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ABSTRACT

The Resident Database Manager (RDM) is a software tool set for applica-
tions that manipulate memory-resident databases which is currently under
development in the multimedia laboratory of the University of Waterloo. At
present, the tool set consists of two compilers. The first produces access and
representation code in a language called PDM from source that specifies the
organization of data, and the manner in which it is accessed and changed. The
input source for this compiler is expressed in a language called LDM. PDM and
LDM are acronyms for Physical Data Model and Logical Data Model respec-
tively. Output from this first compiler can be input to a second compiler,
together with applications written in an extended C language called C/DB.
C/DB has additional language constructs that permit the direct use of data
access specifications written in LDM. The result of this second compiler is pure
C code that can then be compiled with a standard C compiler.

The first section begins with an overview of LDM, and then illustrates its
use in implementing a reachability algorithm for directed graphs. Section 1 con-
cludes with a summary of limitations existing on the present tool set. The
remalning two sections define the LDM language and the extensions to C in
C/DB respectively.

1. INTRODUCTION

1.1. Overview

Almost any software system will have components that access and update information residing
in main-memory. For example, a language compiler has procedures to maintain the so-called
symbol table, which is essentially a memory-resident database of parsed source code, intermedi-
ate code, and so on. This manual is about a software tool set that helps with the development
of such components in a way similar to how Yacc, for example, helps with the development of
other components responsible for parsing.

This research was supported in part by the Natural Sciences and Engineering Research Council of Canada,
Bell-Northern Research Ltd., and the University of Waterloo.
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The tool set presently consists of two compilers, and is called RDM, an acronym for
Resident Database Manager. Input to the first compiler is a list of specifications in an object-
oriented database language called LDM, another acronym for Logical Data Model. Most specifi-
cations are an instance of one of four sublanguages that characterize four categories of informa-
tion about a database. Their main features are as follows:

) A data definition sublanguage (DDL) is used to describe the logical organization of data.
The DDL manifests a data model that generalizes the relational model in two ways. First,
the notions of relation and domain are combined into a notion of class by introducing sur-
rogate keys for tuples, and by allowing attributes to be tuple-valued. Second, classes can
be organized in a generalization taxonomy, whereby more specialized classes will automati-
cally inherit attributes of more general classes. The taxonomy is established by declaring
any number of immediate superclasses for each class (LDM supports so-called multiple
inheritance).

e A data manipulation sublanguage (DML) is used to describe how the data is used. Data
access requests are expressed in the query language component of the DML, while data
update requests are expressed in another transaction language component. The query
language is a SQL-like language that has been generalized for access to classes. The tran-
saction language allows the user to specify simple combinations of update operations on the
database. One operation allows the user to change the identity of an object (effectively
changing its type).

e A data statistics language (DSL) is used to specify statistical information about a database.
Using the DSL, a user can supply estimates of the number of objects in a class, how often a
query or transaction is invoked, the relative cost of space and time, and so on. The statist-
ical information is used by the component of the compiler responsible for performance
prediction.

e A storage definition language (SDL) can be used to override some of the decisions made by
the compiler on internal encoding of data. In particular, a user can specify a selection of
the indices to be maintained in order to support searching within the database, and a selec-
tion of storage managers for managing the space used by objects.

Output from the first compiler is access and representation code in a language called PDM
(for Physical Data Model). PDM code can then be input to the second compiler along with
applications written in an extended C language called C/DB. C/DB has additional language
constructs that permit the direct use of data access specifications originally written in LDM.
The result of this second compiler is pure C code that can then be compiled with a standard C
compiler.

Any number of C/DB source files can access and update a common database by including
the same PDM source file, and then by linking their object code files. Also, any number of dif-
ferent databases can be accessed by a single C/DB source file. Thus a rudimentary capability
exists for so-called separate compilation; that is, an ability to simultaneously develop separate
parts of a software system. A summary of overall dataflow for the tool set is given in Figure 1.
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Figure 1. Basic Dataflow in RDM

1.2. Example

Assume a company is using RDM to develop a software system called GraphLab, which will con-
sist of a number of programs for manipulating graphs. The specification for one of the pro-
grams, to be called FaindRYV, is as follows:

Functional Overview — FindRV inputs a directed graph G together with a dis-
tinguished start vertex v. Output is a list of all vertices in G reachable from wv.

Input/Output Format — Each vertex is labelled with a unique identifier consisting
of a non-blank sequence of up to twenty characters. The first line of input is the
label I(v) of the start vertex v. Each remaining line of input consists of a pair of iden-
tifiers "Idy Id," representing a new arc u—v in G where l(u)=1Id; and l(v)=1Id;. No
two lines have the same pair of identifiers. Output is a list of identifiers on separate
lines.

