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ABSTRACT

Finite difference discretizations of non-aqueous phase liquid (NAPL)
groundwater contamination problems ensure that the discrete flux direc-
tion is always in the physical direction. This is not always the case for
finite element discretizations. If a finite volume approach is used, the
above condition is shown to be equivalent to requiring a Delauney tri-
angulation of a two dimensional region (assuming the absolute permea-
bility tensor is constant). A slightly generalized approach can be used
for hetrogeneous regions. Use of this type of triangulation is demon-

strated for various three phase contamination problems in two dimen-

sions.



1. Introduction

Contamination of groundwater due to non-aqueous phase liquids (NAPL) is a
problem of growing concern. Liquids such as PCB’s, TCE, dioxins and various
petroleum products are known to be leaking from many toxic waste sites [1-10]. It is of
interest to track the movement of contaminant in both the saturated and unsaturated
zones, so a full three phase solution is required [1,3,4,10]. In many cases, the NAPL
solubility in the air phase is small, so that air phase transport can be neglected [3].
With this assumption, the number of equations can be reduced by means of the passive
air phase approximation (3,11]. This approximation has been shown to have acceptable
accuracy in many practical situations due to the low air pressures involved in near sur-

face flow [11].

Both finite difference [1,3,4,5,9] and finite element [2,7,10] methods have been
used to solve this problem. Due to the non-linear hyperbolic nature of the equations,
some form of upstream weighting must be used. In the finite difference case, standard
upstream techniques can be employed [1,3,4,5,9]. For finite element discretizations,

upstream weighted test functions have been devised [2,10,12].

Implicit finite difference techniques produce stable, monotone solutions for com-
plex counter-current flow situations [13,14]. In particular, the discrete equations
ensure that saturations are in the physical range (positive and less than one). In the
single phase limit, the finite difference pressure equation becomes an A-matrix. This
implies that non-physical local maxima and minima in the pressure cannot occur. In
the multi-phase case, this corresponds to requiring “‘positive transmissibilities’”, or posi-
tive flux linkages [15,16]. This means that the direction of the discrete flux always
corresponds to the physical direction. This requirement is common in other application

areas, such as semi-conductor device modelling [17].

However, finite difference methods have the well known disadvantage of being
inflexible when applied to problems with complex geometries. Of course, finite element

methods are well suited for situations with non-rectangular geometries.

Unfortunately, upstream weighted finite element discretizations [10,12] will not, in
general, yield on M-matrix pressure equation in the single phase limit. This implies (in
the multi-phase case) that the discrete flux direction will not always correspond to the
physical direction. In addition, it is not clear that the upstream weighted test func-

tions [10,12] ensure that the saturations remain positive.



The objective of this paper is to develop a discretization method for NAPL con-
tamination problems which combines the best features of both techniques. In the fol-
lowing, we will refer to this discretization technique as a finite volume approach. Simi-
lar ideas have been suggested by Dalen [18] in the context of reservoir simulation. Fin-
ite volume type methods have also been suggested by Potempa [19,20] and Rozen [21],
but no attempt was made to ensure that the single phase pressure equation produced
an M-matrix. In fact, the basis functions used in references [19-21] rarely produce
M-matrices in practical problems. Another possible approach for unstructured grids is
based on the integrated finite difference method [22], but this requires that the nodes
have a specific geometric placement. Finite volume methods have been used in
Navier-Stokes problems and are related to the box method in semi-conductor device
modelling [17,23].

In this article, we will develop discrete equations which will always produce
saturations in the physical range, regardless of timestep size or mesh size. For a two
dimensional problem in a convex domain with a constant permeability tensor, it is pos-
sible to use a simple algorithm which will produce a triangulation such that all interior
(non-boundary) transmissibilities are positive. No movement or addition of nodes is
required. This is possible because of the equivalence of the conditions for positive
internal transmissibilities and the definition of a Delauney triangulation [24-26]. Com-
putational results indicate that a slightly generalized algorithm, when applied to non-
convex grids with widely varying permeabilities, produces only a small number of nega-

tive transmissibilities.

