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Exploring Degree-Raising for Joining Bézier Patches with Tangent Continuity
by

Richard H. Bartels

Abstract

We consider joining two, tensor-product, Bézier patches, F(u,t)
and G(r,t), so that they agree with G! continuity along a common
boundary. The continuity condition may be given as

a(t)DyF(1,¢t) + B(t) D, G(0,¢t) + () D,G(0,t) = 0 ,

where t has been used as the boundary parameter. Using cubic
patches for the exposition, it is usual to argue from the orders of
D,F(1,t), D,G(0,t), and D;G(0,¢) that a(t) and B(t) must be con-
stant and ~y(t) must be linear. This makes the geometric association
of the control vertices for the patches at one end of the common
boundary depend in a restrictive way upon the control vertices at
the other end of the boundary. In order to avoid this limitation, it
has been thought necessary to work with patches of higher order so
as to obtain flexibility in constructing surfaces for computer-aided
geometric design. We demonstrate that higher-order patches are not
always required.

By assuming a, 8, and v to be polynomials of higher order than
the degrees of D,F(1,t), D,G(0,t), and DG(0,t) might suggest
and by expressing the result in Bernstein-Bézier form, it is possible
to produce constraints on the control vertices of patches F and G in
terms of the coefficients of the polynomials o, 8, and ~ that imply
the continuity condition above.

It will be shown how these constraints can be expressed in terms
of matrices derivable from the Bernstein polynomials. As long as the
control vertices reside in a space associated with these matrices, the
patches will meet with G continuity.

§1. General Setting

Consider two bi-variate polynomial patches, F(u,v) and G(r,s), that
intersect along a curve,

C(t) = F(u(t),v(t)) = G(r(t),s(t)) .
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The two patches are said to agree with G¢ continuity if they admit a com-
mon approximating surface of at least degree d that varies “smoothly” along
the intersection curve. (The degree of smoothness that is reasonable for the
variation of the approximating surface is the issue that lies at the heart of the
observations that we make in this paper.)

Two recent surveys of the concepts involved are to be found in [1,2]. We
will be restricting our attention to G! continuity, that is, in which there is a
common linear approximation (tangent plane) at each point of the intersection
curve. Reflecting the material in [1], an analytic requirement that should be
iposed upon the patches is that, at each such point Co = C(to), F and G
adnil a common reparameterization with variables p and ¢,

u:u(p’Q)’ U=v(P,¢I), "=T(P,‘I), and 3=3(P,¢1),

providing Taylor agreement to first order around the parameter values (po, o),
which correspond to t = £,:

F(po,q0) + (p — po) DpF (po, 90) + (g — 90) DyF(po, 90)

= G(po,90) + (p — Po) DpG(po, 90) + (¢ — 90) DgG(po, 0) -

This should hold along the intersection curve, p = p(t), ¢ = ¢(t), in a
neighborhood of ;. From the independence of the functions (p — po) and
(g9 — qo), this is equivalent to asking for D,F(po,q0) = D,G(po,q0) and
D,F(po,90) = DqG(po,qo) to hold. Using the chain rule to reformulated
these equations in terms of u and v, we expect

du ov ar ds
(3_17) DuF+ (ap> DoF = <3P) DG (3p> DG )
to hold as a function of t. An equivalent condition is obtained by considering
. This condition reinforces what we knew from general principles of linear
algebra we can’t have a common approximating tangent plane to to F and
G along C unless the vectors D,F and D,F (respectively D,G and D,G) lie
in the plane defined by D,G and D,G (respectively D,F and D,F).

