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Updating Binary Trees with Constant Linkage Cost *

Thomas Ottmann'! Derick Wood!?

Abstract

We provide a unifying framework for balanced binary trees that
enables us to obtain general conditions under which insertions and
deletions have a constant number of promotions and, hence, a constant
number of link changes. At the same time, the update algorithms are
also logarithmic in the worst case.

This general result provides insight into the constant linkage cost
update algorithms for red-black, red-h-black, and half-balanced trees.
Moreover, it enables us to design new constant linkage cost update
algorithms for these classes of trees as well as for other classes. Specif-
ically, we are able to give constant linkage cost algorithms for a-
balanced trees.

1 Introduction

Binary search trees have been extended to maintain not only the ordering
of records by their primary keys, but also, simultaneously, orderings on
secondary keys. The best known example of such a search structure are the
priority search trees of McCreight [8]. They are search trees with respect to
their primary keys and priority trees with respect to their secondary keys;
thus, enabling them to answer queries of the form: return all records whose
primary key lies in some range and whose secondary key is greater than
some bound. Other example structures are the persistent search trees of
Sarnak and Tarjan [12] and the dynamic contour trees of Frederickson and
Rodger [5].

Extended search trees introduce new maintenance problems; both order-
ings have to be maintained when updates are performed. If the underlying
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2 Ottmann and Wood

tree is not balanced, the problems are minor; however, we normally use bal-
anced trees to ensure O(log n) behavior in the worst case. In this case, we use
promotions (or rotations) to restructure the given tree after an update. Asis
well known, promotions preserve the binary search ordering, but not, in gen-
eral, the secondary key ordering. For example, in a priority search tree each
promotion can cause one “trickle down” operation to re-establish the sec-
ondary key ordering. Since the height of the tree is O(logn), a trickle down
operation requires O(logn) time in the worst case. If an update produces p
promotions, then, in the worst case, it takes O(plogn) time. Moreover, if
p = O(logn), then an update takes O(log? n) time in the worst case, which
is unacceptable. For this reason, McCreight did not base priority search
trees on AVL trees, since deletion requires O(logn) promotions in the worst
case. Instead he chose the half-balanced trees of Olivié [10], since they need
at most three promotions in the worst case for both insertion and deletion.
We call such a class of trees and the associated updating algorithms constant
linkage cost (CLC, for short).

The half-balanced trees were the first class demonstrated to be constant
linkage cost. As was shown later by Tarjan [13], the half-balanced trees are
the same as the symmetric binary B-trees of Bayer [3], but the updating
algorithms in [3] are not CLC. Indeed, they are also equivalent to the red-
black trees of Guibas and Sedgewick [6], but the update algorithms given in
[6] are also not CLC. The updating algorithms for red-black trees given in
Sarnak and Tarjan [12] are, however, CLC.

But why are red-black trees CLC? Are AVL trees or weight-balanced
trees CLC? In examining the CLC demonstrations in {10, 12, 13] no under-
lying principles are exposed; the algorithms appear just as the rabbit appears
from the proverbial magician’s hat. In this paper, we provide the principle
that underlies the CLC red-black update algorithms. For this purpose we
introduce a general framework for binary trees related to the stratified trees
of [14] and to the dichromatic framework of [6]. We define classes of binary
trees to be made up of strata; the trees appearing in the strata are cho-
sen from a given finite set; the boundary nodes of each stratum are colored
black; and the interior nodes of each stratum are colored red. The coloring
is used solely to identify the strata, nothing more. '

Within the general framework, we argue inductively that CLC update
operations cause some boundary nodes to cross their boundaries—a push-up
or a pull-down effect—and, under appropriate conditions, boundary cross-
ings do not cause any link changes. The usefulness of this general result on
CLC update operations is demonstrated by showing that the red-black up-
date algorithms of [12] fall within this framework; CLC update algorithms
for the red-h-black trees of Icking et al. [7] (independently discovered by
Andersson [2]) are obtained; and, finally, CLC update algorithms for the
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classes of a-balanced trees of Olivié [9] are derived, thereby solving (at least
partially) a problem left open by him.