Several example runs are presented, comparing results for discretizations having
all positive transmissibilities with results for discretizations having a small number of
negative transmissibilities. The tests indicate that macroscopic computed parameters

are relatively unaffected by a small number of negative transmissibilities.

In addition, some of the numerical difficulties associated with simulating the
movement of dense NAPL contaminants in a hetrogeneous medium will also be
described.

2. Formulation

Three phase flow in a porous medium generally requires solution of conservation
equations for water (w), air (a) and NAPL (n). However, in keeping with previous
work [1,3,4,5,9,10] we will assume that the air phase pressure is constant. Conse-

quently, the liquid saturation can be obtained from the air-NAPL capillary pressure
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relation, and the air conservation equation can be eliminated.

The resulting equations are:

Water conservation:
0

37 (#Pw50) = 0o+ v [Kpy Xy (V Py —p w9 v D)
NAPL conservation:

0
Wwpn Sn)=q,n +V[K,0n >‘n (an —Pn gVD)]

where:
Sy =saturation of phase £ =n,w
¢ = porosity
Moo o= K
K,, = relative permeability of phase ¢
e = viscosity of phase ¢
K = absolute permeability tensor
D ==depth
g = gravitational acceleration
P, = pressure of phase £
Pe = density of phase ¢
q's = source/sink term for phase £

In addition to the conservation equations, there are the additional equations:
Sy, +5,+5,=1
Py=P,+0a Py, (S
{1 =0} [Pray (Sa)=Penwy (S =1)]
Py, =Py +aPy, (S
+{l—a}P,,, (Sp=1)

where:

a=min(1,S, /S;)



and Pegns Pepws Pegw 2re experimentally determined capillary pressure curves [1]. Note
that equations (4-6) have been modified in comparison to the usual capillary pressure
relations in reservoir simulation [27]. This is because the usual relations (a=1) do not
produce the correct limit as S, goes to zero [3,10]. The usual relations implicity
assume the existence of a continuous non-aqueous phase. This assumption is clearly
invalid in groundwater contamination problems since S, is usually zero initially. If S:
in equation (6) is equal to the critical oil saturation, then equations (4-6) are correct in

both limits of vanishing S, , and for a continuous NAPL phase.

Note that since P, (air pressure) is assumed constant, then equation (4) can be

solved for §,, so that:

Sa=(1—sn—sw) = f(Pn) (7)

which differs from the usual reservoir simulation case. The three phase relative per-
meability for NAPL (K,,) is given by Stone’s model [27].

3. Discretization

To avoid obscuring the basic ideas, we will first discretize the model equation:

22—V KANS)V P ©)

which can be regarded as prototypical of equation (1-2). Let N; be the usual C° finite

element polynomial basis functions [28] where:
N;=1 at node 7 (9)
=0 at all other nodes

37 N; =1 everywhere in the domain

?

We have not, as yet, specified the element geometry, or the type of basis function.

Let:
P=¥ PN, (10)
1

Using a lumped mass approach for the time derivative term of equation (8), and a

Galerkin approximation for the divergence term gives:
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v

=—[ K\(S)vP-vN;]dv

where v is the volume of the region of interest, superscript IV is the time level, and
At is the time increment. We will leave as unspecified the time level of evaluation of
the right hand side of equation (11) for the time being. Anticipating the use of some
form of upstream weighting for X(S), the integral in the right hand side of equation

(11) is approximated by:

—[(KvP-TN;)N(S) dv (12)
~-\(S*[KvP vN; dv

where S~ is some as yet unspecified point in the support of N;. The above approxi-
mation avoids costly numerical integration during construction of the Jacobian, and is

sometimes called the influence coefficent technique [29,30].

