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Abstract

A method for designing and implementing parallel computations in a
systematic manner is discussed by means of some examples. The design
starts with a functional specification and ends with a circuit realization
consisting of a network of basic circuit elements. A formalism and nota-
tion for specifying and decomposing communication behaviors of compo-
nents, including their data communications, is explained in detail. The
circuits thus obtained are delay-insensitive, i.e., the correctness of the
network is insensitive to delays in the response times of circuit elements
and connection wires. It is shown that these circuits lend themselves
elegantly for reasoning about the correctness of a circuit design.

Keywords: Delay-insensitive circuit, behavioral specification, micropipeline.

1 Introduction

The purpose of this paper is to demonstrate that the complete design route
for many parallel computations, which start with a functional specification
and end with a delay-insensitive circuit, can be carried out in a systematic
manner. We have divided this design route, inspired by Rem’s work [6], into
two parts. The first part concerns the functional specification and functional
decomposition of the computation. The second part concerns the behavioral
specification and bekavioral decomposition of the computation.

In a functional specification the output values of the computation are spec-
ified as a function of the input values. Subsequently, in the functional decom-
position, this function is decomposed into a number of simpler functions in a
manner similar to the design of a functional program.
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A behavioral specification prescribes the order in which input and output
values are communicated between a component and its environment. Such a
specification prescribes not only what the component should do, but also how
the environment must interact with the component. In a behavioral decom-
position, such a component is decomposed into a number of communicating
subcomponents that implement the functions obtained in the functional de-
composition.

The complete decomposition of a component is obtained by repeatedly
decomposing subcomponents until we arrive at basic components. Thus, by
stepwise refinement, we derive a decomposition into basic components in a
hierarchical way. The basic components correspond to basic circuit elements,
and the resulting network of these circuit elements corresponds to a circuit
realization of the component.

The circuits designed as described in this paper are delay-insensitive [5].
This means that the correctness of the network is insensitive to delays in the
response times of the circuit elements and connection wires. The reason for
choosing delay-insensitive circuits, as realizations of parallel computations, is
their suitability for a structured and formal design discipline. This is largely
due to the separation that can be made between mathematical and physical
correctness concerns for these circuits [9]: the design of a network of basic
circuit elements is based on mathematical principles only; the design of the
basic circuit elements themselves may also rely on physical properties, such
as specific assumptions on delays in certain wires. By maintaining this strict
separation in our design approach we can avoid many timing problems, such
as those caused by metastability [3] or scaling [9].

Related work on the derivation of delay-insensitive circuits as realizations
of parallel computations has been done by Rem [6], van Berkel et al. [11],
and Martin et al. [1]. In [6], Rem discusses a method for deriving functional
decompositions of parallel computations. These decompositions then give rise
to CSP-like programs. In [11] and [1], van Berkel, and Burns and Martin,
respectively, have shown how these programs can be transformed into networks
of basic circuit elements. Their programs, however, have a different behavioral
interpretation. In their programs, each matching pair of an input and an
output is synchronized by definition, in accordance with the traditional CSP
semantics of a communication action. In the transformation of a program to
a circuit realization, this synchronization is achieved by applying a four-phase
handshake protocol. In our approach, we require that whenever a component
can produce an output, the matching inputs can take place as well. Thus, no
handshake protocol is needed to implement the synchronization of matching
inputs and outputs, but, on the other hand, we have an additional requirement
that must be satisfied. It turns out that this requirement can be met easily
for the examples discussed.
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The contents of this paper are as follows. Functional specification and de-
composition are briefly discussed in Section 2 by means of an example. The
theory underlying the behavioral specification and decomposition is presented
in Sections 3 through 6. Behavioral specification and decomposition is applied
to an example in Sections 7 and 8. Section 9 briefly discusses a data encod-
ing scheme for delay-insensitive circuits and Section 10 describes the general
approach applied to some other examples.