Performance Requirements — No limitations should exist on the size of G, beyond
those imposed by the size of main memory. Running time should be at most
O(|A|log |A]) where |A]is the number arcs in G.

Also assume that architectural design for FindRV has resulted in the selection of a marking
algorithm for finding the reachable vertices. The following is a description of the algorithm by
Barstow [1]:

Algorithmic Details — Mark the start vertex v as a boundary vertex and mark the
rest of the vertices in G as unexplored. If there are any vertices marked as boundary
vertices, select one, mark it as explored, and mark each of its unexplored successors
as a boundary vertex. Repeat until there are no more boundary vertices. The set of
vertices marked as explored is the desired set of reachable vertices.
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The LDM specifications and C/DB source code that implement FindRV are given in Fig-
ures 2 and 3 respectively. In the former case, keywords are given in a boldface type. Also, all
lines have been numbered to help with their referral in the following discussion.

Almost all the LDM specifications fall in one of the four categories of information outlined
above. The only exception is the schema statement in line 1, which serves to name the specifi-
cations that follow. (There is further significance to the statement that will become clear during
our discussion of the C/DB source.) The DDL source, lines 5 to 16, indicates that vertices and
arcs in G are represented as instances of the classes Vertex and Arc respectively. Each vertex
will have two property values encoding its label and mark (the latter indicating its explored
status), and each arc will also have two property values encoding its source and destination ver-
tices. The constraints (lines 6 and 13) imply that each vertex has a unique label, and that no
two arcs have the same source and destination vertices.

1. schema FindRV 37. insert M

2. 38. return M

3. % DDL Specification 39.

4. 40. transaction ChgMark given V, M from Vertex, Mark
5. class Vertex properties Label, Mark 41. VMark:=M

6. constraints Id determined by Label 42,

7. 43. transaction NewVertex given L, M from Label, Mark
8. property Label on String maxlen 20 44. declare V from Vertex

9. 45. Insert V (V.Label := L; V.Mark := M)

10. class Mark 46. returnV

11. 47.

12.  class Arc propertles FromVertex, ToVertex 48. transaction NewArc

13.  constraints Id determined by FromVertex, ToVertex | 49. given VFrom, VTo from Vertex, Vertex

14. 50. declare A from Arc

15. property FromVertex on Vertex 61. Insert A (A.FromVertex := VFrom; A.ToVertex := VTo)
16. property ToVertex on Vertex 52.

17. 53. 9% DSL Specification

18. % DML Specification 54.

19. 55. size Vertex 100

20. query VerticesWithMark given M from Mark 56. slze Mark 3

21. select V from Vertex where V.Mark = M 57. slze Arc 200

22. 58.

23. query VertexWithMark given M from Mark 59. % SDL Specification

24. select one V from Vertex where V.Mark = M 60.

25. 61. index VertexList on Vertex

26. query VertexWithLabel given L from Label 62. of type distributed list on Mark

27. select one V from Vertex where V.Label =L 63.

28. 64. 1index VertexTree on Vertex

29. query ConnectedVertices 65. of type binary tree ordered by Label asc

30. glven VFrom, M from Vertex, Mark 66.

31. select VTo from Vertex 67. 1index ArcList on Arc

32. where VTo.Mark = M and 68. of type distributed list on FromVertex

33. Arc {VFrom as FromVertex, VTo as ToVertex} 69.

34. 70. store VertexStore of type dynamlic storing Vertex
35. transaction NewMark 71. store ArcStore of type dynamic storing Arc

36. declare M from Mark 72. store MarkStore of type static 3 storing Mark

Figure 2. LDM Source for FindRV
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The DML source lists specifications for four queries and four transactions, which altogether
constitute the database access and update requirements of FindRV. Note that each query and
transaction is named. An outline of their definitions follows.

VerticesWithMark
(lines 20 and 21) The first query accepts an instance of the Mark class as input, and
returns all vertices with this instance as the value of their Mark property.

VertexWithMark
(lines 23 and 24) This query also accepts an instance the Mark class as input, but in this
case returns an arbitrarily chosen vertex satisfying the same constraint on the value of its
Mark property (if one exists).

VertexWithLabel
(lines 26 and 27) The query returns a vertex with a given label value if such a vertex exists.
Note that no more than one such vertex ever exists since Label is a key property of the
class Vertex — as specified in the data definition.

ConnectedVertices
(lines 29 to 33) The last query accepts two things as input: a source vertex VFrom, and an
instance M of the Mark class. The query returns all vertices VTo that satisfy two con-
straints. First, each must have M as the value of its Mark property. And second, there
must exist an arc with VFrom as the value of its FromVertex property and VTo as the
value of its ToVertex property.