It follows from equation (9) that:
—[KyP-yN; dv (13)
v
= Z Yij (P]'—Pi)
J€n;
where:

’7i]'= "f KVNJVAfz dv (14)
v

Here 7, is the set of neighbour nodes of node 7. Letting V; be the volume associated

with node 7:

Vi=[ N; dv (15)
v

then an upstream weighted discretization of equation (8) can be defined by:

S{N+1—S,!V wos
7| Vi= 2 AN PR (16)
t jen;



where:
)\,-“]ps=>\j if’y,-]- (Pj —-P,-) >0 (17)
=>‘i if inj(Pj'—Pi) <0

Since -;; (equation (14)) is symmetric, then equation (16) is mass conservative.

Using the same approach, equations (1-2) can be discretized in a similar manner:

Water equation:

-Z- (804 S )T = (6P Su)N] (18)

N M _M
—quI‘I'Z’YU(X pw)zu]s w,4 §
jen;

where:
djw A7 (Prjzv;-l_PN-*-l) (P’cnw,j—P,cnw,i)M
—Puwij+% g(D'—Di)
P =P, —P, (see equation (5))

NAPL equation:

[(¢Pn N —(80, 5N (19)
=¥y ,},UO\M JV[)iqus i
jen;
where:
(8 A7 (PNH_PNH) —Pnij+k g(Dj"Dz‘)
and

qe=q"t Vi (20)
Nol=Xy (PR, S31)
MI=X (S

Peij+n=(Pe i tPei)/2
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When M =N+1 in equations (18) and (19), a fully implicit time discretization is used,
while if M =N, an IMPES types method is defined. Allowing M to vary from node to
node defines an adaptive implicit scheme [14,31], which will be used in the following.
The non-linear algebraic equations (18, 19) are solved using full Newton iteration. If

P, ;, S,;) are the primary variables for each node (i.e. those variables which are
n,i n,i

regarded as independent when constructing the Jacobian), and if
dX,
ds,

(S, =0)=0 (21)

then there will be no timestep restriction for an IMPES discretization in those regions
where S, =0. This is because if equation (21) holds, then when S, =0, a Newton
iterative procedure for solving equations (18-19) is equivalent to Newton iterative solu-
tion of a discrete form of Richards equation [32] for unsaturated flow. This is solved
fully implicitly for P, (recall that P, =P, + constant when S, =0). Consequently, if
an adaptive implicit method is used, then the computational work in regions with
S, =0 is comparable to a fully implicit solution of Richards equation.

Analysis of equations (18-19) reveals that, if a fully implicit method is used, it is

not possible to solve the algebraic equations unless:
si+1 gli*1 elo, 1]
assuming
A, =0 if 5§, <0 (22)
Ay=0 if S5, <0
The same statement is true for an IMPES method for a sufficiently small timestep.

In the case of saturated flow (S,=0), then using the techniques of reference [14],
it can easily be shown that equations (18-19) are monotone in S, if the appropriate
conditions hold [14].

4. Positive Transmissibility Condition
The condition for positive transmissibilities is (from equation (13) and equations

(18-19)):
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’71']' 2 0 v 7“:.7. (23)

It is instructive at this point to consider some typical two dimensional basis functions.
One possible choice consists of C° piecewise bilinear functions defined on quadrila-

terals. However, this is a poor choice if condition (23) is desired.

To see this, consider a problem where K is constant. The algebraic influence of K
in equation (14) can be eliminated by defining an (', y') co-ordinate system such that
K'=I in this new system. This is always possible since K is symmetric positive defin-

ite. If the elements are rectangles with:
A$’=$li+1—$li (24)
Ay,=y’j+1_y’j
then some straightforward algebra shows that condition (23) is violated unless:
Azl Ay
max {Z;,—, _AT}S\/E (25)

For definiteness, if we assume that:

K, 0
K=lo k,
and that z is the horizontal direction, and y is the vertical direction (depth), then

equation (25) implies (in the original (z,y) co-ordinate system):

Az -\
Z—y—' S (2Kx/Ay) . (26)

In typical contamination problems, condition (26) is not met by a large margin, since

horizontal distances are typically an order of magnitude larger than vertical distances.

