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Abstract

We investigate the fundamental problem of when a ground atom in a non-Horn data-
base is assumed false. There are basically two different approaches for inferring negative
information for non-Horn databases; they are Minker’s Generalized Closed World Assump-
tion (GCWA) and Ross and Topor’s Disjunctive Database Rule (DDR). DDR is proposed
to overcome some problems of GCWA. However, we argue that DDR may not correctly
interpret information in a non-Horn database. A closed world assumption called PWS is
proposed to overcome both the problems of GCWA and DDR. We also show that for data-
bases with no negative clauses, the problem of determining if a negative ground literal is
inferred under GCWA is NP-hard, while the same problem can be solved efficiently under
DDR and PWS. However, in the general case, the problem becomes NP-hard for all three
inference rules. DDR interprets disjunctions of atoms inclusively while GCWA interprets
disjunctions of atoms unpredictably. PWS is more flexible by allowing both inclusive as
well as exclusive interpretations of disjunctions of atoms. We also characterize the condi-
tion under which GCWA interprets disjunctions exclusively. Throughout this discussion,
we assume both the head and body of a clause consist of atoms only.

1 Introduction

Query answering in general requires both positive as well as negative information. In database appli-
cations, negative information is numerous relative to positive information. To avoid storing the vast
amount of negative data in a database, negative information is represented implicitly via some inference
rules. For Horn deductive databases, there is a general consesus of how to derive negative information
from a database [Clark78,Reit78]. However, for non-Horn databases, the situation is less satisfactory.
Minker’s Generalized Closed World Assumption (GCWA) [Mink82] is perhaps the most widely consid-
ered closed world assumption for non-Horn databases. For instance, see [GM86,HP88,YHS85]. GCWA
reduces to Reiter’s CWA for definite databases [YH85]. GCWA has been extended in various ways.

Yahya and Henschen proposed the Extended Generalized Closed World Assumption (EGCWA ) for non-
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unit negative clauses [YH85]. Under EGCWA, a negative clause C is inferred if no minimal model
contains all atoms in C. EGCWA reduces to GCWA for negative ground literals. EGCWA is further
generalized by allowing the closed world assumption be applied to a subset of predicates in a database
[GPP86]. Recent work on stratified databases allow negative subgoals in a clause [ABW88,BH86,Lif88,
Przy88,RT88,Van88]. Having negative subgoals in a clause implies relative priorities are assigned to
predicates in a database; and relations in the database are computed in the order assigned. The perfect
model semantics [Przy88] is a generalization of GCWA when negative subgoals are allowed in a clause.
It reduces to GCWA when no function symbol is allowed and both the body and head of a clause are
positive. All the work described above are based on variants of the minimal model semantics [EK76].

Stable model semantics [GL88] and well-founded semantics [VRS88,Van89] are attempts to assign
a natural meaning to normal logic programs. Well-founded semantics is further extended to non-Horn
databases by the so-called weak well-founded semantics and strong well-founded semantics [Ross89].
Strong well-founded semantics infers a subset of perfect model semantics for non-Horn databases, and
treats disjunctions of atoms exclusively. Weak well-founded semantics generalizes the DDR of Ross and
Topor by allowing negative subgoals in a clause. Weak well-founded semantics coincides with DDR
when no negative subgoal is allowed in a clause. Thus it suffers the same problem as will be described
after Example 1. Lozinskii took a different approach and proposed PWA for inferring positive, negative
as well as uncertain information in a non-Horn database [L0z89]. Under PWA, positive, negative and
uncertain data are inferred depend on the frequency they appear in models of a state. Consequently, a
ground atom could be inferred even if it is not provable from the state. For instance, A is inferred under
PWA for the state {A < B,A «— C}.

Although GCWA has been studied extensively, Ross and Topor observed that this assumption has
some undesirable property. In particular, GCWA (and any aforementioned closed world assumption
based on the minimal model semantics) is rigid in interpreting disjunctions of atoms. Consequently, the

negative information inferred under GCWA may not be the ones that we wanted.

Example 1.1 Let the following be predicates in a database.
EXTREMELY DANGEROUS(x): x is extremely dangerous,
PSYCHOPATH(x): x is a psychopath and
VIOLENT(x): x is violent.

Suppose we have the following (universally quantified) general rule in the database:
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VIOLENT(x) & PSYCHOPATH(x) — EXTREMELY_. DANGEROUS(x).

This rule states that if a suspect is violent and is a psychopath then the suspect is extremely danger-
ous.

Suppose the evidence in a crime scene suggests a suspect “Smith” is either a violent person or a psy-
chopath (or both). So this uncertain information is recorded as a disjunction of tuples VIOLENT(Smith)
V PSYCHOPATH(Smith) in our database. The resulting state is a non-Horn database. Suppose the
query “Is EXTREMELY DANGEROUS(Smith) false?” is posed to the database, then what is the an-
swer to this query?

Under GCWA, the answer to this query is “yes” since the only minimal models are { VIOLENT (Smith)
} and {PSYCHOPATH(Smith)}. Informally, minimal models are possible worlds under GCWA and the
two tuples VIOLENT(Smith) and PSYCHOPATH(Smith) could not simultaneously be true in any pos-
sible world. Consequently, the tuple EXTREMELY_DANGEROUS(Smith) is not considered possible
under GCWA and therefore is assumed false.

On the other hand, if we interpret the clause VIOLENT(Smith) ' PSYCHOPATH(Smith) such that it
could give rise to a possible world in which both VIOLENT(Smith) and PSYCHOPATH(Smith) are true.
In this possible world, EXTREMELY_DANGEROUS(Smith) is a logical consequence. Under such an
assumption, the query

“Is EXTREMELY _DANGEROUS(Smith) false?”
should have the answer “no”. In fact, the possible world in which both tuples are true cannot be

represented directly under GCWA. O

In the above example, the disjunction VIOLENT(Smith) V PSYCHOPATH(Smith) cannot be inter-
preted inclusively under GCWA. To overcome the problem of GCWA, an alternative metarule, called
Disjunctive Database Rule (DDR), was proposed by Ross and Topor [RT88]. DDR has been shown to be
equivalent to the so-called Weak Generalized Closed World Assumptionin [RLM87]. DDR interprets the
head of a clause inclusively. However, we argue that DDR may not correctly infer negative information
in a non-Horn database. More specifically, DDR ignores negative clauses in the inference process. For
instance, if we add the negative clause ~(VIOLENT(Smith) & PSYCHOPATH(Smith)) to the database in
Example 1, this clause will be ignored by DDR. That is, the negative literal ~<EXTREMELY_DANGEROQUS(Smith )
is not inferred under DDR. In view of this, we propose a closed world assumption called PWS which

overcomes problems in both GCWA and DDR. Independently, Sakama studied the same problem and
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proposed a possible model semantics [Saka89]. It turns out that PWS and Sakama’s possible model
semantics are equivalent. This is proved after PWS is introduced in Section 5.