2 Functional Specification and Decomposition

In a functional specification of a component the sequences of output values
are defined as a function of the sequences of input values. Subsequently, in
a functional decomposition this specification is decomposed into a number of
basic functions. We demonstrate this briefly by giving a functional specifica-
tion and decomposition of a simple, but non-trivial, computation, called bit
convolution [6, 11].

Given is a bit sequence ¢ = gog1..gp—1 of length [(g) > 0, where M = I(q).
We are asked to design a component that computes for an input bit sequence
a of infinite length the output bit sequence a ® ¢ representing the convolution
of the sequences a and ¢g. The sequence a @ ¢ is defined by

(a®q),-=(Zj,k:OSjA0$k<I(q)/\j+k=i:aj><qh). (1)

Here summation and multiplication are taken modulo 2.
For example, for I(g) = 3, we have

(a®g)o = aoXgo

(a®qhh = a1 Xg+aXaq

(6®q)2 = @z xgo+a1xXgq+aoXg
(a®q)s = azXgo+azXxqa+a1Xq

Let the output sequence a @ ¢ be denoted by b and the component we
have to design by CONV(q) (cf. Figure 1). The input elements a;,i> 0 are

a r——— e
CONV(q)

ba——

Figure 1: Component CONV (q).
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provided in order of increasing index and the output elements b; are produced
in order of increasing index.

In order to avoid calculating (1) from scratch each time when a new input
is provided, we decompose (1) into a number of simple calculations like binary
additions and multiplications. By induction on the length of ¢ we derive the
following properties. (For a complete derivation we refer to [6].)

Ifl(g)=1, (a®q)i=aixg fori>0 (2)
._ ) aiX4go for i=0
I.f l(q) > 1’ (a ® q)l hant { a‘_ X qO + (a ® (tl(q)),_l for ‘i > 0’ (3)

where tl(g) = ¢142..gM—1. We now have decomposed the convolution a®g¢ into
a simple multiplication, an addition, and a convolution of sequence a with a
smaller sequence, viz., tl(g). Carrying the induction through, it follows that
a ® g can be decomposed into a series of simple multiplications and additions.

The functional decomposition (3) suggests a behavioral decomposition into
a subcomponent CONV(tl(¢)) and a component E(go) as depicted in Figure
2, where E(go) performs a simple multiplication and addition. In this be-

a L
E(qo) CONV(1l(q))

b — -

d

Figure 2: Tentative decomposition of CONV(q).

havioral decomposition we have to specify in what order and which values
are communicated on the so-called channels a,b,c, and d such that the com-
ponent CONV(q) is realized by this decomposition. For this purpose, we
first introduce a formalism and notation to give behavioral specifications of
components.

38 Behavioral Specifications

In this section we present a brief introduction to a formalism for specifying
communication behaviors which was developed at Eindhoven University of
Technology [7, 12].

A behavioral specification of a component is given in a program notation
called commands. As an example of a command, we give a specification of
a communication behavior for CONV(g). From (1) it follows that ; only
depends on the input values a;, 0<j < 4. Therefore we propose as a possible
communication behavior an alternation of inputs and outputs, starting with



From Functional Specification to a Delay-Insensitive Circuit 5

an input, such that after each receipt of input a; output b; is produced by the
component. This communication behavior can be specified by the command

pref(a?; d!],

where a? denotes an input action at channel a, b! denotes an output action
at channel b, *;’ denotes concatenation, ‘[ ]’ denotes arbitrary repetition of the
enclosed, and pref denotes prefix-closure.

Formally, a command defines a directed trace structure. A directed trace
structure is a triple < I,0,T >, where I is the input alphabet, O is the output
alphabet, and T is a set of traces constructed from symbols in I U O. The
trace € represents the empty trace. A trace structure is called reqular when its
trace set is a regular set. Regular directed trace structures can be represented
by commands, which are in many ways similar to regular expressions.