Another possible choice for C° basis functions are piecewise linear functions
defined on triangles. Again, consider the (z',y’) system so that K'=I. An arbitrary
arrangement of nodes may be used. For an interior edge, as shown in Figure 1, some
simple geometry shows that condition (23) is satisfied if and only if [33]:

a+pB <7 (27)

For a boundary edge, condition (26) requires that the angle opposite the edge is less

than 7/2. (All these angles are measured in the (z',y’) co-ordinate system).
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In practical problems, the internal nodes are often placed to correspond with
layers of rock or soil having different properties. Therefore, it is inappropriate to
attempt to satisfy condition (23) by movement of internal nodes. We would also like

to avoid adding extra internal nodes.

However, condition (27) for interior nodes is equivalent to specifying a Delauney
triangulation [25]. An interesting result concerning Delauney triangulations is that, for
convex regions, a Delauney triangulation can be produced from any valid triangulation
[34] by a series of local edge swaps [25]. This local edge swap procedure is illustrated
in Figure 2. Given a valid triangulation, an edge such as AC is examined. If the sum
of the angles opposite this edge is greater that m, then this edge is replaced by DB.
This edge swap can, of course, only be carried out if ABCD (Figure 2) is convex. If
ABCD is not convex, then necessarily (a+/f) (Figure 1) must be less than 7. In gen-
eral, this will disturb the edges of the polygon ABCD (Figure 2), and these edges must
be re-examined. However, this sequence of local edge swaps eventually converges to a

Delauney triangulation.

For our purposes, we generalize the edge swap criteria as follows: an edge AC is
examined, and the transmissbility 4o is determined by carrying out the integration in
equation (14). If v4p is negative, then replace this edge by DB, and continue. If the
region is convex, and K is constant, this procedure is equivalent to finding the Delau-
ney triangulation in the (z',y’) plane where K'=I, and hence must converge. (Note
that a valid edge swap in the (z/,y’) plane is a valid edge swap in the (z,y) plane

since convex polygons in the (z/,y’) plane are convex polygons in the (z,y) plane).

In general, for non-convex regions or non-constant K, this procedure may not pro-
duce a triangulation such that equation (23) is satisfied for all internal edges. How-
ever, since most regions which arise in practice can be thought of as a union of convex
regions with constant K plus some interface regions, this local edge swap procedure
should tend to minimize the number of internal edges having negative transmissibili-
ties. In practice, to avoid any possible cycling, we limit the number of edge swaps

allowed.

Even for convex regions with constant K, it is possible to end up with edges on
the boundaries which have negative transmissibilities. (There is no possible edge swap
for a boundary edge). We can try to eliminate this problem by adding a boundary
node as in Figure 3. Suppose edge AB has v, < 0. This implies that in the (z'y’)
plane, the angle opposite edge AB is greater than 7/2. A new node is added at the
intersection of AB with the perpendicular to AB drawn from C (this is all carried out
in the (z',y') plane). This procedure will be described as boundary node addition.
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It seems extremely unlikely that any higher order basis functions will give rise to
any reasonable criteria which will satisfy equation (23). Consequently, in the following,

we will restrict attention to two dimensional linear basis functions defined on triangles.

5. DNAPL Contamination in a Homogeneous Region

The first example consists of a NAPL contaminant which is denser than water
(DNAPL specific gravity = 1.2). The homogeneous region for this problem is shown in
Figure 4. In this particular example, we expect that the DNAPL will sink through the
unsaturated zone above the water table, through the saturated zone, until encounter-
ing the no-flow bottom boundary. The contaminant should then flow along the boun-
dary until leaving the region through the constant pressure edges (the pressure at the
side boundaries is set to the hydrostatic pressure of water, as shown in Figure 4). A

detailed description of the data for this example is given in the Appendix.

Two levels of grids will be used in the following: a coarse grid and a fine grid
which is constructed from the coarse grid by joining the midpoints of the sides of the

coarse grid triangulation (see Figure 5).