In Section 2 we briefly recall the definitions in [14] and adapt them to our
current needs. We present generic update algorithms in Section 3 and show
in Section 4 that the algorithms for red-black trees and red-h-black trees are
special cases of the generic procedure. Once the right spectacles are worn, it
is easy to obtain algorithms for new classes of balanced trees which require
a constant number of link changes for each insertion or deletion and which
are tunable to performance. Then, we define a class of trees that has CLC
deletion, but not CLC insertion, thereby demonstrating that deletion is no
more difficult than insertion—the opposite of what is usually assumed. In
the remainder of the section, we prove that none of our classes of trees is
AVL or k-height balanced, for any k£ > 0. Finally, we close, in Section 5,
with some open problems.

2 Stratification

Though it is not necessary for our theory, we assume for simplicity that trees
are binary. Recall that a binary tree T of n nodes is either

(i) the empty tree if n = 0, or

(ii) a triple (u,T},T,) if n > 0, where u is a binary internal node with
left subtree T} of n; nodes and a right subtree T, of n, nodes, where
n =mn;+ n, + 1. The node u is the root of T'.

The height of a tree T of n nodes, denoted by height(T'), is defined recursively
as either 0 if n = 0 or 1 + maz({height(T}), height(T;)}), if n > 0, where
T = (u,T;,T,). Similarly, the weight of a tree T of n nodes, denoted by
weight(T), is defined as 1 if n = 0 or weight(T}) + weight(T;) if n > 0,
where T = (u, T}, T:). The nullary nodes of a tree are usually called external
nodes or leaves, while the other nodes are said to be internal nodes. The
weight of a tree is simply the number of external nodes in it.

A (binary) search tree is a tree containing items with keys from an or-
dered universe in its nodes, one item per node. Usually items are stored only
in the internal nodes. The nullary nodes represent intervals between keys
and the items are arranged in symmetric order. If ¢ is any node, the key of
the item in & is greater than the keys of all items in its left subtree and less
than the keys of all items in its right subtree. (One can also adopt the con-
vention that items are stored only in external nodes while the internal nodes
contain routing information, see [11] for example.) In any case, we can per-
form an access operation by starting at the root and recursively descending
the left or right subtree, if the query key is less than or greater than the key
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stored at the root, respectively. The search terminates either successfully,
once we have found an item with the query key, or unsuccessfully, if we fall
out of the tree at the expected position among the leaves.

For simplicity, we do not distinguish between search trees with stored
items and their underlying graphical structure. Stratification means that
we view a tree as consisting of a number of strata or layers. The tree can
be decomposed into a small “irregular” part of bounded size at the top,
the apez, and a number of strata which are glued together at their borders.
Each stratum consists of small trees of a prespecified set of stratum trees.

Let Z be a finite set of trees, Iz = min({weight(T) : T € Z}), and
hz = maz({weight(T): T € Z}); we call Z a stratum set. Observe that we
do not require that all trees in Z are of the same height. But usually we
require Z to be nonirivial; that is, 1 < lz < hz. An apez set is simply a
nonempty finite set of trees. To define a class of stratified trees inductively,
we use a tree constructor. Let Ty be a tree with weight ¢, let T3,...,T; be
trees, and let Ty’s external nodes be enumerated from left to right from 1
to t. Then, we denote by Ty[T4, ..., T;] the tree obtained by replacing, for
all 4, 1 < i < t, the i-th external node of Ty with T;.

Let Z be a stratum set and A be an apex set; so far we do not require
any specific properties of Z and A except that both sets must be finite. We
define the class of (A, Z)-stratified trees to be the smallest class of trees such
that

(i) each tree in A is said to be (A, Z)-stratified, and

(ii) if Tp is (4, Z)-stratified and has weight ¢, then To[T1, ..., Tt] is (4, Z)-
stratified, for all T3, ...,T; in Z.

The class of (4, Z)-stratified trees is denoted by S(A, Z). Because we did
not restrict the possible apexes and trees in stratum sets so far, there may
be different decompositions for a given tree T € S(A, Z). We may, however,
consider trees with different decompositions as different and assume that
with each tree T' € S(4,Z) its decomposition into an apex from A and
strata with trees chosen from Z is explicitly at hand. The easiest way to
ensure this is to color boundary nodes and the root node black, and the
interior nodes of the strata and apex red.