In order to evaluate various closed world assumptions, Ross and Topor [RT88] proposed six criteria
for comparison. One of them is efficiency. Efficiency is dealing with the question of how easy to deter-
mine if a negative datum is being inferred using an inference rule. They pointed out that the efficiency
criterion cannot be determined absolutely. Rather it can only be used to compare two different closed
world assumptions. They left open the question of whether one of GCWA and DDR is more “efficient”.
In this paper, we settle this question by showing that for databases with no negative clauses, the problem
of determining if a negative ground literal is inferred under GCWA is NP-hard, while the same problem
can be solved efficiently under DDR and PWS. However, in the general case, the problem becomes
NP-hard for all three inference rules.

Section 2 will define the necessary notation used throughout this paper. Section 3 will review results
on GCWA. Section 4 will study DDR. Section 5 will define PWS and study its property. Section 6 will
highlight some important relationships among the three assumptions. Section 7 shows that PWS allows
both exclusive as well as inclusive interpretations of disjunctions. A condition is also identified under
which GCWA interprets disjunctions of atoms exclusively. Finally, conclusions will be drawnin Section

8.

2 Definitions and Notation

In this section, we briefly introduce notation that are necessary for the discussion in the following sec-
tions. We assume familiarity with basic terminology and theory of logic programming and relational
databases as found, for example, in [Lloyd87,Reit84,U1188]. We regard a database as a special kind of
first-order theory with equality but with no function symbols [Reit84].

A clause is a formula of the form A1 V ---V Ay, «— By & - - - & By, where A; and Bj are atoms. All
variables in the clause are assumed to be universally quantified at the front of the clause. All clauses
are assumed to be non-empty. A1 V - .-V Ay, is the head of the clause and B & - - - & By, the body. If
the head of a clause contains a single atom, i.e. m=1, it is Horn. If m> 2, the clause is a disjunctive
or non-Horn clause. Either the head or the body (but not both) of a clause may be empty. A clause
is said to be negative if its head is empty. Negative clauses are considered as integrity constraints in

a database. Negative clauses will be written as —(B; & ---&B,). Negative clauses are needed in a



non-Horn database, since they are needed to represent exclusive disjunctions in general. As we will see
in Section 7, negative clauses are added to a database to simulate the exclusive disjunctions under PWS.
A clause is said to be positive if its body is empty. A clause is said to be mixed if both its head and body
are non-empty. A database is a finite set of clauses. A database is Horn if it consists of Horn clauses
only, otherwise it is disjunctive or non-Horn. Let i denote the Herbrand base, the set of all ground
atoms for a database. Any subset of # is called a Herbrand interpretation or just an interpretation.

Let DB be a set of clauses and M a Herbrand interpretation of DB. M is said to be a model of DB if
DB is true in 1. M is said to be minimal if no proper subset of M is a model of DB. Let MM(DB) be {M|
M is a minimal models of DB}. DB is said to be consistent if a model exists for DB, otherwise DB is
said to be inconsistent. A clause C is derivable, denoted by DB +C, if every model of DB is a model of
C. A ground clause C = A1V - - - VA, is positive and minimally derivable from DB if (i) C is positive,
(i) DB+ Cand (iii)) DB/ A1 V --- VA1V A1 V -+ -V Ay, forevery 1 < i < n. Some atoms in a
positive and minimally derivable ground clause are true. But given the current state, there is not enough
information to determine which. Let PMGC(DB) denote the set of all positive and minimally derivable

ground clauses of DB.

3 GCWA

For Horn databases, Reiter’s CWA states that a negative ground literal =L is inferred if L is not derivable
from the database [Reit78]. This CWA is logically equivalent to adding a new components CWA(DB) =
{—4] A is a ground atom not derivable from DB} to a database DB, without storing CWA(DB) explicitly.
It is easy to show that Reiter’s CWA does not work well for non-Horn databases. Let DB = {AV B}.
Neither A nor B is implied by DB and hence CWA(DB) = {—A, ~B}. DB U CWA(DB) is inconsistent.

Minker suggested a generalized version of Reiter’s CWA, called the Generalized Closed World
Assumption (GCWA) [Mink82]. He described this assumption by defining a semantic as well as a
syntactic version of GCWA and proved their equivalence. GCWA is based on the idea of minimal
models.

A Semantic Definition of GCWA. Let DB be a consistent database and A a ground atom. —4 is
inferred if A is not in any minimal model of DB.

Under GCWA, minimals models are used to denote possible worlds of a database.
Example 3.1 LetDB = {AVB,BV CVE,DV E,~(A&D)}. What are the possible worlds represented
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by DB under GCWA? The set of minimal models MM(DB) is {{A,E}, {B,D}, {B.,E}}. Under GCWA,

every atom except C is true in some possible world. Hence C is assumed false in DB. O

Minker’s GCWA has a close relationship with the class of positive and minimally derivable ground
clauses. Let H be the Herbrand base and ATOM(PMGC) be the set { A| A is a ground atom in C€
PMGC(DB) }. The syntactic definition of GCWA is i — ATOM(PMGC).

A Syntactic Definition of GCWA. Let DB be a consistent database and A a ground atom. -4 is
inferred if A is in H — ATOM(PMGC).

The following theorem establishes the equivalence of the two versions of GCWA.

Theorem 3.1 Let DB be a consistent database and A a ground atom. A is in H — ATOM(PMGC) iff A

is not in any minimal model of DB.

[Proof]: See [Mink82]. I
Let GCWA(DB) = {—A| A€ H — ATOM(PMGC)}. Under GCWA, a consistent database is aug-
mented with GCWA(DB). The following are some important properties of GCWA.