NewMark
(lines 35 to 38) The first of the transactions creates and returns a mew instance of the
Mark class.

ChgMark
(lines 40 and 41) Transaction ChgMark changes the value of the Mark property for an
input vertex to an input mark.

NewVertex
(lines 43 to 46) Transaction NewVertex creates a new vertex object, initializes the values of
its Mark and Label properties, and then returns the new vertex.

NewArc
(lines 48 to 51) Transaction NewArc creates a new arc object and initializes its property
values to the input vertices.

The DSL source (lines 55 to 57) are estimates of the expected number of instances of each
class for a typical invocation of FindRV. This information is of particular use when the compiler
invokes the query optimizer on the query ConnectedVertices. At some point in optimization, a
choice must be make between an evaluation strategy that involves scanning all vertices with a
given mark value, and an evaluation strategy that involves scanning all vertices connected by an
arc to another vertex. The statistics indirectly establish that the latter strategy is to be pre-
ferred, since 200,/100 vertices will be estimated to qualify in comparison to 100/3 vertices with
the former strategy.

The SDL source (lines 61 to 72) specifies a selection of three indices and three storage
managers. The first index on the Vertex class can be used for finding all vertices, or for finding
all vertices with a given mark as the value of their Mark property. The second index, also on
the Vertex class, can be used like the first for finding all vertices, or for finding a vertex with a
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given string as the value of its Label property. The third index on the class Arc can be used for
finding all arcs, or for finding all arcs with a given vertex as the value of their FromVertex pro-
perty. Note that any number of indices can be declared for a class. In this case, two are speci-
fied for the Vertex class, one for the Arc class and none for the Mark class.

The first two storage managers manage storage for vertex and arc objects respectively.
Since they are declared to be dynamic, no limits will exist on the number of such objects,
beyond those implied by the amount of main memory. The third storage manager is declared to
be static with enough room for at most three mark objects — exactly the number needed by the
algorithm for computing reachable vertices. One advantage of static storage for a class is that it
permits a more compact encoding of values for properties defined on the class. In this case,
encoding values for the Mark property of vertex objects will require at most two bits.

The FindRV program is implemented as a single main function in Figure 3. The schema
statement in line 3 essentially serves as a place holder for the global type and data declarations
chosen by the LDM compiler as the means of encoding a database. Any number of different
databases can be manipulated by including a schema statement for each. Also, any number of
C/DB source files can access the same database by prefixing the keyword extern to the key-
word schema in all but one of the files. (An extern schema is eventually replaced by global
type declarations only.)

Lines 7 and 8 in the function body declare a number of variables for referring to instances
of the Vertex and Mark classes. Line 9 declares three variables for referring to the built-in
String class. This follows since the property name following the prop keyword (i.e. Label) is
string-valued.

Lines 11 to 13 create three instances of the Mark class, and bind values for their surrogate
keys to the three mark variables. The remainder of the body consists of three parts: lines 17
to 29 for inputing the graph, lines 33 to 37 for computing reachable vertices according to the
above algorithm, and line 41 for producing a list of the labels of all reachable vertices. We con-
clude our discussion of the example with a few comments that should suffice to clarify the C/DB
source.

) An invocation of an LDM transaction that returns a value occurs in lines 11, 12, 13, 18, 23
and 26. An invocation of an LDM transaction that does not return a value occurs in
lines 28, 35 and 36. The values returned are the surrogate keys for newly created objects.

¢  An invocation of an LDM query that returns at most a single result occurs in lines 22, 25
and 33 with new forms of C if and while statements. A new form of C for statement is
used to invoke queries returning a set of values in lines 36 and 41.

. A new @ operator is used in line 41 as the means of property value access for property
variables. In this case, the expression V(@Label denotes the value of the Label property for
the object having V bound to its surrogate key value.

1.3. Limitations

There are several limitations with the data model, and with the capabilities of the present ver-
sion of the C/DB compiler. With respect to the data model, LDM presently assumes complete
knowledge of the database. For example, all values for object properties are assumed to be
known — no null-unknown values are permitted.



1. #include <stdio.h>

2. #include <string.h>

3. schema FindRV;

4.

5. main()

6.

7. prop Vertex VStart, VFrom, VTo, V;

8. prop Mark Unexplored, Boundary, Explored;

9. prop Label VStartLabel, VFromLabel, VToLabel;

10.

1L Unexplored = NewMark();

12. Boundary = NewMark();

13. Explored = NewMark();

14.

15. /* input the graph */

16.