§2. Smoothness of Variation

For a plane to be tangent to F at a point given by (u(t),v(t)) and tangent
to G at a point given by (r(t), s(t)), we need the unit normals to F and G to
be well-defined and be equal along C(t):

DyF(u(t),v(t)) x DyF(u(t), v(t)) )
1 DuF (u(t), v(t)) x DoF(u(t), v(t))]

t))
)

_ D.G(r(t),s(t)) x Ds;G(r(t), s(
|1D,G(r(t),s(t)) x D.G(r(t),s(
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The degree of complexity possible in the variation of the common approxi-
mating tangent plane is indicated by this. For two intersecting bi-cubics, for
example, C(t) is, in general, a rational function whose numerator and denom-
inator have degrees much higher than cubic (3]. Each of D F and D,F can
therefore have a like complexity, and the cross product of these two functions
can be more complicated still.

In general, (2) suggests that we needn’t expect a common linear approx-
imation to {wo bi-cubics to vary with only low-degree smoothness, much less
the approximation of degree d to two more general bi-variate patches. This
suggests further that (1) might involve coefficient functions %’i for D,F, -g—ﬂ
for D,F, and so on, that reflect the complexity of the partial (ﬂzrivatives of f‘
and G along C(t). Our investigations in this paper start with this motivation
and explore whether one can assume a more complicated variation than cubic
in the approximating tangent plane.

§3. Tensor Product

We will restrict the discussion to two tensor-product Bézier patches that
abut along one of their boundary curves. This permits us to associate, say, the
variable v of F and the variable s of G with the variable ¢ of the intersection
curve (the common boundary). Likewise, the derivatives D,F and D,G will
be co-linear, and they can be represented by, say, D;G. Combining terms in
(1) and rewriting the terms involving partial derivatives of p and ¢ as functions
a, B, and v yields the requirement that

a(t) DyF(1,1) + B(t) D,G(0,t) + 7(t) DyG(0,£) = 0 3)

along the common boundary. This, or some variant of it, is the typical con-
dition to be found in the literature for G! continuity between Bézier patches
(1,2,4,5,6]. This form is to be preferred, because it avoids the rational coeffi-
cients implicit in some of the variants.

We will assume cubics for this presentation, though higher orders will
evidently follow suit. A schematic view of the control vertices for F and G in
this case is given by

No Oo Po Qo Ry S» Ty
N, O, P, Q R, S, T,
N, O; P, Q R; S, T,
N; O3 P; Q3 R; S; T

The patch F is defined by vertices N through Q and the patch G is defined by
vertices Q through T. The common boundary curve is defined by the control
vertices Q; the variable  runs from 0 to 1 along the direction N through
Q; the variable r runs from 0 to 1 along the direction Q through T, and the
variable ¢ runs from 0 at the point Qo to 1 at the point Q3.

With cubsics it is usually observed that D,F(1,t) and D,G(0,t) are cubic
in t, while D;G(0,¢) is quadratic. This has led to the typical assumption, e.g.
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[5], justified by counting degrees, that «(t) is constant, 3(t) is constant, and
~(t) is linear. This implies that the “natural” degree of variation of any
tangent plane to F and G along their common boundary curve would be
limited by the cubic character of (3).

Substituting the (trivial) Bézier representations a(t) = ao, B(t) = Bo,
and v(t) = vo(1 — t) + 7t into (3), using the Bézier representations for
D,F(1,t), D,G(0,t), and D;G(0,t), and expressing the result in Bernstein-
Bézier form yields

AoB§(t) + Ay B (t) + A2 B3 (t) + AsB3(¢) , (4)
where B¢(t) is the i-th Bernstein polynomial of degree d and where
Ao = a0(3Qo ~ 3Po) + Bo(3Ro — 3Qo) + 10(3Q1 — 3Q0) ,

Ay = ap(3Q1 — 3P1) + Fo(3R1 — 3Q1) +70(2Q2 — 2Q1) + 11(Q1 — Qo) ,
Az = a0(3Q2 — 3P2) + Bo(3R2 — 3Q2) + 10(Qs3 — Q2) + 11(2Q:2 — 2Q,) ,
Az = 29(3Q3z — 3P3) + Bo(3R3 — 3Q3) +71(3Qz — 3Q3) .