We can, therefore, define the stratum height, denoted by sh(T'), as fol-
lows: sh(T)=0if T € A and sh(T) = 1+ sh(To) if T = To[Th, - .., T3]

We can consider a tree T € S(A4, Z) as a multiway tree if we “collapse”
the trees in the apex and in the stratum set, respectively, into single nodes.
All internal collapsed nodes except possibly the root have degree d where
lz <d< hgz,lz = min({weight(T): T € Z}), and hz = maz({weight(T):
T € Z}). By definition, all leaves of this corresponding multiway tree have
the same distance to the root, namely sh(T). If Z is nontrivial, we have
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stratum
(layer 1)

stratum
(bottommost
layer)

Figure 1: Decomposition of a stratified tree

Iz > 2 and, therefore, sh(T) = O(logN), for T € S(A,Z), where N is
the total number of collapsed nodes in 7. Clearly, N differs from the total
number n of nodes in T by at most a constant factor. Similarly, expanding
collapsed nodes back to trees in Z and A, respectively, increases the height
by at most a constant factor. This gives the following theorem.

Theorem 2.1 Let Z be a nontrivial stratum set and let A be an apex set.
Then, for each tree T € S(A,Z), sh(T) = O(logn) and height(T) =
O(logn), where n = weight(T).

If sh(T') > 0, all leaves of the apex of T and all leaves of stratum trees
except those at the bottommost level are identified with roots of stratum
trees chosen from Z. Throughout this paper we visualize decompositions of
stratified trees as shown in Figure 1. That is, we draw lines just above the
leaves of the apex and above the leaves of the trees in the stratum set.
Example 2.1 Let A and Z be identical sets of trees containing exactly
the four trees shown in Figure 2. Then S(A4, Z) coincides with the class of
symmetric binary B-trees [3] which equals the class of half-balanced trees
[10] and the class of red-black trees [6]. Figure 3 shows a decomposition of
atree T € S(A, Z) with stratum height 2.

We say that a tree complete if its leaves appear on at most two different
levels. The stratum and apex trees of Example 2.1 as well as the tree shown
in Figure 3 are complete trees.
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iV

Figure 2: Stratum and apex sets defining the class of symmetric binary
B-trees
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Figure 3: Decomposition of a tree of stratum height 2
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Example 2.2 Let Aj be the set of all complete trees of height at most A +1
and let Z;, be the set which contains the complete tree of weight 2" and
height h and, furthermore, all complete trees of weight 7, for 2 + 1 < j <
2h+1 and height A+ 1. For h = 1 we obtain once more the sets A and Z of
Example 2.1. The class S(Ap, Z1) is identical with the class of red-h-black
trees introduced in [7].

Van Leeuwen and Overmars [14] imposed additional constraints on apex
and stratum sets which ensure that there exist update procedures for (4, Z)-
stratified trees that can be performed in O(logn) steps. One of their condi-
tions is that all trees in the stratum set Z must be of the same height. Hence,
the stratum trees of Examples 2.1 and 2.2 do not fit into their framework.
We will see that it is not necessary to require stratum trees to be of equal
height in order to obtain update procedures which take O(logn) time. If we
want to achieve update procedures that require only constant link changes
for each insertion or deletion, the condition of van Leeuwen and Overmars
is even prohibitive. This will become clear in Section 3.

For appropriately chosen A and Z, the class S(A, Z) may be identical
with a known class of balanced search trees. Sometimes, S(A, Z) will be only
a proper subclass of a known class X of balanced search trees. If S(A4,Z)
can be maintained in O(log n) steps with CLC, the same may not be true for
the class X but only for a subclass, namely S(A, Z). Moreover, the update
algorithms obtained by specializing the generic procedures for stratified trees

may be different from any known update procedure specifically designed for
X.

-3 Updating stratified trees

We want to design generic CLC-update algorithms for (A4, Z)-stratified trees.
This requires that we look at the structure of the apex and stratum trees
in some detail. We cannot simply argue from the weights of trees and
ignore their structure as van Leeuwen and Overmars [14] do. However, the
general flavor of both algorithms is similar and resembles the well known
maintenance algorithms for B-trees [4].

