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ABSTRACT

Color correction is an essential and computationally expenswe
step in producing realistic hardcopy. Tri-linear interpolation is the
mainstay of commercial color correction techniques now receiving
academic attention. We review the method and the creation of
the empirical data which underpins the model. Analysis of the
technique reveals extensions which provide greater precision
without  significantly altering the underlying hardware
architecture.
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Overview

Hardcopy devices relying on subtractive printing colors (Cyan Magenta
Yellow) show pronounced color shifts as compared to the idealized model,
which regard CMY as the direct complements of RGB (Red Green Blue). Color
correction (termed CC for brevity) is the process by which presswork is pre-
corrected to account for this effect. Technically speaking, CC inverts the
“Color Transfer Function’” which describes the appearance of printed media as
a function of input values. Historical CC employs film negatives. Such ‘““mask
making’’ admits only simple linear models, but is nonetheless rapid — film is
inherently parallelt. Digital CC holds the promise of high accuracy and
flexibility in digital printers, and has additional value in correcting traditional
presswork. To be practical, digital CC must rival its analog counterpart in
speed without making concessions to precision.

Our goal has been to image RGB signals onto film and produce output with
identical chromaticity coordinates under an arbitrary illuminant (Figure 1).
The interpolation algorithm used has general application for CC in general.
We review the problem and its solution, and close with a discussion of the
specifics of interpolation techniques.

Color Correction Film Recording Spectroradiometer

REIE CMY (art) @ RGB

Fig. 1 — Film Color Correction

Problem Background

In the broadest terms, color correction requires the definition of a function
which maps from an ideal “color space” of specification into a device space of
ink prescription. The input space is three dimensional, based on the tristimulus
model of the eye, with specification given in RGB values or XYZ chromaticity
coordinates. The output space has a dimension of three or four, corresponding
to the axes of control on a production press (CMY print stations, plus optional
black).

Monochromatic correction uses a Tone Reproduction Curve (TRC) to depict
the output density as a function of the input media. In the digital setting, the
precomputed inverse of this curve is used to remove non-linearities and to
provide the operator with controls for contrast or highlights. By extension, a

+ We are fortunate that the imaging of film is a reversal process, as “‘negatives” allow the
realization of both positive and negative working media by using an even or odd number
of photographic steps.
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“3-D TRC” characterizes the overall color printing function. It is not separable
into three 1-D TRC’s because ink impurities give rise to channel “crosstalk’.
Moreover, it cannot be well-modeled under a 3-D change of basis (as film-
based CC does), because the coupling is not linear, owing to effects such as
reflection and scattering at the first and subsequent ink layers.

Practical digital CC must operate in real-time on large datasets. A sample
scene at high-definition video (HDTV) resolution may contain one million
samples and grows by the square of the device resolution. A brute-force table
look-up implementation (requiring no on-line calculation) requires fifty (3x224)
megabytes using modest twenty-four bit color. Moreover, the creation of the
dataset is far harder than its storage or transmission. However, this empirical
model is exact.

Analytical vs Table-based Models

Scientific practice suggests replacing any empirically constructed discrete table
with an analytical model. The latter would not only ‘‘capture the essence” of
the print function at arbitrary precision, but would admit algebraic, exploratory
examination of the function’s behavior. In fact, neither approach fully
supplants the other, as each model provides means of representation
appropriate in their proper settings.

Empirical models are essential. Sampling of the print function is necessary to
create a dataset of sufficient richness to underpin any subsequent model.
Moreover, the expense in computing the inverse print function (used to
precorrect an image) is so expensive as to suggest table look-up techniques.
Thus, any analytical model characterizing a printer’s forward 3-D TRC will
originally be derived from empirical samples and will be eventually reduced to a
tabular form, thereby representing the inverse 3-D TRC.

Therefore, our present research concentrates on the conversion of empirical
data into an interpolation table and defers any detailed analysis of the actual
behavior of the print function. In the absence of any a priori knowledge of this
forward function, approximation theory prescribes error minimizing
methodologies for the tasks of sampling and data reduction. Of course, any
analytic characterization of the forward function may be immediately
retrofitted to these interpolation techniques to further increase accuracy.