Commands are defined inductively. The atomic commands €,a?,a!, and
!a? represent the atomic trace structures < 0,0,{e} >, < {a},0,{a} >, <
0,{a},{a} >, and < {a}, {a}, {a} > respectively. For commands E,E0,and E1,
the expressions EO; E1 (concatenation), E0|E1 (union), [E] (repetition), and
prefE (prefix-closure) are also commands. Let iE,oFE, and tE denote the
input alphabet, output alphabet, and trace set of the directed trace structure
represented by the command E respectively. The directed trace structures
represented by E0; E1, EO|E1, [E], and prefE are defined by

E0;E1 = <iEO0UiE1,0E0U0E1,(tE0)(tE1) >,
Eo|lE1 = < iEOUiEl,oEOUoEl,tEOUtEl >,
[E] = <iE,oE,(tE)" >,
prefE = <iE,oFE,{to|(3t; :: tot; € tE)} >,
where concatenation of sets is denoted by juxtaposition and * denotes Kleene’s

closure. (For reasons of brevity, we use the same notation for the command
and the language defined by the command.) For example, we have

pref(a?; b!] = < {a}, {b}, {€,a, ab, aba, abab, ..} > .

(Since we only use directed trace structures in this paper, we omit the word
‘directed’ from now on.)

4 Component and Environment Prescriptions

Communication behaviors of components are specified by non-empty, prefix-
closed trace structures with disjoint input and output alphabets. Such trace
structures are often represented by commands. The alphabets of the trace
structure represent the terminals or channels through which a component can
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communicate with its environment, where the environment of the component is
constituted by all other components with which the component communicates.
The trace set of the trace structure stipulates all possible communication be-
haviors of a component with its environment. The initial state is represented
by the empty trace e. Since the trace structure is prefix-closed, every prefix of
a trace is contained in the trace set. Moreover, since the trace set is non-empty
as well, ¢ is always contained in the trace set.

A behavioral specification not only prescribes the behavior of the com-
ponent, i.e., when the component may produce an output, but also of the
environment, i.e., when the environment may produce an input. For example,
the command pref{a?; b!] specifies that the environment may produce an input
initially and each time after the component has produced an output b. If the
environment satisfies these prescriptions then the component may produce an
output b each time after it has received an input a. Consequently, on the one
hand a specification can be read by the ‘user’ of a component (i.e. the envi-
ronment) as how this component should be operated, and, on the other hand,
a specification can be read by an ‘implementer’ as what should be realized
provided the component is used properly.

If the environment does not obey the specifications nothing is guaranteed.
So for example, if for a specification pref[a?; b!] the environment would provide
two a’s in a row without the component having been able to produce an
output b, clearly the environment has violated its prescription and nothing
is guaranteed anymore. A violation of the environment prescription is also
called computation interference [12], because the environment interferes with
the computation performed by the component. In order to guarantee absence
of computation interference we have to show that whenever a component is
able to produce an output, also the matching inputs can take place in the
receiving components. Absence of computation interference will be our main
concern in decomposing a component into a network of basic components.

There are many other safety (or liveness) concerns that may be considered
for the correctness of a decomposition, such as absence of deadlock or livelock.
In this paper, we deal with absence of computation interference only. For more
extensive discussions on other topics we refer to [4, 14].

One way to avoid computation interference in communications between
components is to make sure that the communication behaviors of the respective
components are each other’s reflection. The reflection of a specification E,
denoted by E, is defined by

E = <oE,iE,tE > .
For example, we have prefa?; b!] = pref[a!; b?]. By reflecting we interchange

the prescriptions of component and environment, i.e., of ‘implementer’ and
‘user’. Obviously, when E and E are connected to one another no computation



From Functional Specification to a Delay-Insensitive Circuit 7

interference can occur: if E can produce an output, this output can also be
accepted by E as an input and vice versa.

5 Parallelism and Synchronization

In order to specify communication behaviors that allow for parallelism and
hiding of internal actions, we introduce two operations: weaving and projec-
tion.

A weave of two behavioral specifications represents all behaviors that are
in accordance with the two specifications in isolation. For this reason it is
sometimes also called the ‘conjunction’ of two behavioral specifications.