Whenever an (A, Z)-stratified tree is given, we assume that its decom-
position into an apex chosen from A and strata (or layers) of trees chosen
from Z is explicitly at hand. We describe the generic maintenance algo-
rithms and, simultaneously, derive conditions which ensure that they can be
carried out with constant linkage cost.
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Figure 4: Insertion of a new item at the leaves

3.1 Insertion

In order to insert a new item with key z into an (4, Z)-stratified tree, we
first search for z. Because we assume that the item is not yet present in
the tree we will fall out of the tree at the expected leaf. We replace the leaf
by an internal node for the new item and call push_up; see Figure 4. The
task of the procedure push_up is to push a binary node that is just below a
stratum border immediately above it. Whenever push_up(p) is called, p is
either a leaf of an apex tree chosen from A or a leaf of a stratum tree chosen
from Z. The first case applies if and only if p is just below the topmost
stratum border of the given tree. A call of push_up(p) may lead to local
restructuring of the related stratum or apex tree and termination, or to a
recursive call at the root of a stratum tree. More precisely, we proceed as
follows.

Let p be a leaf of tree T, T € AU Z. Then, push_up(p) triggers the
following actions. First, we change the stratum border just above p to
make p a node immediately above the border; see Figure 5 for the case
T € Z. Note that this local change of a stratum border does not involve
any structural change in the tree. All parent-child relationships between
the nodes of the tree remain unchanged. Let T;‘ denote the tree obtained
by replacing the leaf p by an internal node with two leaves as its children.
Clearly, weight(T}) = weight(T) + 1. If T;" is also in Z and the locally
changed stratum border is not the topmost one, we have finished. Similarly,
push_up(p) terminates if T;‘ is in A and the locally changed stratum border
is the topmost one. Therefore, let us assume that TI;" ¢ Z and that the
changed stratum border is not the topmost one. If thereis a T’ € Z such that
weight(T') = weight(T,}), then replace T,} by T' and append all subtrees
hanging from the leaves of TI;*' below the stratum border to the leaves of
T’ in the same left-to-right order. Note that this transformation involves a
structural change of the tree. A finite number of parent-child relationships
between the nodes of the tree has to be changed. The number is bounded
by the size of the tree T; . After this transformation is completed, push_up
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Figure 5: Local change of a stratum border during insertion

terminates. If the locally changed stratum border is the topmost one and
T} ¢ A, but, if there is a T' € A such that weight(T,f) = weight(T"),
then we proceed analogously. Let us now consider the case that the locally
changed stratum border is not the topmost one, T;_ ¢ Z, and there is no
tree T' € Z such that weight(T;}) = weight(T"). The tree T,} has a binary
root ¢ and a left subtree 7} and a right subtree T,. Let us assume that
there are trees T} and T in Z with weight(T;) + weight(T,) = weight(T}) +
weight(T}). Then, we can replace T; and T, by T} and T}, assign the subtrees
hanging from the leaves of T; and T, to the leaves of T} and 7} in the same
left-to-right order, and recursively call push_up(q). This transformation is
illustrated in Figure 6. It obviously resembles the splitting of an overflowing
node in the B-tree maintenance algorithm [4]. Note that the transformation
carried out in this case involves structural changes of the tree if and only if
T; # T} or T, # T]. In the case that the locally changed stratum border is
the topmost one, we proceed similarly. That is, let us assume that T € A,
but T;F ¢ A and that there is no tree T’ in A with weight(T,H) = weight(T").
In this case we assume that there are a k > 2 and k trees 13,...,Tx € Z
such that weight(T,") = Y>¥ | weight(T;). Furthermore, we assume that A
contains a tree of weight k. These assumptions allow us to introduce a new
layer. That is, we replace T; by T4, ..., Tk, assign the subtrees hanging from
the leaves of TI;” to the leaves of T1, ..., Tk, and, finally, assign the roots of
T, ..., Tk to the leaves of an apex tree of weight k. This transformation is
illustrated in Figure 7. Note that the transformation carried out in this case
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Figure 6: Splitting a stratum tree
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Figure 7: Splitting an apex tree
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once again involves structural changes of the tree. However, the amount
of work to be done is bounded by the size of Tl;*‘ . The procedure push_up
terminates after this transformation.

The general picture is now clear. For appropriately chosen sets of apex
and stratum trees a call of push_up either leads to a finite number of struc-
tural changes and termination or leads to a recursive call at the next higher
layer. The recursive call is preceded by structural changes if and only if
the two subtrees of the stratum tree containing the pushed-up node do not
belong to the set of stratum trees. In either case, the amount of work for
each insertion into a tree of stratum height s is O(s). The number of link
changes is constant if and only if the recursive call of push_up involves no
structural changes.

Let us call a class Z of stratum trees weight-insertion closed or wi-closed,
for short, if each tree T € Z satisfies one of the following conditions (i) and

(i).
(i) There is a tree T' € Z with weight(T') = weight(T) + 1.