In order to investigate the effect of a small number of negative transmissibility
edges, we will also use two approaches to producing a coarse grid triangulation. The
first technique uses local edge swapping and boundary node addition to ensure that all
edges have positive transmissibility. The second technique does not add boundary

nodes.

Figure 6a shows the fine grid without boundary node addition (1089 nodes) and
Figure 6b shows the fine grid with boundary node addition (1161 nodes). The grid in
Figure 6a has 16 out of 2379 edges with negative transmissibilities. These negative
transmissibilities all occur on either the top or bottom boundary, near the location of
the extra boundary nodes (near solid colour in Figure 6b). Figure 6b has no negative

transmissibility edges.

Consequently, any difference between computations on the two grids should be
apparent when the DNAPL flows along the bottom edge, between 20 and 30 m from
the origin. In particular, we expect to observe the phenomena shown in Figure 7. If
edge AB is a boundary edge, then physically a dense fluid will flow along the path
from A to B. However, if AB has a negative transmissibility, then a dense fluid must
first flow from A to C, and then from C to B. Of course, for a very fine grid, we
expect that this non-physical flow path will have a vanishingly small effect. However,

it remains to be seen if this non-physical behaviour has an observable effect on coarse
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grids.

The contamination problem of Figure 4 was first initialized in an arbitrary state,
and then allowed to run for one year with no DNAPL injection. This produced a
steady state water saturation profile. After the first year, DNAPL was injected at the
site indicated for one year (see Figure 4).

Figure 8 shows the DNAPL saturation values after one year of injection, for both
coarse grids. Figure 8a shows results for the grid with negative transmissibilities along
the bottom boundary, while Figure 8b shows the results for the coarse grid with all
positive transmissibilities. The somewhat ragged appearance of the interface between
zones having different S, levels is magnified by the shading algorithm, which shades

the control volumes associated with each node.

A detailed examination of the results reveals that the non-physical flow path
phenomena described in Figure 7 does occur for the grid with negative transmissibili-
ties. This small effect can be seen by comparing Figure 8a to Figure 8b (along the
lower boundary from 20 to 30 m). Figure 9 shows the fine grid results for both types
of grids. As expected, the interface zones become smoother as the grid is refined, and
the graphs (Figure 92 and 9b) become quite similar.

A more quantitative description of the difference between computations for the
two grid types (as shown in Figure 6) is given in Table 1. This table shows the amount
of DNAPL remaining in the system after one year. The discretization error for this
macroscopic quantity is about 3%, which would certainly be adequate accuracy in any
practical problem. Note that the differences in DNAPL retention for the grids of Fig-

ures 6a and 6b are less than the level of discretization error.

Clearly, there is a small observable effect on computational results due to negative
transmissibilities. However, if the number of edges having negative transmissibilities is
small, then the effect on macroscopic parameters is also small. Either computation
using the grid of Figure 6a or Figure 6b is acceptable. However, since the boundary
node addition procedure sometimes adds nodes which are quite close to existing nodes,
this generally causes more Newton iterations. (Closely spaced nodes will produce nodes
with small effective volumes). Consequently, more computational work is required for
a grid where condition (23) is always true. Of course, this problem of closely spaced
nodes can be alleviated by some type of node movement, but, as discussed in the Intro-

duction, we have excluded this possibility from consideration.
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6. LNAPL Contamination in a Homogeneous Region

As a second example, the same problem as defined in Section 5 was run with a
specific gravity of NAPL set to .95. In this light NAPL (LNAPL) scenario, we expect
that the LNAPL will tend to float on the water table, and have less tendency to
penetrate the aquifer, compared to the DNAPL case.

Figure 10 shows the NAPL saturation values after one year of injection. Figure
10a corresponds to the coarse grid version of the grid shown in Figure 6a, while Figure
10b corresponds to the coarse grid version of Figure 6b. As expected, the highest
saturation values “sit”’ on top of the water table. However, the contaminant does
penetrate quite far into the aquifer. This is due to the head of NAPL in the unsa-
turated zone (the capillary fringe is quite narrow). Figure 11 shows the fine grid
results corresponding to Figure 10. Examination of these graphs shows that there is
little difference between Figures 10a and 10b, and between Figures 11a and 11b. This
indicates, once again, that a small number of edges with negative transmissibilities is

quite acceptable.

