EBARTMENT
EPARTMENT

EPARTMENT

ER SEENGE B
cF SCRNGED

MUt
MPUT

3 &

F WATERH
ATERL

3

L
II¥
ITY

VERSITY OF WATERLOO COMPUT

VER
VER

i

Defining Families of Trees
with FOL Grammars

Thomas Ottmann
and
Derick Wood

Data Structuring Group
Research Report
CS-89-39

August, 1989

Defining Families of Trees with EOL Grammars *

Thomas Ottmann! Derick Wood?

Abstré.ct

We consider EOL grammars as tree generating mechanisms. This
leads to questions of height, weight, and structural equivalence of EOL
grammars. Height equivalence is solved completely, weight equivalence
remains open, and structural equivalence is solved for two special cases.
We characterize EOL grammars with two nonterminals which generate
exactly the sets of 1-2 and 2-3 trees.

1 Introduction

We initiate the study of “context-free” rewriting systems that define well
known families of trees such as 1-2 trees, 2-3 trees, brother trees, etc. Our
motivation is that rewriting systems provide a precise and familiar means
of defining trees, so their study from this point of view is long overdue.
A second and fundamental language-theoretic motivation for our investi-
gation is the notion of structural equivalence. This concept is well known
for context-free grammars (see [11], for example), but for other “context-
free” rewriting systems it has not been considered except for EOL systems
in [8]. Two rewriting systems of the same type are structurally equivalent
if for every sentential terminating syntax tree in the first system there is
a sentential terminating syntax tree in the second system that is identical
except for the labeling of internal nodes, and vice versa. The importance
of this concept for context-free grammars is that structural equivalence is
decidable (see [5]), while language equivalence is undecidable. It is not yet
known whether structural equivalence is decidable for other “context-free”
rewriting systems.

*This work was supported under a Natural Sciences and Engineering Research Council
of Canada Grant No. A-5692 and under a grant from the Information Technology Research
Centre.

tnstitut fir Informatik, Universitit Freiburg, Rheinstrafie 10-12, D-7800 Freiburg,
West Germany.

!Data Structuring Group, Department of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada.

2 Ottmann and Wood

For structural equivalence only labels of internal nodes are ignored; here
we ignore all labels; that is, we have only one terminal symbol. For example,
the context-free grammar

S—aa|SS

generates the set of extended binary trees

=

However, when we view this as an EOL grammar, it generates all perfect

binary trees

In this paper, we consider EOL grammars, rather than context-free gram-
mars, since they are powerful enough to describe 2-3 trees, brother trees,
and stratified trees. Specifically, we characterize in Section 5 those EOL
grammars with at most two nonterminals that generate all 2-3 trees. In
Section 3 we look briefly at the heights of trees generated by EOL gram-
mars. Given two EOL grammars it is decidable if they generate trees of the
same height. Finally, in Section 4 we consider the weights of trees gener-
ated by EOL grammars. Apart from a reduction result no further results
have been obtained in this case. Whether or not an EOL grammar gener-
ates trees with each possible weight—weight universality—appears to be a
difficult question. The only positive result in this area is the decidability
of almost-weight universality (all but finitely many weights) for unary OL
grammars found in [2].

To ensure that the paper is selfcontained we provide the necessary defi-
nitions in the following section.

2 Definitions

We begin our exploration by defining sets of trees—the (a,b) trees. This
is followed by the definition of (unary) EOL grammars and their associated

Families of Trees 3

trees.

Let a and b be two integers that satisfy 1 < a < b. An (a,b) tree t of
n internal nodes either is empty and consists of an external node, if n = 0,
or consists of a root node u together with r subtrees t,,...,t, of u having
n1,...,N, internal nodes, respectively. We also require, in this latter case,
thata<r<band14+n,+ - +n, =n.

