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Abstract
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Symbolic planning involves extensive computation for detecting and handling goal in-
teractions. Past planning systems can be classified as either domain-dependent or domain-
independent, depending on how they deal with the goal interactions. Domain-dependent
systems rely on heuristics that are specific to their particular application domains, and are
of limited generality. Domain-independent systems make use of general planning knowl-
edge independent of any particular domains, but have been mainly inefficient.

This thesis presents two approaches to improving the efficiency and broadening the
applicability of planning systems. First, a set of conditions are set up upon the represen-
tation of planning knowledge. Whenever these conditions are satisfied, efficiency can be
provably improved. In addition, these conditions enable one to preprocess the planning
knowledge of a system before problem solving starts, and offer guidelines for the design
of knowledge representation. Second, a set of restrictions are imposed on the goal inter-
actions so that, whenever they are satisfied, efficient planning methods can be developed.
The restrictions does not depend on any specific domain knowledge. Therefore the ap-
proach is more general than domain-dependent planning. In addition, they offer more
knowledge about goal interactions and thus enable more efficient methods to be developed

than purely domain-independent approaches.
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Chapter 1

Introduction

Planning is concerned with the problem of composing a course of actions that can trans-
form the world from some given initial situation to some desirable goal situation. One
of the differences between planning and other kinds of problem solving activities is that
planning is often guided by goals and subgoals, and goals and subgoals usually interact.
Of the various types of interactions, some are harmful, in which case a step for solving
one goal may preclude another step for solving another goal. Other interactions may be
useful, and one wants to take advantage of them. The task of detecting and handling the
interactions has been a major concern for researchers in artificial intelligence planning,.
Several approaches have been proposed for the problem of handling goal and subgoal
interactions. Domain-independent planners aim at detecting and handling goal interac-
tions based on the structure of the planning knowledge. They are generally applicable
to many domains, but unfortunately, are not very efficient. Domain-dependent planners
exploit powerful domain-dependent heuristics for detecting and handling goal interactions.
They are generally more efficient than their domain-independent counterparts. However,
because of their domain-dependent nature, it is hard to apply their planning technique
to other domains. A research goal is to improve the efficiency of domain-independent

planning and broaden the applicability of domain-dependent planning,.



This thesis is divided into two parts. In Part I, methods are discussed for preprocess-
ing the planning knowledge to obtain information about possible goal interactions. This
information can be extracted before planning process starts, and used for ‘guiding the
problem solving activity during planning. In particular, these preprocessing methods are
applied to hierarchical planning, in which a plan is generated by first buiding a high level
plan and then refining it into more detail. The information extracted during preprocessing
can be used in deciding when backtracking is needed, as well as how orderings should be
imposed in a plan for taken care of goal interactions. In Part II, an approach is presented
for improving planning efficiency by imposing restrictions on the kinds of goal interactions
which are allowed to occur. By imposing restrictions on the goal interactions, it is possible
to design efficient planning methods. This approach can be considered as an intermediate
approach to planning as compared to both domain-independent and domain-dependent
planning methods. To make this approach useful, the restrictions upon goal interactions

should satisfy the following properties:

1. the restrictions are stateable in a clear and precise way (rather that simply referring

to general knowledge about the characteristics of a particular domain of application);

2. the resulting classes of planning problems are large enough to be useful and inter-

esting;

3. the classes of problems allowed are “well-behaved” enough that planning may be

done with a reasonable degree of efficiency.

This approach is called limited-interaction planning.

1.1 Overview

A reader’s guide to the thesis is provided as a plan in Fig. 1.1. In Chapter 2, past planning
work will be briefly reviewed. Both domain-independent and domain-dependent planning
methods will be discussed in the review. In particular, the limitation of both approaches
to planning will be pointed out, and the motivation to the thesis is introduced.