In order to have this expression equal to zero for 0 < ¢t < 1, the coeflicients A;
must all be zero. These conditions, provide conditions on the control vertices
P, Q, and R necessary to ensure G! continuity with a tangent plane having
variation limited by the cubic nature of (3).

The conditions produced in this manner are too restrictive for practical
applications. Along the shared boundary between F and G, for example, they
require that

ao(Qo — Po) + Bo(Ro — Qo) +7(Q1 — Qo) =0 (5)

and

@o(Qz — P3) + fo(R3 — Q3) + 11(Qs — Qz) =0 (6)

both hold. Since ag and By appear in each of these expressions, this would
appear to require changes at the ¢ = 0 (equation (5)) end of the common
boundary to be reflected in necessary changes at the ¢ = 1 (equation (6))
end. If the two patches under consideration are but two in a line of patches,
this would suggest that changes at one point of the line would propagate -
throughout the entire line. Such non-locality is undesirable.

The usual correction to this, e.g. [5]. is found in taking F and G to be
ol higher degree than cubic. This justifies higher degrees for a, 3, and 7,
and the resulting conditions for G! continuity are more flexible, allowing for
local surface manipulation. The considerations of Section 2, however, provide
us with a motivation for seeing whether there is more flexibility for lower-
degree patches than a tangent plane consistent with a cubic version of (3)
might suggest. Indeed, flexibility becomes evident when one retains the given
degree of the patches but raises the degrees of a, 3, and ~.
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§4. Degree Raising

Let a, b, and ¢ stand for the degrees of a, B, and « respectively. Then the
degree of (3) will be given by the maximum of (3+a), (3+b),and (2+¢). It is
useless to choose a, b, or ¢ so that one of the these expressions is larger than the
other two, since we want the (3) to be identically zero, and we hope to achieve
this by cancelling one of the polynomial terms in (3) off against the other two.
Still, there is wide latitude in the choice. For the sake of presentation, we will
be working with a = 3, b =3, ¢ = 4, which results in a degree 6 expression
for (3), but we have explored all the reasonable combinations in the ranges
0<a<3,0<b6<3,and 0 < ¢ < 4, and the observations we outline below
is representative of all combinations.

The model we followed above in the case a — 0,b=0, c=1 to produce
- (4) is the one to be followed in general. a, §, and v are expressed in Bernstein-
Bézier form, as are the derivatives of F, G. The products of terms in (3) are
brought to Bernstein-Bézier form,

a(t) DJF(1,t) + B(t) D, G(0,t) + () D;G(0, t)

= AoBg(t) + A1 BY(t) +--- ,

and the coefficients A; are equated to zero. The result yields conditions on
the control vertices involving the (unknown) coefficients of o, B, and 4. In
detail for the chosen degrees a, b, and c:

a(t) = aoB3(t) + ay BY () + az B3(t) + a3 B3(t)

B(t) = BoB3(t) + B1 B3 (t) + B, B3(t) + Bs B(t)
v(t) = %0 B3 (t) + 71 B{(t) + 2 Bi(t) + Y3 B3(t) + v4Bi(t)

D.F(1,t) = 3(Qo — Po) B3(t) + 3(Q; — P,)Bi(t)
+3(Qz — P3) B3(t) + 3(Qs — P3) B3(t)

D,G(0,t) = 3(Ro — Qo) B3 (t) + 3(R1 — Q;)B3(t)
+3(R2 — Q2) B3(t) + 3(R3 — Qs) B3(t)

e DiG(0,1) = 3(Qu - Qo) B(1) + 3(Qz — Qu)B(1)

+3(Qs — Q2) B2(t) .