(ii) There are trees Ty and T, € Z such that weight(T) + 1 = weight(T}) +
weight(T,).

An apex set A is wi-closed with respect to Z if each T € A satisfies one of
the following conditions (i) and (ii).

(i) There is a tree T/ € A with weight(T') = weight(T') + 1.

(ii) There is a k > 2 and there are k trees T1,...,T; € Z such that
weight(T) + 1 = YF , weight(T;) and A contains a tree of weight
k.

We are now in a position, after providing one further notion, to define the
condition under which insertions are CLC. Let T be a tree in Z of maximal
weight k and, for 1 < i < k, let T; be the tree obtained from T by replacing
its i-th leaf with an internal node having two leaves as its children. Now,
let Til and T7 denote the left and right subtrees of T;, for 1 < i < k.

A stratum set Z is structurally insertion closed or si-closed, for short, if
7 is wi-closed and Z contains not only the tree T but also all trees T} and
Tr,for1<i<k.

These notions allow us to summarize our above arguments by the fol-
lowing theorem.

Theorem 3.1 Let Z be a wi-closed stratum set and let A be an apex set
which is wi-closed with respect to Z. Then, insertion into an arbitrary
(A, Z)-stratified tree can be carried out in O(logn) steps. Furthermore, if
the stratum set Z is si-closed, insertion is CLC.



Constant Linkage Cost Trees 13

Figure 8: Deletion of an item

Let Iz = min({weight(T) : T € Z}), hz = maz({weight(T) : T €
Z}),and 1 < Iz < hz. We call a stratum set gap-free if for each ¢ with
Iz <t < hg, there is a tree T € Z with weight(T) = t. Van Leeuwen
and Overmars [14] assume that stratum sets are gap-free. They also give
numeric conditions for the weights and heights of trees in the apex set which
ensure that the apex set is wi-closed with respect to a given stratum set.
Note that Z can be both wi-closed and have gaps.

3.2 Deletion

In order to delete an item from an (A4, Z)-stratified tree, we first locate the
item by a search starting at the root. We may assume that the item is
stored in an internal node just above the bottommost stratum border; that
is, in a node which has only leaves as its children. For, by taking successors
or predecessors in symmetric order, we can always reduce a deletion to this
case. Now we are faced with a problem which can be considered as the
reverse of the one occurring during insertion. An internal node just above a
stratum border has to be pulled down below it. In other words, the stratum
tree containing this node loses one of its internal nodes and one of its leaves;
see Figure 8. We could design the procedure pull_down by making only very
weak assumptions about the apex and stratum sets as we did in the case
of insertion and the procedure push_up. However, in order to keep things
simple, we will be more specific than necessary. We assume that the stratum
set Z is nontrivial and gap-free and that the apex set A contains n tree I
of weight ¢, for each t with 1 < ¢t < maz({hz,2l; 1}) Weay that 7
weight-deletion closed or wd-closed, for short, and A is wd closed unth yespect
to Z if they satisfy the above conditions.
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Figure 9: Deletion at the leaves

A call of pull_down(p) may lead to a local structural change and termi-
nation or may lead to a recursive call for a node one layer higher up in the
tree. We derive conditions for Z which ensure that no structural changes
precede the recursive call. When pull_down(p) is called for the first time, p
is a node immediately above a stratum border. We will ensure that the same
condition holds for every further call of pull_down. A call of pull_down(p)
triggers the following actions.

First, we locally change the stratum border just below p and make p
a node immediately below the border. When this transformation has been
carried out for the first time at the bottommost level, we replace p by a leaf
and delete the item stored in p; see Figure 9. Note that the local change of
the stratum border does not involve any structural change in the tree. We
must, however, ensure on higher levels that the tree with root p is a stratum
tree in order to maintain the whole tree in S(4, Z).

Let p be a node of stratum tree T and weight(T') = t. By pulling p down
below the stratum border we have changed T" into a tree T, of weight ¢{ — 1.
If t > Iz, we can replace T, by a Z-tree and halt. This requires a constant
number of link changes. If ¢ = Iz, we consider all siblings of 7, in the same
stratum. If at least one of them is of weight greater than [z or if there are
more than Iz — 1 siblings, then we can redistribute the elements such that
all the, at least Iz, subtrees become trees in Z. It requires the restructuring
of at most hz + 1 subtrees and takes only a constant number of steps.