Theorem 3.2 Let DB be consistent. Then DB U GCWA(DB) is also consistent.
[Proof]: See [Mink82]. 1

Theorem 3.3 Let DB be consistent and K a positive clause. DB K iff DB U GCWA(DB) K.

[Proof]: See [Mink82] and [YH85]. O

The above theorem states that we cannot derive any more positive clauses from DB U GCWA(DB)
than from DB. However, there is some non-positive clauses that can be proven from GCWA(DB) but not
from DB. This is due to the fact that a ground atom A not in any minimal model of DB can be inferred

to be false. So some negative literal can be proven from GCWA(DB) but not from DB.

Theorem 3.4 Let DB be consistent and A a ground atom. Then DB U GCWA(DB) A iff A €
GCWA(DB).

[Proof]: “If" Trivial.
“Only if* Suppose ~A ¢ GCWA(DB). By Theorem 3.1, A is in some minimal model M of DB.
Clearly, M is a model of GCWA(DB). Hence DB U GCWA(DB) /-A. O
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Under GCWA, it is essential to find algorithms to determine if —A is derivable, where A is a ground
atom. Some work has been done on this problem and these methods are based on finding resolutions
for a set of clauses [YH85,HP88]. This problem is likely to be intractable. We show this by proving its
complement is NP-hard, even when the set of clauses in a database is ground and contains no negative

clauses. For a discussion on intractable problems, interested readers please refer to [GI79].

Theorem 3.5 Let DB be consistent and contains only positive and mixed clasues. Let A be a ground

atom. Determining if -A is inferred under GCWA is NP-hard.

[Proof]: By Theorem 3.4, —A is derivable iff A is not in any minimal model of DB. We will prove that
determining if A is in some minimal model of DB is NP-hard.

To prove NP-hardness, we reduce instances of the hitting set problem to our problem. Hitting set
was first demonstrated to be NP-complete in [Karp72].

Let {S1,...,Ss} be a set of non-empty subsets of a finite set S. A hitting set H is a subset of S for
which [HN S;| = 1, Vi . The hitting set problem is to determine if such a set exists.

For each instance of hitting set, it is transformed to a database DB as follows. Let the set of ground
atoms inour DBbe SU {B1, ..., Bs, C, D}, where {B; , ..., By, C, D} and S are disjoint. Let P =
{{E, F} | E and F are distinct members of S;, for some i}. Four sets of clauses are in DB:

(i) For each S;, we have A;1 V - - -V Ay, where S; = {Aq1 , ..., Ay}

(ii) For each S;, and for each A;j € S;, we have B; « Aj;j in our DB.

(iii) For each {Ajq, Ajp} € P, we have D— Aj & Ajp.

(iv)CVD «B1& ---&B,, is in DB.

DB is consistent since the set of ground atoms in DB is a model of DB. We first show some important
properties about the DB.

Fact 1: Let M be a minimal model of DB. If D € M then C ¢ M.

[Proof]: Assume otherwise. Let M be a minimal model that contains both C and D. Let M’ = M—
{C}. We claim M’ is a model of DB. Since C occurs only in (iv) and (iv) contains D, DB is true under
M’. Hence M’ is a model. A contradiction to M is a minimal model of DB. [l

Fact 2: If M is a model of DB, then for all B;, B; € M.

[Proof]: Assume otherwise. Then there is a B; ¢ M. Since M is a model of DB, all clauses in DB
are true under M. But since B; is false and B; « Ayj is true under M, Ai; ¢ M, V. But this implies

A1 V -+ -V Ay is false under M. A contradiction. O
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Fact 3: If M is a model of DB, then for each 1, there is at least a A;j € S;such that A,; € M.

[Proof]: Trivially true because of the clauses in (i). O

Fact 4: Let M be a minimal model of DB containing C. For each S;, there is at most one A;; such
that A;; € M.

[Proof]: Suppose the two distinct ground atoms A, and A, of S; are both in M. Then D « Ap&k
Ajq in (iii) would imply D must be true in M. By Fact 1, this is not possible since M contains C. OJ

We are now ready to show that a hitting set of S exists iff C is in some minimal model of DB.

“If” Let M be a minimal model of DB containing C. We claim M N § is a hitting set. By Facts 3 and
4, our claim follows.

“Only if” If H is a hitting set, we claim M= H U {B1,...,By, C} is a minimal model of DB. For all
clauses in (i), they are true under M since by assumption H is a hitting set and therefore contains exactly
one element from each S;. For all clauses in (ii) and (iv), each of them contains either one B; or C and
hence is true under M. For each clause D— A;,& A, in (iii), H and therefore M, will contain at most
one of A;, and A;g, hence either —A;;, or —A;q is true. Therefore M is a model of DB.

We now prove M is minimal. We cannot remove any element from H or else one of the clauses in
(i) will be falsified. By Fact 2, all B;’s must be in M. If C is deleted from M, then the clause CV D «—
B1& --- & B, in (iv) will be falsified since all B;’s are true under M and D is not in M. Therefore M is

a minimal model of DB and M contains C. [

4 Disjunctive Database Rule

In this section, we study the Disjunctive Database Rule (DDR) introduced by Ross and Topor [RT88].
DDR was proposed to overcome a problem of GCWA described in the Introduction. An equivalent
definition called Weak Generalized Closed World Assumption is presented in [RLMS87]. We first define
the syntactic and fixpoint definitions of DDR. We then show that the problem of determining if a ground
negative literal is derivable under DDR can be solved efficiently if a database contains no negative
clauses, and is NP-hard in general. First, we require the concept of closed set of a database.

Let DB be a database and S a subset of H. Then S is a closed set of DB if, for every element A of S,
and for every ground instance C of a clause in DB such that A is in the head of C, there exists an atom
B in the body of C such that B is in S. It is easy to see that the greatest closed set exists. It is obtained

by the union all the closed sets of DB [RT88]. The greatest closed set of DB is denoted as ges(DB).



Example 4.1 Let DB = {AVB, C—A&B}. By the definition of closed set, A and B cannot be in any

closed set. Consequently, C cannot be in any closed set. Hence the ges(DB) = . O

A Syntactic Definition of the DDR. Let DB be a database and A a ground atom. —A is inferred if
A € ges(DB).
To define the fixpoint definition of DDR, we require a mapping Tpp from Herbrand interpretations

for DB to itself,
Let DB be a database and I a Herbrand interpretation for DB. Then Tpp(l) = { A€H | Cis a ground
instance of a clause in DB, A is in the head of C, and for all B in the body of C, BEI}. We also define

Tpp10=0,Tpp T n+ 1=Tppg(Tpg 1 M) and Tpp Tw =UX,Tpp T n.

