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The Internal Path Length of Red-Black Trees *

Helen Cameron! Derick Wood!

Abstract

In this paper, we show that the internal path length of a red-black
tree of size N is bounded above by 2N(log N — loglog N) + O(N)
and that this is, asymptotically, tight. To establish the asymptotic
tightness of the bound, we introduce a class of red-black trees, the
C(k, h) trees, which achieve the bound when k& = h—2log h+ ¢, where
le] < 1/2.

1 Introduction

The internal path length (IPL) of a class of search trees is a measure of the
running time of various algorithms that operate on trees in the class. Thus,
it is a well-studied measure of performance for classes of search trees.

Knuth, in [Knu73], examined the multiway trees that have the smallest
and largest internal path length among all multiway trees with the same
number of internal nodes. The binary trees with minimal IPL for their
sizes are the perfect binary trees, which have external nodes on at most two
adjacent levels. These binary trees are members of the class of AVL trees and
the class of red-black trees; thus, the minimal IPL trees for each size have
already been characterized for AVL and red-black trees. In [MPRS79], the
2,3 trees with minimal and maximal IPL are characterized, and, in [KW89),
an upper bound for the IPL of AVL trees is given and a family of AVL trees
that achieve this bound is presented.

In this paper, we derive a tight upper bound for the IPL of red-black
trees similar to the bound for AVL trees in [KW89]. In Section 2, we define
the terminology we use and derive an upper bound on the IPL of red-black
trees of size N. In Section 3, we introduce the C(k, h) trees and prove that,
by carefully choosing k as a function of h, the upper bound is achieved by
these trees.

*This work was supported under a Natural Sciences and Engineering Research Council
of Canada Grant No. A-5692 and under a grant from the Information Technology Research
Centre.

tData Structuring Group, Department of Computer Science, University of Waterloo,
WATERLOO, Ontario N2L 3G1, CANADA



2 Cameron and Wood

2 An Upper Bound on the Internal Path Length

If a node has children, then it is internal; otherwise, it is ezternal. A binary
search tree T is a search tree in which each internal node has two children.
The mazimum height of a tree T is denoted by mazht(T) and is the length
of a longest toot-to-external-node path. The minimum height of a tree T,
denoted by minht(T), is the length of a shortest root-to-external-node path.
Similarly, the maximum height of a node v in a tree T is the length of a
longest path from node v to an external node that is a descendent of v, and
the minimum height of node v is the length of a shortest such path. The
weight of a tree T', denoted by wt(T), is the number of external nodes and
the size of T' is the number of internal nodes. Note that the size of binary
tree T is one less than the weight of T. The level of a node in a tree T is
the distance of the node from the root of tree T'; the root is at level 0, its
children are at level 1, and so on.

The class of trees in which we are interested are the red-black trees; see
[GS78]. The following definition is due to Olivié in [Oli82], who called them
half-balanced binary search trees. The trees were introduced by Bayer in
[Bay72], while Tarjan, in [Tar83], showed the two classes to be equivalent.

Definition 2.1 A red-black tree is a binary search tree such that, for each
node v in the tree, mazht(v) < 2 - minht(v); that is, a shortest path from v
to an external node is at least one half as large as a longest such path.

The internal path length of tree T is defined to be

IPL(T) = Z length(path(v)),

v binary

where path(v) is the access path from the root of T to node v, and the length
of the access path to a node on level i is ¢ + 1. The external path length of
tree T is defined to be

EPL(T) = Z length(path(v)).
v external
The external path length and the internal path length of a (binary) tree are
related by the formula
EPL(T) = IPL(T) + 2 - wt(T) — 1.
Lemma 2.1 Let T be a binary tree of size N and mazimum height h, and
let I; be the level on which the ith external node of T appears. Then,

N+1
IPL(T) = (h-1)(N+1)+1- > (h—L).

=1
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U(T)

Figure 1: The “area” represented by U(T).