Chapters 3, 4 and 5 will focus on preprocessing in hierarchical planning. Hierarchi-

cal planning is one of the prominent methods of abstraction in planning. Given a plan



Chapter 4
Chapter 8
/ Chapter 5
Chapter 2
apher \ Chapter 10
Chapter 6 Chapter 7 Chapter 8 p—1
Chapter 9

Figure 1.1: A reader’s guide to the thesis as a plan.

composed of high level actions to be carried out, a hierarchical planner will find ways to
expand each action into a set of lower level subactions according to some predefined action
reduction schemata. At each step of expansion, critics will be used to find out and take
care of the interactions between actions in the plan. This will be reviewed in Chapter 3.

It is sometimes possible for a hierarchical planner to encounter a situation where a
plan contains a set of deleted-condition conflicts that are unresolvable. At this point, it
is not always the correct behavior to backtrack, since a set of unresolvable conflicts in a
plan may turn out to be resolvable after further reduction of the plan. In Chapter 4, a
set of restrictions will be provided. These restrictions define the relationship between a
non-primitive action and its set of sub-actions. When the restrictions are satisfied, it is
possible to determine whether further reduction of a plan will make it possible to resolve
previous unresolvable conflicts in it.

In Chapter 5, a property of hierarchical system, the ordering-induced independence
property will be defined. Ordering-induced independence property is satisfied by a pair of
actions (a, b), if a precedence ordering from a to b will not be undone because of interactions
between the subactions of a and b. Again restrictions will be presented to restrict the way
action reduction schemata are defined. When these restrictions are satisfied by a pair of

actions, the ordering-induced independence property can be guaranteed.



In Chapter 6, a multiple goal planning problem, the least-cost multiple goal planning
problem, will be defined formally, and the types of allowable goal interactions will be
discussed. It will be shown in Chapter 7 that when one plan is available for each goal, the
multiple goal planning problem is NP-hard to solve. However, after imposing restrictions
on the interactions between the goals, polynomial time algorithm is available for solving
the problem.

When more than one goal is available for each goal, the multiple goal planning problem
will again be NP-hard, even with the restrictions of Chapter 7. This is shown in Chapter 8.
In the same chapter, a heuristic algorithm will be presented along with empirical results.

Chapters 7 and 8 concentrate on the least-cost multiple goal planning problem. In
Chapter 9, a method for preprocessing search spaces for branch-and-bound search will be
discussed. This preprocessing method can be used for planning a individual goal. Finally,
a summary of the thesis will be given in Chapter 10, along with a discussion of future

work.



Chapter 2

Background

This chapter reviews previous work on planning. The review is divided into three parts:
domain-independent planning systems, domain-dependent planners, and finally a discus-

sion of the limitations of both along with motivation to the thesis.

2.1 Goal Interactions in Planning

Given a set of actions, a planning problem in A.lL is to compose a course of actions that
can transform the world from some initial state to a desired goal state. The course of
actions, called a plan, is a set of actions along with certain constraints on them. One
constraint imposes orderings among the actions in a plan. For example, to drive a car
from location A to location B, a plan may consist of a sequence of two actions, namely,
starting the car, and then driving it from location A to location B. Notice that ordering
is important in this plan; one can only drive the car after starting it up, but not the other
way around.

Planning is useful for a wide range of applications, including automated manufacturing,

electronic circuit design, robot control problems, etc, and is also closely related to some



other A.l. problems such as natural language understanding. To make it possible for
planning to be automated by a computer program, it is important to address a number of
research issues. These issues include the representation of the world, the representation
of and reasoning about actions and the effects of actions upon the world, and the control
of search processes.

Given a goal state to be achieved, a planner has to decide, among other things, which
actions to choose for a plan, what orderings to impose upon the actions and which objects
to use. This involves search in a space of possible plans. Usually, there are a large number
of possibilities for a planner to choose from, and most of them cannot be used to achieve the
goal. For example, the number of possible sequences of actions is usually exponential with
the number of available actions. To ease the computational burden, planning systems
usually decompose a complicated goal into two or more subgoals to solve. The reason
for this is that decomposition tends to divide the exponent of an exponential problem,
thus drastically reducing the total problem-solving effort. Korf [20], for example, has
demonstrated that if the subgoals are independent, then solving each one in turn will
divide both the base and the exponent of the complexity function by the number of
subgoals.