If there are only Iz — 1 neighboring siblings and they are all “minimally”
filled, that is they all have weight Iz, we have to call pull_down recursively.
However, we want to ensure that no structural changes precede the recursive
call. This goal leads naturally to the following definition.

A stratum set Z is structurally deletion closed or sd-closed, for short, if
it is wd-closed and satisfies the following conditions (i) and (ii).
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stratum tree of

minimal weight

Figure 10: Merging of two minimally filled stratumn trees

(i) Each tree T € Z with weight(T) = lz has the property that each leaf
of T has a leaf node as its sibling. (In other words, each parent of a
leaf has only leaves as its children.)

(ii) For each tree T' € Z with weight(T') = Iz and, for each tree T~ obtained
from a tree in Z of minimal weight by replacing an arbitrary internal
node with two leaves as its children by a leaf, the trees (u,T,T) and
(v,T~,T) also belong to Z, where u and v are new root nodes.

Let us now assume that Z is sd-closed. Then, the situation to be dealt with
can be depicted as shown by Figure 10. Our assumptions ensure that there is
a node g just above the next stratum border which has T and a minimally
filled stratum tree T” as its subtrees. Therefore, we can call pull_down(q).
The tree (¢,T,,T') or (¢,7",T,) is a stratum tree by the assumption that
Z is sd-closed. The procedure is repeated in this way until it either finishes
or reaches the apex. The trees in the first layer and the apex can always
be rebuilt in a constant number of steps to form a tree in S(A4, Z). As long
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as T, has at least one sibling 7" on the first layer with weight(T') > Iz,
rebuilding does not decrease the stratum height. If 7 has only Iz leaves,
T’ is the only sibling of T}, on the first layer, and if both are subtrees of a
node ¢, the tree (¢, 7, ,T’) or (¢,T', T, ) can be rebuilt to form a new apex
of weight 2I7 — 1. In this last case the stratum height decreases by one.

The general picture of the deletion procedure is this. Initially, the pro-
cedure pull down(p) is called for the node p which holds the item to be
deleted. Then pull down is recursively called for a sequence of nodes in
minimally-filled stratum trees which have the minimal number of siblings,
all minimally-filled, on the same stratum. As soon as a node in a stratum
tree is reached which does not have this property, finite restructuring ter-
minates the deletion. It is clear that the total amount of work to be done is
O(logn) and that only a constant number of linkage changes are required if
the stratum set is sd-closed. We summarize our discussion in the following
theorem. '

Theorem 3.2 Let Z be a wd-closed stratum set and A be an apex set which
1s wd-closed with respect to Z. Then, deletion of an item from an arbitrary
(A, Z)-stratified tree can be carried out in time O(logn). Furthermore, if Z
is sd-closed, deletion ts CLC.

There is still a considerable amount of freedom left by the generic update
procedures. If we wish to obtain CLC updates, the above insertion and
deletion procedures tell us exactly what to do in the cases of recursive calls
of push_up and pull_down, respectively. However, the restructurings to be
carried out in the remaining cases can be done in different ways depending
on the variety of trees in the stratum and apex set. This freedom does not
affect the asymptotic run-time of the update algorithms. It may, however, be
utilized to fine-tune the algorithms for specific classes of trees. An obvious
goal would be to minimize the number of required relinkings.

4 Applications

4.1 Symmetric binary B-trees (SBB-trees)

Consider the apex and stratum sets of Example 2.1. It is easy to check that
Z is both si-closed and sd-closed. The apex set A is wi-closed and wd-closed
with respect to Z. Therefore, insertions and deletions can be carried out in
O(logn) time and updates are CLC. It is interesting to specialize the generic
update algorithms in this case and to compare them with others in the
literature. Omitting symmetric cases, insertion is completely captured by
the transformations shown in Figure 11. It shows the transformations only
for stratum trees; the same transforrnations apply to apex trees analogously.
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Figure 11: Insertion into symmetric binary B-trees
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Figure 12: Recursive call of pull_down in deletion algorithm for symmetric
binary B-trees

Deletion requires a recursive call of pull_ down if and only if the situation
shown by Figure 12 or its symmetric variant applies. In all other cases, we
can locally rebuild trees in two adjacent strata or in the topmost stratum
and the apex such that an SBB-tree is obtained. Figure 13 shows two of the
many possible cases. Note that there is still some freedom in the choice of
restructuring.