Formally, the weave EO||E1 of two trace structures represented by the
commands FO0 and E1 is defined by

EO0||E1 = <iEO0UiFE1l, oEOUOE],
{tc(aE0OUaFE1)" |t |aE0€ctE0 A t|aEl €tE1} > .

Here, aFE denotes the alphabet of £ and aE = iF U oE. The notation ¢t | A
denotes the trace ¢t projected on the alphabet A4, i.e. the trace t from which
all symbols not in A have been deleted. As a small example of weaving, we
have

prefia?; c!] || pref[b?; c!] = pref[a?||b?; ¢!],

where the priority of the operations is as follows: ‘||’ has highest priority, then
‘’ (, and then ‘|’). Notice that, in a weave, common symbols must match.
One could also say that weaving expresses ‘parallelism with synchronization
on common symbols.’ In the above example, the symbol ¢ is the only common
symbol of the two commands in the weave on which synchronization has to
take place.

There are two special cases of weaving. If aE0N aF1 = @, then the weave
EO0||E1 represents the interleaving (or shuffie) of £0 and E1. If aE0 = aF1,
then weaving E0 and E1 amounts to taking the intersections of the trace sets.

The projection of E on an alphabet A, denoted by E | A, is formally defined
by

E|lA=<iENA,0EnA,{t|A|tetE} >.

As an example of weaving and projection, we consider the command
(pref(a?; !s?; b!] || prefc?;!s?;dY) | {a,b,c,d}. (4)

Notice that now synchronization has to take place on the common symbol s.
Using the definitions of weaving, projection, and the other operations, we can
formally derive that the above command defines the same trace structure as

pref(a?||c?; [(8Y; a?)]|(d; c?)])- ‘ (5)
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Operationally speaking, (4) expresses a communication behavior in which ini-
tially inputs a and ¢ are accepted and then, repeatedly, a ‘hidden’ synchro-
nization on s occurs followed by b!; a? in parallel with d!; c?.

The symbol s is hidden, or projected ‘away’. Therefore, s is called an in-
ternal symbol. Internal symbols are denoted by prefixing and postfixing them

with the marks ‘!’ and ‘?’ respectively. The external symbols are a,b, c, and
d.

Remark. One may be tempted to consider weaving as representing a parallel
composition of components. We emphasize, however, that weaving should be
interpreted as an operation to express parallel behavior (with possible syn-
chronization) of one component only. O

6 Including Data Communications

By means of a command we specify the order in which the communication
actions take place. We can also describe which data values are communicated
along the channels by including the data communications in a command. For
each channel a we introduce a Boolean variable va. The additional program-
ming primitives are assignments to variables, a’va, and alva, where a?va de-
notes ‘receipt of value at channel a which is assigned to va’ and a!va denotes
‘output via channel a the value va.’ '
As an example, we introduce in the command pref[a?||d?; ¢!] data com-
munications of type Boolean. Consider the command E defined by

E = pref{a?va || b?vb ;vc := va V vb ; clvc], (6)

Accordingly, E specifies a component that repeatedly receives, in parallel,
Boolean values on channels a and b and outputs the disjunction of these values
on channel ¢. Instead of command (6), we often write the shorter version

E = pref[a?va || b7vb; c!(va V vd))].

Component E calculates the disjunction of the input values and is therefore
called the disjunction or DIS component. See Figure 3 for a schematic.

In a similar way as we introduced data communications in pref[a?||b?; c!],
we can introduce data communications in the command of (4). In (7) and (8),
two different data communications have been introduced in the command of

(4)-
(preflalva;!s?(vb := va); blvb] || pref[c?vc; !s?(vd := ve); dlvd)) | {a,b,¢,d} (7)

(preflatva; 1s?(vb := vc); blvd] || prefctuc; ls?(vd := va); dvd]) | {a,b,¢,d} (8)
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a?fa bbb alva cMve alva chve
DIS [ 1 syN 1] | TSYN]

clve

9
b'vb divd bivb d'vd

Figure 3: Components with data communications: DIS and SYN.