17. scanf("%s", VStartLabel);

18. VStart = NewVertex(VStartLabel, Boundary);

19.

20. while (scanf("%s %s", VFromLabel, VToLabel) != EOF)
21. {

22. if Vin VertexWithLabel(VFromLabel} VFrom = V;
23. else VFrom == NewVertex(VFromLabel, Unexplored);
24.

25. if Vin VertexWithLabel(VToLabel) VTo = V;

26. else VTo == NewVertex(VToLabel, Unexplored);

27.

28. NewArc¢(VFrom, VTo);

29. }

30.

31. /* find all reachable vertices */

32.

33. while V in VertexWithMark(Boundary)

34. {

35. ChgMark(V, Explored);

36. for VTo in ConnectVertices(V, Unexplored) ChgMark(VTo, Boundary);
37. }

38.

39. /¥ print the reachable vertices */

40.

41. for V in VerticesWithMark(Explored) printf("%s\n", V@Label);
42. }

Figure 3. C/DB Source for FindRV

Both compilers assume DML specifications include only trusted transactions. This means
that neither compiler will generate code for consistency checking of either inherent or explicit
constraints. (However, it is still very worthwhile for a user to declare constraints in the DDL.
The constraints are used extensively by the query optimizer.) The tool set does not at present
have any built-in support for managing concurrency. It is incumbent on the user to manage
concurrent database access by multiple processes.

The current C/DB compiler supports only the list and distributed list index types, and

only the dynamic store type. As a consequence, any query with an order by clause is
currently not supported. In the full LDM transaction language, the identity of an object can be

changed with an assignment of the form
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<VarName>.Id := <Term>

This form of assignment is also not currently supported by the existing C/DB compiler.

2. THE LDM LANGUAGE

This part of the manual is an informal definition of LDM. We begin with the data definition
language (DDL), and then define the query and transaction languages which comprise the data
manipulation language (DML). The final two parts of this section define the data statistics
language (DSL) available for expressing statistical estimates and cost model parameters for a
database, and the storage definition language (SDL) for specifying a selection of indices and
storage managers for data objects.

Throughout this section, examples will refer to a hypothetical software system that
manages information about students, teachers and courses at some university. An enterprise
view of the relevant data is illustrated by the entity-relationship diagram in Figure 4. Two
features of the diagram are worth noting. First, the diagram has eaxistence constraints for
Course and GradStudent objects with respect to TaughtBy and Supervisor relationships respec-
tively. This implies in the former case, for example, that each course object is always TaughtBy
related to one and only one Teacher object. And second, the diagram suggests in several places
that entity types can be declared as subtypes of other entity types (by using Isa triangles). For
example, the Isa link between Student and GradStudent implies that some Student objects may
also be GradStudent objects. The Isa link between Person, Student and Teacher implies three
things: that some Person objects may also be Student objects, that some Person objects may
also be Teacher objects, and that no object is just a Person. This latter condition is a conse-
quence of there existing more than one incoming arc to the Isa link. If this is not desired, then
two separate Isa links can be used.

Language syntax will be specified using BNF, with the following additional conventions:
square brackets "[...|" are used to indicate optional arguments, braces "{...,<<marker>}" to indi-
cate options that may be repeated one or more times, separated by <marker> (either a blank,
comma or semicolon), and keywords are indicated in a boldface type.

2.1. LDM Program Format
All LDM programs have the following form

<LDMProgram > =
schema <SchemaName> {<DDLSpec>," "} {<NonDDLSpec>," "}

<DDLSpec> = < ClassDefn> | <PropertyDefn>
<NonDDLSpec> ::= <DMLSpec> | <DSLSpec> | <SDLSpec>

<DMLSpec> = <QueryDefn> | <TransactionDefn>

where <SchemaName>> is an identifier naming the schema. Note that all DDL specifications
must precede any other specifications. The LDM source for the University database begins with
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Figure 4. ER Diagram of a University Schema

schema University

2.2. Data Definition

Data is described by specifying a number of classes and properties.

<ClassDefn> ::=
class <ClassName> [isa {<ClassName>,""}|
[properties {<PropertyName>,","}]
[constraints {<Constraint>," "}]

< PropertyDefn> ::=
property <PropertyName> on <ClassName> |
property <PropertyName>> on String maxlen <Integer> |
property <PropertyName> on Integer range <Integer> to <Integer> |
property <PropertyName> on Real |
property <PropertyName> on DoubleReal

Note that properties are declared separately in LDM, and that all definitions may occur in any
order. For a given schema, no two classes can have the same name, and no two properties can
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have the same name. As a convenience, a property definition of the form
property C on C

is assumed for each class C, whenever such a property is not already declared by the user.