The chief exercise in carrying out the algebra involves replacing products of
Bernstein polynomials by an appropriate Bernstein polynomial of higher order

6, page 57) B™(t)B*(t) = ,‘,, ,, B t™(t). The following condition, taken
: I i)

from the coefficient of BS(t), is typical

3 3 3 3
ao(ng - '5-P2) + ﬂo(gnz - ng)
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1
+’70(3Q3 - %Qz)
Jral(ng - gPl) + ﬂl(gRl — ng)
8 8
+’71(3Q2 - ng)

3 3 3 3
+02(—5-Qo - gPo) + ﬂz(gRo - ng)

6 6
~Qq — — =0
+’72(5 Q 5 Qo)
This can be writlen as a matrix expression,
CM,V

where

C = [a()»ﬂO»'YO,al,ﬂla'Yl, az, 82,72, az, B3,7a, ’74] (7)

V = [POs QO, RO, Pla Qla RI,P21 Q27R2’P3a Q3a R3]T

and the matrix M- is given by

0 0o 0 o0 0 0 -3/5 35 0 0 0 0
0 0 o o0 0 o0 o0 -3/5350 0 0
0 0 o0 o 0 0 0 -1/5 0 0 1/5 0
0 0 o0 -9/5 9/5 0 0 0 0 0 0 0©
0 0O 0 0 -9/59/5 0 0 0 0 0 o
0 o o o -85 0O 0 85 0 0 0 O
~-3/5 3/5 0 0 0o o0 0 0 0 0 0 0
0 -3/53/5 0 0O 0 0 0 0 0 0 0
o -6/5 0 0 6/5 0 0 0 0 0 0 0
0 0 o0 o0 0 o0 o 0O 0 0 0 0
0 o 0 o0 0o 0 o 0O 0 0 0 0
0 0 0 0 0o o0 o 0 0 0 0 O©

) 0o 0 0 o 0 o 0 0 0 0 ol

CM;V must be interpreted as three products in parallel, since each entry
of V is a 3-component vector, e.g. Py = |P§, Py, PZ]. For the chosen degrees,
a = 3,b =3, c =4,yielding a sixth-degree version of (3), we have the products
CMyV ,...,CMsV. This represents 21 vector-matrix-vector products, for
which all being zero will imply that the patches F and G are G! with a
tangent plane that can vary in accord with the sixth-degree character of (3).
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§5. Pragmatics

To take stock of where we are, having chosen degrees a, b, and ¢ for
a(t), B(t), and ~(t) respectively, we have produced matrix conditions of the
form CM;V. The number of these conditions depend on the degree of the
patches and the degree to which (3) has been raised by the choice of the
degrees a, b, and ¢. The 7 conditions being used for the discussion derive
from cubic patches, cubic a and g, and quartic . The column dimension of
the matrices M; derives solely from the degree of the patches. Cubic patches
produce 12 columns for these matrices. The row dimension of the matrices
M; derives solely from the composite of degrees chosen for the coefficients a,
B, and v. For the presentation, the matrices have 13 rows. The matrix entries
are determined purely from the degrees and the properties of the Bernstein
polynomials. The matrices M; are not dependent upon the specific patches,
that is to say upon V, nor upon the polynomials a, #, and 4. A necessary and
suflicient condition for equation (3) to hold for all ¢ is that all these vector-
matrix-vector products should be zero for some choice of the coefficients o fs

9, and 4 of the polynomials a(t), 4(t), and ~(t) respectively.

If (3) does not hold, patches F and G may admit a tangent plane of a
higher-degree variation than is implicit in the degrees of the terms in (3), for
example. (A tangent plane that varies in a manner consistent with a lower-
degree version of (3) will be subsumed by (3).) Moreover, (3) does not rule out
situations for which a(t) = B(t) = v(t) = 0 at some ¢, or for which D.F(1,t),
D,G(0,t), and D;G(0,t) no longer span a 2-dimensional subspace for some
t, that is,

rank [D,F(1,t)|D,G(0,t)|D;:G(0,t)] < 2. (8)

We will assume no singularities and concentrate on an approach for ad-
justing F and G so that (3) holds.