Proof: From the relation between IPL(T) and EPL(T), we get
IPL(T) = EPLT)-2(N+1)+1

N+1
= Z(li+1)—-2(N+1)+1
. N+1
= (h+1)(N+1)—Z(h—l,~) —2(N+1)+1
Tn
= (h—1)(N+1)+1—Z(h—l,~).

0

The approach used to obtain an upper bound for the internal path length
of AVL trees in [KW89] was based on the following notion, which we also
use.

Definition 2.2 Let T be a binary tree of mazimum height h and size N,
and let the ith external node of tree T appear on level l;. Define the area
under T, denoted by U(T), as

N+1

U(T)= ) (A=)

i=1

The sum U(T) is the empty “area” under the external nodes of tree T'; see
Figure 1. We can rewrite the equation for JPL(T) in Lemma 2.1, using the
definition of U(T'), to arrive at

IPI(T) = mazht(T) - wi(T) + 1 — (U(T) + wi(T)).

Hence, if we derive a lower bound for U(T)+ wt(T'), then we obtain an upper
bound for IPL(T). Let us now examine a family of red-black trees that, as
we shall see, minimize U(T) + wt(T) among the red-black trees of the same
maximum height.
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Bin([h/2] — 1)
Bin([(h - 1)/2] - 1)
Bin([(h—2)/2] - 1)

Bin(1)
Bin(1)
Bin(0)
Bin(0)

Figure 2: The definition of Skinny(h).

We begin by defining the skinniest trees of a given height h, the Skinny(h)
trees; the definition is given in Figure 2. (Note: Bin(h) is the complete
binary tree of height A.) In fact, there is more than one skinny tree of
maximum height h; Skinny(h) is a family of trees of maximum height h
each of which look like the tree displayed in Figure 2 with some sibling
subtrees interchanged. Each Skinny(h) tree has a “spine” (a longest root-
to-external-node path) with pairs of complete binary trees hanging from the
spine, starting with a pair of Bin(0) trees at the bottom and increasing
up to a Bin([h/2] — 1) tree as a child of the root. For convenience, we
use Skinny(h) to denote both the family of trees of maximum height A and
individual trees in the family.

We will show that the Skinny(h) trees minimize the value of U(T')+wt(T)
among all red-black trees T with maximum height h. As a first step, we
obtain a lower bound for U(Skinny(h)) + wt(Skinny(h)).

Lemma 2.2 The weight of Skinny(h) is given by

2.2h/2 _q, if h is even
3.20-1)/2 _ 1, ifhis odd

wt(Skinny(h)) = {

and this is the minimum weight among all red-black trees of mazimum height
h.

Proof: See [Oli82]. O
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Lemma 2.3 The area under Skinny(h) is given by

g | (h=-3)2M? +3 if h is even
U(Skmny(h)) - { 3/2 . (h _ 3)2(h—1)/2 +3 ’if h is odd.

Proof: Consider a pair of Bin(:) subtrees hanging from the spine of
Skinny(h). Each external node of the Bin(i) subtree nearest the root con-
tributes i+ 1 to U(Skinny(h)), and each external node of the Bin(i) subtree
further from the root contributes ¢ to U(Skinny(h)). If there is only one
Bin(i) subtree (that is, if ¢ = (h — 1)/2 and h is odd), then each external
node of the Bin(i) subtree contributes 7 to U(Skinny(h)).

Thus, if h is even, then, from Figure 2, we see that

(h-2)/2
U(Skinny(h)) = Y 2'(2i+1)
1=0

(h-2)/2  (h-2)/2

=2 Y 2+ > 2
=0 =0

(h —3)2"% 4 3.

If h is odd, then
h . 1 (h_3)/2 .
U(Skinny(h)) = 2-1/2. ——+ Y 24(2i+1)
=0

= 3/2-(h—3)2th-V/2 3

Corollary 2.4 If h > 4, then
U(Skinny(h)) + wt(Skinny(h)) > h2h—1/2,
Proof: If his even, then, by the above two lemmas,

U(Skinny(h)) + wt(Skinny(h)) = (h—3)2M24+3+2.2M7 1
(h—1)2M2 42
h2(h-1/2 " if b > 4.