Example 4.2 Let DB={AVB, CVDVE—A, F—C&D,—~(C&D)}. ThenTpg 11 = {A,B}. Tpp 1 2 =
{A,B,C,D,E}. Tpp 13 = {A,B,C, D, E, F}. Therefore Tpg t w = {A, B, C, D, E, F}. Notice that,

with and without the negative clause -(C&D), Tpg T w is the same. O

A Fixpoint Definition of the DDR. Let DB be a consistent database and A is a ground atom. —4 is
inferred if A € H— Tpg T w.

Letus denote DDR(DB) = {-~A|A€ H — Tpp 1T w}. Under DDR, a consistent database is augmented
with DDR(DB). DDR has properties very similar to those under GCWA.

Theorem 4.1 The two definitions of DDR are equivalent. That is, gcs(DB) = H — Tpp T w.
[Proof]: See [RT88]. O

Theorem 4.2 Let DB be consistent. Then DB U DDR(DB) is also consistent.

[Proof]: See [RT88]. OJ

Theorem 4.3 Let DB be consistent and K a positive clause. DB VK iff DB U DDR(DB) K.
[Proof]: See [RT88]. I

Lemma 4.4 If M is a model of DB, then M N\ Tpp T w is also a model of DB.

[Proof]: See [RT88]. O



Theorem 4.5 Let DB be consistent. If K = By V---VBy, « A} & ---&A,, is a non-positive clause
such that DB U DDR(DB) K but DB /K, then for some i, ~A; € DDR(DB).

[Proof]: Since By V---VBy, «— A1 & ---&A, is non-positive, n>1 and m>0. As DB t/K, there is a
model M of DB containing every A; but none of Bj. LetNbe MN Tpp T w. By Lemma 4.4, N is also
a model of DB. Since NCTpp T w, N is a model of DB U DDR(DB). By assumption, DB U DDR(DB)
F-K. Thus K is true under N. Since N contains no Bj, there is some A; such that A;¢N. This implies
Ai¢Tpp T w. Thus, -A;€ DDR(DB). O

An important property of DDR that is different from GCWA is that it is syntax-dependent. That is,
given two logically equivalent databases, the set of negative ground atoms inferred using DDR may be

different.

Example 4.3 Let DB, ={AVB,A} and DB, = {A}. DB, and DB, are logically equivalent but —B is not
inferred when DBy is considered under DDR. Intuitively, DBy represents two possible worlds {A} and
{A, B} under DDR. Since B is possibly true, it cannot be assumed false. Conversely, B is not possibly

true in DBy and thus is assumed false under DDR. [

A fundamental question is to determine if a negative ground literal is inferred under a closed world
assumption. The following results show that under DDR, the problem can be solved efficiently if a

database contains no negative clauses, but is NP-hard in the general case.

Theorem 4.6 Let DB be consistent and A a ground atom. DB U DDR(DB) A iff DB+—-A orA € H

—Tpp Tw.

[Proof]: “If" Trivial.
“Only if" Follows from Theorem 4.5. OO

Lemma 4.7 Let DB be consistent and contains no negative clauses. Then DB b—A, forall A€ H.
[Proof]: If DB contains no negative clauses, then  is a model of DB. O

Theorem 4.8 Let DB be consistent and contains no negative clauses. Then determining if —A is deriv-

able under DDR can be done in time polynomial to the size of DB.

[Proof]: By Theorem 4.6 and Lemma 4.7, DB U DDR(DB) +—A iff A € H — Tpg T w. Tpp T wcan

clearly be computed efficiently. Hence the theorem follows. [
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Theorem 4.9 Let DB be a consistent database and A a ground atom. Then determining if —A is deriv-

able under DDR is NP-hard.

[Proof]: To prove NP-hardness, we reduce instances of the hitting set problem to our problem.

Let {S1,...,S,} be aset of non-empty subsets of a finite set S. For each instance of hitting set, it is
transformed to a database DB as follows. Let the set of ground atoms in DB be S U {B, C}, where {B,
C} and S are disjoint. Let P = {{E, F} | E and F are distinct members of S;, for some i}. Three sets of
clauses are in DB:

(i) We have the clause B VC.

(ii) For each S;, we have A;; V - - -V Ajy « B, where S; = {Aj1, ..., A}

(iii) For each {Aj, Ajp} € P, we have =(A;,&A;p).

DB is consistent since DB is true under the interpretation {C}.

We first observe that Tpp T w is the set of all ground atoms in our DB. By Theorem 4.6, DB U
DDR(DB) B iff DB --B or BE H — Tpp T w. Since B¢ H — Tpg 1 w, DB U DDR(DB) +--B iff
DB F-—B. We claim that DB I-—B iff no hitting set exists for {S1 ,...,S,}.

“If" If DB I/—B, then there is a model M of DB such that BEM. Since BEM and clauses in (ii) are
true under M, M N S;| > 1, Vi. If M NS;| > 1, then clauses in (iii) are not satisfiable, Vi. Hence a
hitting set exists for {Sy ,..., S, }.

“Only if" If a hitting set H exists for {Si , ..., Sy}, then HU {B} is a model of DB. Hence DB (/—B.
a

5 A Possible World Semantics PWS

DDR was proposed to overcome some problem of GCWA. However, as shown in Example 4.2 and the
example below, negative clauses are not taken into consideration under DDR. Consequently, DDR may

not correctly infer information in a non-Horn database.

Example 5.1 Let DB = {D, AVB—D, C—A&B, —~(A&B)}. Under DDR, Tpp T w = {A,B,C,D }.
That is, under DDR, the set of negative ground literals added to DB is independent of the negative clause
(A&B). Intuitively, the negative information added to the state with ~(A&B) should be different from

the state without it. I
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In this section, we propose a closed world assumption called PWS which overcomes the problems
of GCWA and DDR. In Section 5.1, we give a possible world definition and a fixpoint definition and
show their equivalence. In Section 5.2, we prove that Sakama’s possible model semantics [Saka89] and

PWS are equivalent. Finally we study properties of PWS in Section 5.3.
5.1 A Possible World Definition and a Fixpoint Definition of PWS

In the remainder of this paper, we are interested in the semantics of a set of clauses. To simplify the
discussion, we assume our databases consist of ground clauses only. That is, we assume general rules
are instantiated with constants in a database. Let DB = PC U MC U NC, where PC, MC and NC are
sets of positive ground clauses, mixed ground clauses and negative ground clauses, respectively. To
understand what is the correct closed world semantics, it is essential to know what possible worlds are

represented by a set of clauses.