7. DNAPL Contamination in a Hetrogeneous Region

An example of a hetrogeneous region is shown in Figure 12 and 13. The High-P,
region in Figure 13 has nodes which use a different capillary pressure table than used
elsewhere. This High-P, zone is considered to consist of a porous medium with a large
NAPL-water capillary pressure. Regions with a large capillary pressure can be effec-
tive at blocking NAPL flow [35].

The absolute permeability is isotropic everywhere, and K=1000 md except in the
designated zones shown in Figure 13, where K=.1 md. Complete details of the data

for this problem are given in the Appendix.

The fine grid discretization for this problem is shown in Figure 14. The edge

swapping procedure produced a final discretization with no negative transmissibilities.

This example was initially allowed to run for one year with no DNAPL injection,
in order to obtain a steady state profile. DNAPL was injected for one year, and then
DNAPL injection ceased while water injection (rain fall) continued for another two
years.

The DNAPL saturation profiles are shown in Figure 15 for both coarse (400 nodes)
and fine (1521 nodes) grids. It is clear that hetrogeneous systems result in very com-
plex contaminant motion. Since hetrogeneous systems are typical of actual sites [2, 3,
35], DNAPL contaminant will tend to be dispersed over large areas. This will make
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site remediation and clean-up very difficult, due to the large volumes contaminated

with low saturation (and hence almost immobile) DNAPL.

Note that the high S, profile (S, > .5) is quite jagged at the bottom of the
High-P, zone in Figure 15b. This is because all the input date are specified on the
coarse grid, and interpolated onto the fine grid. In the case of the P, tables, the
default table was used for fine grid nodes unless all coarse grid nodes neighbouring fine
grid noes were in the high P, region. This had the effect of magnifying the staircase

pattern present on the coarse grid.

For all the example runs, no particular difficulty was observed with the iterative
solver, which was a reduced system/ILU type [36], even for the grids containing some

negative transmissibilities.

Many experiments were carried out on various grids having hetrogeneous proper-
ties. In all cases, the edge swapping procedure and boundary node addition produced
triangulations with only a small number of negative transmissibilities, compared to the

total number of edges.

8. Conclusions

Previous attempts to use finite volume methods for unstructured grid multi-phase
flow problems did not ensure that positive transmissibilities resulted from a given node
placement. This can have undesirable consequences, since the discrete fluid motion fol-
lows a non-physical flow path. It is also possible that non-physical local maxima and

minima may appear in the pressure field.

In two dimensions, bilinear basis functions defined on quadrilaterials are inap-
propriate for geometries of interest. However, for convex regions with a constant per-
meability tensor, use of C° linear triangular basis functions, combined with the edge
swapping algorithm suggested in this work, guarantees that all internal edges have
positive transmissibilities. This procedure does not require any node movement. Possi-
ble negative transmissibilities at boundary edges can be removed by adding suitably

placed boundary nodes.

In the general case of non-convex, hetrogeneous problems which arise in practice,
it is probably not possible to eliminate all negative transmissibilities without node
movement. However, various tests indicated that the edge swapping algorithm reduced
the occurance of negative transmissibility edges to a small fraction of the total number
of edges. In all cases (positive or negative transmissibilities) the selection of the

upstream point ensures that the solution of the implicit discrete equations forces the
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saturations to lie in the physically relevant range.

Test computations were carried out on some NAPL contamination problems using
a grid having all positive transmissibilities and a similar grid having a small number of
negative transmissibilities. Although there was a small observable effect on computa-
tional results for nodes having negative transmissibilities, there was little difference in
macroscopic parameters. This indicates that a grid with a small number of negative
transmissibility edges is acceptable for practical problems. Such a grid can be pro-
duced using the edge swapping algorithm. Of course, care should be taken to ensure
that nodes which correspond to wells, for example, should not have any negative

transmissibilities.