Given an (a,b) tree ¢ its height is recursively defined by

0 if ¢t is empty
height(t) = { 1+ maz({height(t;):1 <i<r}) iftis nonempty and its root
has r subtrees ¢;,...,1,.

and its weight is defined recursively by

1 if t is empty
weight(t) = ¢ YI_; weight(t;) if ¢t is nonempty and its root
has r subtrees t,,...,t,.

We say that an (a,b) tree has uniform depth if its external nodes are all at
the same distance from the root. More formally, an empty (a, b) tree has
uniform depth, and a nonempty (a, b) tree has uniform depth if its root has
exactly r subtrees ¢),...,t,, these have uniform depth, and height(t;) =
.-+ = height(t,).

Remark: From hereon in we are only concerned with uniform depth trees
so we call them, simply, trees.

A (2,2) tree is called a binary tree, a (1,2) tree is called a unary-binary
tree, and a (2,3) tree is called a binary-ternary tree. Note that (2,3) trees
are the well known 2-3 trees[1], while brother trees, neighbor trees, and son
trees are all (1,2) trees[7, 3, 4, 6].

For our purposes an EOL grammar is defined as follows. Let a be the
universal terminal symbol throughout this paper. An EOL grammar G is a
triple (N, P, S), where

N is an alphabet of nonterminals,
P C N x(N*uat) is a finite set of productions, and
S C N is a nonempty set of sentence symbols.

This definition differs from the traditional one, see [9] for example, in four
respects. First, we only have one terminal symbol; they are really unary
EOL grammars. Second, only nonterminals have productions; the grammar
is synchronized, see [9]. Third, the productions cannot have an empty right
hand side; the grammar is propagating. Fourth, there can be more than one
sentence symbol. Each of these modifications, apart from the first, does not

4 Ottmann and Wood

affect the languages generated by EOL grammars. (Apart from the loss of
the empty word.)

Rewriting is defined in the usual way. Let a be a nonempty word over
N; thatis,a = Ay ---A,, where A;isin N, 1< i < n, and n =| a|. Then,
a can be rewritten as 8 = f; - - - B,, for some §; in (N U {a})*, 1< i< n,
if A; — B;isin P, 1 < ¢ < n. We usually denote this by

a=p

We write a=>93 to denote that o gives B in d steps, for d > 1, if either
d=1and a = (3, or d > 1 and there exists 4 in Nt such that « = v and
y=>9-18. We write a=*p if a=>98, for some d > 1, and we write a=*3 if
either a = 8 or a=17B. We say that a=>*0 and a=*p are derivations. A
derivation o =* 3, for some ¢ in 5, is called a sentential derivation. Note
that only purely nonterminal words can be rewritten. This is the reason
for only allowing right hand sides of productions to be either completely
nonterminal or completely terminal. We say that a word « is d-generable if
there is a o in S such that c=>%a ord=0and o = a.
The language generated by G is denoted by L(G) and is defined by

L(G) ={z:z is in a*and ¢=>*z, for some ¢ in S}

We say that an EOL grammar G = (N, P, S) is reduced if each sentence
symbol generates a terminal word and each nonterminal appears in at least
one sentential derivation of a terminal word. A reduced grammar does not
contain any useless nonterminals.

With each derivation of a terminal word in G we can associate a syntax
tree. This is a uniform depth tree that has internal nodes labeled with
nonterminal symbols and external nodes labeled with a. It also satisfies the
following condition:

For all internal nodes u, if u has r children uy,...,u, for some
r > 1, then L(u) — L(u1)---L(u,) is in P, where L(v) denotes
the label of node v.

We are particularly interested in syntax trees that have a root labeled with
a sentence symbol; we call these sentential syntaz trees. If we remove the
labels from a sentential syntax tree we obtain a stripped sentential syntax
tree. We denote by T(G) the set of stripped sentential syntaz trees of G.
Note that a derivation o=>%z, for ¢ in S and z in at, yields a sentential
syntax tree of height d.
We close this section with two examples.
Example 2.1: Let G be given by

B — aa|BU|UB|BB
U — al|B,

Families of Trees 5

where B is the only sentence symbol. Then, T'(G) is the set of all nonempty
brother trees{T7]. [
Example 2.2: Let G be given by

S —aa|aaa| SS|SSS.
Then, T(G) is the set of all nonempty 2-3 trees[1]. o

3 Height

Given a set of trees T its height set is denoted by H(T') and is defined as
H(T) = {height(t) : t is in T}. We say two sets of trees T} and T are height
equivalent if H(T,) = H(T>).