\%

If h is odd, then

U(Skinny(h)) + wt(Skinny(h))
= 3/2-(h—3)2h"1D/2 343201/
= 3/2-(h—1)2t"/2 2
> h2(-V/2,
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Bin(2)
Bin(2)
Bin(3)
Bin(2) /
Bin(1)

Wt =23
Maxht = 6
IPL = 95

Figure 3: A red-black tree with the same weight but larger IPL than
Skinny(7). (Note: IPL(Skinny(7)) = 88)

a

Even though Skinny(h) minimizes U(T) + wt(T) among all red-black
trees with maximum height h, Skinny(h) does not necessarily have the max-
imum internal path length among all red-black trees of the same weight; see
Figure 3.

We now wish to show that Skinny(h) minimizes the value of U(T)+wt(T')
among all red-black trees T’ of maximum height h.

Definition 2.3 The replacement of an external node in a binary tree by a
new internal node with two external node children is called a simple inser-
tion. That is, a simple insertion is the insertion of new node without any
adjustments made to the structure of the tree to retain some desired property
(for ezample, the red-black property).

Similar to results for brother trees in [OW82], we show that any red-black
tree of maximum height A can be produced from some tree in the family of
Skinny(h) trees by a series of insertions that do not require any promotions
to be performed to retain the correct ratio between the maximum height
and minimum height of each node in the tree; that is, by a series of simple
insertions. Then, we show that the insertions do not decrease the value of
U(T) + wt(T).

Suppose a red-black tree 7" can be produced by a sequence of simple
insertions from some Skinny(h) tree T. How would such a sequence appear?
We will see that the area beneath each Bin(i) subtree hanging from the
spine of T is filled in until each of these subtrees matches the corresponding
subtree in 7’. Part of this proof will be to show that the area beneath a
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Bin(1) tree can be filled in, one level at a time, until it matches any red-black
tree T” such that mazht(T") > 7 and minht(T") > i, and each intermediate
tree in the sequence is a red-black tree. The first step towards this proof is to
show that the reverse of the sequence from Bin(i) to T can be performed;
that is, we can remove the nodes from T one at a time, starting at the level
furthest from the root, removing nodes, level by level, until we are left with
Bin(7), and each intermediate tree in the sequence is a red-black tree.

Lemma 2.5 Let T be an arbitrary red-black tree of mazimum height h and
minimum height I. If we remove an internal node v on level h — 1 of tree T
(that is, replace v and its two external node children by an external node),
then the resulting tree T' is a red-black tree.

Proof: The only nodes whose minht/mazht ratios can be affected by the
removal of node v from tree T are the ancestors of v on the path P from v
to the root of tree T. Let w be a node on level j of tree T such that w is
on path P. There are four cases to consider: the removal of v changes both
magzht(w) and minht(w), the removal changes mazht(w) but not minht(w),
the removal changes minht(w) but not maezht(w), and neither mazht(w) nor
minht(w) are changed by the removal.

o Neither mazht(w) nor minht(w) are changed by the removal of node
.

Clearly, mazht(w) < 2 - minht(w) in the resulting tree since the
inequality must hold in the red-black tree T'.

¢ Only mazht(w) is changed; minht(w) remains unchanged.

Since T is a red-black tree, we know that mazht(w) < 2 - minht(w)
held before the removal of node v. The removal of v can only change
mazht(w) by decreasing it by one. Thus, mazht(w)—1 < 2. minht(w),
so the red-black property still holds at node w in the resulting tree 7".

o Only minht(w) changes; mazht(w) remains the same.

Since v was on level A — 1, the last level of internal nodes of tree
T, and the value of minht(w) changed with the removal of v, all other
external nodes descendents of w must be on level h. In other words,
before the removal, node w was the root of a Bin(h — j) subtree in T,
and mazht(w) = minht(w) = h— j.

