6w+6w2—2z+102w-—522+7y+yw—2yz+c2y2

— 9z

f3

- 2z

f4

— 8zw — 4zz — Sxy + dyz?

—9 — 2w + 10w? — 92 + 82w + 1022 — 3y — 2yw — 2yz + c3y2

+ 3w — 9zz + Tzy + dyz?,

—7 4+ 9w + 2w? + 3z + 102w — 222 + 8y + 4dyw — 3yz + c4y2

+ 3z — 6zw + 9zy + d4:v2;

111

112

(a) substitute c¢;=co=cy=cy=d;=dy=d3=d,=0, and wuse the ordering
T>Y>z>w .

(b) Substitute Cl="‘8, C2=6, C3=—3, C4=_6, d1=_1, d2=_5, d3=6, d4=—3,
and use 2>z >w >y .

Problem 8:
f1 = 4482z —102% — 102 + Ty — 3yz — 3yz® + 6y% + 2y%» — 8y® — 9z
+ 5zz — 2x2° — 4y — zyz + sz:y2 — 622 + 62%2 — 2x2y + c1w3 ,
fo = —54+72 +z2——2z3+6y -—9yz—8y22—4y2—-8y22 —5y% — 9z
— 22z + 10z2% — 9zy + 8xyz + 10:103/2 — 322 — 272 — 2:1:2y + 02x3 ,
— 2432 — 922 + 72 + 6y — Tyz + 9y2® + 2y + 3y%2 + 104° — 22
+ 8zz + 4z2° — 3zy — bxyz + 3:1:y2 — 62% + 9w2y + c2x3 ;

fa

(a) substitute ¢;=c,=0, and use the ordering z >y >z .
b) substitute ¢, =10, co=-—3, and use z >y >z .
1 2

Problem 9 [Boge86]:

fi = ui—20/Tafs,

fo = alsus + 7/10a,5uf + 7/48uf — 50/27als — 35/27 a5 — 49/216

fa = ageul + 7/5agul + 609/1000a3ud + 49/1250a25u3
~ 27391,/800000a5u§ + 3/5afsugui + 3/7alsuzu? — 343,/128000u3
— 1029/160000u; + 63/200ajsuzu? + 147 /2000 a2suqu’
+ 4137 /800000 a5ugus — 7/20ajguiu, — 77 /125a3udu,
— 23863 /600004 Z5udu, — 1078,/9375 a gulu, — 24353 /1920000 2u,,
~ 3/20ajgui — 21/100a3us — 91/800a2ui — 5887 /2000004 4u? |

using u4>uz>a 4.

Problem 10 [Czap86a]:

fi = a+cy+ fy*+ (b + ye) + dz?,

fo = g +cx +1/2a” +y(h +2f2) + jy°
using x >vy.

Problem 11 [Czap86a]:

f1 = 9k*y + 3kaB + 38y — k*o,

fo = 9kv + 2kB — 6oy,

s = k% + 9k%62 + 9k 3% + 9% — mk®y
using a>F>~.

Problem 12:
f1 = &*+ ayz + gz ,
fo = 22 + bay + hz
fa = v +cox + ky
using x >y >z.

Problem 13 [Rime84]:
f1 = Xz +eyz —z(2? + ay? + B27),
fo = Ny + ezz —y(v® + az? + f2?),
fa = Ao+ exy — 2(2% + ax? + By?);

(a) substitute a=1 in f; only, f=e=X\=1 throughout, and use z >y >z.

(b) substitute a=1in f;, f3, S=1 throughout, and use z >y >z.
(¢) substitute a=3, f=1, and use z >y >z.
(d) use the ordering z >y >z.

Problem 14:
f1 = z4x5 + 19252, + ex? |
fo = w4+ 127254+ 29+ 2, + b,
f3 = 33z32, + cxl + 981w,z ,
fe = zw324 + das,

using x4, >3 >x9 >y,

113

114

Problem 15:
f1 = z4x3 + azym; + ez,
fo = 24+ 1925+ a5 + 2, + ¢,
f3 = Taszy + cxl + 222,24 ,
fa = zm3w4 + dzg,

using r,>x3>2,>7.

Problem 16 [Gonn87]:

fi = e —1)

fo = —2/5ea15 + agprc

fz = 6/5¢ —2/5¢ea; + ask ,
fa = 1 —=2/5a¢ + ask
fs = apk —2/5eayy,,

fo = —2/5eais + ask,

f7 = agrk —2/5a4¢ — 1/5¢ + 2 ,

fg = —6ayk + 2a.6 —4/5ea5 — 4/5€a5 + 2a5k

fo = —4/5eajy + 4eaq + 20,36 — 12a9k — 4/5¢a,3 ,
f10 = — 18ay9k + 6ea,g — 4/5€a,g ,

fii = —4/b€ajp — 8/5eay; + 2ea,y + 2a;56 — Ba gk ,
f12 = 4ea;g —8/5ea; — 12a4% ,

fis = —Bayzk —12/5€ay, + 2¢€ay7 ,

fi1a = —4/5ag¢ — 14/5¢ + 3agk — Ba,k — 6/5eag + 2eay ,
f1s5 = —4/5€a;5 + 4eag — 12a 4% ,

f16 = — 8/5€a4 — 6a sk + 2¢€ays ,

f17 = 2€a;3 — 6azx — 4/5€a,, ,

fis = a4+ 2a3 — 5/Reayk — 15/2a,k + 75 2¢a,k? + 5ea;; — 15€aqk
18 4 3 4 1 1 11 3

flg = — 2a3f€ + 3/2(14’{: + 56@10’€ + 56@17 -— 2a10 + 2ag + 4(111

— Beagk — 5/2¢ea K’

f20

fa1
foo

fo3

f24

fos

f o6

for

fog =
= = 1507/‘: — 46/56 + 4:0/14 + 32’9 - 8/5066 —_ 560’16’{: + 14/56(17 — 6a15

[o9

fao =

f31

[z

fa3

S a4

115

— 6a;3 — 43/2agk + 16/5eag + 4a17 + 3a19 + 6ajgk — 8 /Heay,

— 15/2¢€a gk + 25€a gk + 75/2€eaqk?® + 4 /5¢a;, ,

— 16/5¢€a,5 + 48/5€a,9 + 14a,gk + 4/5ear; + 315/2¢ea9k? — 153 Ra gk
3a10 + 2a1; — 3/R2agk + Seak? + 15€ay, — 2a,6 — 10€a K