Historical Methods

This approach represents a departure from traditional techniques, which are
strongly parameter based. For instance, film-based mask making presupposes a
linear 3x3 matrix model, and methodologies for the derivation of the nine
matrix elements now outlive the use of film in performing the intermediate
matrix algebra. The model by Necugebauer [Poll5S] assumes that non-
linearities necessarily exist during ink overlap, and requires eight parameters (-
C MY CM CY MY CMY) for correction of three-color presswork to characterize all
overlap combinations. A simple overlap model is then invoked to provide
non-linear interpolation of the forward print function.

Unfortunately, the inverse function cannot be derived analytically, and the
claims “high yellow purity”’ or ‘“magenta 100% transparent in red” (i.e., fewer
coupling terms) are typically invoked to allow an analytical solution by non-
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linear back substitution. Experts [Yule67] point out that the approach is in
general not accurate for predicting color, but maintains linear accuracy for
small color differences. Other approaches [Clap61] include the addition of
mid-range print samples under a least-squares model, thereby increasing both
the size of the sample space (8x3x3=27 parameters) and accuracy. These
models should not be viewed as inadequate in their overlap formulae, but
rather as successful models whose precision is limited by their number of inking
parameters. This suggests that the accuracy of any print model will be
significantly increased if the model admits parameters which characterize the
function behavior at regions of importance (such as along the grey axis). As
the number of parameters grows the complexity of the ink interaction formula
(or any interpolating basis functions) eventually collapse to linear models, and
emphasis shifts to the samples themselves, hence the term ‘‘table driven”.

Spatial Mapping

Non-analytic models require a table-driven solution scheme. A general layout
appears in Figure 2. There are three basic steps: First, the n-dimensional input
space is decomposed to produce a reduced set of data now suitable for table
indexing. Second, the table maps input onto output values. Third, a
reintegration step reconstructs the output value from the table data with
optional parameters taken directly from step one. For instance, linear solutions
under a change of basis employ the familiar formulation Vv™*TV in which T is the
transformation and where V! and V represent the change of basis required to
diagonalize T. Algorithmically, the first and third basis operations transform
n-D space into n 1-D spaces and back, thereby allowing the inner diagonal step
to operate on independent tables, reducing storage size from D® to nD'.

N Map .
Decompos > Reintegratg

(residual)

Fig. 2 — Table Based Function Mapping

Tri-linear Color Interpolation

The choice of a linear model is largely because of hardware cost. A higher-
order piccewise polynomial operating in 3-D not only increases the amount of
hardware required, but requires qualitative changes as well. Given a typical
range of ten to twenty samples across any one color axis and a tri-cubic
interpolation scheme requiring four neighbors, degenerate boundary cases
would arise often, requiring extensive conditional logic.

As an interpolation model, the linear interpolation scheme approximates the
print function in three distinct steps, providing an output value which cannot be
derived from the input by either linear or separable techniques. Interpolation
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in general with specific reference to linear models are reviewed in the second
appendix.

The first two steps yield an exact 3-D mapping of color specifications into
printer specifications, performed at limited spatial precision. The mapping is
implemented as a look-up table derived empirically from printer test strips.
Strips are created as the Cartesian product of three step-wise ramps on the three
input axes (RGB). For a typical 16x16x16 array, this yields a 4096 element
table with chromaticity values calculated using a spectroradiometer.

Data reduction of this size is beyond the capacity or accuracy of a human
operator and requires automation. Moreover, the speed gains thereby won
further increase the accuracy of the sample set. Smaller variations in bulb age,
ambient temperature and humidity yield more stability in the illuminator,
electronics and film, respectively. The hardware procedure is described in the
first appendix.

The data created provide an exact output description as a function of the
printer specification at select points (it samples the device 3-D TRC). Using a
variety of techniques, an inverse table is constructed off-line, which now
provides a prescription (printer inking value) as a function of color description.

The second step linearly interpolates the spatially coarse output values to
provide a continuous function. Specifically, the output value must remain
unique (single-valued) or the CC will not be well-behaved. The interpolation
blends the fractional values of eight adjacent output points (two bracketing
neighbors on three axes) as a function of the fractional distances of their
corresponding inputs. Algebraic analysis shows that this operation provides a
unique value independent of axis order if and only if the input data form a
orthogonal product. This explains our sampling methodology. In tri-linear
interpolation, arbitrary point sampling of the printer 3-D TRC cannot be used.