The scale chosen for C and V will be immaterial as far as the conditions
CM;V = 0 are concerned. Theoretically we could normalize these vectors
to suit our convenience. Since we want C and V to be non-trivial, we could
ensure this by insisting that C have unit norm, for example, as well as the z,
Y, and z component vectors in V. In practice, however, we are limited from
normalizing V, since it will arise from some application, will be non-trivial
by the practicalities of that application, and will have a scale imposed by the
nature of the setting. C, on the other hand, is simply the implicit byproduct .
of the existence of a tangent plane of a certain degree of variability. Its specific
coefficients are of no interest and nothing is lost by normalizing them so that
el = 1.

We begin with the optimistic situation: suppose that F and G are given
and are G! consistent with (3) for the chosen degrees @, b, and ¢. Then some
unit, coefficient vector C exists that defines a(t), 4(t), and 4(t) in Bernstein- )
Bézier form such that (3) holds for all t. Finding o, 8, and v is equivalent to
asking for a unit vector C for which CM = 0, where the matrix M is composed
of all products of M; with the z, y, and z component vectors represented by
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\%
M = [MoVE|MoV¥| MoV M V2. ] . (9)

Using the degrees chosen for illustration, a = 3, b = 3, and ¢ = 4, for example,
M has 13 rows and 21 columns.

A C satisfying CM = 0 will exist if and only if M has a left nullspace.
A basis of unit vectors for this nullspace, if it exists, is obtainable from the
SVD decomposition [7,8] of M, '

M = LERT . (10)

In this decomposition, ¥ is a matrix of the same row and column dimensions
as M with zeros in all except the “diagonal” (j, ) positions, and L and R are
square, orthogonal matrices of the appropriate sizes. The diagonal entries of
¥ are the singular values of M. They are the square roots of the eigenvalues
of the smaller of the two matrices MTM and MMT. The number of zero
diagonal entries in £ gives the dimension of the nullspace of M, and the
columns of L that are multiplied by these zeros in forming the product (10)
will constitute a basis for the nullspace. C can be chosen as any one of those
columns, or any linear combination (if more than one such column exists)
with unit norm.

Algorithms for computing the SVD decomposition of any matrix have
been known for several decades. They are readily available {8,9,10], fast,
accurate, and numerically stable.

Thus, if (3) can be made to hold for all ¢ for chosen degrees a, b, and
¢, then we have a mechanism for determining this and explicitly finding all
possible a(t), A(t), and v(t) that will satisfy (3). This, alone, does not provide
an indication of singular situations of the sort mentioned previously, but the
explicit representation for the patch derivatives and the coefficients in (3) are
now available for analysis to determine whether singularities exist.

The pessimistic situation comes next: suppose V is given, the matrix
M is formed, and the SVD decomposition has no zero singular values. Then
either the patches are not G!, or they are G, but this fact cannot be de-
tected because the chosen degrees a, b, and ¢ are too low. In this case we
consider finding C together with a change AV to V so that (3) is satisfied.
A reasonable problem to solve to achieve this is:

minimize ||AV]||

such that ||C']] = 1 (11)
and CM;(V+AV)=0 V1.

Without the normalization condition on C this would be a simple, linearly
constrained, least-squares problem for which economical solution algorithms
exist. Without the normalization, however, the solution is the trivial one: C =
0 and AV = 0. With the normalization included, a non-linear optimization is
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required, and algorithms to accomplish this are costly and relatively difficult
to apply.

We have investigated a method to achieve a C and a change to V that is
suggested by a two-phase, suboptimal approximation to the solution of (11).
In the first phase we find a C of unit norm that achieves the closest possible
values to zero for the products CM;V. In the second phase we find a AV of
smallest possible norm that satisfies

CMi(V +AV)=0 Vi

with the vector C found in the first phase. This works well in practice, as we
indicate in a closing example.
The precise formulation we use for the first-phase problem is

minimize ||CM||

such that ||C|| =1.