Example 5.2 Let DB = {AVB, BVCVE, DVE, ~(A&D)}. What are the possible worlds represented by
DB? We first observe that a possible world is a set of assumed true atoms. Moreover, the set forms a
model of DB. {A,C,E} is a possible world, so is {B, D}. However, {A, C, D} is not a possible world
since ~(A&D) is not satisfying under the interpretation {A, C, D}. So a possible world necessarily be

a model restricted to atoms in the database. [

Example 5.3 Let DB = {D, AVB«D, C—A&B, ~(A&B)}. What are the possible worlds represented
by DB? The atom D should be in any possible world. If D is in a possible world, so is A or B (but not
both). Since A and B cannot be true in any possible world, C should be in any possible world. Hence,

the set of possible worlds is {{A, D},{B,D}}. O

To summarize, a possible world is a set of positive and assumed true facts and its logical conse-
quences subject to restrictions imposed by the negative clauses in a database. We now give a formal
definition of possible worlds for a DB that captures the essence that it must be a model and it contains
exactly those atoms that are logical consequences of some assumed true facts.

LetC =B1V---VBp «—A1& --- & A, be a mixed clause. Thenrhs(C) = {A1,...,A,} and lhs(C)
={B1,...,Bn}. Let subset(lhs(C)) denote a non-empty subset of lhs(C).

Given a DB = PC U MC U NC, a possible consequence (pc) of a set of ground atoms G with re-
spect to DB is a finite (possibly empty) sequence s;:rhs(Cy) — subset(lhs(C1)) , ..., Sn:rhs(Cy) —
subset(lhs(Cy)) satisfying the following conditions:
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(i) C; € MC, V.

(i) C; # Cj,if i # J.

(iii) rhs(C;) C (GU subset(lhs(C1)) U - - - U subset(lhs(C;_1))), forall 1 < i< n

Apc<sy,...,sy> of G covering X if (G U subset(lhs(C1)) U - - - U subset(lhs(C,))) = X, for some
pc of G with respect to DB. Let ATOM(S) be {A| A is a ground atom in some clause in S}. M is a possible
world of DB if there is a subset G of ATOM(PC) and there isapc § = <51 , ..., s> of G such that
(i) € covering M and (ii) M is a model of DB. It is possible that more than one pc give rise to the same
possible world.

In other words, any subset of ATOM(PC) that satisfies the negative clauses could give rise to a
possible world. Those atoms in a possible world that are not in ATOM(PC) must be proven to be possible
consequences before they are considered to be true in the possible world. Referring to the Example 5.3,
C is an atom not in ATOM(PC) and C cannot be proven to be true given the possible world {D}. Hence

C is not part of the possible world.

Example 5.4 Let DB={AVB, CVDVE—A, F—~C&DY}. Then the following are some possible worlds of
DB: {B}, {A,C}, {A.D}, {A.E}, {A,C.D.,F}, {A,C.E}, {AD.E}, {A,C.D,EF}. {B} is a possible world
since the empty pc gives rise to {B} and {B} is a model of DB. {A,C,D,F} is a possible world since
{A}—{C,D} and {C,D}— {F} is apc of {A} and the set is a model of DB. Notice that this set is not a
minimal model of DB. {A,C.D,E,F} is a possible world since a pc of {A} deriving this set is {A}—{C,
D, E} and {C, D} —{F}. However, {B X}, where X is any symbol other than B is not a possible world.
For instance, {A, B} is not a possible world since it is not a model for CYDVE—A. {A,C,D} is not a
possible world since {A,C,D} is not a model of DB. {A,D,E,F} is not a possible world since F cannot

be generated without C. O

Example 5.5 Let DB = {AVF, B VC+A, D VE—A&B, —~(A&D)}. What are the possible worlds rep-
resented by DB? If A is in a possible world, so is B or C (or both). Since D cannot be in any possible
world, E must be true when B and C are true. So {A, B, C, E} is a possible world. Clearly {F} is also

a possible world. O

A ground atom A is true if A is in all possible worlds. A is said to be assumed-false if A is not in

any possible world. A is said to be possibly-true if A is in some but not all possible worlds of DB.
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Let PW(DB) = {W | W is a possible world of DB}. True(DB) ={ A| A is a ground atom in every
possible world of DB} and Possibly_true(DB) = {A| A is a ground atom and A is possibly-true in DB}.

Theorem 5.1 UPW(DB) = True(DB) U Possibly_true(DB).

[Proof]: Follows directly from the definitions of PW(DB), True(DB) and Possibly_true(DB). O

A Possible World Definition of the PWS. Let DB be a consistent database and A a ground atom.
—A is inferred if A € H — UPW(DB).

So under PWS, a database is augmented with negative ground literals whose positive counterparts
are not possibly true.

To define the fixpoint semantics, we need the following. A kernel is any subset S of ATOM(PC)
which is a model of PC. Let S be a set of clauses. S is said to be r-closed, if ~(A1& ---&Ap)ES
whenever =By, ...,—B,and B V---VB,«— A1 & --- &A,, are in S. Given S, we could always generate
its r-closed set. The r-closed set of S is denoted as S*. We should point out that all clauses in S* are
derivable from S. Let DNC = {—~W| -W is a negative clause in (MC U NC)*}.

LetC=B1V:--VBy— A1 & --- &A,, be a non-negative clause. The Horn transformation of C is
the set of Horn clauses {B1j«— A & ---&Ap, ..., By— A1 & --- &Ap}. Suppose P is a set of clauses.
The Horn transformation of P, denoted Horn(P), is the set of Horn transformations of each clause in P.
A subset S of Horn(PC U MC) is a maximal Horn representation of DB if (i)S contains a kernel of DB,
(ii) S is consistent with DNC, (iii) SU {C} is inconsistent with DNC, where C € Horn(MC) — S.

Since DB is finite, there is a finite set of maximal Horn representations. Let it be {MHR, , . . .,
MHR,,}.