This time we have extended our commands by postfixing occurrences of the
internal symbol s with assignment statements. The left-hand side of an as-
signment statement is a variable of an output channel. The right-hand sides is
a variable of an input channel. The assignments are ‘executed’ at each occur-
rence of the internal symbol s in a trace of the weave. Notice that at each such
occurrence of s the input variables have stable values. In command (7), we
have expressed that the data received at channel a is transferred to channel b
and the data received at channel c is transferred to channel d. These transfers
are synchronized by means of the (internal) synchronization symbol s.

Command (8) expresses a different data transfer. Here, data received at
channel a is transferred to channel d, denoted by the assignment vd := va,
and data received at channel ¢ is transferred to channel b, denoted by the
assignment vd := vc. These transfers also are synchronized on the occurrence
of the internal symbol s. We call the above components, which synchronize
data transfers, SYN components. For schematics of the SYN component, see
Figure 3.

In the DIS and SYN component we have specified data communications
in their most primitive form, viz., computing an output value as a simple
function of the input values and a synchronization of data transfers on separate
channels. In the next section we introduce a combination of these Primitive
forms explained by means of our example of Section 2.

7 An Example

We illustrate the notations introduced in the previous sections by giving
a behavioral specification and decomposition of the convolution component
CONV(q).

First, we give a behavioral specification of the component CONV (gy), i.e.,
in case I(g) = 1. The relation between the input and the output values was
given by

b,‘ =a; X Qo foriZ 0.
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Obviously, the following communication behavior establishes this relation.
pref{a’va;bl(va X go))].

We proceed with the decomposition of CONV(q) in case I(g) > 1. Led
by the functional decomposition (3) of CONV(g), we try to find a behavioral
decomposition of CONV (g) into a component E(go) and CONV (tl(g)). The
tentative decomposition is depicted in Figure 4. The communication behavior

E(qo) CONV(il(q))
d

Figure 4: Tentative decomposition of CONV(gq).

of CONV(tl(g)) is similar to that of CONV (q), namely pref[d?; c!], where
¢; = (d @ tl(q)); for i > 0. In order to avoid computation interference, the
communication behavior of E(go) with respect to CONV (tl(g)) is given by
the reflection of pref[d?;c!], i.e., pref[d!;c?]. Consequently, the complete
communication behavior of component E(go) is a (parallel) composition, or
weave, of the behaviors pref[a?; b!] and pref(d!; c?].

In order to find the proper synchronization between the two behaviors, we
consider (3) once more. We try to establish

d; = a; fori > 0, and (9)
_ a; X go fori =0, and
bi { a; X go + ¢i—y fori>0. (10)

Since then, we have, by definition of CONV (tl(g)), that ¢; = (a ® ti(g)): and
subsequently, by (3), b; = (a ® ¢); for i > 0.
Based on (9) and (10) we propose the following program for E(qo)-

E(q) = (prefla?va;!s?(vb:=vaxgo+ vc) ; blud]
|| pref(ve := 0;{!s?(vd := va); dlvd; c?vc])
) | {a,b,¢,d}.
Let us first examine this program by excluding all information about data
communications. We are then left with the command

(prefla?;!s?; bl
|| pref]is?;d!;c?]
)| {a,b,¢, d}.
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In this reduced version of E(go), we have expressed a synchronization between
the two communication behaviors pref[a?;b!] and pref[d!;c?], by introduc-
ing the common internal symbol s between an input and an output in the
two sequential commands. (Notice that, since s precedes d, the output d can
be generated only after synchronization on s has taken place.) In this way,
component E(go) is ready to accept the next input a as soon as output b is pro-
duced. A similar reasoning applies for the input ¢ and output d. Consequently,
computation interference does not occur in the decomposition.