Equivalently, we can minimize CMMTCT over the unit vectors C. The op-
timum C is provided by the eigenvector (or eigenvectors) associated with the
smallest eigenvalue of MMT. These are given, equivalently, by the columns
of L in (10) associated with a singular value of smallest magnitude. In the
usual situation, there is only one smallest singular value, corresponding to the
final column of L, and the transpose of that column is taken to be C.

For the second-phase problem, let

CM,
CM,
N = .
and solve
minimize [|AV|| (12)

such that NAV = —-NV

This will always have a solution, since the right-hand side of the equality
constraints lies in the column space of N. In fact, for reasonable choices of -
the degrees a, b, and ¢ associated with the degrees of F and G, the system of
equalities in this problem will be underdetermined. With the presentational
choice of cubic a and 8 and quartic v, the result is a matrix N with 7 rows
and 12 columns. In any event, the solution to (12) is easily obtained from the
SVD of N.

Because N will be underdetermined with reasonable choices for a, b, and
¢, it is often possible to include a small number of additional linear constraints
to (12). Obvious constraints to add, in order to suppress the propagation of a
change at one locality of the patches to another locality, are simple equalities
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of the form AV; = 0, so long as adding such rows to N, and corresponding
elements to —N'V, does not result in a right-hand side that is out of the
column space of the matrix. Since the SVD provides complete information
about the row and column spaces of a matrix, the means for avoiding the
addition of an improper constraint is available.

A practical setting in computer-aided surface design is one in which two
G! patches are adjusted by the movement of a single control vertex, and one
would like a system to adjust some small number of the other control vertices
to return the surface to a G! state. The addition of constraints limiting
changes resulting from the adjustment of a control vertex at one end of the
patches, say around Qg from requiring any movement of the control vertices
al the other end, around Qg, has been possible in all of the examples we have
tried.

§6. Numerical Example

The patches for this example were taken from the data for the surface
of an automobile. The computations were done using the MATLAB system
[11,10] on a DEC VAXStation-2000. The “4” introduces a MATLAB com-
ment, “>>” is MATLAB’s prompt for a command, and most commands shown
relate to MATLAB script files that we have written to carry out the details of
various computational algorithms we have mentioned. Common scale factors
for the elements of arrays in MATLAB are printed separately at the head of
the array. Thus, our example begins

- % Read patches

- >> Cvs

- V=

- 1.0e+03 *

- 5.7209 0.71563 1.1160
- 5.7091 0.7290 1.1164
- 5.6840 0.7585 1.1172
- 6.75612 0.7201 1.0347
- 5.7394 0.7429 1.03561
- 5.7143 0.7723 1.0359
- 5.7305 0.7289 0.8935
- 5.7246 0.7431 0.8939
- 5.7045 0.7911 0.8949
- 5.7230 0.7268 0.8121
- 5.7171 0.7410 0.8124
- 5.6970 0.7890 0.8136
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The arrangement of the array V, which contains V, is

P; Py P§
Q5 Qo QF
R; Ry R§
Py PY PP
Qf @ @Qf
Rf RY R}
ry Py ry
Q QF Q3
R R! Rz
r¢ P! pz
QF QF Q3
R; Ry Ri

and the prefix “1.0e+03 *” indicates that the numbers in the first row are to
be read as ’

- 5720.9 715.3 1116.0

The M; are set up next using the degrees a = 3, b = 3, and ¢ = 4, and the
singular values of the matrix in (8) is computed at a randomly chosen point
on the common patch boundary. The fact that all singular values are non-zero
demonstrates that the vectors D,F, D, G, and D,G are not co-planar at that
point. Hence, the patches are not joined in a G! fashion.

- % Set up M(i) matrices

- >> a3b3c4

- % Check whether patches are Gi
- >> Glverify

- Dsvals =

275.3926
127 .5683
- 0.0524

The matrix M is formed, and its singular values are reported.