The major assumption of the above analysis is that the goals are independent. This
condition does not really hold for most planning problems. Instead, goals may interact or
conflict with each other. One example of this is the “Sussman anomaly,” in which solving
one goal undoes the independently derived solution to the other. As illustrated in Fig. 2.1,

suppose we have three blocks A, B and C, and we want to achieve the conjunctive goal
On(A, B) A On(B,C)
given the initial situation
On(C, A) A On(A4, Table) A On(B, Table).

If only one block can be moved at a time, achieving either of the two goals On(B, C) and
On(A, B) makes the other goal impossible to achieve without violating the one already
achieved.

The goal interaction in the above example can be referred to as the deleted-condition

conflict. It occurs when one way of achieving one of the goals deletes some of the conditions



Figure 2.1: Sussman anomaly.

necessary for the achievement of the other goals. In this case, achieving On(B,C) by
moving B to the top of C in the initial situation makes it impossible to move A any
further, since now both B and C are above A. This makes it impossible to achieve
On(A, B) without undo the actions for achieving On(B, C).

Deleted-condition conflict is only one kind of goal interaction that occur in planning,
and many other types of goal interactions exist. Consider planning for the minimum cost
plans in which every action is associated with a cost. Sometimes it is possible to reduce
the total cost of a plan by performing several actions together. For example, suppose
someone wants to buy both bread and milk. If both bread and milk are bought together
instead of on separate trips to a store, then one can save an additional trip. In this case,
the actions are said to be interacting with each other through action-merging interactions.
This type of goal interaction can be considered helpful for planning, and should be taken
advantage of. In [46], Wilensky presented a fairly complete classification of the types of
goal interactions that occur in common sense domains.

One of the major difficulties in dealing with goal interactions is that the interactions
do not usually exist in isolation; taking care of an interaction in a plan in a certain way
may affect some other interactions in the same plan. For example, removing a deleted-
condition conflict may create new conflicts, or make other conflicts more difficult to handle.
Moreover, taking care of one type of interaction may affect interactions of some other types
in the same plan. For example, one way to remove a deleted-condition conflict in a plan

is to find a new action which can restore the deleted condition, and insert it between the



two actions in conflict. However, this new action may in turn create conflicts for resources
with some existing actions, if they share the same scarce resources. Thus, taking care of
the deleted-condition conflict affects conflicts which involve resources.

A number of approaches have been suggested for dealing with interactions in planning.
They can be generally classified as domain-independent and domain-dependent. In the
following, both approaches are reviewed, followed by a discussion of the motivation to the

thesis.

2.2 Domain-Independent Planning

Domain-independent planners are based on the structure of the planning knowledge, with-
out resort to domain-specific heuristics. They have the advantage of being applicable to
many domains and provide planning techniques capable of dealing with many types of goal
interactions. Domain-independent planners can be classified as either linear or nonlinear,
according to how goal interactions are treated. u

Many of the earlier domain-independent planners depend on the condition of linearity.
The condition of linearity in a planning problem is satisfied if the subgoals are all inde-
pendent and can be achieved sequentially in any arbitrary order. Linear planners start
by generating plans for the subgoals as if the planning problem were linear. They apply
actions one at a time, and the resultant plans are linear sequences of actions. STRIPS
(11] and HACKER [41] are examples of linear planners.

The linearity assumption is appropriate in cases where there is no a priori reason to
order one operator ahead of another. This can be considered as a domain-independent
heuristic for planning. However, the problem with this heuristic is that it may lead a plan-
ner to make a premature commitment to an incorrect ordering of interacting subgoals—and
much backtracking and additional computationally expensive search may be necessary to
achieve the final result. For example, consider the problem of painting a ceiling and a

ladder(based on [38]). The goal can be formulated as the conjunction of two subgoals:
Achieve(Painted(Ceiling)) and Achieve(Painted(Ladder)).