— 15/2€a,9x + 15 /2¢eazk? ,

— 4/5€ay; — 13/2a19K + 4a; K + 20agk — 16 /5eaq — 15€a,95 + 12a4,
+ 15/2ea,9k* + 8/5€a1y + 6a,5 — 6a,; — 30€agk® + 30ea 7k ,

— 48/5¢a19 + 20a 7K + 32/5€ag + 66a,9k — 105€a,95% — 87 R2a gk

— deay; + 175 2€a gk + 12 feay, ,

3a10k + 5ay; + 1/2a,k + 4/5eaq + 1/5eay; + Seagh? — 5 /2eaq k>

+ 15€a50k — Seayok® — 252,75 — dagk — 2/5eay

— 37/2a7K + 3013k + 12/5€a19 + 15€a19k? — 50¢€agk* — 4ea g

+ 17 /5ea;; — 12a19k + 18ag9k + 75/2€a 762 — 12 /5€ay, ,

— 3/2a0k — 4agk — 4/5€a;; — 15€a762 + 15/R¢€aqy06> + 3 /Seaqy,

+ 4/5€a,5 + 5ea 6% + 8ay7k

— 2ag + a7 — 2/5a9¢ + 4ay8 — 3 — 5/2ea,x + Seayy

+ 2a;5 + dagr + 20ea,x? + 20€a 5k ,

46/5€a;5 — 16 /5€a;5 + 120€a gk + 12a,56 + 4/5€a,, — 6644k
— 8/5€a; — 14k + 5¢ + 8ask — 6ayy, + 2/5age — 15/2€a15K + 3a,s
— agk + 20€a k6 — 10ea,k?

— 34a5K + 26/5ea;5 — 4eayy + 60€a5k% + 16a,46 — 32/5eayg
+ 40a;46 — 60€a gk? ,

4/5¢a,5 — 4a gk — 20€a,56° + 20€a; k% — 2ea,s + 13a;5k

+ 7/560114 + 56@16f€2 - 10@14/€ s

013 - 6(112 + 8a10 - 4011 - 6a3f§ o 17/2&5& + 12/56@3 - 6a4€ + 3004’@
+ 12/5¢a5 + 15/2€agx® — 30ea gk — 30€a,k? + 15€a95 — 5/2€a 45

fas

f36

f37

fas

[39

fa0

fa
fao

fas

f4a
fas
S 16
fa
fag

a9
[0

116

= — 8/56(111 + 36/56(110 —_ 26&10/€ + 175/26(113/@2 e 111/2a13f€ + 10a12f§
+ 44/56&13 —_ 606&18/€ - 40117 - 16/56@12 - 124/56(19 + 172019/{:
+ 16&18 —_ 3006@9’52 y

= 426a,95 — 8/5€a,; — 282/5€a;q — 810€agk> + 12¢a,g — 46a 5K ,

= — 12ay + 18ay7 — 20a;,k + 18a,3K + 5da ok — 90€a 0k* + 75 /2€a oK>
— 49/2a15k — 40agk + 4€a, — 42/5ea;q + 32/5eaq — 16 f5ea g +
60cagk® + 28 /5€a,; — 60€a 7k — 25€a 52

= — 60a;76 — 148/5€a g — 24 /5€ayy + 96 /5€a,q — 120a,9k + 76 /5€a,,
+ 220a,g% + 180€a;4k? — 420€a gk? ,

= —54/5ea;; + 48 /5eayy + 78a,76 + 32/5€a,5 — 40a gk — 150€a k>

— 42a99k + 60€agk?

14€ — 48K — 4a14 + 8a 5 + 42/5eag + 60eagh? — 12agx — 45agk

+ 4ag€ + 78asx — 30ea sk — 62/5ea; — 120€a-k>

= 44/5ea;5 + 268a 4k — 188/5ea,5 — 480€a 4k” — 32a,5k — 8 /Beay, ,

102056 + 44/5€a1, — 74/5€a,5 — 32a 4k — 40a 6 + 32/5€a 4

— 180€a 562 + 60ea zk?

= — 9Bagr — 94/5ea;3 — 210€ea 3k + 126a,5k + 64/5eaq — 16 fea,
+ 180¢agk® + 12a,9k — 18ay0k + 28 /5ea, + 4 /5eay, ,

= 4/5¢ay; — 288a19k + 540€a gk® — 32 /Hea g + 192/5ea1q + 24a gk

= —96a,5k + 12/5€ay + 64/5ea ;g — 32 /5€a,; + 180€a gk? + 24a .k ,

= —16/5ea;5 + 4/5¢a1, + 64/5ea,5 + 180ea;6x? + 124,56 — 96a gk |

= 24 ag — 5ex — 3/5a9€ — 5/2eagk + 3/2a,k ,

= —5/2€ay5K — agk — 14K — 7 /5ea; — 10ea;8> + 22 /5¢ + 15/2a-k
+ 2/5a6¢ + ay5,

= — a5k + 2/5€a,5 — 20€a 6% — 11 /5earg + 27 Ra gk

= —8/5¢ + 5/2ea:x” + 2/5ea; — Seagh? + 4agk + 2a,, — 2a-K
+ 8k — 10ek® — 4 /5age — Heauk

f51

[52
[s3

f54

fs5

56 =

fs7

f58

f59

feo =
= -~ 880/15’5 - 52/56&14 + 72/56@15 + 34(114’9 + 22@165 —_ 46@16

fe1

fe2

fes

f64 =
= — 18a;5K — 180€a;5k” — 16ea;q + 108a,gk — 8/5eay, + 26 /Seas .

fes

117

—_ 4@16K§ + 100/15’5 s

— €ayy — 2a,56 + 2/5eaq; + 5/26a15fc2 - 1Oea14/c2 + 13/2a .k ,

= 2&12 - 5010 + 4a11 -+ 603/'9 + 13a5K3 — 14/56(13 + 7&46 — 36a4f€

— 14/5€a5 — 15eagrk® + 15€a gk + 45€a,6° — Beayok ,

8/5€ay; — 32/5€ayy + 20a 0k — 35€a gk% + 25a13K — 2a,95 — 22 /5ea,
+ 4ay7 + 4/5¢a;, + 22eag — 136agk — 10a,5 + 30€a gk + 210eagk?
45€a19 — 300a 19K + 8/5€a1; + 34a,5k + 495€a;9k% — 10€a g ,

12a5y — 10a,7 + 200,k — 4a,38 — 5lajok + T5ea ok? — 25€a oK>

+ 18a19K + 22agk — 16/5¢€a,9 + 44 /5€a,y — 4€aq + 4/5€a,5 —
30eagr® — 32/5€a,; + 30€a .k + 5ea gr?