It is well known that for an EOL grammar G, the corresponding set
of heights, H(T(G)), is an ultimately periodic set; see [12] for example.
Moreover, H(T'(G)) can be computed effectively, see [12], for example. These
results lead immediately to the following theorem.

Theorem 3.1 The height equivalence problem for EOL grammars is decid-
able.

Let A > 0 be a given height and T be a set of trees. Then, H(T', k) denotes
the height set of T modulo h and it is defined as H(T,h) = {h’' : A’ =
height(t), for some t € T and h' > h}. Clearly, H(T) = H(T,0). We say
that two sets of trees T and T, are ultimately height equivalent if there
exists h > 0 such that H(T}, h) = H(T,, h). Clearly this holds if and only if
H(T\) - H(T,) and H(T;) — H(T}) are both finite. Because the height sets
of EOL grammars are ultimately periodic, the difference of two such sets is
also ultimately periodic. This yields our second theorem.

Theorem 3.2 The ultimate height equivalence problem for EOL grammars
s decidable.

4 Weight

Given a set of trees T its weight set is denoted by W(T) and is defined as
W(T) = {weight(t) : tisin T}. (This is usually called the length set of
the language.) We say two sets of trees Ty and T, are weight equivalent if
W (Ty) = W(T2). We say that a set of trees T is weight universal if W(T)
equals the natural numbers and almost weight universal if W(T') is cofinite
with respect to the natural numbers.

Our main result is that we only need consider these questions for the so
called UB grammars. An EOL grammar G = (N, P, S) is a unary-binary
grammar or UB grammar if, for all productions A — a in P, we have
la|< 2.

6 Ottmann and Wood

Theorem 4.1 Let G = (N,P,S) be an EOL grammar. Then, a weight
equivalent UB grammar G' can be effectively constructed from G.

Proof: Let m = mazr(G) = maz({| a |: A - aisin P}). fm < 2,
then G is the required U B grammar already. Therefore assume m > 3. We
stretch each production A — a in P into a derivation sequence of length
m — 1 as follows, where a = a; - -ap, for a; in Nu{a},1 <i< n.

(1) | a |=1. Add productions A — A;; A; — A3; -+ Am—2 — a, where
the A; are new nonterminals with respect to A — a.

(2) | @ |> 2. Add productions A — A;; Ay — Ag; -+ Ap—q — Ap;
Ak = Ar41Bri1ke41; Aksr = Arp2Brio.k+2) Brt1,e41 — Brtik+2;
5 Am-2 = a12; Bpmo2m_2 — a3; ‘++ Bryim—2 — on, where
the A; and B;; are new nonterminals with respect to A — a and
k=m-n+1.

Clearly a single derivation step in G is simulated by m — 1 derivation steps
in G’ and vice versa. Hence, not only are G and G' weight equivalent, they
are also equivalent. a

Unfortunately questions concerning the weight of a U B grammar, even
weight universality, appear to be very hard. Ruohonen [10] has shown that
weight equivalence is undecidable for DTOL grammars.

5 Structure

In Sections 3 and 4 two coarse measures of structure have been examined,
namely height and weight. In the present section we wish to investigate,
in finer detail, the set of trees generated by an EOL grammar. The specific
question we consider is the following. Given a set of trees T and an EOL
grammar G is T(G) = T? In other words is the grammar T'-universal?

To make our investigation more concrete we consider three example sets.
These are B, the set of all binary trees, U B the set of all unary-binary trees,
and BT the set of all binary-ternary trees.