Second, we examine the data communications. At each occurrence i,7>0,
of symbol s, the invariant

P: va=a; A ve=c¢;1

holds, where c¢_; = 0, because of the initialization vc¢ := 0. By means of
the assignment vd := va, condition (9) is established, i.e., the value received
on channel a is passed on to channel d. By means of the assignment vb :=
va X go + ve, condition (10) is established, i.e. from the value received on
channel a (i.e. a;) and the value received on channel ¢ (i.e. ¢;—;) the output
value for channel b (i.e. b;) is calculated. Consequently, the correct data are
communicated. Accordingly, CONV(q) can be decomposed into E(go) and
CONV(ti(q)) for I(q) > 0.

8 Decomposition Continued

Subsequently, we try to decompose E(go) and CONV(qo) into more primitive
components. In the next section we will then see how these components can
be realized using a particular data encoding scheme.

Component CONV(qq) is specified by pref(a?va; b!(va x go)]. Considering
the cases go = 0 and go = 1 separately and recalling that multiplication is taken
modulo 2, this specification boils down to

pref[a?va; blva] if go = 1 and
pref{a’va; b!0] if go = 0.

For go = 1, CONV(qgo) simply copies the value received at the input to the
output. For gop = 0, CONV(go) produces after receipt of any binary value at
the input the value 0 at the output channel.

For the decomposition of component E(go) we also distinguish the cases
go = 0 and go = 1. For go = 0, the assignment vb := va X go + vcin E(qo)
boils down to vb := wve. Notice that in this case E(go) is equivalent to a
SYN component, except for the right initialization. The right initialization
can be established by a component specified by pref(f!0;[c?vc; flue]). This
component starts with producing a 0, and then, repeatedly, copies ai the
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output channel the value received at the input channel. For the moment,
we call this an INIT component. For go = 0, we have that E(go) can be
decomposed into a SYN and INIT component. This decomposition is depicted
in Figure 5.

For go = 1, the assignment vd := va X ¢o + vc in E(qo) boils down to
vb := va + ve. Since addition is modulo 2, we insert a disjunction component
in decomposition of E(0). to obtain the decomposition for E(1),i.e. E (1) can
be decomposed into a SYN, INIT, and DIS component. This decomposition
is also depicted in Figure 5. Notice that also in these decompositions the

alva o —a cve ava e——— g—q cMhe
lﬁ T

L e SYN]
bive L o bvb | | I

E0) EQ1)

Figure 5: Decompositions for E(go).

environment prescription for each component is not violated.

As an example of a complete decomposition for CONV(g) into the com-
ponents SYN, INIT, and DIS, we have chosen the sequence ¢ = 1101. The
decomposition for this particular ¢ is depicted in Figure 6.

a?l »

Figure 6: A decomposition for CONV(1101).
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9 Data Encoding

In order to decompose the components CONV(go) and E(go) further into
basic components corresponding to circuit elements, we have to apply a data
encoding scheme. Our data encoding scheme encodes data communications
of type Boolean into communications of so-called signals, i.e. unary values.
Components communicating signals only correspond in a specific way with
circuit elements. In order to explain this correspondence first, we give some
specifications of basic components communicating signals only in Figure 7.
The first column lists the names of the components, the second column the
specifications, and the third column the schematics.

WIRE pref[a?; b!] a? - - B!

IWIRE pref[b!; a?) als = - b
a? »—

MERGE prefla?; c! | b7;¢!] D—- ¢
b?’——7

-

SOURCE(a) < 0,{a},{¢}> ‘

Figure 7: Specifications of some basic components.

The basic components of Figure 7 can be related to basic circuit elements
in the following way. Each symbol in the input or output alphabet corresponds
to an input or output terminal of the circuit respectively. Each occurrence of
a symbol in a trace corresponds to a voltage transition at that terminal. (We
assume that initially all voltage levels are low.) No distinction is made between
a high-going and a low-going transition. This type of signaling is therefore also
called transition signaling [10].

The WIRE and IWIRE components describe the transmission of a signal
" from terminal to terminal. Notice that both components have the same be-
havior except for a difference in initial states. The WIRE component initially
receives an input a. The IWIRE component initially produces an output b.
This difference in initial states (or the production of initial symbols) is depicted
by an open arrow head in the schematic.