4.2 Red-h-black trees and a-balanced binary trees

Consider the apex and stratum sets Ap and Zj of Example 2.2. For each
h > 1, Aj is wi-closed and wd-closed with respect to Z;. The stratum sets
Zp, are both si-closed and sd-closed for all o > 1. Therefore, it is clear
that all classes S(Ap, Zp) have O(logn) time CLC-update algorithms. This
property is utilized in [7] to build external priority search trees with trees
from S(Ap, Zr) as underlying search trees.

For a node p in a tree T' € S(Ap, Z1), the difference between the length
I, of a longest path from node p to a leaf and the length s, of a shortest path
from node p to a leaf can become arbitrarily large. But it should be obvious
that the asymptotic value of the quotient s,/l, is bounded from below by
h/(h +1). For, Z; has only trees of heights h and h + 1 and the worst we
can do is to append repetitively stratum trees of height % in one subtree of
p and stratum trees of height 2 + 1 in the other.

In his thesis [9], Olivié takes the quotient of the two path lengths as a
balance criterion and requires that quotient to be between certain limits.
More precisely, let o be a real value such that 0 < o < 1. A binary tree T
is an a-balanced binary tree or an aBB tree, for short, if for each node p of
T, the length s, of a shortest path from p to a leaf and the length [, of a
longest path from p to a leaf satisfy the following conditions.

()0<a<s,/l,<1,ifl, > +1, and

l-oe?
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Figure 13: Restructuring of adjacent strata during deletion of an item from
a symmetric binary B-tree
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(i) I, — 1 < sp, if I, < 7L

For a = 0 we get all binary trees, for @ = 1 we get the complete binary trees
(then only condition (ii) applies), and for @ = 1/2 we get the half-balanced
binary trees [10]. For 0 < a < 1/2, condition (i) is the only condition to
be considered, as 1/(1 — a) < 2. We say a node p a-balanced if the subtree
with root p is a-balanced.

If the apex set A in Example 2.2 contained only complete binary trees,
where all leaves have the same distance to the root, we could immediately
infer that S(Ap,Zp) is a class of a-balanced trees with a = h/(h + 1).
Because this is not the case, we obtain a slightly weaker result.

Theorem 4.1 Foreach h > 1, the siratified class of red-h-black trees S(An, Zp)
is a class of a-balanced trees with o = h/(h + 2).

Proof: If T € S(Ah, Zr) and height(T') < h+1, all leaves of T must appear
on at most two adjacent levels. Hence, for each node p in T, the length
sp of a shortest path from p to a leaf and the length I, of a longest path
from p to a leaf differ by at most one. Therefore, condition (ii) holds if
Lb<1l/(l-a)=(h+2)/2<h+1.Ifl, > (h+2)/2and [, # s,, we have
I, > 2, s, = 1, — 1 and therefore

that is, condition (i) holds.

Let us now assume that T € S(An, Zy) and that height(T) > h + 1.
Then, T consists of an apex tree chosen from A; and a number of strata
with stratum trees chosen from Z;. If the node p is a node of a stratum
tree in the bottommost stratum, we have I, < h+1 and [, and s, can differ
by at most one. Therefore, we can argue as before and conclude that p is
a-balanced. If p is not a node of a stratum tree in the bottommost stratum,
then there exist integers » > 1 and 5,0 < s < h,such that [, < r(h+1)+s+1
and s, > rh + s. Therefore, we can conclude

s_p> rh+ s h o

L “rht+t1l)+s+1-ht2

that is, condition (i) holds. O

For some specific values of a, Olivié has shown that a-balanced trees
have O(logn) time CLC-update algorithms. The case o = 1/2 is contained
in [10] and the case @ = 1/3 is presented in [9] and it is left as an open
problem whether there exist other classes of a-balanced trees with CLC-
update procedures. Our results show that there are an infinite number
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of these classes with a in the range 1/3 < a < 1. In particular, one can
choose a to be arbitrarily close to 1 and still obtain CLC-update algorithms.
However, a note of caution is on order. We do not claim that for arbitrarily
chosen values of a, 1/3 < a < 1, there exist O(logn) time CLC-update
algorithms for the class of a-balanced trees. Rather, we have shown that
there is a subclass of any class of a-balanced trees that has the desired
property. The subclass is, in general, a proper subclass that it is closed
under insertions and deletions. For example, consider the class S(4;, Z1).
From Theorem 4.1 we infer that this class is 1/3-balanced. But we know
already, see Example 2.1, that S(A4;,Z;) coincides with the class of 1/2-
balanced trees.