First, we obtain a reduction theorem along the lines of Theorem 4.1.

Theorem 5.1 Let Gy and G, be two EOL grammars such that mazr(G,) =
mazr(G;) = m, for some m > 1. Then, two UB grammars G} and G4 can
be effectively constructed from G, and G, such that

(i) Gi and G are equivalent, fori = 1,2, and

(i) G1 and G, are structurally equivalent if and only if G and G, are.

Families of Trees 7

Proof: Carry out the construction of Theorem 4.1 on both G; and G, not-
ing that the maximum length of right hand sides of productions in G; must
equal that of G, if G; and G are structurally equivalent. The construction
replaces height one subtrees everywhere by height m — 1 subtrees. As each
replacement is uniquely determined by the length of the corresponding right
hand side, condition (ii) holds. o

Given an EOL grammar G = (N, P, S), can we decide if it is B-universal,
U B-universal or BT-universal? We consider these three decision problems
one at a time.

Theorem 5.2 B-universality of EOL-grammars is decidable.

Proof: Consider an arbitrary EOL grammar G = (N, P,S). Assume G is
reduced (for if it is not, then it can be reduced effectively.) Now if T'(G) C B,
every production in P must have the form

A—> a

where | a |= 2. This is the first necessary condition for 7(G) and B to be
equal.

Second, if T(G) 2 B, then H(T(G)) is the set of natural numbers; that
is, G is height-universal. This is the second necessary condition for T'(G)
and B to be equal. ‘

We claim that these two conditions are also sufficient. For the first con-
dition implies that G only generates binary trees, while the second condition
implies that a binary tree of each height is generated. Since there is only
one binary tree of each height, this implies that T'(G) = B.

To complete the theorem, observe that both conditions are decidable;
the second by way of Theorem 3.1. a

We have characterized B-universality; however, U B- and BT -universality
are more difficult. We need to consider the structural properties of our gram-
mars in more depth. To this end we say that an EOL grammar G = (N, P, S)
is tnvertible if no two productions in P have the same right hand side. This
implies that each tree in T'(G), for such a grammar G, corresponds to exactly
one syntax tree.

Theorem 5.3 Let G = (N, P,S) be an EOL grammar. Then, an invertible
structurally equivalent EOL grammar G' = (N',P',S') can be effectively
constructed from G.

Proof: Define N’ to be the set {X C N : X # 0} and S’ the set {X :
X CN and X NS #0}. Given a word a' over N’ we say a word a over N -

8 Ottmann and Wood

corresponds to a' if | a |=| ' | and each nonterminal symbol in a belongs
to the set of nonterminal symbols appearing at the same position in o'.
The set P’ of productions is defined as follows.

(i) P’ contains a production X — o, for o’ € N'*, if and only if

X={A:A€N,A— a€ P and a corresponds to a'}.

(ii) P’ contains a production X — a?, for i > 1, if and only if

X={A:A->d e P}.

The right hand side of each production in P’ uniquely determines its left
hand side. Thus, it is clear that G’ is invertible.

Next, we have to show that G and G’ are structurally equivalent. We
prove that for each syntax tree of G which generates a terminal word there is
a syntax tree of G’ of exactly the same structure generating the same word
and vice versa.

First, consider a syntax tree for z € a*, z € L(G). We construct a syntax
tree in G’ for z bottom up as follows. Each subword a* of z generated by
a production A — a* in G is generated by the production X — a* , where
X = {A: A - a € P}. Thus the nonterminals occurring in the syntax
tree in G for z on the first level above the terminal level correspond to the
nonterminals of G’ on this level in the obvious way. Now assume that we
know already that all nonterminals on level I + 1 in the syntax tree in G
for z correspond to the nonterminals of G’ appearing at that level. Let
Ay ---Ap on level I + 1 be generated by a production A — A; --- A4 in P.
By the assumption, in the syntax tree in G’ we have X;,..., X} occurring
at the same positions where the variables A,,..., 4 occur, and A; € X;,
for 1 < 7 < k. Now we have a (unique) production X — X;.-:-Xj in P’
such that A € X. In this way we obtain a uniquely determined sequence of
nonterminals of G’ such that each nonterminal in G on level ! corresponds to
the nonterminal of G’ at that level at the same position. Finally, we obtain
a set X C N containing the sentence symbol which occurs at the root of the
syntax tree for z in G. By definition, X € S’. Therefore, we have obtained
a syntax tree for z in G’ of the same structure.