A Fixpoint Definition of the PWS. Let DB be a consistent database and A a ground atom. —A
is inferred if A € H — U2 Typr; T w, where {MHR, ,. . . , MHR,,} is the set of maximal Horn

representations of DB.
Theorem 5.2 The two definitions of PWS are equivalent. That is, UPW(DB) = U Tayrprg, T w.

[Proof]: UPW(DB) CUL Ty, T w. Let W be a possible world. W N ATOM(PC) gives rise to W via
apc x. Without loss of generality, we assume each subsef(lhs(C;)) in the sequence is a single attribute.
Clearly, W N ATOM(PC) and the clauses in  are a subset of some maximal Horn representation MHR,;.

Thus Wis a subset of Tyrpp, T w.
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UPW(DB) DU Targ; T w. Clearly there is a possible consequence of the kernel of MHR; cov-
ering Tyrgp;, T w. What remains to be shown is that Ty gp, T w is a model of DB. Since the maximal
Horn representation contains a kernel, Tas g, T w satisfies the positive clauses trivially. Similarly since
all negative clauses are included in DNC and the representation is consistent with DNC, all negative
clauses in DB are satisfiable under Tyrpp, T w. If Tasgg, T w does not satisfy some mixed clause
B1V---VB,— A1 & - -- & A, then all A; are elements of TyuR; Tw, and all —B; are in DNC. But this
implies that (A1 & - - - &A,,) EDNC. This contradicts that T)s g R; T w satisfies DNC. Thus Tyrgp, Tw

is a model and hence a possible world of DB. O
5.2 Sakama’s Possible Model Semantics and PWS are equivalent

Independently, Sakama proposed a possible model semantics for non-Horn databases [Saka89]. It turns
out that Sakama’s closed world semantics is equivalent to PWS. First we define Sakama’s possible model
semantics.

LetC:A; V ---V Ay « By & -- - &B,, be a disjunctive clause. Recall that rhs(C) = {B1,...,
B,} and Ihs(C) = {A1, ..., An}. A split clause of C is a non-empty set of Horn clauses { A— B;
& ---&By | A€ S where S is a non-empty subset of { A1, . . . , Ay}}. A split database of DB is a
database obtained from DB by replacing each disjunctive clause C€ DB by a split clause of C. A model
M of DB is a possible model if M is a minimal model of a split database of DB.

Sakama’s Possible Model Semantics. Let DB be a consistent database and A a ground atom. —A
is inferred if A is not in any possible model of DB.

We next show that Sakama’s semantics is equivalent to PWS by proving possible models are equiv-

alent to possible worlds.

Theorem 5.3 Let DB be a consistent database. Then W is a possible model of DB iff W is a possible
world of DB.

[Proof]: “If" Let W be a possible world of DB. By definition, W is a model of DB. Next we show that
W is a minimal model of a split database. The split database is constructed as follows. Since W is a
possible world, W N ATOM(PC) gives rise to W via a pc x. Without loss of generality, we assume for
each Ce MC not in x, rhs(C) is not contained in W. For each clause C of PC, ATOM(C) N W is non-
empty. Replace each such C by the set of atomsATOM(C) N W. For each {41 , ..., Aim} — {Bi1,

... s Bin} in the pc, replace the corresponding clause C; by Horn clauses in {Bij —Ai1t & - & Aim |
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Bij €{Bi1,..., Bin}}. For each mixed clause C not in the pc, replace it by a split clause of C. Let DB’
be the resulting DB from the above transformation. Then DB’ is a split database of DB. Itis easy to see
that W is a minimal model of this split database.

“Only if" Let M be the minimal model of a split database DB’ of DB. Let G be the set of ground
atoms in DB’. Let x be the sequence of mixed clauses of DB’ involved in computing the minimal model.

Then x is a pc of G covering M. Since M is a model of DB, M is a possible world of DB. O

5.3 Properties of the PWS

In this subsection, we study the possible world semantics described above. We first point out that, like
DDR, PWS is syntax-dependent. We should also point out that DDR and PWS coincide for databases
containing no negative clauses. Next, we show a close relationship between models and possible worlds.
By definition, a possible world is a model. The next theorem shows that a model contains a possible

world. This result follows directly from the correctness of Algorithm 1.

Algorithm 1: Given a model M of DB, find a subset of M which is a possible world of DB.
Input: DB =PC UMC UNC and M.

Output: P C M and is a possible world of DB.
Method.:

(1) Leti=1,P =M NATOM(PC).

(2) While (there is a CeMC such that rhs(C) C P) do
3) LetC; be C.

4) P =P U (Ihs(C;) N M).

) MC =MC -{C;}.

(6) i=i+1.

(7) end.

(8) Output P.

We observe the following.

Fact 1: Suppose the while loop is executed » times, n> 0. Then rhs(Cy) — (lhs(Ci)N M) , ...,
rhs(Cyn) — (Ihs(Cyp )N M) is a pc of MNATOM(PC) covering P.

[Proof]: This follows from the condition in statement (2) and the fact that (ths(C;)N M #0, Vi. O

Fact 2 : The final P output is a possible world of DB.
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[Proofl: To show this, we have to show that P is a model of DB, Since P contains MNATOM(PC),
P is a model of PC. Suppose the while loop has been executed » > 0 times and let MC be partitioned in
{C1,...,Cp}and {Dy,..., D}, where C;’s are those mixed clauses that are processed and removed
from the original MC in the while loop. By statements (2) and (4) and the fact that M is a model, P
satisfies C;’s, Vi. For each Dj, rhs(D;) is not a subset of P. This means D is satisfying with respect to
P. Therefore P is a model of MC. NC is satisfying with respect to M and since P is a subset of M, NC is

satisfying with respect to P. Hence P is a model of DB. Together with Fact 1, P is a possible world of

DB. O

Theorem 5.4 Let DB be consistent and M a model of DB. Then there is a possible world P such that P
cM.

[Proof]: Follows from Fact 2 above. [

Corollary 5.5 If M is a minimal model, then M is a possible world of DB.

[Proof]: Follows from the definition of minimal model and from Theorem 5.4. O

Theorem 5.6 Let DB be consistent and A a ground atom. DB A iff A is in every possible world of DB.