The MERGE component ‘merges’ two inputs into one output. Notice that
for this component the environment produces either an input @ or an input
b. In both cases the component will then produce an output c, after which
the environment may produce a next input. (The MERGE component can be
implemented by an XOR gate.)

The SOURCE component has one output only, but does not produce any
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transition on this output. SOURCE components are connected to dangling
inputs.

In order to show how a command expressing data communications of type
Boolean can be transformed into commands where the only communications
are signals, i.e., unary values, we use a two-rail, two-cycle signaling encoding
scheme [9]. This encoding scheme is used to obtain delay-insensitive circuits as
realizations of our computations. Other encoding schemes for delay-insensitive
circuits are possible, and for a more extensive discussion of these we refer to
[13).

Another possibility would be to use a more conventional level encoding
scheme with additional control wires signaling the validity of the data [2]. Such
an encoding scheme, however, does not render completely delay-insensitive cir-
cuits. There are certain delay constraints, also referred to as the data bundling
constraints, that have to be satisfied. In [10] an example of an implementation
using the data bundling constraint is given. Here, we shall restrict ourselves
to delay-insensitive encoding schemes.

We briefly illustrate the encoding scheme by giving a transformation for
the command of the disjunction component. A similar transformation can
be applied to the other components communicating data of type Boolean.
Applying a two-rail, two-cycle signaling encoding to command E in (6), we
obtain the command

E1 = pref{a0?||b0?; c0! | a1?||b0?; c1! | a0?||517; 1! | al?||b17?; c1!].

Two-rail encoding means that two new symbols are introduced for each
channel communicating data of type Boolean. For example, for channel a we
introduced the symbols a0 and al. Two-cycle signaling means that there are
two cycles for the communication of the input values and the corresponding
output value: in the first cycle the symbols corresponding to the input values
are received and in the second cycle the symbol corresponding to the output
value is produced. Notice that for each combination of input values we have
an alternative of the form < inputs >; < output >.

Operationally speaking, in a two-rail encoding scheme we introduce two
(wire) terminals for the communication of Boolean values, one for each value.
With two-cycle signaling, the communication of a Boolean value is signaled
by a transition on the terminal corresponding to that value.

Using the above components, we can give some further decompositions of
CONV(go) and INIT. Their respective specifications are given below.

CONV(0) = preflalva;b!0]
CONV(1) = prefla?va;blval
INIT = pref(b!0;[a’va;blval)
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Applying a two-rail, two-cycle signaling scheme, these components can be
decomposed as depicted in Figure 8. Notice that CONV(0) produces after a
receipt of a transition at either of the two input terminals a transition at the
b0 output terminal (and never a transition at the b1 terminal).

a0? al? a0? al? a0? al?
b0! b1t b0! le! b0! b1!
CONV(1) CONYV(0) INIT

Figure 8: Decompositions for CONV(go) and INIT.

10 Generalizations

The design that we have derived for the bit convolution depicted in Figure 6
can be seen as a special form of a micropipeline [10]. Instead of data flowing in
only one direction, here data is flowing in both directions through the stages
of the pipeline. In each stage, computations are performed on the data in the
‘function’ blocks and the transfers between the stages are controlled by the
SYN components. A general schematic of such a stage is given in Figure 9.
Depending on the particular communication behavior, the variables va, vb, ve,

alva ] [— — c?ve
f A
blvb divd

Figure 9: A schematic of a stage in a micropipeline

and vd may have to be initialized by means of INIT components. The func-
tion block implements the functions fo and f; and their function values are
subsequently transferred to the channels d and b, or b and d, by a SYN compo-
nent. The functions fp and f; are determined by the functional decomposition
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of the computation, such as (9) and (10) in case of the bit convolution. Two
other special cases of this micropipeline are an implementation of a finite state
machine and a buffer. Schematics of both designs are given in Figure 10.

alva »— I

]

blvb

ahva —o, elve

blvb a nf

(b) Buffer

Figure 10: Some other special cases.