Inversion Strategies

In practice, a model print function is fit to the printer strips. The inverse of
this function then provides the desired precorrection model. The inverse is not
usually single-valued because of printer non-linearities, but the device gamut
may then be restricted to regions of monotonicity.

Because the inverse function is generated off-line, care may be taken in
insuring that it is well-behaved. Common practice is to built an inverse table of
uniform steps by locating ordinate values in the model close to the target
abscissa values, by applying nearest neighbor searches on the input dataset to
find representative function values (Figure 3a). Finally, an iterative technique
is applied to force F(I(x))=x, where F(x) is the model print function and
I(x) emulates the tri-linear inversion performed by the CC hardware. The
implicit assumption in this formula is that the hardware corrector will then
reconstruct exact stimulus values when fed color coordinates which match test
strip values exactly. There are two faults with this. First, exact matching of
select print values is not guaranteed by the method. Second, this is not
desirable.
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sampled TRC interpolated TRC inverse TRC

T ] T

Fig. 3 — Print Function Interpolation

Inversion Shortcomings

First, should the test strip values not fall near the sampling mesh to be used in
constructing the inverse, then they will not appear in the correction table and
the process of linear interpolation will degrade them. This is shown in Figure
3b. The print strip data (shown by “x”) are not in proximity to the uniform
sampling across the ordinate used in finding the inverse, giving rise to a
correction table which has been unnecessarily smoothed. For purposes of
illustration, the inverse function I (x) stored in the corrector has been drawn in
- inverted form to show its divergence from the linear model of the printer
function, taken from test strips. The accuracy of I(x) increases should ‘“x”
and “‘0” happen to coincide.

Second, approximation theory shows that it is undesirable for the corrector to
reconstruct exact ink prescriptions at points of known printer response. More
generally, the discrete samples within the correction table should not be exact
values of the inverse printer function. Because the ensuing tri-linear
interpolation only approximates a high-order function with an error that can be
derived analytically, the recorded table values might be altered to provide a
minimized least-squares error across the interpolation, yet not lie precisely on
the function. Figure 4a shows a piecewise linear approximation to the parabolic
curve y=x2, which is poorly approximated by segments joining successive points
lying exactly on the parabola, because that conic is always concave from above.
Part 4b dithers the point ordinates so that segments straddle the parabola,
giving a least-squares fit.

Inversion Improvements

The theory of piecewise linear interpolation is rich with literature [IEEES85]
and certain techniques fit comfortably with our implementation. Direct
application of any method is impeded by two obstacles. First, not all models
generalize to the 3-D setting. Second, the definition of a suitable metric for
“closeness”” must consider the aesthetics of appearance, which are difficult to
model. For instance, a color deviation moving from pink across neutral grey to
pale blue has adverse effects on the subjective appearance of skin tones, but
might nonetheless be only a typical deviation of value when viewed in the LUV
spacet.

+ In this color space a displacement of unit distance corresponds to an approximately uni-
form change in perceptual chromaticity.
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Simple Interpolation Adjust Ordinate Adjust Abscissa

Fig. 4 — Interpolation Fixes

Finally, we may dispense entirely with uniform sampling in the creation of the
print model, and thereby provide a better function to be inverted. This
suggests additional sampling in regions of known non-linearity or strong local
gradient. Although this burdens creation of the correction table, the operation
is nonetheless done off-line, thus allowing for more advanced interpolation
techniques. This is also an excellent place to retrofit any analytical printer
model.

Failing this, there is still room for significant improvement. We consider the
unknown print function a polynomial of vanishing high-order terms. In this
setting, approximation theory prescribes the idealized location of the sample
abscissae to best fit the data. For instance, choosing the metric
min( | f(x)-a(x) | ) in which the approximation a(x) on f(x) is of minimal
absolute deviation yields Chebyshev polynomials, which prescribe sample points
at non-uniform locations. Thus, we may provide a tighter fit without any a
priori knowledge of the print function. An analogous technique is familiar in
optics — a lens with ‘““geometric” accuracy focusses rays through the edge (1.0
radial zone) to a common paraxial focus. Higher order accuracy is best
achieved by choosing a matching focus for rays through the 0.7071 zone of the
lens, while making only minimal assumptions about the underlying aberration
polynomial; .