There are two kinds of constraints that may be specified when defining a class: path func-
tional dependencies (PFDs), and covers.

<Constraint> =
<PathFunction> determined by {<PathFunction>,","} |
cover by {<ClassName>,""}

The meaning of PFD and cover constraints will be explained by example below. For the univer-
sity application, class and property definitions corresponding to the above E-R diagram are as
follows.

class Person
properties Name, Age
constraints
Id determined by Name
cover by Student, Teacher

class Student isa Person

class Teacher isa Person
constraints cover by GradStudent, Professor

class Professor isa Teacher

class GradStudent isa Student, Teacher
properties Supervisor

class Course
properties Name, TaughtBy
constraints Id determined by Name

class EnrolledIn
properties Student, Course, Grade
constraints Id determined by Student, Course

property Name on String maxlen 20
property Age on Integer range 16 to 75
property Supervisor on Professor
property TaughtBy on Teacher

The PFD and cover constraints for the Person class assert that no two Person objects have the
same value for their Name property, and that each Person object must also be a Student or
Teacher object (or both). For a more thorough discussion of PFD constraints, see [3,4].
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2.3. Data Manipulation — The Query Language

We start by giving the full grammar for the query language, and then explain its constructs by
giving example queries on the University schema. In general, syntax for both queries and tran-
sactions has been chosen so as to resemble the SQL query language wherever possible.

A query has the general form

<QueryDefn> ::=
query <QueryName> [given <VarDecl>]
select [one| [<VarDecl>]
[where <Predicate>]
[order by {<Orderltem>,""}]
[precomputed]

<Orderltem > ::= <Term> asc | <Term> desc

" 1"

<VarDecl> ::= {<VarName>,","} from {<PropertyName>,","}

Note that each <PropertyName> must associate one-to-one with each <VarName>. A
declaration of the form

V1, V2 from P1, P2

defines two variables V1 and V2 that may have any values that are also legal for properties P1
and P2 respectively. Terms and predicates are defined as follows.

<Term> =
<Integer> |
<Real> |
"<String>" |
["-"] <VarName> ["." <PathFunction>] |
<Term> <ArithmeticOperator> <Term> |
(<Term>)

<PathFunction> ::= Id | {<PropertyName>,"."}
< ArithmeticOperator> =+ |- |* | / | mod

< Predicate > 1=
<Term> <ComparisonOperator> <Term> |
<VarName> has <MaxOrMin> <PathFunction>> [where <Predicate>] |
<ClassName> "{" {<Term> as <PathFunction>,""} "}" |
not <Predicate> |
exist <VarDecl> [where <Predicate>] |
for all <VarDecl> <Predicate> |
< Predicate> < LogicalOperator> <Predicate> |
(<Predicate >)
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< ComparisonOperator> == | < | <= |>=|> | <>
<MaxOrMin> ::= max | min

< LogicalOperator> ::= implies |and |or

The standard precedence for operators in terms and predicates is assumed. For term operators
this order of precedence is: binary addition "4" and subtraction "-" (weakest binding); multipli-
cation "*", division "/" and modulus mod; unary minus "-"; and finally property value access "."
(strongest binding). For predicate operators the order is: existential quantification exist and
universal quantification for all (weakest binding); implication implies; disjunction or; conjunc-
tion and; negation not; and finally the arithmetic comparison operators and the two special
forms for expressing maximum and minimum value criteria has max and has min, and for
expressing atomic predicate conditions "< ClassName>{ - - - }" (strongest binding). Here are
some example queries on the University schema.

Ex 1. (getting all objects in a class extension) Retrieve all people objects.

query People
select P
from Person

Ex 2. (specifying conditions and query parameters) Retrieve all student objects older than 30
that are enrolled in a given course.

query OldStudentsInCourse given C from Course
select S from Student
where S.Age > 30 and EnrolledIn {S as Student, C as Course}

This query can also be specified as follows.

query OldStudentsInCourse given C from Course
select S from Student
where S.Age > 30 and (

exist E from EnrolledIn

where E.Student = S and E.Course = C)

Ex 3. (subqueries) Retrieve all integers that occur as the age value of some student.

query StudentAges
select A from Age
where exist S from Student where S.Age = A

Ex 4. (use of path functions and nondeterminism) Retrieve a graduate student object that is
supervised by some professor with a given name.

query GradWithSupervisorName given N from Name
select one G from GradStudent where G.Supervisor.Name = N

Ex 5. (sorted retrieval) Retrieve all graduate student objects in major order by their
supervisor’s name, and minor order by their own name.
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query Graduates
select G from GradStudent
order by G.Supervisor.Name asc, G.Name asc