A linear planner solves this problem by solving either one of the subgoals first. Suppose

it chooses to paint ladder first. This would involve getting the paint and apply paint. to



the ladder. However, after painting the ladder it is no longer possible to paint the ceiling,
since painting the ceiling requires that the ladder be available to be climbed. At this
point, it is necessary to backtrack to try the other ordering of the goals, namely, painting
the ceiling before painting the ladder.

Therefore, to use a linear planner in domains where subgoals or goals interact strongly,
it is necessary to add ways to detect and resolve the conflicts. As an example, STRIPS
[11] did linear planning for compound goals which are conjuncts of component goals. Even
with these fixes, linear planners are not able to find the most efficient solutions in cases
where it is necessary to interleave the actions for a,chieving different goals, and, in some
of the extreme cases, they are not able to find a solution at all. The Sussman anomaly is
an example for which a linear planner is not able to find the most efficient solution.

Another domain-independent heuristic is to make planning decisions only when they
are needed. Thus, if there is no conflict between two actions, then they should be left in
unordered. This results in the least-commitment strategy. Consider the plan in Fig. 2.2
where an action a deletes a precondition p of another action . One way to handle this
conflict is to introduce an ordering so that a occurs after b. An alternative way to handle
this conflict is to order a before ¢, which asserts the condition p for b. The plan thus
developed is a partially ordered set of actions, and for this reason, planners using the
least-commitment strategy are often referred to as nonlinear planners. Most of the well-

known planning systems (for example, [38, 42, 29, 45, 7, 47, 40]), fall into this category.

a effects(a) = {-p}

c b

effects(c) = {p} preconditions(b) = {p} .

Figure 2.2: A deleted-condition conflict in a plan.



Although domain-independent nonlinear planners aim at reducing the unnecessary
backtracking experienced by their linear counterparts, there are still serious computational
problems involved. One problem is that by delaying commitment to ordering constraints
in a plan makes, it is more difficult to verify the correctness of a plan. Plan verification
is needed to check if all of the intended effects of the actions in a plan are indeed true
at places where they are needed. This process is an important step in the detection of
interactions in a plan. However, the problem of plan verification has been shown to be
NP-hard in most practically interesting cases ([10, 7]). Dean and Boddy [10] proposed to
overcome the problem by using verification algorithms that are incomplefe in nature for
a number of problems. But the general computational problem still remains as a serious
limitation to nonlinear planning.

Another problem with nonlinear planners is that it is difficult to control search in an
efficient way. At all times, a nonlinear planner has a partial plan to complete. A plan
is partial either because more orderings are needed, because some of the variables in the
plan are to be instantiated, or because more actions need to be inserted. Thus, planning
corresponds to a search in a space of partial plans, where the problem solving operators
correspond to plan modification operators such as one that imposes an ordering. This
search space could be huge, and good heuristics are needed to guide the search. However,
most planners correspond to only depth-first searches in this state space. Thus, more
work needs to be done in order to find good heuristics for domain-independent nonlinear

planners.

2.3 Domain-Dependent Planning

One way to lessen the computational burden of planning is to make use of domain-
dependent knowledge to detect and handle goal interactions. In the MACHINIST system
(for planning of machining operations on a metal part), Hayes [15] uses a set of produc-
tion rules to detect interactions between machining features. These rules also suggest ways
handle the interactions in a correct manner. For example, suppose a hole and a flat surface
are to be made, and the hole and the flat surface intersect each other at an angle other

than 90°. If the flat surface is made first, the then drill bit will slip on the flat surface

10



when creating the hole, making the hole placement inaccurate. Therefore, a rule tells the
program to make the hole before making the surface. Using these rules, the MACHINIST
planner can perform more efficiently than some of the experienced machinists.
Domain-dependent planners are widely used in practice. Other examples include mili-
tary command and control planning 3, 14, 5], route planning [21, 13], autonomous vehicle
navigation [4, 24], and automated manufacturing [6, 9, 31]. Although these planners all
work efficiently in their own application domains, their domain-dependent nature makes

it difficult to apply them to other domains.