Hardware Architecture

At run-time, the step one quantization of the input color signal into principle
table indices and distance residuals avoids any division or remainder thus: for
tables whose lengths are powers of two, the division reduces to software shifts
and masks. In hardware, this further reduces to simple wiring of the channel
bits as they enter the interpolation unit. A 1-D version appears in Figure 5,
which additionally shows the hardware blending module. In 3-D, for any given

1 Longitudinal spherical aberration is symmetric about the axis and higher-order terms are
assumed to vanish, yielding the truncated polynomial: LA(Y) =ag+a,Y3+2,Y%... in which

the conditions of paraxial and meridional focus give LA (0) =0+ a;=0; LA(1) =0~ a,=-a,.
Differentiating and equating to zero, we find the zone of greatest aberration at
LA’ (Y)=2a,Y-4a,Y%=0; or Y=V1/2
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sample point, a 2x2x2 bracketing set of cubelets provides coefficients to an
interpolation tree, built by cascading the blending modules, eventually
providing the interpolated output (Figure 6 — one output channel shown). A
“vector processor” comprised of seven multipliers allows for the parallel
blending of the elements, taken pairwise in three steps, for each output
channel.

.................

Fig. 5 — Linear Interpolation
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Fig. 6 — Tri-Linear Interpolation

Hardware Extensions - Sampling Strategies

Careful analysis of the assumptions often implicit in tri-linear CC show that
common hardware practice is too limiting. For instance, placement of input
samples on a Cartesian grid does not mandate uniform spacing. The lattice
may be made rectangular. Nor must the lattice cells be similar. Generally, we
may slice the color space into a set of dissimilar rectangular volumes by using a
set of cutting planes normal to each coordinate axis placed an arbitrary distance
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from the origin. Although we cannot control any one edge length without
displacing an entire plane, the technique nonetheless has wide application.

First, techniques resembling the Chebyshev method described earlier may be
employed to maximize goodness of fit of the inverse printer function,
independent of any knowledge of the function’s behavior (Figure 7a). More
generally, table values may concentrate on regions of low linearity or large
gradient, thus “‘pinning down” the function in regions of interest. A technique
borrowed from computer graphics produces a small Cartesian edge set from
large datasets while maximizing goodness of fit. In this setting the inputs are
images of high precision pixels and the output is a reduced set of representative
pixels used to approximate the input. The Cartesian output (discrete intensities
for each RGB channel) is then loaded into the hardware color look-up table for
use on framebuffers of limited pixel precision [Heck82].
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Fig. 7 — Color Cube Allocation

Alternately, we may choose to trace the exact location of one line through the
body diagonal of the color space, by recording the locations of this line’s
vertices in the edge lengths, thus guaranteeing that any vertices’ coordinate will
coincide with sample location (Figure 7b). This approach foregoes any general
goodness of fit for the entire dataset in favor of tracking one path along the
body diagonal of the color cube — most notably the grey axis, an important
capability.

Proper grey balance is essential to quality CC. Both achromaticity and high
linearity must be maintained. The latter is termed “END” for equivalent
neutral density and is a subject of much study [Evan53]. The merit of good
grey balance is also evident in production hardware. For example, some
commercial scanners [Cros88] handle CC transformations near the grey axis as
a special case to preserve achromaticity but in a hybridizing fashion must then
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blend these values with those formed in the general case, or color
discontinuities will appear for outputs departing from grey. In contrast, our
approach provides implicit grey balance.

Hardware Upgrades

In our implementation, this change involves a refinement to step one of the
interpolator. The straight “bit-routing” is replaced by a look-up function block
that allows for non-uniform indexing into the correction table. This allows the
nearest neighbor cubelets to be located despite the non-constant offsets of
cutting planes. The correction mechanism of step two proceeds as before. The
interpolation in step three must now introduce a division to normalize the
blender outputs by the non-constant edge lengths (see also the interpolation
equations at the end).