Thus, after the removal, minht(w) = h—j—1 and mazht(w) = h—j.
But,h—j<2(h—j—1)=2(h-j)—2,if j < h—1. Since node v
was on level A — 1, node w was an ancestor of node v, and node w is
on level j, we have j < h— 1.
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o Both mazht(w) and minht(w) are changed.

This implies that the external node children of v are the only ex-
ternal node descendants of w; otherwise, both values could not be
changed by this single removal. Thus, w must be v, a contradiction.

Thus, in the resulting tree T, the red-black property holds for all nodes
that could have been affected by the removal of node v. Thus, tree T' is
also a red-black tree. a

Now we can show how to fill in a Bin(j) tree by a sequence of simple
insertions until we have a desired red-black tree.

Lemma 2.6 Let T be a red-black tree with mazht(T) = h and minht(T) =
k > j. There exists a sequence of simple insertions that can be applied to
Bin(j) to produce tree T such that each intermediate tree produced by the
sequence s a red-black tree.

Proof: We examine the reverse sequence. Using Lemma 2.5 repeatedly, we
can remove all the nodes on level & of tree T one by one, then the nodes on
level h — 1, ..., then the nodes on level j + 1, and, after each removal, the
resulting tree is red-black. The end result of the removals is Bin(j), since
7 < minht(T).

If, somewhere in this sequence, we remove one node on the final level
i of some intermediate tree 7/ to get the next intermediate tree 7%, then,
by Lemma 2.5, since the original tree T is a red-black tree, T and T are
red-black trees. The only difference between T’ and T is the node that was
removed. Thus, if we insert the node into tree T using the normal insertion
routine for search trees, the result will be 7/ and no promotions are required
to maintain the properties of a red-black tree.

Hence, if we start with Bin(j), reverse the order of the sequence of
removals, and use it as a sequence of insertions, we will have a sequence of
simple insertions that produces the red-black tree T from Bin(j). O

Finally, we can show that there exists a sequence of simple insertions
that leads from some member of the family of Skinny(h) to any red-black
tree of maximum height h.

Theorem 2.7 Let T' be a red-black tree of mazimum height h. Then, there
ezists a Skinny(h) tree T and a sequence I of simple insertions such that
when sequence I is applied to tree T the result is tree T' and each interme-
diate tree is a red-black tree. '
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—— path P

Figure 4: The path P in tree T’ and the subtrees hanging from it.

Proof: Since T’ has maximum height h, there exists some root-to-external-
node path P of length h. Choose T' to be the member of Skinny(h) whose
spine matches path P.

Consider the subtree T} in T’ that is rooted on level j and does not
contain any nodes of path P, but is a child of the node v; in path P on level
7 — 1; see Figure 4. The other child of node v;, which contains a portion of
path P, has maximum height A — j. The subtree T’/ has maximum height at
most h— 7, since the maximum height of tree T is h. Since T is a red-black
tree, we must have mazht(v;) < 2 - minht(v;). But mazht(v;) = h—j+1
and minht(v;) < minht(T})+ 1. Thus, we have h—j +1 < 2(minht(T}) +1)
or minht(T}) > (h —j +1)/2 ~ 1. Since minhi(T}) is an integer, we have
minht(T}) > [(h—3j+1)/2] - L.

Let T; be the subtree in Skinny(h) tree T that corresponds to T; that
is, let T; be the subtree rooted on level j that is the child of the spine
node on level j — 1 and does not contain any of the spine. Subtree T} is
Bin([(h— j +1)/2] - 1).

Now, by Lemma 2.6, there exists a sequence I; of simple insertions that,
when applied to Bin([(h—j+1)/2] —1), results in T} and each intermediate
tree is a red-black tree.