Ex 6. (use of max and min) Retrieve all undergraduate objects who received the highest grade
in some course.

query SmartUndergrads
select S from Student
where not GradStudent {S as Id} and (
exist C, E from Course, EnrolledIn
where E.Student = S and
E has max Grade where E.Course = Q)

The query can also be specified in either of the following two ways.

query SmartUndergrads
select S from Student
where not (exist G from GradStudent where G = S) and (
exist C, E from Course, EnrolledIn
where E.Student = S and
E.Course = C and (
for all E1 from EnrolledIn (
El.Course = C implies E1.Grade <= E.Grade)))

query SmartUndergrads
select S from Student
where not (exist G from GradStudent where G = S) and (
exist C, E from Course, EnrolledIn
where E.Student = S and
E.Course = C and not (
exist E1 from EnrolledIn
where E1.Course = C and E1.Grade > E.Grade))

Ex 7. (complex queries) Retrieve an undergraduate object who received a grade in a course
higher than any graduate student also enrolled in the course.

query PossibleGrad
select one S from Student
where not GradStudent {S as Id} and (
exist E1 from EnrolledIn
where E1.Course = S and (
for all E2 from EnrolledIn
(E2.Course = E1.Course and GradStudent {E2.Student as Id})
implies E2.Grade < E1.Grade))

Ex 8. (forcing projections) Retrieve and temporarily store all student objects enrolled in a
course taught by a teacher with a given name.
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query StudentsTaughtByTeacher given N from Name

select S from Students

where EnrolledIn {S as Student, N as Course. TaughtBy.Name}
precomputed

When specified, a precomputed clause will force the results of a query to be precomputed and
temporarily stored before any action on each result is permitted. This may be necessary if the
action intended for a result can invoke a transaction that interferes with a query evaluation
strategy (referred to as the Halloween problem). An example with the above is a transaction
that deletes each student object in the returned result.

2.4. Data Manipulation — The Transaction Language

Again, we start by giving the full grammar for the transaction language, and then illustrate its
use with example transactions for the University schema.

< TransactionDefn> =
transaction <TransactionName> [given <VarDecl>|
[declare <VarDecl>]
{<Statement>,";"
[return <Term>]

< Statement> ::=—
insert {<VarName>,""} ["(" {<InitStatement>,";"} ")"] |
delete {<VarName>,""} |
<Term> ":==" <Term>

"o

<InitStatement> 1= <VarName> "." <PropertyName> ":=" <Term>

Here are some example transactions for the University schema.

Ex 9. (updating property values) Change the teacher assigned to a given course object to
another given teacher.

transaction AssignTeacher given T, C from Teacher, Course

C.TaughtBy := T
Ex 10. (creating new objects) Enroll a given student object in given course object.

transaction EnrollStudent given S, C from Student, Course

declare E from EnrolledIn
insert E (E.Student := S; E.Course := C)

Ex 11. (creating and returning objects) Create and return a new course object with a given
name and teacher.

transaction NewCourse given T, N from Teacher, Name
declare C from Course

insert C (C.TaughtBy := T; C.Name := N)

return C
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Ex 12. (deleting an object from the database) Delete a given student object from the database.

transaction RemStudent given S from Student
delete S

Ex 13. (changing the type of an object) Enter a given student object in graduate school, assign-
ing a given professor object as an initial supervisor.

transaction BecomeGrad given S, P from Student, Professor
declare G from GradStudent

insert G (G.Name := S.Name; G.Age := S.Age; G.Supervisor := P);
GId =S

return P

Note in this last example that the assignment statement "G.Id := S" will cause the identity of
the newly created G object to be changed to the identity of the S object. As a consequence, the
S object is deleted from the database, and any previously existing references to S will now be to

G.

2.5. Data Statistics

At present, a single form of statistic can be specified for classes.
<DSLSpec> ::= size <<ClassName> <Integer>

A size statistic for a class corresponds to an estimate of the expected number of objects in the
class that are not also in any subclasses. For example, assume size estimates for the University
database have been specified as follows.

size Student 500

size GradStudent 100
size Course 200

size EnrolledIn 4000
size Professor 50

The statistics imply that one can expect a total of 600 student objects: 100 that are GradStu-
dent objects, and 500 that are not. Note that size estimates for classes having one or more
cover constraints are therefore nonsensical.

2.6. Storage Definition — Store Management

In LDM, each class must be associated with a store manager from which space is allocated when
objects are created for the class, and to which space is released when objects that were created
for that class are deleted. The user is currently responsible for declaring store managers using
the following language.