For the implementation of the finite state machine, the functions f, and f,
calculate the nezt output symbol vb and the nezt state vd, respectively, from
the current input symbol va and the current state ve. The command for this
design reads

( prefla?va;!s?(vb:= fo(va,vc)); blvb]

|| preflc?ve;!s?(vd:= fi(va,vc));dlvd]

) 1{a,b,¢,d}.
In each cycle the environment provides an input symbol and a current state
after which the component produces the next output symbol and the next

state. The next state produced by the component is fed back to the input as
a current state by the INIT component

pref(vd := init; [clvd; d?vd]),

which also establishes the initial state init.
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In the case of the buffer the functions fo and f; simply copy the input
values. If the left side is the input side and the right side is the output side
of the buffer, then the data communicated at the a, d, and e channels are of
the type for which the buffer is designed. The data communicated on the f,
¢, and b channels can be reduced to signals, i.e., unary values. The command
that specifies the communication behavior with respect to the channels a, b, c,
and d reads

( pref[a’va;!s?;b!]
| pref[ls?(vd := va); d'vd; c?]
) i {as b, c, d}.

The value received at the a channel is transferred to the d channel (, and sub-
sequently to the e channel). The signals f,¢, and b serve as an acknowledge
signals, conveying the information that the next value can be transferred. The
INIT components (which can be replaced by IWIRE:s if signals are commu-
nicated) in the ¢ and f channels denote that initially the d and e channel
can receive their first value. Since three values can be stored in this buffer
(viz., va,vd, and ve), we call this a three-place buffer. Notice that the SYN
components serve as separators between the three places.

11 Concluding Remarks

We discussed a method for the design and implementation of parallel compu-
tations. This method starts with a functional specification and decomposition
which, subsequently, may lead to a behavioral specification and decomposi-
tion. The formalism and notation we introduced is particularly suited for
expressing parallel behaviors and synchronizations of those behaviors.

The decompositions we derived were all part of a general decomposition
pattern consisting of a number of function blocks, which implement the func-
tions obtained in the functional decomposition, and SYN components, which
synchronize the transfer of the data between the function blocks. These de-
signs show a strong similarity with synchronous circuit design. In synchronous
circuit design, the functions are implemented by combinational logic blocks
and, instead of SYN components, clocked registers are used. There are some
important differences, however. Reasoning about the correctness of a clocked
design also includes reasoning about delays, in order to determine the clock
period, the clock distribution, and the clock skew. In the above designs this
is not needed. Reasoning about delays is applied in the design of the basic
components only.

Although we have not explicitly reasoned about time, it is also possible to
determine the response time of a design in a formal way. For example, one
can argue that the design for the convolution has a constant response time
whatever the length of the pipeline [6].
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One of the disadvantages of the approach presented is that the implemen-
tations of the basic components, like the disjunction and SYN component, can
be become rather large compared to realizations with more traditional encod-
ing schemes. These basic components, however, are still small enough so that
their physical design does not present major difficulties. They can be imple-
mented directly using conventional components or by methods as discussed in
[8].

For reasons of simplicity and brevity, we have refrained from giving a formal
characterization of a delay-insensitive circuit and proving formally that the
final designs represent delay-insensitive circuits. For a more formal discussion
on delay-insensitive circuits and methods to prove that the circuits obtained
are indeed delay-insensitive, we refer to [4].

The clear separation of mathematical and physical correctness concerns
is one of the attractive aspects of the design of delay-insensitive circuits. It
allows us to reason about circuit design, in almost every step of the design
route, in the same manner as we can reason about program design, i.e. based
on mathematical principles. Furthermore, it confines the reasoning about
physical correctness concerns, like timing, to one of the last steps of the com-
plete design route, viz., the design of the basic components. We believe that
the full exploitation of this design approach will lead to more manageable and
reliable designs.
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