48a17k + 128 /5€a,g + 24/5eaqy — 12€a19 + 66a,9k — 68 /Seay

— 166a,g5 — 90€a gk? + 270ca gk? ,

— 54/5€a9p + 105€a17k% + 42a00k — 4€arg — 660,75 + 22a gk

+ 53 /5ea1; — 30€a;gk?

— 102/5¢ + 62K + 4a,, — 5a;5 — 33/5eag — 45cagk? + 13a4k

+ 69/2agk — 24/5a5€ — 73a7% + 15€a,56 + 63 /5ea; + 105€a,K2

— 42/5€a,5 — 210a,6k + 166 /5ea g + 330€a;gk* + 27a,56 + 8/5eay, ,

+ 135€a;54% — 30€a 462 ,

108agk + 26/5€a;, — 18a,9k — 8/5eay; + 165€a,3k% + 20a .k

+ 91/5€a;3 — 180eagr® — 110a,3% — 34/5ea;, — 16€ay ,

— 86a,gk — 540€a gk + 324a,9k — 48€a,q — 8/5€a,; + 52/5eag
— 24/5€a59 — 180€a gk’ + 108a gk + 52/5ea;; — 36,75 — 16€ag ,

118

Problem 17 [Char86a]:
f1=(1=0b)tootostss + (1—b)tgatortoy + (b—1)t3 tss + (b—1)t5 2, — 8a’tss
+ 6t§2a + (2—6b +4b2)t22t33 - 2t32at22 — t30t2220/ + (60/ _4ba)t33t21

2
+ 4tg0a”tag + tagtggates — to1lagatas

2 2 2 2
fo = tootagtas + taglorlay — to1las — tgitse — 16a™tg3 + 11t50a

+ (—gb +262+5)t22t33 - 3t32at22 + (9(1 "'2b(1)t33t21 + 2t20a2t33 s

f3=—10a%g3 + 6thpa + (4—3b)tyotss — tgpatyy + Bty atss
f4 = taotss — 2a°tss + tiha ,
f5=— 360’55t sy + 18t90a’ta5t gy — Oyl patay — Itortagatagtyy + 54tdhaty

— 24tg9alont 4 + Htaglagalanl sy + 2350ty — 35togat 4
— 2tgatgstay + ta1tagalastas t tagtaatagtay — taotogtisa
+ Bt4galagtaz — taglagalontsg — 24t35atay + tygtdzatey + 2t4tdsa
— 2tyta00tag + Laglagtooatss + (b —1)t3ptortey + (1—b)tastortastyy
+ (L=b)tatdston + (b—1)typtortds + (—24b+18b%+6)tyotagt 4
+ (9—9b)taotootastas + (96 —9)t31ta5tay + (90 —9)ta t oty
+ (b —1)t30tootaatas + (9—90)t a0t g1t oot as + (1—0)Esgtartagtyy
+ (b —1)tgatartagtas + (1—6)tustastortss + (—18ba +36a)t 4tssts;
fo = —tilortas + tartistor — tagtortis — 84a%tggtay + 15ts0a%tagtyy
— Btgot3rat sy — Btaitogatastey + 117t55at 44 — taotootast sy
— 44bg9al9t 44 + Btaglonatagtsy + taglarlogtey + 3tratyy
— Blg10taatay + tarbortastas + 11845atagtas — tystaytogtass — 50t3zaty,
+ Btygtdsa — Btystasatss + tuglagtortas + (17—44b +15b%)tg0tast 4y
+ (12—3b)taotastastsq + (36 —12)t5t a5t sy + (30 —12)t5,t 50t 4
+ (12—3b)tagto1toot sy + (66a —15ba)t 44tsstsr
J7 = (17—24b +3b%)t 0ot 35t 44 + Btootostagtes — 3t31taatsy — Startiotey
+ Btagtortastss — 69055t 4y + Btoga’taatyy + (36a —3ba)t yutasty;
+ 8Tt5yatyy — 24835t gpty + 1330t 44 — tayatagtey + Bt yzatostsg

— 35t33atgg + tagtisa — tystagatss

fg = (T—4b)tagtastsy — 24a%tsst 4y + Blgatagtyy + 2Tt2,aty,
— Atgpatoptyy + tagateglsy — 10t55aty,
fo = tostastes — 3a’tagtey + 3t5pat,y — t3satsy,
1o = — 108a’tgptyytss + 36t320%t yutss + 185002t ont st ss
— 18t55t90a°t gyt 55 — Otgtagatogtastss — 9t3atagt satss
+ 54t g1alggt sgtss — 54845t 300t 55 — 18t 49atoot ggtss
+ 9tgrtaslagatastss + 2161 55at st 55 — 9t 4ot 3at gatss
— 9t 4gtaatogalagtss — 2tgpatsgtyglss + 9t4atonatostastss
+ Otagtaotdatss + 24satspalostss — tagt sgtagalagtss — 2t 2t gatss
+ tistagtaoatss + taotagtlastastss + tartagatastastss + 2tatasat sutss
— ta1taglooataalss — 24t30atg9taglss + Eagbsnatogtaslss + 2tat soatsatss
— t3alaolootsstss — 53lapaloalaalyy — 2tsalaoalaglys + tastaatogatssty
+ 24854530800 — 54t gotiaatay — 2satagtiza — 120tatgnt 44
+ tootSsatast g + 2500330t 4g — LsgtogtZaat sy + Btszataotast sy
+ toalantoot3sa — Btsstagatastss + sglaatagatastas + 2tst sstaaatas
— tsatagtaotonalsg + (240 —6—18b%)ty tagt sutss + (9—9b)t 2 ta0t satss
+ (95 —9)ta1tortostaatss + (95 —9)tartaotastaatss + (96 —9)t 4 t3stastss
+ (96 —9)t4staotortastss + (9—9b)tsatartastsstss + (9—9b)tsata tdstss
+ (1—b)to1ta0tastaatss + (b —1)taataglartootss + (1—b)t3tagtortss
+ (1—0)t31ta0t astss + (b —1)tartagtortastss + (1—b)tsgt syt antsatss
+ (b —=1)bgot gotortastss + (1—b)tsataatartastas + (b —1)ts4tart3ston
+ (1=b)ts1t3stostay + (b—1)tsotortdatas + (b —1)tsgtartantastay
+ (1—=0)tsataotartds + (1—b)tsatstartastas + (b —1)tsytstantortas
+ (12a—366a)t33t44t55 + (1Sba +12a)t55t44t33t20
+ (—36a +18ba)tsst 4yt o tzy + (12a —18ba)t g5t 44t ootsy
f11 = — 2880tgpl gl ss + 84t30°t gyt ss + 15500 tont gtss
— 15398000 t 4al55 — Bto1tagatogt astss — 3t30atastaatss