<SDLSpec> =
store <StoreName> of type <StoreType>

1"

storing {<ClassName>,",

<StoreType> ::— dynamic |static <Integer>

There are two types of store managers that may declared: dynamic store, and static store. A
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class associated with a dynamic store manager will have no limit on the number of objects that
may be created, beyond limits imposed by the available memory. This is not true of static store
managers; the total number of objects that may be created for all associated classes is limited by
the static store manager’s size. However, the advantage in this case is that encoding property
values for properties defined on any of the associated classes will usually require much less
space. To ensure such an encoding is possible, a constraint on a static store specification is that
the set of associated classes must satisfy the condition that all subclasses of any element of the
set are also in the set.

Storage management for the University database might be specified as follows.

store PersonStore of type dynamic storing Student, GradStudent
store ProfStore of type static 60 storing Professor

store EnrollStore of type dynamic storing EnrolledIn

store CourseStore of type dynamic storing Course

Note that store for all Student and GradStudent objects are managed in a common pool. Also
note that the specification of ProfStore implies that no more than 60 professor objects will exist
at one time. This permits a more compact encoding of Supervisor property values: only 6 bits of
store are required for each, in comparison to the number of bits necessary to encode pointer
values.

Free space managed by store managers satisfies two conditions. First, all blocks of
memory associated with a particular manager are the same size. This implies internal fragmen-
tation (or memory loss) if more that one class is associated with the manager, since smaller
objects are still allocated enough space for the largest possible object. And second, space once
allocated to a given store manager becomes unavailable for use by any other store manager.
This can cause external fragmentation, for example, in a case where a large number of objects
for one class are created, then deleted, and then a large number of objects for another class
associated with a different store manager are created. The specification of store managers
therefore requires balancing possible internal and external memory fragmentation, and the need
for data compaction.

2.7. Storage Definition — Indices

Access to class extensions is achieved by declaring a number of indices, which at present is also
the responsibility of the user. Each index is associated with a unique class and is declared to be
of a particular type. For example, in the University database, a linked list of person objects can
be declared with the form

index PersonList on Person of type list

The index, called PersonList, establishes the existence of a doubly linked list of all person objects
at run-time. Note that the list will include all objects created in any subclasses of Person, such
as Student objects, Teacher objects, and so on.

Any number of indices (including none) may be declared for a given class. The language
for specifying an index is as follows.
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<SDLSpec> ;1=
index <IndexName> on <ClassName >
of type <IndexType>

<IndexType> 1=
list |
array <Integer> ordered by {<SearchCond>,""} |
binary tree ordered by {<SearchCond>,","} |
distributed list on <PathFunction> |
distributed binary tree on <PathFunction> ordered by {<SearchCond>,","}

<SearchCond > ::= <PathFunction> asc | <PathFunction> desc | <ClassName >

As the language suggests, there are currently five types of index that may be declared. The list
and binary tree types result in two additional pointer values for each object, which encode a
doubly linked list in the first case, and a tree in the second. An array index is a static index
corresponding to a FORTRAN-like fixed sized array of object identifiers. In this case, a binary
search is used to find entries that satisfy given search conditions. The distributed list and distri-
buted tree indices require the user to specify an additional path function, which must also satisfy
the constraint that its range class is user-defined. The two distributed types behave like their
undistributed counterparts when distributed among the objects in the range class of this path
function.

There are three kinds of ordered search conditions that may be specified for an array, a
binary tree or a distributed binary tree index type. The first has the form
"<PathFunction> asc", and represents an ordering in which index entries occur in ascending
order of their value for <PathFunction>. An ascending order for integer values, real values
and string values has the obvious interpretation. An ascending order for all other kinds of
objects is defined internally (and therefore legal), but is not meaningful to a user. The second
kind of ordered search condition has the form "<PathFunction>> desc", and represents an ord-
ering in which index entries occur in descending order of their value for <PathFunction>. The
third kind of ordered search condition has the form “<ClassName>", and is referred to as a
subclass sort. A subclass sort on class C is two-valued: zero if an object in the index is not also
in class C, and one otherwise.

Examples of indices that might be declared for the University database are as follows.
index PersonTree on Person of type binary tree

ordered by Student, GradStudent, Supervisor.Name asc

index TeacherTree on Teacher of type binary tree
ordered by Name asc

index EDistList1 on EnrolledIn of type distributed list on Course
index EDistList2 on EnrolledIn of type distributed list on Student
index CDistList on Course of type distributed list on TaughtBy

Five indices are declared, of which two are binary trees and three are distributed lists. The first
index, called PersonTree, illustrates the use of subclass sort conditions. For example, the first
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subclass sort on Student is zero-valued for Person objects that are not also Student objects, and
one-valued otherwise. The query optimizer will choose index PersonTree as the best possible
means of evaluating any of the following four queries.

query QI select P from Person

query Q2 select S from Student

query Q3 select G from GradStudent

query Q4 select G from GradStudent where G.Supervisor. Name = "Fred"

For a more complete discussion of memory-resident indices, see [5].