[Proof]: “If” If A is not derivable, then A is not in some model M of DB. By Theorem 5.4, there is a
possible world P which is a subset of M and P does not contain A. A contradiction.
“Only if” If A is derivable, then A is true in every model. Hence A is true in every possible world

of DB. I

Theorem 5.7 Let DB be consistent and A a ground atom. DB \-—A implies A is not in any possible

world of DB.

[Proof]: Follows trivially from the fact that every possible world is a model of DB. O
The following lemma characterizes when an atom in some positive clause is not in any possible

world.

Lemma 5.8 Let DB be consistent and A a ground atom in ATOM(PC). A is a ground atom not in any

possible world of DB iff A is derivable from DB.
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[Proof]: “If” Follows from Theorem 5.7.
“Only if” Prove by contradiction. If —A is not derivable from DB, then there is some model M that

contains A. Since A is an element in ATOM(PC), input M to Algorithm 1 will produce a possible world

that contains A. A contradiction. [l

UPW(DB) denotes the set of true and possibly-true atomic facts in our database. Under PWS, a

consistent database is augmented with PWS(DB) = {—A | A is an atom in H-UPW(DB)}.
Theorem 5.9 Let DB be a consistent database. DB U PWS(DB) is consistent.

[Proof]: Since DB is consistent, there is a model M of DB. By Theorem 5.4, a subset M’ of M is a
possible world of DB. Hence every atom A in H — UPW(DB) is not in M. Therefore PWS(DB) = {4
| Ais an atom in H — UPW(DB)} is true under M’. Hence M’ is a model of DB U PWS(DB). O

Lemma 5.10 A positive clause K is true in every model of DB iff K is true in every minimal model of

DB.
[Proof]: See [YH85]. O

Lemma 5.11 Let DB be consistent. M is a minimal model of DB iff M is a minimal model of DB U
PWS(DB).

[Proof]: “Only if” Let M be a minimal model of DB. Let ~A€PWS(DB). By Corollary 5.5, any minimal
model of DB is a possible world. Hence A is not in any minimal model of DB. Hence —4 is true under
M and therefore M is a model of PWS(DB). Since DB is a subset of DB U PWS(DB), M is a minimal
model of DB U PWS(DB).

“If” Suppose M is a minimal model of DB U PWS(DB) but not a minimal model of DB. If M is
not a minimal model of DB, then there is a proper subset M’ of M which is a minimal model of DB.

Using an arguement similar to the one in “Only if” part, M’ is a minimal model of DB U PWS(DB). A

contradiction. O

Theorem 5.12 Let DB be a consistent database and K a positive clause. DB U PWS(DB) K if DB
K.

[Proof]: By Lemma 5.11, MM(DB) = MM(DB U PWS(DB)). By Lemma 5.10, the theorem follows. [
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Theorem 5,13 Let DB be a consistent database and A a ground atom. DB U PWS(DB) -—A iffA € H

— UPW(DB).

[Proof]: “If" Trivial.

“Only if" Assume DB UPWS(DB)F—-A.If A eUPW(DB), then A€ W, for some possible world W. By
definition of possible worlds and PWS(DB), W is a model of DB U PWS(DB). A contradiction. Hence
A ¢UPW(DB). L1

The following result shows that under PWS, the problem of determining if a negative ground literal
is inferred can be solved efficiently if a database contains no negative clauses and is co-NP-complete in

general.

Theorem 5.14 Let DB be consistent and contains no negative clauses. Let A be a ground atom. The

problem of determining if the —A is inferred under PWS can be solved efficiently.

[Proof]: By Theorem 5.13, —A is inferred under PWS iff A is not in any possible world. If DB contains
no negative clauses, then Horn(DB) is the only maximal Horn representation and hence UPW(DB) can

be computed efficiently. O

Theorem 5.15 Let DB be consistent and A be a ground atom. The problem of determining if -A is

inferred under PWS is co-NP-complete.

[Proof]: By Theorem 5.13, —A is inferred iff A is not in any possible world. We will show that de-
termining if A is in some possible world is an NP-complete problem. To show the problem is in NP,
nondeterministically select a subset S of ATOM(PC) and a pc ¢ of S covering X, for some subset X
containing A. Verify that £ is a valid pc of S. If ¢ is valid, then test if X is a model of DB. All these
verifications can be done in polynomial time.

To prove NP-hardness, we reduce instances of the hitting set problem to our problem. For each

instance of hitting set, a database DB is constructed as follows. Let {S1,...,8,} be aset of non-empty
subsets of a finite set S. Let the set of ground atoms in our DB be SU {B1,....B5,C1,...,Cy, D},
where {B1 ,...,By, C1,...,Cp, D} and S are disjoint. Let P= {{E, F} | E and F are distinct members

of S;, for some i}. Four sets of clauses are in our DB:
(i) For each §;, we have a clause A;1 V - - - V A,V B;, where S; = {Ai1,.... Ay},

(ii) For each S; and for each Aij € S;, we have C; «A;; in our DB.
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(iii) For each {Aj¢, A;p} € P, we have —~(4;,&Ajp).

Giv)D «Cy & ---&C, is in DB,

We first show that our DB is consistent. Let an interpretation/ be {B; ,...,B,,C1 ,...,Cy, D}.
Since every clause in (i), (ii) and (iv) of our DB has at least one ground atom in the interpretation, every
clause is true under /. Clauese in (iii) is true under / trivially. Hence DB is consistent.

We now ready to show that a hitting set of S exists iff D is in some possible world Q of DB.

“If” If D is in some possible world Q of DB then there is a subset Tof SU {By , ..., B, } such that
apcof T covering Q. Since D is in Q and there is a unique clause in our DB containing D, namely the
clause in (iv), {C1 , ..., Co}—{D} is an element in the pc. Since each C; is only derived from clauses
in (ii) and nowhere else, this implies Q contains at least one element from each S;. If there is some S;
such that Q contains more than one element, say Q contains both A;; and A;» from S;, by clauses in (iii),
—(A;1& A;2) is a clause in our DB and cannot be satisfied by Q. Therefore Q cannot be a model of DB.
Hence we can conclude that QNS is a hitting set of S.

“Only if” If H is a hitting set of S, then let HN S;={A;}, Vi. Then {41} —{ C1},..., {4 }—={Cun},
{C1,...,Cp}— {D}is apc of H.It can be verified trivially that HU {4; ,...,44,C1, ..., Cy, D} is

a model of DB and therefore is a possible world of DB. This completes our proof. [

6 GCWA, DDR and PWS

In this section, we investigate the relationships among GCWA, DDR and PWS.