2.4 Motivation

As discussed above, the treatment of goal interactions in previous planning research still
presents major problems. On the one hand, domain-independent planners deal with in-
teractions using domain-independent planning knowledge, and are applicable to many
domains. But they are generally not very efficient. On the other hand, domain-dependent
planners can be more efficient in their own domain of application, but their range of
applicability is too narrow. New methods are needed that are efficient in handling goal
interactions and are also general enough to be applicable to many domains.

In this thesis, two methods are presented for the improvement of planning efficiency.
First, the representation of the actions of a planner provides information about the inter-
actions between actions. This information can be extracted before the planning process
starts, and can be used in various ways during planning. In the first part of the thesis,
this issue is explored in the context of hierarchical planning!. Planning can be considered
as a state space search, and methods are needed to tell if a state is a dead end, where
backtracking is needed. A dead end in hierarchical planning corresponds to a plan con-
taining conflicts that are unresolvable. The earlier such dead ends are detected, the more
efficient the planning process can be. In addition, a search is more efficient if it is possible
to tell which path to explore first given more than one alternative path to choose from.
Such decision is needed in planning when ordering needs to be imposed among the actions

in a plan that conflict with each other. Chapter 4 presents methods that enable a planner

!Hierarchical planning will be discussed in detail in the next chapter.
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to recognize unresolvable conflicts early in planning by preprocessing a set of actions. In
Chapter 5, a property of the actions, which can be checked a priori, is established that
enables a planner to make intelligent decisions when facing multiple ways for taking care
of a conflict.

A second technique for improving planning efficiency is presented in Part II. As dis-
cussed in the previous sections, one source of computational difficulty of nonlinear planners
lies in their attempt to handle a comprehensive set of interactions efficiently. A more re-
alistic approach may be to attack specific classes of planning problems by allowing only
certain kinds of goal interactions. If the domain-dependent and domain-independent plan-
ners are considered as on the extremes of a spectrum, respectively, then this approach can
be thought of as one which falls in the middle of the spectrum. For this reason, it will
be referred to as limited-interaction planning. In the second part of the thesis, this ap-
proach is applied to the multiple goal plan optimization problem, which selects the least
cost plan for achieving more than one goal. With this approach, instead of generating
a plan for a single conjoined goal, plans are generated for each goal concurrently, and
then an “optimization” step is performed to merge the resultant plans into a single global
plan. During this optimization step, allowable interactions between the goals are taken
care of. Finding the best plan will be shown to be NP-hard in general, but it is possi-
ble to design a set of restrictions that limit the allowable interactions while permitting
the process to be performed efficiently. For the limited-interaction planning approach to
be useful, the allowable set of interactions must result in a class of planning problems
that is broad enough to be useful and interesting—and yet “well-behaved” enough that
reasonably efficient planning procedures can be developed.

The above approach to multiple goal planning relies on the ability to efficiently gen-
erating plans for each individual goal. A class of planning problems, such as process
planning and robot route planning, can be solved using branch-and-bound search algo-
rithms. Chapter 9 presents a method for extracting the control information of the branch-
and-bound search, and for making use the information during the actual problem solving
process. Specifically, a structure for “remembering” the control information, called the
threaded decision graph, is used to replace the ordered set of incomplete paths for branch-
and-bound search. With the graph, no manipulation of the set is done, and therefore,

efficiency is improved.
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Part 1

Improving the Efficiency of

Hierarchical Planning
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Chapter 3