Conversely, consider a syntax tree for ¢ in G’. We construct a syntax
tree of the same structure for z in G top-down as follows. If at the root of
the syntax tree in G’ a production X — Xj .- X} was applied, we know
XnNS #0. Choose 0 € X N S and a production ¢ — Ay---Ar € P such
that A; € X;, for 1 < 7 < k. Because A; --- A corresponds to X; ... X
we must have such a production. By similar arguments we may conclude
that each derivation step in G’ can be mimicked by a derivation step in G

Families of Trees 9

leading to a syntax tree for z of exactly the same structure. |

In what follows we will make frequent use of the following fact which is an
immediate consequence of invertibility.

If G = (N,P,S) is an invertible EOL grammar and X =* a,
for X € N and a € Ntuat, then there is no other nonterminal
Y # X, which also generates a and appears as the label of the
root of a syntax tree of the same structure.

The construction of an invertible EOL grammar is also possible if the
given EOL grammar has more than just one terminal symbol. Thus, Theorem
5.3 holds in this general case also.

For an EOL grammar to be U B-universal, it must be a UB grammar.
Since we may assume that it is also invertible, we have the following prelim-
inary result.

Lemma 5.4 Let G = (N, P, S) be a reduced invertible UB grammar which
18 UB-universal. Then, S = N.

Proof: Consider an arbitrary nonterminal A in N. Since G is reduced A
generates at least one UB-tree t. Because G is invertible no other nonter-
minal generates ¢. Finally, because G is UB-universal, t is in T(G) and A
isin S. o

The first result on UB-universality characterizes U B-grammars with a
single sentence symbol.

Theorem 5.5 Let G = (N, P, S) be a reduced, invertible U B-grammar with
S = {A}, for some A in N. Then, G is U B-universal if and only if N = {A}
and P={A > alaa| A| AA}.

Proof: Clearly G is U B-universal if it satisfies the given conditions. There-
fore, assume G is U B-universal and S = {A}. By Lemma 5.4, N = {4}
and, therefore, P must have the given form. (m]

Theorem 5.5 and its proof obviously carry over to the case of binary-
ternary trees. Therefore, we have the following result.

Corollary 5.6 Let G = (N, P, S) be a reduced, invertible BT -grammar with
S = {A}, for some A in N. Then, G is BT -universal if and only if N = {A}
and P = {A > aa|aaa | AA| AAA}.

But what happens if #S > 1? We completely characterize the two-letter
case, the case of #5 > 2 is left as an open problem.

10 Ottmann and Wood

We first reduce structural equivalence of EOL grammars to equivalence
via parenthesized versions of grammars. Given an EOL grammar G =
(N, P,S). The parenthesized version G() of G is the EOL grammar Gy =
(N, Py, S) where X — (a) is a production in Py) if and only if X — a is
a production in P. The left and right parentheses “(” and “)” are consid-
ered to be new terminal symbols which, once generated, remain unchanged.
This can be achieved by adding productions (— (and) —) to P). How-
ever, we usually do not mention these productions explicitly. Rewriting
and other related notions from Section 2 are extended to parenthesized ver-
sions of grammars in the obvious way. Of course, if L(G) C {a}*, then
L(G()) C {a, (;)}+
Example 5.1: The parenthesized version of the grammar of Example 2.1
is the grammar G() given by

B — (aa)|(BU)|(UB)|(BB)
U - (a)(B)

Observe that for a word z € L(G()) all terminal symbols a in z are sur-
rounded by the same number of matching pairs of parentheses. a

Obviously, two EOL grammars G and G’ are structurally equivalent if
and only if their corresponding parenthesized versions generate the same
language L C {(,),a}".