We now have h — 1 sequences of simple insertions, Iy, Ia, . .., In_1, where
sequence I;, when applied to Bin([(h — j + 1)/2] — 1), results in subtree
T} of tree T'. We now show that these sequences, when applied one after
another to the proper subtrees of Skinny(h) tree T, result in tree T’ and each
intermediate tree is a red-black tree. Since I; transforms Bin([(h—j+1)/2]~
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1) into T without any promotions required within Bin([(h—j+1)/2] - 1),
the only possible problem is if one of the insertions in I; causes some node v
outside the Bin([(h —j+1)/2] — 1) subtree to no longer satisfy mazht(v) <
2 - minht(v). The node v must be on the spine of Skinny(h) tree T, since the
only nodes that can be affected by an insertion are ancestors of the newly
added node. But the maximum height of node v can never be changed by
any of these insertions, since both Skinny(h) tree T and the red-black tree
T’ have maximum height k. Thus, an insertion may increase the value of
the minimum height of a spine node, but not its maximum height. But
any spine node v satisfies mazht(v) < 2 - minhi(v) before any insertions are
performed because T is a red-black tree, and thus node » must also satisfy
the relation after some insertions are performed because the only changes
that may occur are that minht(v) may be increased. a

Now we prove that a simple insertion does not decrease the value of
U(T) + wt(T).

Lemma 2.8 Let T and T' be binary trees such that T can be transformed
into T' by one simple insertion. Then,

U(T) + wt(T) < U(T') + wi(T").

Proof: Observe that wt(7T') = wt(T)+ 1. There are two cases to consider:
either the insertion increased the maximum height of the tree, or it did not.

Case 1: mazht(T) = mazht(T'). Since the insertion into T replaced an
external node u on some level k < h by an internal node with two
external node children, U(T) and U(T') differ only with respect to
node u and its replacement. The contribution of u to U(T') is h — k,
whereas the contribution of u’s children in T’ to U(T") is 2(h— k —1).

Hence,
vIrYy-u(r) = 2(h—k—-1)—(h—k)
= h—-—k—2
and
UTHY+ wt(T)Y-U(T)—wt(T) = h—k—-2+1
> 0,
since k < h.

Case 2: mazht(T) < mazht(T'). Then, mazht(T) = mazht(T') — 1, be-
cause the simple insertion at node u in tree T can increase the height
by at most one.
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Now, the contribution of u to U(T') is zero, since node u must be
on level mazht(T). The contribution of the children of u in tree T'
to U(T') must also be zero, since they are on level mazht(T) + 1 =
mazht(T'). But, the contribution of all other external nodes is in-
creased by one; that is, U(T') = U(T) + wt(T) — 1. But, this implies
that

U(TY+ wt(T)-U(T) —wt(T) = wt(T)—-1+1

wt(T)
0.

Vv

]

Using Lemma 2.8, we can show that a sequence of simple insertions
cannot decrease the value of U(T') + wit(T).

Theorem 2.9 Let T and T' be binary itrees such that there is a sequence I
of stmple insertions that transforms T into T'. Then,

U(T) + wt(T) < U(T") + wt(T").

Proof: By induction on the length of the sequence I.

If the length is zero, then T' = T” and the result clearly holds.

Otherwise, there is at least one simple insertion in I, so wt(T") > wi(T)
and mazht(T"') > mazht(T). Consider the first insertion in I. It transforms
T into some tree 7. By Lemma 2.8, U(T) + wi(T) < U(T") + wi(T"). Let
I" be the sequence I without the first insertion; I"” is a sequence of simple
insertions which transforms 7" into 7. The induction hypothesis applies to
T', T", and I", since the length of I” is less than the length of I, so we also
have U(T") + wt(T") < U(T')+ wt(T"'). Combining these inequalities gives
us the required result. a

We can now prove that any member of Skinny(h) has the minimum value
for U(T') + wt(T) among all red-black trees T of maximum height h.

Corollary 2.10 For any red-black tree T of mazimum height h,
U(T) + wt(T) > U(Skinny(h)) + wt(Skinny(h)).