2
+ 11789 0l g9t yqts5 — 117843t 50at 55 — 33t 4oatogtaatss + 3toitaotogal st ss

119

120

+ 522¢55at a5t 55 — 3t 4ot 5pataslss — Stagtagtooalagtss — Staoatastslss
+ Btyataoalagtastss + 3taglaotsnatss + totaotastaatss
+ 44t 45t 300t 99t 55 — Lagtustarloatss — Bt3ptasatss + t3atastortss
+ t51taotaatss — tartastortagtss + Btaitagatastss + tagtartootsstss
— 50t30at99la3tss — taglaolortaatss + Blaglanatsslss + tsatzalortastay
— 3tsstaaatastyy + 5O0tsstdzatoy — boglytiator — Btsstantisa
— 274t 530t 00t 44 + 5155t oot as + Btsgtiaatyy — tsgtortistas
— tsataitogtaatas + 11ts3atontagtey + tsataotortss + tsatastatostss
— 11E54t43atpotsz — Esqlyglaglortas + 3isalaslsgalss
+ (445 —17—156%)t 1t 5t gyt 55 + (12—3b)t31taot gatss + (3b —12)tg1tortant sgtss
+ (b —12)tgtaotastastss + (36 —12)t 41t 5ataatss + (35 —12)t ggtantortantss
+ (12—8b)t yoto1taotastss + (12—3b)tasts tintss + (40a —84ba)taat 4atss
+ (15ba +22a)t55t44t33t20 + (156(1 —66a)t55t44t21t32
+ (220 —15ba)t 55t 44t gots;
f12 = — 291a%tgpt yqtss + 3t31tantautss + 69tz9a’tyytss
+ 3t300 tastastss — Btagtont®tastss — Startortastadtss
— Btg1taotastastss + 8Ttgratagtystss — 87tyst atss — 18t 49atantastss
+ 465t 5yatsstss — Btattastss — Stagtastortootss — taoalaslaslss
+ Stygtortostastss + Btuslaliatss + 24t yatsratontss — tastaatss
+ U31830at 44t 55 — 35l39algotagtss + Laglyolastss — ts3tanatsstyy
+ 35¢54t33at 0y — tsataotian — 225t33atg0t 4y + tootaatyy
+ 68530t gplaglay — Blsalygalogtas + tsalaglaaatas + (24b —17—3b)tg taat 4yt s
+ (—69ba +51a)tzstagtss + (3ba+12a)tsst 4atazboo + (3ba —36a)tsst utortsy
+ (—3ba +12a)ts5t 4t oots;
f1a = (=7+4b)to1tsgtsutss + (3la —24ba szt yutss — 85t53atast 44
+ 195¢55atggtss — 14102t g0t yatss + 2tooatagt astss + 24t 3002t 14t ss
— Btgoto atyylss + 2t abostystss + 2Ttgrat oot gtss — 27t 4at55atss

9
— 3tyoatgglasglss + 4lyglaeataglss + 10t54t33at 9y — 10t30at99taat 55

121

t t53al90ta3t 44 — L5gtg3ataolas ,
f1a = —tortagtastss + (9a —3ba)tsatyutss — 15t 330t 9ot 44
+ 39t 5hataatss — 330 tgst galss + 3taga’tyutss
+ Bta1atastastss — tastasatss + tsatisatyy — tagatostastss
f1s = tagtaslss — Batootastss + Btagtastss — tastootay »
f16 = — 1920’35t 4yt 55 + 432350t gats5 + 96tg0a %t g5t 44 55
— T2tg0t 390t 4t 55 — T2 91t000tagl gyt ss + 32t3pat satss
— 240t g0at 99t 44t 55 + 72839t 900t 9ot 44t 55 — 328310t 55t 4at 55
+ 16t31t 900t 33t aqtss + 16830t 300t 0ot gyt 55 — 16t 49t oot 330t 55
— 16t 3yt 900t g4t 55 — 384t 3zatggtss + 16t 45t Z5at oot ss + 32t g9t Zatss
+ 6lagatoolygtss — Laotaoalaogt aglss — 2Ug9tsoal gutss + 120t 43at oot ast s
— 16%43t30at 9ot 33t 55 — 328 43t30at 33l 55 + 16¢ 43t 39t 90at 55t ss
+ 2t g0t gt aatss — tartoodlastatss + 1208540t g9t — 5ol f4atantss
— 2t5ptisatas + tsgtogtisatas — Btsgtisatoy + togtagtSsaty
+ Ugobaglooalastss — taglao@logtaglss — 243l 49alsstss + tastantonataatss
— Btfgatostss + tistagatastss + 2tiatagatss — tistastaoatss
+ 2tsatant 40 — tsgbastagt a0 — 24ts54atgotagtay + tsst 400t golast sy
+ 2t54840at33t 44 — 5ataglooataglay + 6tsslazatostay — tsatyslzpatontyy
— 2t54laataeatyy + tsgtyatsplogat sy + (—96ba +240a)t ot a5t 4yt ss
+ (—1205 +9662+24)t22t33t44t55 + (72b —72)t31t222t44t55
+ (726 —72)t3 ta5t aatss + (T2—72b)taot ot agtaatss + (166 —16)t 50t aot st st ss
+ (72=72b)55t 01t 9ot 4atss + (16—160)39t 51t 00t gyt s + (160 —16)t352 51t 4t 55
+ (16—16b)t 3129 ta3t 4ats5 + (165 —16)t 4oto1t3atss + (1—b)tsotaot st satss
+ (b—1)tgytortastaatss + (16 —165)t 41t 5t gotss + (b —1)tgotartont satss
+ (1=0)tast got o1t aatss + (165 —16)t 45851t ot sstss + (16— 16b)¢ 4ot gotortastss
+ (b—1)tdstsotortss + (b—1)tsit3stagtas + (1—b)tsolortistas
+ (1—b)tsatartistor + (b—1)tustartostastss + (1—b)tagtastortastss
+ (1=b)tfstartantss + (b—1)tsatastortdy + (1—b)tsatartootsstyy