A parenthesized nonterminal context is a sentential form of the parenthe-
sized version G() of an EOL grammar G = (N, P, §) in which one occurrence
of a nonterminal symbol is replaced by an underscore. We call such a word
a € (Nu{(,)}u{})* simply a contezt. Given a context a and a nonter-
minal A, a[A] denotes the word obtained by replacing the underscore in a
with A.

Let ofA] be d-generable in G(); then a[A] can be identified with a sen-
tential syntax tree of height d in G from which all labels except for the
labels at its frontier have been removed. We write frontier(a[A]) to denote
the sequence of labels at the frontier of this tree. Clearly, frontier(a[A]) is
d-generable in G if and only if a[A] is d-generable in G().

Example 5.1 (continued): a = (((UB)(UB))((- B))) is a context,and
frontier(a[B]) and frontier(a|[U]) are both 3-derivable in G. The con-
text a captures the structure of a syntax tree in G from which all labels
except for the labels at the bottommost level and the label of the node with
the underscore have been removed. Thus, a can be identified with the tree
of Figure 1. a

Given an EOL grammar G = (N, P, S) and two nonterminals A and B,
we say that A and B are d-context equivalent, denoted by A =4 B, if, for all
contexts a, the word a[A] is d-generable if and only if a[B] is d-generable.
A and B are said to be context equivalent, denoted by A = B, if A =¢ B,

Families of Trees 11

UBUB._ B

Figure 1: The syntax tree for the context a.

for all integers d > 0. We say that an EOL grammar is context reduced, if
every pair of different nonterminals is not context equivalent.
Example 5.2: Let G = (N, P, S) be given by

A — al|aa|AA|B| AB
B — A|BB|BA4,

where A and B are both sentence symbols. 4 =% B , because 4,B € S. We
show that A =¢ B implies 4 =9+ B,

Let A =% B and let a be an arbitrary context such that a[A4)] is (d + 1)-
generable. From the frontier of this tree of height d + 1 we construct labels
for all nodes at level d just above the leaves as follows. Associate label A to
a node at level d, if its successors at level d+ 1 are labeled AA or B or AB;
associate label B to a node at level d, if its successors are labeled A or BB
or BA.

The predecessor on level d of the node representing the underscore and
labeled with A on level d + 1 is associated with either the label A or B. Re-
place this label with an underscore. Thus, we obtain a context 8 such that
for either X = A or X = B we have: 8[X] is d-generable, frontier(8[X])
= frontier(a[A]) in G, and X generates the occurrence of A replacing
the underscore in a. Now either frontier(a[B]) is also derivable from
frontier(B[X]) in one step by replacing X by a different righthand side
of a production of G or the inductive assumption A =9 B is applied in order
to conclude that B[Y] is d-generable, where Y € {4, B}, and frontier(8[Y])
= frontier(a[B)) in G. Thus, a[B)] is (d + 1)-generable. By symmetry we
obtain in the same way that a[B] is (d + 1)-generable implies that a[A4] is
(d + 1)-generable, therefore, A =4+! B. This shows that A = B.

If we identify the nonterminals A and B we obtain the structurally equiv-
alent EOL grammar

A—alaa| A| AA.

12 Ottmann and Wood

g

Definition 5.1 An EOL grammar is simplified, if it satisfies the three con-
ditions:

1. it 18 reduced;
2. it is invertible; and

3. it is context reduced.
Example 5.2: Let G be

A — alaa
B — B|BB|A|Aa4,

where A and B are both sentence symbols. Consider the context a = (- A4).
Then, afA] is 1-generable, but a[B] is not 1-generable and, therefore, A is
not equivalent to B. Thus, G is simplified. m]

Context equivalence partitions the set of nonterminals of a grammar
into equivalence classes. The nonterminals in an equivalence class can be
identified to yield a structurally equivalent grammar. For the construction
of a context reduced grammar we refer to [8]. As we will see, there exist
simplified, nonisomorphic, and structurally equivalent EOL grammars.