Proof: Let T be an arbitrary red-black tree of maximum height h. By
Theorem 2.7, there exists a sequence I of simple insertions that transforms
a member of Skinny(h) into T and each intermediate tree is a red-black
tree. Therefore, by Theorem 2.9, we have U(Skinny(h)) + wt(Skinny(h)) <
U(T) + wt(T). a



12 Cameron and Wood

By Corollary 2.4, we have U(Skinny(h)) + wt(Skinny(h)) < h2(h=1)/2,
By Corollary 2.10, we have U(T') + wi(T) > U(Skinny(h)) + wt(Skinny(h)),
for any red-black tree of maximum height A. Therefore, :

IPL(T) < k- wt(T) — h2(h-1)/2 11,

where T is a red-black tree of maximum height h. But there may be red-
black trees of different maximum heights with the same weight, so we need
to discover which maximum height maximizes our bound.

Theorem 2.11 Let T be a red-black tree of size N. Then,
IPL(T) < 2N(log N — loglog N) + O(N).

Proof: By the above discussion, we have IPL(T) < h(N+1)— h2(h=1)/24 1,
Let f(z) = (N 4 1) — 22(==1)/2 + 1. This function takes its extremal value
at the zero of its first derivative:

af _ (z-1)/2 , 1 (a-1)/2y
o= (N +1)- (2 +5 222 ).
Consider the second derivative of f(z):

f(z) = -1/2-In2-2"V/42 4 1/2 . In2 - ).

Clearly, f(z) < 0, for z > 0. Thus, f'(z) is a decreasing function for z > 0.
But,

(N+1)=(27Y241/2-n2.0.271/2)
(N + 1) - 0.7071
> 0, since N > 0.

f'(0)

Therefore, f'(z) has exactly one zero at some point o > 0. Furthermore,
we have f/(z) > 0, for 0 < & < 2o, and we have f'(z) < 0, for 2y < . Thus,
the zero of f'(z) is a maximum of f(z).

Now, we wish to find an z satisfying

Taking logarithms on both sides, we get

(z —1)/2+1logz + O(1) =log N + O(1).
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Adding loglog N — logz to both sides, we get

log N
(z—1)/2+loglog N = logN + log (%——) + O(1)
/2 +logz + O(1)
z

1 1 o1
= logN+log(§+ig—:-v+—(-—)

log N + log <(z—1) > +0(1)

>+ou)

T

Therefore, f(z) takes its maximum value at z = 2(log N —loglog N )+ O(1),
and the value of f(z) at that point is

[2(log N —loglog N) + O(1)}(N + 1)
—[2(log N — loglog N) + 0(1)]2l°3N”l°gl°gN+O(1) +1
= 2N(logN —loglog N)+ 2(log N —loglog N)+ O(1)(N +1)

N _s0m
[2(log N —loglog N) + 0(1)]logN2 +1

= 2N(log N —loglog N)+ O(N).

3 A Class of Red-Black Trees with Asymptoti-
cally Pessimal IPL

Having established an upper bound on the internal path length, we now

prove that it is asymptotically tight. We begin by demonstrating that the
Skinny(h) trees do not achieve the upper bound.

Theorem 3.1 Let Skinny(h) have size N. Then,
IPL(Skinny(h)) < 4/3 -N1lg N + O(N).
Proof: From Lemma 2.1, we know that
IPL(Skinny(h)) = h - wt(Skinny(h)) + 1 — (U(Skinny(h)) + wt(Skinny(h))).
If h is even, we have

IPL(Skinny(h)) = h(2- 2" 1) 41— ((h- 1)2h/2 +2)
(h+1)2M2 _h—1.
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But, wt(Skinny(h)) = N +1 = 2-2"2 — 1, when h is even. Therefore,
h = 2log ((N + 2)/2). Thus, we have

IPL(Skinny(R)) = (2log((N +2)/2) + 1)2'°s((N+2)/2)
—2log((N +2)/2)-1
= NlogN + O(N), since log(N +2) =log N + O(1).