122

+ (b —1)tsgtagtortagtay + (b —1)tsatastartostes + (1—b)tsatsstantortsy ,
S17 = — 4960’5t gyt 55 + 1044t Zpat gyt 55 + 104t 0002t agt 44t 55
— 42t30t 35t 44l 55 — 4289 t0ataat yutss + 56t 3at 4ytss
— 500t39at 9ot 4at 55 + 4239t 00alogt 4atss — 56t3 0t 5t 44l ss
+ 4l31t0atsstagss + Aagtaoalagtsstss — Aaatogt3zatss + taotootastastss
— tutortagtaslss — 4t3ptagatagtss — 896t 35atgntss + 4t ot 3atyot s
+ 56t y9t33ats5 — taptartostastss + 11t gpatont utss + taotastortaqlss
— Stagalgoalystss + 250t yzatgobastss — 4tagtagatgotastss — 56t 43tz0atsstss
+ 4bystagtanatastss + 3t41atagtastss — tigtagtortss + 274t 3,at potas
— tsitistootss — Btspliuatas + tsglytistag — 11tsstdsatsy
+ tsstartator — tastartootastss + Lagtaotortastss — 3t 43t goat 33t 55
— 11tf3atostss + tistartostss + 3tistagatss + Btsgtastsa
— tsataglortis + tsatartostastaq — 50tgaatontagt sy — tsalagtorlaatay
+ 3t54la00ta3lay — Usalastarbostaq + 11tsats3atonlay + toatyatagtortay
+ (—104ba +500a)t t 35t 4gts55 + (—250b + 10462 474)t g0t ot 44t 55
+ (426 —114)t g1t Sotaqtss + (426 —114)t 2 tagt gyt 55 — Btsyt gt 5pat a
+ (—42b +114)t ot 99t 53t 4at 55 + (4b —20)tagt 9ot g3t aat ss
+ (=426 +114)t 55t 91t 00t gat 55 + (20— 40)Esotatggtygtss + (4b—20)t 35t 01t 4at 55
+ (20—4b)ig1to1tastaqlss + (40 —20)t goty 1t 3astss + (20—4b)t 41t S5t oot ss
+ (46 —20)t gt 31t 99t 53t ss + (20—4b)t 4gtant o1t gstss »
18 = — 480a”t 35t 4t 55 + 930t 30t 4atss + 361900 tsst 4qt s
— Btaot3pataslss — Blytanatagtastss — 4taotaglastastss + 28t 350t 44t 55
— 350t39atoptyalss + Blaatooaboslygtss + 4taatartogtastss — 4t3atortastss
— 28t31alat 44lss + 4l31to1tastaatss — 4lagtortastss — T60t35at oot s
+ 4l tiatastss + 28tagtisatss + 6lagatont utss — tagtapat satss
+ 1758430t 99t 35t 55 — 4t43ta boglaglss — 28t ystzoalagtss + 4t ystaalortastss
+ tyatggtagtss + 225t F4atgotag — tsgt Saatag — Btsat 2aty,

2 2 2
— 43t g90lagtss — Bty3aloglss + tiatzeatss + tgatsatisa

123

— 35t54atgotagtyy + tsglygalaglyy + Bl yzatootyy — tsytyataoaty
+ (—36ba +350a)t21t33t44t55 + (—175b +3662+85)t22t33t44t55
+ (66 —48)t g1t 50t gt 55 + (66 —48)t 21t 55t utss
+ (—6b +48)to0t gotsst agtss + (—6b +48)tatortagtatss
flg = ('—4ba +100a)t21t33t44t55 - 220(12t33t44t55 + (45—50b +4b2)t22t33t44t55

2 2
— Btg18o9taqlss — 685133l gqtss + Blogloolastyglss + Btaolortostaytss

+ 4tg0a’tagt g4t s + 390t 3aat gyt ss + 4t3pat utes — 100t 30at 99l 44t 55

2 2
— 4tz1atagt yqtss — 300t33at 99l 55 + 4t yot3zatss + t40ata0t 4455

2 2
+ 90t yzatgglaglss — 4t4alzeatsstss + 85t 14at ootz — tsal f4atog

2
— tizatoglss — 10¢s4atnglaslyy + tsgtyzatonlyy
f20 = 10ty at gt ggtss — 48a®tagtygtss + (11—5b)tootagt yatss + T8t5pat gatss

2
— 10%39at 99t 4455 — S56L53at g0l 55 + 5t y3atsotaslss

2
+ 15t 44at 99t 33 — t54aloot sty

2 2 2 2
Ja1 = toglagtaalss — 40 taatyatss + 61590t 4lss — 4t33at 90t 55 + t54atontsg

(where none of tgy, ta3, 44, t55 may vanish), using tgo>ts; >ty >tse>

Problem 18 [Fee87]:

f1
fa
f3
f4
s
Je

fr =

[s
fg

0,2+2[)2+62—1,

2¢2 4+ 292 — 1,

2d2 + f2 4+ 2n% -1,

2(cf —cd + 2dg + 2ch + 2dh) — aqja
cf —ab,

2¢d — aje ,

af —ad + 2ah +de + bf — qjc
2ad + 2ah — a;9 ,

ce + bc — 2bg ,

fio = ce —ayd —ac + 2ag ,

124

f11 = 2ac 4+ 2bc —aq;f ,
fi2 = 2ac + 2a9 — aq;h ,
using a;>e>h >d>f>a>g>b>c.

Problem 19 [Gonn87]:

fi = o, + 2y + 73 — az 2473,
2 2 2,2 2
fo = i + a5 + 2F — baixiaf
3 3 3.3 3
fa = a1 + a5 + af — caizdal ,

using x>z >3,

Problem 20 [Boge86]:
f1 = ud —ug+ 2u? + 2uf + 2ul + 2u? + 2u?

fo = 2uguy + 2ujuy + 2ugug + 2uguy + 2uus — ug ,
3 = 2uguy + uf + 2uqus + 2uouy + 2ugzus — Uy ,
fa = 2ugug + 2ujuy + 2ujuy + 2uguy — ug,

fs = 2uguy + 2ujug + 2uqug + ud —uy,

fe = ug+2u; + 2uy + 2ug + 2uy + 2u; — 1,

using ug>ug>u,>uy>u Sug.