We now obtain

Theorem 5.7 Let G = ({4, B}, P, S) be a simplified UB grammar. Then,
G is U B-universal if and only if (i) and (ii) hold.

(i) S={A,B}.

(it)) P={A—a|aa|B|BB;B— A|AA}, P={A—a|aa;B— A|
AA| B | BB}, or the roles of A and B are interchanged.

Proof: If: Straightforward.
Only if: Condition (i) follows from Lemma 5.4.

It is clear that we must have productions with a and aa as their righthand
sides. We first show that both must be generated by the same nonterminal.
For, assume that A — @ and B — aa arein P. (Thecase A - aaand B — a
are in P is symmetric.) Consider an arbitrary context a, such that ofA] is
d-generable. By replacing each nonterminal A and B at the frontier of a[A]
by a and aa respectively, we obtain a terminal string in L(G). Removing
all labels yields a tree t € UB of height d + 1. Now, consider the node in
t corresponding to the underscore in a. It is a unary node of depth one.
Replacing this node by a binary node yields another tree ¢’ € UB which is
everywhere identical with ¢ except for this node. Thus, ¢’ must also belong

Families of Trees 13

®—
w—.‘>/
p — > — p
p— p—
w——-:b\
m—:>/
» — p—
p— p—
p— P
» — P
» — P
p—
p— P
» — P

Figure 2: Reconstructing internal labels bottom-up.

to T(G). Because G is invertible, this is only possible, if a[B] is d-generable.
By symmetry we obtain in the same way that a[B] is d-generable implies
a[A] is d-generable. Because d is arbitrary, we have A = B—a contradiction.

Hence, we may assume that A — a | aa arein P. (The caseof B — a | aa
in P is symmetric.)

Next, we show that B — A is in P. For, assume that B — A is notin P.
Because G has no useless nonterminals and A is the only nonterminal which
generates terminal symbols, we must have B — AA in P. Furthermore, we
must also have A — A in P, because otherwise arbitrarily high unary trees
could not be generated by G.

Our assumptions imply that G contains the productions A — A | a | aa
and B — AA. This allows us to partially reconstruct the labels of syntax
trees of a given structure in T'(G) bottom up as shown in Figure 2. Although
we do not know the labels of the roots of these trees, we are able to show
by induction that, for all d > 0 and for all contexts «,

afA] is d-generable if and only if «[B] is d-generable.

The case d = 0 is clear, because both A and B are sentence symbols of G
and the empty context a is the only context for which a[A4] is 0-generable
and a[B] is 0-generable, respectively.

Consider a context a such that a[A] is (d + 1)-generable. Invertibility
of G implies that we can uniquely infer the labels on the level d just above
the leaves of a[A]. Let X be the label of the node which generates the
node with the label A at the position of the underscore in a. Replacing
this label X € {A, B} by an underscore yields a context § such that g[X]
is d-generable and frontier(B[X]) = frontier(a[A]) in G.

Now consider the partial reconstructions of syntax trees in G shown in
Figure 2. We see that where A occurs on the second level we can have also
B at the same position either alone, if A was alone, or with the same sibling

14 Ottmann and Wood

A A

» — B
® — P

® — p—
o — p—

Figure 3: Partially reconstructed syntax trees.

A or B. Now either the same nonterminal X at level d which generated the
A at the position of the underscore in a at level d+1 can also generate the B
at this position in one step, or, if not, we know by the induction hypothesis
that B[Y] is d-generable and Y can generate the desired B in one step. In
both cases we obtain that a[B] is (d + 1)-generable. In the same way we
can infer that a[A] is (d + 1)-generable implies a[B] is (d + 1)-generable,
and the induction step is complete. However, this implies that A = B—a
contradiction. Therefore, B — A is in P.