Comparison of results on the two types of grids also seemed to indicate that a
small number of negative transmissibilities did not adversely affect the Newton itera-

tion, or the iterative matrix solver.

However, DNAPL contamination problems are fairly difficult to solve numerically,
due to the rapid downward movement of DNAPL. The highly non-linear capillary
pressure relations, which determine the liquid saturation under the passive air phase
assumptions, also tend to give the Newton iteration some difficulty. Of course, these

problems are present regardless of the discretization scheme used.

The finite volume discretization technique described in this work can be applied
to fully three dimensional unstructured grids. In order to avoid negative transmissibili-
ties, the obvious choice would be C° linear tetrahedral elements. It is possible to gen-
eralize the idea of a Delauney triangulation to a three dimensional tetrahedral tessela-
tion. The three dimensional Delauney tesselation can be obtained by a series of local
edge swaps [26]. However, it is not known if a three dimensional Delauney tesselation

necessarily results in a grid having all positive transmissibilities.

Appendix

This appendix contains the details of the input data for the homogeneous and
hetrogeneous examples.

Table 2 shows the data for the homogeneous DNAPL example. The same physical
data was also used for the LNAPL case. Table 3 gives the relative permeability and
capillary pressure data.

The hetrogeneous problem used the same physical data as in Table 2. The rela-

tive permeability and capillary pressure data were the same as used for the homogene-
ous problems (Table 3), except for the high-P, zones as indicated in Figure 13. For
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the high-P, zones, the data given in Table 4 was used.

In all cases, three phase relative permeabilities were computed using Stone’s
second method [27].
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TABLE 1

Amount of DNAPL remaining in the system after one year (10 m?® injected, homogene-

ous example).

DNAPL Volume (m?)

Coarse Grid | Fine Grid

Some negative 7.26 7.05
transmissibilities
(Figure 6a)

All positive 7.38 7.13
transmissibilities
(Figure 6b)
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TABLE 2

Physical data for the homogeneous examples. The same data was used for the hetro-

geneous example, except where indicated in Figure 13.

Absolute permeability (K,=K,=K,) 107122
Porosity, ¢ 3
Densities P =1000 Kg/m®

pn (DNAPL)=1200 Kg/m?

pn (LNAPL)=950 Kg /m®
Viscosities t,=1.0 cp

4, =1.0 cp



TABLE 3

Relative permeability and capillary pressure tables, used in the homogeneous examples,

and everywhere except as indicated in Figure 13 for the hetrogeneous example.

NAPL-Water Data

Se K., K, P.,, (Kpa)
2 0.0 .68 9.0
.3 .04 .55 5.4
4 .10 43 3.9
5 .18 31 3.3
.6 .30 .20 3.0
i 44 12 2.7
.8 .60 .05 2.4
9 .80 0.0 1.5
1.0 1.0 0.0 0.0

Liquid-Air Data
(l_sa) Kra Krna Pcan (Kpa) Pcaw (Kpa)

2 .64 0.0 9.0 6.6
32 .46 0.0 3.0 4.5
.40 .36 .0009 24 3.9
.50 25 .045 2.1 3.6
.60 .16 116 1.8 3.3
.70 .09 .210 1.5 3.0
.80 .04 34 1.2 2.0
.90 .01 49 .90 1.0
1.0 0.0 .68 0.0 0.0

Sy=.1 (see equation (6))
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TABLE 4

Relative permeability and capillary pressure data for the high-P, zone in the hetro-

geneous problem (Figure 13)

TABLE 4
Sw K., K, Penw (Kpa)
2 0.0 .68 50.0
3 .04 .55 30.0
4 .10 43 20.0
.5 18 31 15.0
.6 .30 .20 13.0
7 44 12 12.0
.8 .60 .05 11.0
9 .80 0.0 10.5
1.0 1.0 0.0 10.0