We can also apply our theory in a slightly different manner and obtain
an “approximate” answer to the question of whether there exist O(logn)
time CLC-update algorithms for arbitrary classes of a-balanced trees. Let
us assume that a is rational; that is, &« = r/s, where » and s are integers with
r < s. Then, it is easy to find an apex set A,, and a stratum set Z, , such
that S(4,, Z,,) is both si-closed and sd-closed and approximates the class
of r/s-balanced trees in the following sense. For each tree T € S(A4,,, Z;,s)
and for each node p, the asymptotic value of the quotient s,/I, is bounded
from below by r/s, where [, and s, denote the lengths of a longest and a
shortest path, respectively, from p to a leaf; that is,

lim s,/l, > 7r/s=a.
lp—oo

Choose Z, , to be the set ot trees which contains exactly:

(1.1) the complete binary tree of weight 2* and height s and the complete
binary tree of weight 2°~! and height s — 1,

(1.2) all complete binary trees of weight 2*~! + 1 and height s,
(2.1) the complete binary tree of weight 2" and height r,
(2.2) all complete binary trees of weight 2"+ — 1 and height 7 4 1, and

(3) for all weights ¢ with ¢ ¢ {27,27+1—1,2°71 227141, 2°} and 2" < t < 2°
a (complete) binary tree of weight ¢ and height h with »r < h < s.

Choose A, , to be the set of all complete binary trees of weight ¢ with 2 <
t < 2* and height A with 1 < h < s. Then, it is obvious that S(A4,,, Z, ,) has
the desired property. The trees in this class can be maintained in O(logn)
time with CLC-update algorithms.
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Figure 14: An sd-closed stratum set
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4.3 Easy deletion

Let Z be the set of 7 trees of weights 4, 5, 6, and 7 shown in Figure 14. Let
A be an appropriately chosen apex set for Z. (One may choose A to contain
all trees with k leaves with 1 < k < 7.) It is easy to check that Z is sd-closed
but not si-closed. The set Z is, however, wi-closed. Hence, S(4, Z) can be
maintained in time O(logn). Additionally, it has a CLC-deletion algorithm,
but a single insertion may require ®@(logn) structural changes. This is an
example of a class of balanced trees for which deletion appears to be simpler
than insertion. No such class of trees has been reported before.

4.4 Height balanced trees

The attentive reader may have noticed already that none of our example
classes of (A, Z)-stratified trees is height balanced. This is not accidental
as the next theorem shows. For an integer k > 1, we call a tree k-height
balanced if, for each node p in the tree, the heights of p’s left and right
subtrees differ by at most k. The 1-height balanced trees are also called
height balanced or AVL-trees [1].

Theorem 4.2 Let Z be a set of stratum trees which is si-closed or sd-closed
and let A be a nonempty apex set. Then, for all k > 1, S(A,Z) is not a
class of k-hetght balanced trees.

Proof: Let Z be si-closed and T' € Z with weight(T) = hz = maz({weight(T):
T € Z}). Let T; and T, be the left and right subtrees of T, respec-
tively. Choose a leaf in 7} and replace it by an internal node with two
leaves as its children. Denote the tree obtained from 7 in this way by
Tl'". Because Z is si-closed, both Tl+ and T, must belong to Z. Note that
height(T) > 1 + height(T,). Now choose a binary node p just above the
leaves in an apex tree. Append k41 strata to the apex by always appending
T to all leaves in the left subtree of p and appending T, to all leaves in the
right subtree of p. Then, p becomes a node of a tree in S(A4, Z) such that
the heights of p’s left and right subtree differ by at least k + 1. This shows
that the tree is not k-height balanced. If Z is sd-closed, the argument is
similar. For, sd-closure also implies that the stratum set must contain at
least two trees of different heights. a

5 Concluding Remarks

It is an immediate consequence of Theorem 3.1 that the standard insertion
algorithm for AVL-trees which requires only three promotions for each in-
sertion does not fit into our framework. Furthermore, this leaves open the
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interesting question: Do there exist CLC-update algorithms for a class of
k-height balanced trees which require O(logn) time regardless of whether
the update is an insertion or deletion?
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