Now consider the partially reconstructed syntax trees of Figure 3. In
order to generate these trees we must have one of the following pairs of
productions:

(1) A— AA and A — BB;
(2) A— AA and B — BB,
(3) B— AA and A — BB;or
(4) B— AA and B — BB.

Because G is invertible, we cannot have A — A in P. In order to generate
arbitrarily high unary trees we must have either A — B or B — B in P.
We consider both cases in turn.

Case 1: A — B in P.

The four possibilities of productions with AA and BB as their right hand
sides lead to the following four subcases.

(1.1) allows the following partial reconstructions of syntax trees:

Families of Trees 15

AA

AV A

A A A A
1
a a a a

® — p—
p — p—

As above we can conclude that A = .B—a contradiction.
(1.2) allows the following partial reconstructions of syntax trees:

A A

/\

A A
I
a a

A

/\

B
|
A A A
|
a a a

p— p—

Again, we conclude A = B—a contradiction.
(1.3) gives the following productions

A — a|aa|B|BB
B — A|AA

This is one of the possibilities claimed by the theorem.
(1.4) allows the following partial reconstructions of syntax trees:

A A

A B B A
AN AN
B BB BB B
[N N Y B
A A A A A A
I
a a a a a a

Again, we conclude A = B—a contradiction.

16 Ottmann and Wood

Case 2: B—- Bin P

It is again easy to see that among the four possibilities for productions
with AA and BB as their right hand sides only the fourth (4) does not lead
to a contradiction. In this case we obtain the following set of productions:

A > alaa
B — A|AA|B|BB

This is exactly the other possibility claimed in the theorem. |

The arguments which we used in the proof of Theorem 5.6 did not depend
on the form of the productions but only on the number of nonterminals. So
we also have:

Theorem 5.8 Let G = ({A, B}, P, S) be a simplified BT grammar. Then,
G is BT-universal if and only if (i) and (i) hold.

(i) S ={A, B}

(ii)) P = {A — aa | aaa | BB | BBB;B — AA | AAA},P = {A —
aa | aaa; B — AA| AAA | BB | BBB}, or the roles of A and B are
interchanged.

References

(1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Algo-
rithms. Addison-Wesley Publishing Co., Reading, Mass., 1983.

[2] D.T. Lee, C.L. Liu, and C.K. Wong. (go,-..,gk)-Trees and unary OL
systems. Theoretical Computer Science, 22:209-217, 1983.

[3] H.A. Maurer, Th. Ottmann, and H.-W. Six. Implementing dictionaries
using binary trees of very small height. Information Processing Letters,
5:11-14, 1976.

[4] H.A. Maurer and D. Wood. Zur Manipulation von Zahlenmengen.
Angewandte Informatik, 7:143-149, 1976.

[5] R. McNaughton. Parenthesis grammars. Journal of the ACM, 14:490—
500, 1967.

[6] H. J. Olivié. A Study of Balanced Binary Trees and Balanced One-Two
Trees. PhD thesis, Departement Wiskunde, Universiteit Antwerpen,
Antwerp, Belgium, 1980.

Families of Trees 17

[7] Th. Ottmann and H.-W. Six. Eine neue Klasse von ausgeglichenen
Binarbaumen. Angewandte Informatik, 9:395-400, 1976.

(8] Th. Ottmann and D. Wood. Structural equivalence of EOL grammars.
University of Waterloo, 1989.

[9] G.Rozenberg and A. Salomaa. The Mathematical Theory of L Systems.
Academic Press, New York, 1980.

[10] K. Ruohonen. On equality of multiplicity sets of regular languages.
Theoretical Computer Science, 36:113-117, 1895.

[11] A. Salomaa. Formal Languages. Academic Press, New York, 1973.

[12] D. Wood. A note on Lindenmayer systems, Szilard languages, spectra,
and equivalence. International Journal of Computer and Information
Sciences, 4:53-62, 1975.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