Liquid-Air Data
(1_Sa) Kra Krna Pcan (Kpa) Pcnw (Kpa)

2 .64 0.0 100 10.0
32 .46 0.0 5.0 5.0
.40 .36 .0009 4.5 4.5
.00 25 .045 4.0 4.0
.60 .16 .116 3.5 3.5
.70 .09 .210 3.0 3.0
.80 .04 .34 2.0 2.0
.90 .01 49 1.0 1.0
1.0 0.0 .68 0.0 0.0

S,=.1 (see equation (8))
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(10)
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Figure Captions

Quadrilateral formed by the two internal triangles which have a common edge.
Local edge swap procedure: replace AC by DB.
Boundary node addition procedure for a boundary edge.

Domain for DNAPL and LNAPL contaminant examples in a homogeneous

region.

Method for constructing a fine triangulation (dotted plus solid lines) from a

coarse triangulation (solid line only).

Triangulation for domain of Figure 4

(a) 1089 nodes (some negative transmissibilities)

(b) 1161 nodes (all positive transmissibilities). Solid colour indicates high den-

sity triangulation near extra boundary nodes.

Physical flow path (AC) and discrete flow path (AB—BC) when AC has a

negative transmissibility.

DNAPL saturation values after one year (coarse grid)

(a) some negative transmissibilities (289 nodes)

(b) all positive transmissibilities (309 nodes).
DNAPL saturation values after one year (fine grid)

(a) some negative transmissibilities (1089 nodes)

(b) all positive transmissibilities (1161 nodes).
LNAPL saturation values after one year (coarse grid)

(a) some negative transmissibilities (289 nodes)

(b) all positive transmissibilities (309 nodes).
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LNAPL saturation values after one year (fine grid)

(a) some negative transmissibilities (1089 nodes)

(b) all positive transmissibilities (1161 nodes).

Domain of DNAPL hetrogeneous problem.
Details of hetrogeneities for Figure 12.
Fine grid triangulation for Figure 12 (1521 nodes).

DNAPL saturation values, hetrogeneous problem, after two years

(a) coarse grid (400 nodes)
(b) fine grid (1521 nodes).



FIGURE 1

Quadrilateral formed by the two internal triangles which have a com-
mon edge.



FIGURE 2

Local edge swap procedure: replace AC by DB.



FIGURE 3

(x',y') plane

New node

Boundary node addition procedure for a boundary edge.



FIGURE 4
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Domain for DNAPL and LNAPL contaminant examples in a homogene-
ous region.



FIGURE 5

Method for constructing a fine triangulation (dotted plus solid lines)
from a coarse triangulation (solid line only).
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1089 nodes (some negative transmissibilities)




FIGURE 6(b)
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FIGURE 7
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\C/ Fluid Flow

Physical
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Physical flow path (AC) and discrete flow path (AB—BC) when AC
has a negative transmissibility.
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DNAPL saturation values after one year (coarse grid).

Some negative transmissibilities (289 nodes).
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DNAPL saturation values after one year (coarse grid).

All positive transmissibilities (309 nodes).
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DNAPL saturation values after one year (fine grid).
Some negative transmissibilities (1089 nodes).
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DNAPL saturation values after one year (fine grid).

All positive transmissibilities (1161 nodes).
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LNAPL saturation values after one year (coarse grid).

Some negative transmissibilities (289 nodes).
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LNAPL saturation values after one year (coarse grid).

All positive transmissibilities (309 nodes).
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LNAPL saturation values after one year (fine grid).

Some negative transmissibilities (1089 nodes).
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LNAPL saturation values after one year (fine grid).

All positive transmissibilities (1161 nodes).



FIGURE 12
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FIGURE 13
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Fine grid triangulation for Figure 12 (1521 nodes).
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Coarse grid (400 nodes).



FIGURE 15(b)
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DNAPL saturation values, hetrogeneous problem, after two years.

Fine grid (1521 nodes).



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