- % Get SVD of M(i)=*V matrix

>> finda3b3c4

Msvals =
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- 376.1164
- 331.2835
- 289.4835
- 237 .9959
- 200.5062
- 177.5431
- 166.2289
- 131.9977
- 81.0544
.3501
.0842
.6123
.7793

]
= N o ©

The patches are not joined in a G! fashion, so the singular values of M are all
non-zero. There is no C that will produce CMV = 0. We take C to be the
13-th column of L, the column associated with the smallest singular value.
The order of the entries in the array C is as indicated in (7).

% Set C to column of left orthogonal matrix in SVD

>> C=L(:,13)
- c=

- 0.3403
- -0.1594
- 0.0000
- 0.3288
- -0.1518
- -0.0001
- 0.4360
- -0.1356
- -0.0002
- 0.6914
- -0.2029
- 0.0002
- 0.0000

Next the matrix N is formed and (12) is solved. Since the constraint equations,
NAV = —NV, form an underdetermined systemn. solving these equations via
the SVD for N yields a vector AV that minimizes IAV] from among all
possible solutions of the equation system.

- % Repair V’s without imposing constraints

- >> rep
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DELV =

- 0 0 0
- 7.2243 -2.6486 -0.1005
- 22.6509 -8.3072 -0.3189
- 0 0 0
- 7.3475 -3.2176 -0.0662
- 22.8764 -9.7669 -0.1445b
- 0 0 )

- 2.0676 -4.7062 0.1862
- 9.7661 -22.3312 0.6939
- 0 0 0
- 0.0212 -0.0508 0.0032
- 0 0 0

The correction to V, which is on the order of 10~2 times the magnitude of the
components of V, is added to V and the result is checked for the co-planarity
of D,F, D,G, and D;G at a random point.

- % Check if new V’s produce G1 patches

- >> Giverify

- Dsvals =

288.6854
- 140.6768
- 0.0000

The patches are now in a G! state. The point Py is changed by a random
amount.

- % Change PO (upper left twist point)

- >> fudge={[600*(rand-0.5) ,500*(rand-0.5),500(rand-0.5)]
- fudge =

- 40.6570 -166.6412 -73.2498

- >> V(1,:)=V(1,:)+fudge

- vV =

- 1.0e+03 *

- 5.7615 0.5486 1.0428
- 6.7163 0.7264 1.1163
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- 5.7066 0.7502 1.1169
- 5.7612 0.7291 1.0347
- 5.7468 0.7397 1.0350
- 5.7372 0.7626 1.0358
- 5.7305 0.7289 0.8935
- 5.7267 0.7384 0.8940
- 5.7143 0.7688 0.8956
- 5.7230 0.7268 0.8121
- 6.7171 0.7409 0.8124
- 5.6970 0.7890 0.8135

The problem (12) is solved with the addition of 4 further equations that
impose the conditions that Pg, P3, Q3, and R, must remain fixed. The
adjustment to V largely moves Qo and R, to follow the move of Py with
minor adjustments to the interior control vertices.

- % Repair V’s with current C
- % Use constraints so that PO and P3,Q3,R3 remain fixed

- >> repair
- DELV =

- 0.0000 -0.0000 0.0000
- 40.5691 -166.2806 -73.0913
- 40.3791 -165.5020 -72.7490
- 0 0 0

0.0122 -0.0502 -0.0221
- 0.0662 -0.2673 -0.1175

0.0374 -0.1632 -0.0673
- -0.0000 0.0000  -0.0000
- -0.1274 0.5220 0.2294
- 0.0000 0.0000 -0.0000
- -0.0000 0.0000 0.0000
- -0.0000 0.0000 0.0000

Finally, the resulting change to V is checked with respect to a random point
on the common boundary.

- % Check if G1
- >> Glverify

- Dsvals =

- 382.5737

- 45.7186
- 0.0000
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F and G now prove to be G!.
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