Any division hardware may be removed by using a “step 4” table look-up
technique driven by the interpolator output. Because their are a maximum of
forty-eight distinct edge lengths, (less with the Chebyshev technique), we
provide a precomputed scaling table for each potential edge size. For typical
eight-bit input data this totals 48x2°=16K bytes, roughly the size of the
correction table itself. As the new look-up hardware ‘‘brackets’ the more
familiar interpolation unit, the task of upgrading conventional CC architectures
is straightforward. An example appears in Figure 8.

.....................................................................

Decompose  Map: Blend: :Normalize

DT e D T 2

Fig. 8 — Hardware Extensions

Future Work

Various sampling strategies may be used in forming the forward model. This
include tracking of grey axis migration or other areas sensitive to change
because of variations in film sensitivity or dye stability. The forward function
might be fitted with a higher order interpolator with local behavior suitably
modified in unusual regions. Splines are a natural choice [Hou78].

The inverse (table) model allows “fine-tuning” at run-time by an operator. We
envision controls which provide an expert with local control of color while not
otherwise altering the image. Such controls allow for large color shifts in local
regions, while maintaining both invariance in remote regions and overall
functional continuity. Simply put, we want knobs of the type “shift bluish
highlights to reddish”. This approach to color mapping is in keeping with



Algorithms for Fast Color Correction 11

current research, which regards the color space as containing bounded regions
of invariant perceptual color groups [Boyn87] — the grey axis is an example of
such a boundary. Here the system is correctly seen as a parameter-based model
of high degree. It is not yet known how to define a small set of (perceptually)
orthogonal controls over the table values/parameters.

Summary

The tri-linear method is most often used in the practice of digital color
corrrection. We have shown sampling techniques requiring no changes to
typical underlying hardware which may be used to increase the algorithm’s
precision. Further, we have prescribed simple hardware modifications which
further increase accuracy and open the door to new techniques, which are
topics of on-going research. Though presented here as a unit for the color
correction of film or presswork given RGB signals, a generalized 3-D color
transformation unit and supporting theory have widespread application in the
field of digital imaging and reprographics.
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Appendix A — Hardware Procedure

Materials

Our first samples were a 64x64 color mosaic recorded on 8*x10"
Ekatachrome 100 Professional transparency film, provided by Pthalo Systems of
Burnaby, British Columbia. The data was sampled in step-and-repeat fashion
using a custom-built stage under software control; The mosaic cell was 3mm
square, with an absolute table postioning accuracy of 10x. Illumination was by
a calibrated Quartz-Iodide lamp driven from a 12vDC solid-state supply.

The experiment was run on-site at the Canadian National Research Council
(CNRC) who collaborated on the project and additionally provided the custom
spectroradiometer. The latter consisted of a solid-state detector serving as a
‘“data back” to an Olympus 35mm camera “front end”, in which the reflex
mirror was left intact, allowing for critical focussing and positioning by the
operator. The camera film plane was replaced by an aperture slit which passed
rays through a diffraction grating. The first-order beam was then imaged onto a
linear photo-diode array, used to integrate photon flux over successive readout
cycles.

Production Runs

The suite of digitizing software was written on-site by the author. The principle
program allowed the unattended transcription of an entire dataset, created as
follows: for each sample, the stage is placed, allowed to settle, the sensor
contents flushed (lacking electronic control of the camera shutter, the array
integrates during table motion) and the next sample taken. Each mosaic is
sampled twenty-four times, thereby forming eight spectra at three spatial
locations (center, +50u offset, hence by two slit widths). At each position,
these eight spectra were averaged. This technique improves the device signal-
to-noise _ratio by the square-root of the number of samples, or by
6log,V8 = (6)(.5)(3) = 9dB, which represents about 1.6 bits of
additional precision. As a simple estimate of spectral signal level, a peak level
is recorded at each location, and the averaged spectra for the spatial group with
median peak value then taken as representative. This removes any ‘‘shot”
noise [Huan81] caused by film scratches, dust or hardware glitch.

Finally, a set of dark current measurements is taken both before and after the
run to provide a reference level for the data. The uncorrected data consists of
five hundred twelve samples at 1nm spacing between the 350nm and 850nm
range with twelve bit precision. Each bin is encoded as two consecutive
printable ASCII characters (six bits per character yields a sixty-four element
character set) and then stored externally.