Problem 21 [Carm87]:

f1 = —1396820% — 483842* — 300504 — 23248812 — 1224v% — 24484202 — 12244%
— 163176z%u’ — 209362%% — 258000u2 — 5936002 + 10332823y — 38352uv?
+ 615400u — 38352u® + 56400zuv + 389008zv + 25800z%u — 13968zuv |

fo = — 37854976z — 22279728y — 29636864 — 5786368z° — 203761° — 29376u%
— 378720v*r — 406944u’s — 1066560220% — 58752120 + 5031360z %
+ 18779200v%2® — 20137056u%z® — 785664u2v%z — 2184000z2u 2w
+ 1948640v° — 172358402z — 551424uv® — 437760uv + 1386593623
+ 82308304zu — 7837248zu® — 551424u3y + 18411664vz? + 17756592uv

125

— 23676960u’r + 22946672uvz’ — 6568288zuv? |
[3 = 610786944zv° — 5256000u° + 1604140416 — 1615166080z* — 139490790422
+ 67633216v* — 3297059104y + 1402343392u? — 36670848u? — 133520275202
+ 152446560u° — 6143872u°v? — 383146720z%u? — 1283825280% 202
— 59603564823y + 241766400°%2% — 12908160xv° — 19388164201
— 795116802y + 307022080z%? — 50359680v*x2 — 1233792 %2
— 118892160u*z? — 2505599232x%u? + 5451998848z + 719349312uv?
— 166993920u’v%x? — 30855168zu%v® — 2345425921 2v2® — 2817561602°
— 881280v° — 17947008zuv — 475699091270 + 874720684zu’v — 17625618
— 1441644576u%z? — 15526848uv? — 2078284845302 + 80533545624y
+ 4259029664zuv — 196488640uv3z — 641656256uvs? + 5376498336x3uv
— 235852800u3vz |,

using u >z >wv.

References

[Arno84]
D. S. Arnon, G. E. Collins, S. McCallum: "Cylindrical Algebraic Decomposi-
tion I, II", SIAM J. Comp. 13, 1984, pp. 865-877, 878-889.

[Ball81]
A. M. Ballantyne, D. S. Lankford: "New Decision Algorithms for Finitely

Presented Commutative Semigroups”, Comp. Math. Appl. 7, 1981, pp. 159-
165.

[Boge85]
W. Bége, R. Gebauer, H. Kredel: "Grébner Bases Using SAC-2", Proc.
EUROCAL ’85, Vol. 2, Linz, April, 1985, (B. F. Caviness, ed.), Springer Lec-
ture Notes tn Computer Science 204, pp. 272-274,

[Boge86]
W. B&ge, R. Gebauer, H. Kredel: "Some Examples for Solving Systems of
Algebraic Equations by Calculating Grébner Bases”, J. Symbolic Comp. 2,
No. 1, 1986, pp. 83-98.

[Brow71]
W. S. Brown, J. F. Traub: "On Euclid’s Algorithm and the Theory of
Subresultants”, J. ACM 18, No. 4, 1971, pp. 505-514.

[Brow78]
W. S. Brown: "The Subresultant PRS Algorithm", ACM TOMS 4, 1978, pp.
237-249,

[Buch65]
B. Buchberger: "An algorithm for finding a basis for the residue class ring
of a zero-dimensional polynomial ideal (German)", Ph.D. Thesis, Univ. of
Innsbruck, Math. Inst., 1965.

[Buch70]
B. Buchberger: "An algorithmical criterion for the solvability of algebraic
systems of equations (German)", Aequationes mathematicae 4, No. 3, 1970,
pp- 374-383.

126

127

[Buch76a]
B. Buchberger: "A Theoretical Basis for the Reduction of Polynomials to

Canonical Forms", ACM SIGSAM Bull. 10, No. 3, 1976, pp. 19-29.

[Buch76b]
B. Buchberger: "Some Properties of Grébner-Bases for Polynomial Ideals”,

ACM SIGSAM Bull. 10, No. 4, 1976, pp. 19-24.

[Buch79a]
B. Buchberger: "A criterion for detecting unnecessary reductions in the
construction of Grébner bases', Proc. EUROSAM 79, Marseille, June, 1979,
(W. Ng, ed.), Springer Lecture Notes in Computer Science 72, pp. 3-21.

[Buch79b]
B. Buchberger, F. Winkler: '"Miscellaneous results on the construction of
Grobner bases for polynomial ideals”, Tech. Rep. 137, Univ. of Linz, Math.
Inst., 1979.

[Buch83a)
B. Buchberger: "A note on the complexity of constructing Grébner bases",
Proc. EUROCAL ’83, London, March, 1983, (H. van Hulzen, ed.), Springer
Lecture Notes in Computer Science 162, pp. 137-145.

[Buch83b)]
B. Buchberger, R. Loos: "Algebraic Simplification", in Computer Algebra -
Symbolic and Algebraic Computation, (B. Buchberger, G. Collins, R. Loos
eds.), 2nd edition, Springer Wein - New York, 1983, pp. 11-43.

[Buch85]
B. Buchberger: "Grobner Bases: An Algorithmic Method in Polynomial Ideal
Theory", in Progress, directions and open problems in multidimensional
systems theory, (N.K. Bose, ed.), D. Reidel Publishing Co., 1985, pp. 184-
232.

[Carm87]
J. Carminatti, R. G. McLenaghan: "An explicit determination of the space-
times on which the conformally invariant scalar wave equation satisfies
Huygens’ principle II: Petrov Type D space-times", to appear in Ann. Inst.
Henri Poicaré, Phys. Théor.

128

[Char83]
B.W. Char, K.O. Geddes, W.M. Gentleman, G.H. Gonnet: "The design of
Maple: A compact, portable, and powerful computer algebra system", Proc.
EUROCAL 83, London, March, 1983, (H. van Hulzen, ed.), Springer Lec-
ture Notes 1n Computer Science 162, pp. 101-115.