If h is odd, we have

IPL(Skinny(h)) < h(3- o(h-1)/2 _ 1)+1- po(h—1)/2
= 2.h.2(h_1)/2_h+1’

since U(Skinny(h)) + wt(Skinny(k)) > h2(*~1)/2 when h is odd. Also,
wt(Skinny(h)) = N +1 = 3-2-1/2 _ 1 when h is odd. Therefore,
h = 2log((N + 2)/3)+ 1. Thus, we have

IPL(Skinny(h)) < 2(2log((N +2)/3) + 1)2°s(N+2)/3)
— 2log((N +2)/3)
4/3- Nlog N + O(N).

a

We now present a class of red-black trees, some of which achieve the
upper bound for the internal path length presented in the previous section.
These are the C(k, h) trees. Their definition is given in Figure 5.

Lemma 3.2 The weight of a C(k, h) tree is
2" 4 (24 (h + k) mod 2)2L(A+R)/2] _ (2 4 b mod 2)2th/2].

Proof: If h and & are both even, then, from Figure 5, we see that

(ht+k—2)/2
wt(C(k,h) = 2"+ Y 2.2
j=h/2
oh 1 9. o(htk)/2 _ o oh/2,

Since h and k are both even, we have (A + k) mod 2 = 0 and h mod 2 = 0.
Furthermore, (h + k)/2 = [(h+ k)/2] and h/2 = |h/2]. Thus, we obtain

wt(C(k, k) = 2" + (2 + (b + k) mod 2)2L+R)/2) _ (2 4 h mod 2)2l/2]

when both h and k are even.
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Bin([(h+ k - 2)/2])
Bin([(h+k - 3)/2])
Bin([(h + k - 4)/2])

k
Bin([(h+1)/2])
Bin([h/2])
Bin([(h - 1)/2) ;
h

Bin(h)

Figure 5: A C(k, h) tree.
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If h is even and k is odd, then, from Figure 5, we see that
(h+k—3)/2
wt(C(k,h)) = 2h42(htk-D/2 4 N~ 9.9
j=h/2
oh 1 olhtk=1)/2 4 o o(h+k-1)/2 _ o oh/2
oh 1 3.9(h+k=1)/2 _ o oh/2

I

Since h is even, we have hmod 2 = 0 and h/2 = |h/2]. Since k is odd, we
have (h + k)mod 2 =1 and (h+ k — 1)/2 = [(h + k)/2]. Thus, we obtain

wt(C(k,h)) = 2" + (2 + (h + k) mod 2)2L++*)/2) _ (2 4 h mod 2)2!h/2!

when h is even and k is odd.
If h and k are both odd, then, from Figure 5, we see that
(htk-2)/z
wi(C(k,h)) = 2t 42-D/2p N~ 9.9
j=(h+1)/2
= 9h 4 o(h-1)/2 4 o o(h+k)/2 _ g9 o(h+1)/2
oh 1 9. o(htk)/2 _ g o(h-1)/2,

Since h is odd, we have h mod 2 = 1 and (h—1)/2 = |h/2]. Since k is odd,
we have (h+ k) mod 2 = 0 and 2$% = |23E | Again, we obtain

wt(C(k,h)) = 2" + (2 + (h + k) mod 2)2L*+%)/2] _ (2 4 h mod 2)2!/2]

when h and k are both odd.
Finally, if h is odd and k is even, then, from Figure 5, we see that
(h+k~3)/2 '
wi(C(k,h)) = 2M420hD/2 olhtk-1)/2 L N 9.9
T i=(h+1)/2
oh 4 o(h=1)/2 | o(h+k=1)/2 4 o o(htk=1)/2 _ o o(h+1)/2

Since h is odd, we have h mod 2 = 1 and (h—1)/2 = |h/2|. Since k is even,
we have (h + k)mod 2 =1 and (h+ k — 1)/2 = |(h + k)/2]. Therefore, as

in the other cases, we have
wt(C(k, h)) = 2" + (2 + (h + k) mod 2)2lF+R)/2] _ (2 4 h mod 2)2!4/2]

when h is odd and & even. 0

Now we show that the C(k,h) trees achieve the upper bound for the
internal path length when k is chosen appropriately.
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Theorem 3.3 Let k = h — 2logh + ¢, where |¢| < 1, and let C(k, h) have

size N. Then, IPL(C(k,h)) = 2N(log N —loglog N)+ O(N).