The overall operation requires roughly 4.5 seconds per tile, with time shared
equally between table motion (including vibration settling and sensor flush) and
sampling (including transfer to the host, subsequent arithmetic processing and
hard disk transfer). A fast table slew operation speeds the stage return across
rows. Disk writes are not concurrent with table motion owing to PC
architecture, costing some potential savings. This might be recouped either
with an OS supporting I/O double-buffering or by the with the addition of a
“ram-disk” of four megabytes, thereby halving the total sampling time.
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Appendix B — Linear Interpolation

Interpolation models are routinely used to fit continous functions, such as
topographical maps or isotherms to sparse sample sets, such as elevations or
reported tempertures. In cases where the data is stable (geodetics and color
correction, but not the weather!) a “field check” providing new data can be
used to verify the accuracy of an interpolation model.

The models fall into two classes [Davi87], based on sampling strategies. The
regular models require a set of samples taken across a rectangular grid or mesh,
simplifying the reduction operation of step one. The irregular models allow for
arbitrary sample placement, requiring that step one employ techniques of
unique triangularization to find near neighbors. Though more expensive, the
latter provides better treament of discontinuity across neighborhood boundaries.

Use of Linear Interpolation

The linear interpolation model is the simplest known (we ignore the “‘constant”’
interpolator which merely returns the nearest neighbor of any point, i.e. step
three is degenerate). Linear interpolation in color image processing is a
standard technique. Their specific use in digital CC was outlined in almost
visionary fashion two decades ago [Yule67b], and are now commonly found in
production hardware. The technique has been recently employed by collegues
in an experimental table-driven CC system [Ston86] used for gamut mapping.

In general, a linear interpolator can be made arbitrarly accurate given a
sufficiently rich dataset. This is a consequence of approximation theory, which
states that a piecewise linear approximation to a continuous function becomes
increasingly accurate with decreasing interval size (in our case converging
exactly when we have characterized the color of all potential halftone print
patterns). Such results are not necessarity intuitive. For example, an exact fit
of n points by using a n-1 degree polynomial of n coefficients oscillates
between arbitrary fixed interpolation points, with an average error [Morr83]
that grows with increasing order. In practice, interpolators most often employ
polynomials of degrees between one (linear) and three (cubic); degrees above
five are virtually unknown.

Linear Interpolation — Specifics

In general, linear interpolation provides an approximation a(x) to the function
f (x) for some point x bracketed by the table entries x, and x, (x,<x<x,). The

fractional distances between abcissae are used to blend the ordinate values in
direct linear proportion:

XX X—X;
a(x) = [ ]f(x1)+[ }f(xr)

Xr—Xy

xr xl
Note that the blending coefficients become {11, [0] for x = x; and [0], [1]
for x=x_.

In factored form, this is written as:
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1

a(x)= [Cxp—x) £ (%) + (x-%x) £ (%) ]
X=X
<or>
f(x,)-1(xy) . X (xy)~x,f (x,)
Xr—Xl X Xr—Xl

The first is the n-point Lagrangian interpolation formula (n=2), the second the
Newtonian — here the well-known f (x)=ax+b slope/intercept equation. The
latter reduces to one the number of multiplications, but when evaluated using
limited integer precision can give rise to discontinuities at the “seams” occuring
at the end of each range. More precisely, a(x) at x = x, and at x = x, are

not identical, though the values x, and x, match, as the discontinuity is

approached from either side. This can lead to “false contouring” as an artifact
of round-off on hardware with insufficient integer precision. This yields a
plausable explanation for the appearance of minute contouring present on
certain systems [Mda88].

In typical applications, neighboring abcissa points are placed at constant step
size making the (1/xz-x.) term constant. Treated as a unit distance, we

obtain the more familiar blending equation:
a(x) = f(x) Q-x)+f(x.) (x)

In higher dimensions, piecewise linear interpolation continues to provide first
order continuity only, forming cusps where neighboring patches join. In
general, an n-D linear interpolation scheme begins with 2” neighbors bounding
a point in the n-cube, which are grouped pairwise along any axis. A 1-D
blending operation on each pair halves the remaining data. The procedure is
repeated, eventually reducing to one interpolated value. Simple symmetry (and
close study) show that the result is unique independent of the order in which
axes are chosen. This is characteristic of the mesh-sampled regular
interpolation technques.
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