3. THE C/DB LANGUAGE

In order to access a database, the C language has been extended to include a number of addi-
tional constructs with the following purposes:

. declaring access to a schema,

. declaring object-valued variables,

. accessing the value of an object property, and
° invoking queries.

This extended language is called C/DB. Note that no extensions to syntax were needed to sup-
port invoking LDM transactions. These eventually become separate C functions, and are
invoked in the same way as any other C functions.

Our discussion of C/DB will center on defining the extensions to the C grammar given in
[2]. The syntax notation we use adheres to the notation adopted in the reference (and therefore
differs from the conventions used in the previous section). In particular, syntactic categories
(non-terminals) are indicated by stalic type, and keywords in bold type. An optional keyword is
indicated by subscripting with opt. The necessary extensions are straightforward, and the
reader is encouraged to reexamine the C/DB source in Figure 3 (in the first section) for exam-
ples of their use.

Access to an LDM schema is accomplished with the use of an additional form of data-
definition in an external-definition for a program.

data-de finition:

extern,, schema ident: fier ;

Subsequent access to properties, classes, queries and transactions defined in the LDM schema
with the name ¢dentifier is then enabled. The extern modifier may be used if more than one
program accesses the same LDM schema.

Object-valued variables are declared with a new form of type-speci fier.

type-speci fier:

prop identifier

The identifier must correspond to the name of an LDM property. Translation of this form of
type-spect fier by the C/DB compiler depends on the declaration of the LDM property itself. A
property declared on a user defined class
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property <PropertyName> on <ClassName >

translates to a variety of special forms (e.g. pointer types), which cannot be assumed by the
user. A property declared on the built-in String, Integer, Real or DoubleReal classes
translates in the obvious manner to other forms of ¢ype-specifiers, such as short, int, long,
float, double, and (array of) char.

For variables referring to objects in a user defined class, an additional form of primary is
available for accessing property values.

primary:
primary @ identifier

Note that primary must be an expression with a type "prop P" for which identifier is a legal
property of the class on which P is defined.

New forms of if, while and for statements have been added to support the invocation of
queries.

statement:

if query-call statement

if query-call statement else statement
while query-call statement

for query-call statement

query-call:
ident fier;
tdenti fier; ( expression-list )
tdenti fier-list in identi fier;
tdenti fier-list in identi fier; ( expression-list )

tdenti frer-list:
identi fierp
tdentifierp , idents fier-list

In a query-call, identifier; is the name of the query, expression-list a sequence of argument
expressions that are bound in sequence to the given variables of the named query (if any), and
identi frer-list a sequence of identifierp which are bound in sequence to the select variables of
the named query (if any).

The named query in if and while statements must have the form
query - ‘- select one - - -

in which a single solution to the query is non-deterministically selected. If such a solution exists,
then the first form of if binds each identifiery in identi fier-list to the select values of the solu-
tion, and evaluates the argument statement. The second form of if operates similarly, except
that the second argument statement is evaluated if no solution to the query is found. If such a
solution exists in the case of a while, then each identifierp in identsfier-list is bound to the
select values of the solution, the argument statement is evaluated, and then this process is

repeated.



~920 -

The new form of for may take any query as an argument. In this case, the argument

statement is evaluated for each query solution. The order in which solutions are considered will
satisfy the "order by" clause of a query (if specified).

Finally, all forms of query-call must satisfy some typing conditions on ezpression-list and

tdenti fier-list. To illustrate, consider an LDM query of the form

query Q

givenVl,l: ’ ")‘/},mfrompl,lr ”';Pl,m
select Vg)l y T, VE,n from Pg’l y T, Pg)n
where - - -

together with a C/DB for statement of the form

for Vg;, -+, Vanin Q (Exp;, -, Ezpp) - -

Also assume the type of variable Vs; and expression Ezp;is "prop Ps;" and "prop P, ;" respec-
tively. The typing conditions are as follows.

(a)
(b)

The class on which property P,; is defined must be a subclass of the class on which pro-
perty Pj;is defined, 1<j<m.

The class on which property Pg; is defined must be a subclass of the class on which pro-
perty Ps; is defined, 1<i¢<n.

For built-in classes, such as Integer, the subclassing constraints correspond to assignment com-
patibility.
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