Theorem 6.1 Let DB be consistent and K a positive clause. DB K iff DBU GCWA(DB) K iff DBU
DDR(DB) K iff DBU PWS(DB) K.

[Proof]: Follows from Theorems 3.3, 4.3 and 5.12. O
We have shown that under all three inference rules, the sets of positive clauses implied by a consistent
database are the same. However, this is not true for non-positive clauses.

Let NON-POSx denote the set { W| W is a non-positive clause that is derivable under X}.
Theorem 6.2 NON-POSppr C NON-POSpws C NON-POScow 4.

[Proof]: Since UMM(DB) C UPW(DB) C Tpp T w, DB U DDR(DB) CDB U PWS(DB) CDB U
GCWA(DB). By the monotonicity property of first-order theory, NON-POSppg C NON-POSpws C
NON-POSqow 4 follows. O
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In general, the inclusions are proper.
7 Inclusive and Exclusive Interpretations of Disjunctions under PWS

In real-life applications, disjunctions of atoms in a database are interpreted exclusively as well as in-
clusively. DDR always interprets the head of a disjunctive clause inclusively while GCWA is rigid in
interpreting the head of a disjunctive clause, as was illustrated in the Introduction. PWS has the advan-
tage over GCWA and DDR in that PWS allows both inclusive as well as exclusive interpretations of
disjunctive clauses. This is accomplished by augmenting databases with appropriate negative clauses.

We first show that GCWA does not always interpret disjunctions exclusively, as was claimed in

[RT88,Sakag9].

Example 7.1 Let DB = {AVB, AVC, BVD, E—A&B}. MM(DB) ={{A,B.E},{A,D}.{B.C}}. If we

interpret each disjunctions of atoms exclusively, we do not expect A and B are simultaneously true in a

minimal model. [1

LetC:A;V---VAp «— B & --- &B,, be adisjunctive clause. If the head is interpreted exclusively,
then exactly one A; is true if the body of C is true in an interpretation. For each such disjunctive clause
C in a database DB that is interpreted exclusively, DB is augmented with a set of negative clauses S¢,
where S¢ = { ~(A;&A;) | A; and A; are distinct atoms in the head of the clause C}. Let DB be a database
and let AUG(DB) be the database obtained by augmenting negative clauses for each disjunctive clause
that is interpreted exclusively as described in above. The head of a clause is interpreted inclusively
if it is not interpreted exclusively. Notice that AUG(DB) may not be consistent. Suppose AUG(DB)

is consistent. Then an intepretation / is an extended possible world of DB if I is a possible world of

AUG(DB).

Example 7.2 Let DB = {D, AVB«—D, C—A&B}. Suppose the user specifies that the clause AVB«—D
is interpreted exclusively. What this means is that if D is true then either A is true or B is true, but not

both. Then the augmented database AUG(DB) is {D, AVB—D, C—A&B, ~(A&B)}. O

Next we identify a condition under which GCWA interprets heads of disjunctive clauses exclusively.
An interpretation W of a DB is said to satisfy the exclusive interpretation condition if for every clause

Cin DB, if rhs(C) CW, then | Ihs(C) N W| = 1.
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Theorem 7.1 Let AUG(DB) be consistent and assume every disjunctive clause is interpreted exclu-
sively, then the following are equivalent.

(i) W is an extended possible world of DB.

(ii) W is a minimal model of AUG(DB).

(iii) W is @ minimal model of DB and W satisfies the exclusive interpretation condition.

[Proof]: By definition, W is an extended possible world of DB iff W is a possible world of AUG(DB).

(i) = @ii). If W is a possible world of AUG(DB), then W is a model of AUG(DB). By Algorithm 1
in Section 5.3, there is a pc s1:rhs(C1) — subset(lhs(C1)) , ..., spirhs(Cy) — subset(lhs(C,)) of WN
ATOM(PC) covering W. Because every disjunctive clause is interpreted exclusively, |W N C| = 1, for
each CePC. Also for each clause C; in the pc, |W N subset(lhs(C;)) | = 1. This implies that W is a
minimal model of AUG(DB).

(ii) => (iii) W is a minimal model of AUG(DB) implies W is a model of DB. If W is not a minimal
model of DB, then it can be easily shown that W is not a minimal model of AUG(DB). W satisfies the
exclusive interpretation condition because of the negative clauses in AUG(DB) — DB.

(iii) = (i) Let W be a minimal model of DB satisfying the exclusive interpretation condition. By
Corollary 5.5, W is a possible world of DB. Since W satisfies the exclusive interpretation condition, W

satisfies all negative clauses in AUG(DB) - DB. Hence W is a possible world of AUG(DB). O

Theorem 7.2 Let AUG(DB) be consistent. If every disjunctive clause is interpreted inclusively, then W

is an extended possible world of DB iff W is a possible world of DB.

[Proof]: Since every disjunctive clause is interpreted inclusively, the augmented database AUG(DB) is

the same as DB. Then the theorem follows trivially from the definition of extended possible world. O

8 Conclusions

GCWA and DDR are two popular inference rules for inferring negative information in non-Horn data-
bases. A problem with GCWA (in fact, for all closed world assumptions based on the minimal model
semantics) is that inclusive disjunctions of atoms cannot always be represented. DDR tried to overcome
this problem by allowing inclusive interpretation for the head of a clause. However, we argued on the
semantics ground that DDR may not correctly infer negative information represented by a non-Horn

database. A closed world semantics PWS was proposed to overcome problems in both GCWA and
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DDR. We also showed how PWS is extended to allow both exclusive as well as inclusive interpretations
of disjunctions of atoms.

A related fundamental question is how to answer queries under these assumptions efficiently. Work
has been done on this problem [HP88,GM86,YH85]. We studied GCWA, DDR and PWS and showed
that, without negative clauses, the problem of determining if a negative ground literal is inferred under
DDR and PWS can be solved efficiently, but is NP-hard for GCWA. However the problem becomes
NP-hard in general for DDR and PWS.

Throughout this discussion, we assume no negative literal is allowed in the body of a clause. How-
ever, our closed world semantics can be extended easily to stratified disjunctive databases in the same

way as shown in [Saka89].
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