[Char84]
B.W. Char, K.O. Geddes, G.H. Gonnet: "GCDHEU: Heuristic Polynomial
GCD Algorithm Based on Integer GCD Computation”, Proc. EUROSAM 84,
Cambridge, July, 1984, (J.P. Fitch, ed.), Springer Lecture Notes in Com-
puter Science 174, pp. 285-296.

[Char86a]
B.W. Char: Private communication, 1986.

[Char86b]
B.W. Char, G.J. Fee, K.O. Geddes, G.H. Gonnet, M.B. Monagan: "A

Tutorial Introduction To Maple", J. Symbolic Comp. 2, No. 2, 1986.

[Chis83]
A. L. Chistov, D. Yu. Grigoryev: "Subexponential-time solving systems of
algebraic equations I, II", E-10-83, LOMI Preprints, Leningrad, 1983.

[Coll67]
G. E. Collins: "Subresultants and reduced polynomial remainder sequences",
J. ACM 14, No. 1, 1967, pp. 128-142.

[Coll69]
G. E. Collins: "Comment on a Paper by Ku and Adler”, (letter to the edi-

tor), Comm. ACM 12, No. 6, 1969, p. 302.

[Coll71]
G. E. Collins: "The Calculation of Multivariate Polynomial Resultants"”, J.
ACM 18, No. 4, 1971, pp. 515-532.

[Coll75]
G. E. Collins: "Quantifier Elimination for Real Closed Fields by Cylindrical
Algebraic Decomposition", Proc. Second GI Conference on Automata
Theory and Formal Languages, 1975, Springer Lecture Notes in Computer
Scrence 33, pp. 134-183.

129

[Coll83]
G. E. Collins: "Quantifier Elimination for Real Closed Fields: A Guide to
the Literature", in Computer Algebra - Symbolic and Algebraic Computa-
tion, (B. Buchberger, R. Loos and G.E. Collins, eds.), 2nd edition, Springer
Wien - New York, 1983, pp. 79-81.

[Czap86a]
S. R. Czapor, K. O. Geddes: "On Implementing Buchberger’s Algorithm for
Grdbner Bases”, Proc. SYMSAC '86, Waterloo, July, 1986, (B. W. Char,

ed.), pp. 233-238.

[Czap86Db]
S.R. Czapor: "Solving Algebraic Equations: Combining Buchberger’s Algo-
rithm with Multivariate Factorization", to appear in J. Symbolic Comp..

[Czap87]
S. R. Czapor: "Solving Algebraic Equations via Buchberger’s Algorithm",
Proc. EUROCAL '87, Leipzig, June, 1987, to appear in Springer Lecture
Notes tn Computer Science.

[Dave8s)
J. H. Davenport: "Computer Algebra for Cylindrical Algebraic Decomposi-
tion", KTH Report TRITA-NADA-8511, Royal Inst. of Tech., Stockholm,
1985.

[Fee87]
G. Fee: Private communication, 1987.

[Geba86] :

R. Gebauer, M. Mdller: Buchberger’'s Algorithm and Staggered Linear
Bases", Proc. SYMSAC '86, Waterloo, July, 1986, (B. W. Char, ed.), pp.
218-221,

[Gedd83]
K. O. Geddes: Course Notes, CS 687, Winter, 1983, University of Waterloo.

[Gian85]
P. Gianni, B. Trager: "GCD’s and Factoring Multivariate Polynomials Using
Grébner Bases", Proc. EUROCAL ’85, Vol. 2, Linz, April, 1985, (B. F. Cavi-
ness, ed.), Springer Lecture Notes in Computer Science 204, pp. 409-410.

130

[Gian87]
P. Gianni: "Properties of Grobner bases under specialization", Proc. EURO-
CAL ’87, Leipzig, June, 1987, to appear in Springer Lecture Notes in Com-
puter Science.

[Gius85]
M. Giusti: "A Note on the Complexity of Constructing Standard Bases",
Proc. EUROCAL ’85, Vol. 2, Linz, April, 1985, (B. F. Caviness, ed.),
Springer Lecture Notes in Computer Science 204, pp. 411-412.

[Gonn86]
G. H. Gonnet, M. B. Monagan: "Solving Systems of Algebraic Equations, or
the Interface between Software and Mathematics”, Computers and
Mathematics Conference, Stanford, Calif., July, 1986.

[Gonn87]
G. H. Gonnet: Private communication, 1987.

[Hear79)
A.C. Hearn: "Non-modular Computation of Polynomial GCD’s using Trial
Divisions", Proc. EUROSAM '79, Marseille, June, 1979, (W. Ng, ed.),
Springer Lecture Notes in Computer Science 72, pp. 227-239.

[Herm26]
G. Hermann: "The Question of Finitely Many Steps in Polynomial Ideal
Theory (German)", Math. Ann. 95, 1926, pp. 736-788.

[Hiro64]
H. Hironaka: "Resolution of singularities of an algebraic variety over a field
of characteristic zero I, 11", Ann. Math. 79, 1964, pp. 109-326.

[Kalk87]
M. Kalkbrener: "Solving systems of algebraic equations by using Grobner
bases", Proc. EUROCAL ’87, Leipzig, June, 1987, to appear in Springer Lec-
ture Notes tn Computer Science.

[Kand84]
A. Kandri-Rody, D. Kapur: "Algorithms for Computing Grdbner Bases of
Polynomial Ideals over Various Euclidean Rings", Proc. EUROSAM 84,
Cambridge, July, 1984, (J. Fitch, ed.), Springer Lecture Notes in Computer
Science 174, pp. 195-205.

131

[[Kapu86)
D. Kapur: "Geometry Theorem Proving Using Hilbert’s Nullstellensatz",
Proc. SYMSAC ’86, Waterloo, July, 1986, (B. W. Char, ed.), pp. 202-208.

[Knut67]
D. E. Knuth, P. B. Bendix: "Simple word problems in universal algebras",
Proc. of the Conf. on Computational Problems in Abstract Algebra
(OXFORD '67), (J. Leech, ed.), Pergamon Press, Oxford, 1970, pp. 263-298.

[Knut69]
D. E. Knuth: The Art of Computer Programming, Vols. 1, 2, Addison-

Wesley, Reading, Mass., 1969.

[Koll78]
C. Kollreider, B. Buchberger: "An Improved Algorithmic Construction of
Grobner Bases For Polynomial Ideals”, ACM SIGSAM Bull. 12, No. 2, 1978,
pp. 27-36.