Proof: First, we show that mazht(C(k, h)) = h+k = 2(log N —loglog N)+
o(1).
Since k = h — 2logh + ¢, we have

h+k = 2(h—logh)+e
2h
= 2log—il—+e. (1)

Now,

wt(C(k,h)) = 2"+ (2+ (h+ k) mod 2)2l(-+*)/2] _ (2 4 h mod 2)2lh/2
oh + o(h+k)/2+1+er _ oh/2+1te ,

where
R if(h+k)mod2=0
17 ] log3 -2 ~.08496 otherwise
and
] 0 ifhmod2 =0
2= log3 — 3 ~ .08496 otherwise.
Thus, we have
h htk(olie 217
Wt(C(kah)) =27+ (\/5) (2 e (ﬂ)k)

From Equation (1), we get

htk 2log 24e _ 2" /2
(Vs = (vape e = P

Substituting this into the previous equation, we have

26/2 1ie 21+£2
# (“’T (2 - (ﬁ)k)) )

N ad Gy PR il B
( ) 2¢/2 (\/§)k

Taking logarithms on both sides of Equation (3), we obtain

wt(C(k, h))

htk h . olte
log N+ 0(1) = ——2——+log (25/2 + (21"' 1 - (\/ﬁ)k)) (4)
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and, from Equation (2), we get

26/2 21+52
logN+0(1)=h+1log|1l+ - ol+er _ .

But
21+€2
21+€1 _ 2

_(\/é)k<2’

h =log N + O(1).
Returning to Equation (4), we see that

lo h + [ 2tte 2hte
g 2¢/2 (ﬁ)k

+0(1)

SO

= log#
= logh-— % + 0(1)

= logh+ 0(1)

= loglog N 4+ O(1), since h =log N + O(1).

Substituting this into Equation (4), we have

logN +0(1) = h%k + loglog N + O(1),

or
h+k=2(log N —loglog N) + O(1),

as required.

Now, let us show that U(C(k, h)) = O(N). Because C(k, h) is Skinny(h+
k) with the area beneath some of the external nodes of Skinny(h + k) com-
pletely filled in, we know that U(C(k,h)) < U(Skinny(h + k)). There are
two cases to consider: h + k is even and A + k is odd.

e h+ kis even.
Then,

U(C(k, h))

IN

U(Skinny(h + k))
(h+ k —3)2(h+k)/2 L 3

- _ 31 _900)
= [2(Jog N —loglog N) + O(1) 3]10gN2 +3

loglog N N
= 200N — 220" = 1+3
[ log N + O(l)logN] +

= O(N).



The IPL of Red-Black Trees 19

e h+4 kisodd.
Then,
U(C(k,h)) < U(Skinny(h + k))
= %(h + k= 3)2hth-1)/2 4 3

N 2001
ogN 2

= %[2(logN—loglogN)+0() 3]

loglog N N

3
= 2002[2N — ——]+3
2 4[2 2 log N O(l)logN] +

= O(N).

In both cases, U(C(k,h)) = O(N), and by Lemma 2.1,

IPL(C(k,h))

(mazht(C(k,h)) — 1)(N + 1)+ 1 - U(C(k, h))
[2(log N —loglog N) + O(1)](N + 1)+ 1 — O(N)
= 2N(log N —loglog N)+ O(N).

4 Conclusion
We have shown that for a red-black tree T of size N
IPL(T) < 2N (log N —loglog N) 4+ O(N)

and have shown that the C(k,h) trees with k = h — 2logh + ¢, where
le| < 1/2, achieve this bound.

Although a subset of the C(k,h) trees achieve the bound, we do not
know whether these trees have maximal IPL for their size. The problem of
characterizing maximal IPL red-black trees is still very much open. (The
same problem remains open for AVL trees, too.)
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