[KuAd69]
S. Y. Ku, R. J. Adler: "Computing Polynomial Resultants: Bezout’s Deter-
minant vs. Collins’ Reduced P.R.S. Algorithm", Comm. ACM 12, No. 1,
1969, pp. 23-30.

[Laza79]
D. Lazard: "Systems of Algebraic Equations", Proc. EUROSAM 79, Mar-
seille, June, 1979, (W. Ng, ed.), Springer Lecture Notes in Computer Sci-
ence 72, pp. 88-94.

[Laza81]
D. Lazard: "Résolution des systémes d’équations algébrique", Theor. Comp.
Sciences 15, 1981, pp. 77-110.

[Laza83]
D. Lazard: "Grobner Bases, Gaussian Elimination, and Resolution of Sys-
tems of Algebraic Equations", Proc. EUROCAL ’83, London, March, 1983,
(H. van Hulzen, ed.), Springer Lecture Notes in Computer Science 162, pp.
146-156.

[Laza85]
D. Lazard: "Ideal Bases and Primary Decomposition: Case of Two Vari-
ables", J. Symbolic Comp. 1, No. 3, 1985, pp. 261-270.

132

[LeCh83|
P. Le Chenadec: "Canonical forms in finitely presented algebras (French),
Ph.D. Thesis, Univ. of Paris-Sud, Centre d’Orsay, 1983.

[Loos83al
R. Loos: "Generalized Polynomial Remainder Sequences", in Computer
Algebra - Symbolic and Algebraic Computation, (B. Buchberger, R. Loos
and G.E. Collins, eds.), 2nd edition, Springer Wien - New York, 1983, pp.
115-137.

[Loos83b]
R. Loos: "Computing in Algebraic Extensions", in Computer Algebra -
Symbolic and Algebraic Computation, (B. Buchberger, R. Loos and G.E.
Collins, eds.), 2nd edition, Springer Wien - New York, 1983, pp. 173-187.

Mart71]
W. A. Martin, R. J. Fateman: "The MACSYMA-System", Proc. SYMSAM
'71, Los Angeles, March, 1971, (S. R. Petrick, ed.), pp. 59-75.

[Mayr81]
E. Mayr, A. Meyer: "The complexity of the word problems for commutative
semigroups and polynomial ideals”, Report LCS/TM-199, M.L.T. Lab. of
Computer Science, 1981.

[Mollg4]
H. M. Médller, F. Mora: "Upper and Lower Bounds for the Degree of Grébner
Bases", Proc. EUROSAM 84, Cambridge, July, 1984, (J. Fitch, ed.), Springer
Lecture Notes in Computer Science 174, pp. 172-183.

[Mona86]
M.B. Monagan: Private communication.

[Mona87|
M. B. Monagan: "Heuristic Irreducibility Test", submitted to J. Symbolic
Comp., 1987.

[Mose66]
J. Moses: "Solution of Systems of Polynomial Equations By Elimination",
Comm. ACM 9, No. 8, 1966, pp. 634-637.

133

[Pohs81]
M.E. Pohst, D.Y.Y. Yun: "On Solving Systems of Algebraic Equations via
Ideal Bases and Elimination Theory", Proc. SYMSAC ’81, (P.S. Wang, ed.),
Utah, August, 1981, pp. 206-211.

[Rich68]
D. Richardson: "Some Unsolvable Problems Involving Elementary Functions
of a Real Variable", J. Symbolic Logic 33, 1968, pp. 511-520.

[Rime84]
K. Rimey: "A System of Polynomial Equations and a Solution by an
Unusual Method", ACM SIGSAM Bull. 18, No. 1, 1984, pp. 30-32.

[Robb8s)
L. Robbiano: "Term Orderings on the Polynomial Ring", Proc. EUROCAL
'85, Vol. 2, Linz, April, 1985, (B. F. Caviness, ed.), Springer Lecture Notes
in Computer Science 204, pp. 513-517.

[Roth84]
M. Rothstein: "On Pseudo-Resultants”, in Proc. EUROSAM 84, Cambridge,
July, 1984, (J. Fitch, ed.), Springer Lecture Notes in Computer Science
174, pp. 387-394.

[Savi87]
P. Savitch: "The Chistov and Grigoryev Algorithm for Solving Systems of
Polynomial Equations"”, M. Math. Thesis, Univ. of Waterloo, Dept. of Comp.
Sci., 1987.

[Tars51]
A. Tarski: A Decision Method for Elementary Algebra and Geometry,
Univ. of California Press, 1951.

[Trin78]
W. Trinks: "On B. Buchberger’s Method for Solving Systems of Algebraic
Equations (German)", J. Number Theory 10, No. 4, 1978, pp. 475-488.

[Trin84]
W. Trinks: "On Improving Approximate Results of Buchberger’s Algorithm
by Newton’s Method", ACM SIGSAM Bull. 18, No. 3, 1984, pp. 7-11.

134

[Waer70]
B. L. van der Waerden: Modern Algebra, Vol. 1, Frederick Ungar Publishing
Co., New York, 1970.

[Waerb53]
B. L. van der Waerden: Modern Algebra, Vol. 2, Frederick Ungar Publishing
Co., New York, 1953.

[Wang78]
P. Wang: "An Improved Multivariate Polynomial Factoring Algorithm",
Math. Comp. 32, 1978, pp. 1215-1231.

[Watt85]
S. M. Watt: "Bounded Parallelism in Computer Algebra", Ph.D. Thesis,
Univ. of Waterloo, Dept. of Comp. Sci., 1985.

[Will62]
L. H. Williams: "Algebra of Polynomials in Several Variables for a Digital
Computer”, J. ACM 9, 1962, pp. 29-40.

[Wink84]
F. Winkler: "On the Complexity of the Grobner-Bases Algorithm over
K [2,y,2]", Proc. EUROSAM 84, Cambridge, July, 1984, (J. Fitch, ed.),
Springer Lecture Notes ¢n Computer Science 174, pp. 184-194.

[Wink87]
F. Winkler: "p-adic methods for the computation of Grobner bases", Proc.
EUROCAL ’87, Leipzig, June, 1987, to appear in Springer Lecture Notes in
Computer Science.

[Yun73|
D. Y. Y. Yun: "On Algorithms For Solving Systems Of Polynomial Equa-
tions", ACM SIGSAM Bull. 27, 1973, pp. 19-25.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