Hierarchical

Planning—Definitions

Hierarchical planning using action reduction is one of the most widely used planning
methods. Given a set of high level actions to be carried out, this method will find ways
for reducing each action into subactions according to a predefined set of action reduction
schemata. It then resolves possible conflicts among the subactions in the plan using the
least-commitment strategy. The process is repeated until all of the actions in the plan are
primitive, and all of the interactions between the actions are removed. The advantage of
this planning method is that a hierarchical planner works on a small but important set of
interactions first, before it sets out to handle the rest which are considered as mere details.
NOAH[38] and NONLIN[42] are two of the well known hierarchical planners.
Historically, the term “hierarchical planning” has been used for mainly two types of
planning, and the kind of hierarchical planning in this thesis only refers to one of them.
Another kind of hierarchical planning is used in ABSTRIPS ([35]). The definition given
in this chapter cannot include all possible kinds of nonlinear planners which decompose

higher level actions into low level ones. waever, one of our goals is to include as many
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kinds of hierarchical planning as possible.
There are two parts to hierarchical planning with action reduction. The first is the
representation of actions and their reductions, and the second is the way problem solving

is done using these representations.

3.1 Representation

The planning knowledge of a hierarchical planning system consists of two parts. The first
part is a set of action templates A. Each action template a € A is represented in terms of
preconditions and effects. Specifically, each action template a has a set of preconditions
preconditions(a), and a set of effects effects(a), where each set consists of literals in first-
order predicate logic. Thus, for example, one can choose to represent the action template
for moving a block z from the top of another block y to the table in the blocks-world

domain as

put-block-on-table(z, y)
comment: move z from top of y to the table.
preconditions={Block(z), Block(y), Cleartop(z), On(z, y)}

effects={Ontable(z), Cleartop(y), -On(z, y)}

An action template in A can be instantiated by replacing some of the variables in its
preconditions or effects by terms. The replacement can be represented by a set of ordered
pairs , where the first element of each pair is a variable and the second element is a term.

Each such set is called a substitution. If a is an element of A and

IB = {(”l’tl)’ <v27t2)’ seey (”mtn)}

is a subtitution, then af is a with every variable v; that appears in its preconditions and
effects replaced by t;. @ = af is called an instance of a, and is also referred to as an action.
In order to make a clear distinction between an action template and an action, the former

is denoted in boldface, while the latter is not. If a is an instance of an action template
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a, then the latter is called a template of the former, and template(a) = a. It is clear that
each action has a unique template. '

The second component of the planning knowledge of a hierarchical planner is a set
of action reduction schemata ®. A reduction schema R € & is a function which, when
applied to an action template in A, returns a partially ordered set of actions a;. R is
not necessarily applicable to every action template in A, and an action template can have
more than one reduction schema applicable to it. The set of action reduction schemata
applicable to a is denoted by a(a). a is primitive if a(a) = 0, otherwise it is non-primitive.
Intuitively, a primitive action femplate is one which cannot be decomposed further into
more detailed steps, while a non-primitive one can.

If R is applicable to a, then R(a) = (A, E,C), where A is a set of actions, E defines
a partial ordering among the elements of A, and C is a set of conditions along with
specifications of where they must hold. R(a) is called a reduction of a. Each element of C
is called a protection interval [8], which is a triple (p, a1,a3), where p is a condition, and

a1,ay are actions in A such that
l.pe effects(al}),
2. p € preconditions(as), and
3. pis expected to be true after a; and before a,.

aj is called a provider of p for as.
Let A(R(a)) be the set of actions in R(a). In the following discussion, a < b means
that a is constrained to occur before b. The actions in A(R(a)) have to obey the following

restrictions:

1. Ve € effects(a), Ja; € A(R(a)) such that e € effects(a;) and Vb € A(R(a)), if
—e € effects(b) then b < a;. That is, every effect of an action template is asserted

by at least one of the actions in its reduction.

2. Vp € preconditions(a), Ja; € A(R(a)) such that p € preconditions(a;), and Vb €
A(R(a)), if p € effects(d) then a; < b. That is, every precondition of an action
template is also a precondition of at least one of the actions in its reduction, and

futher this precondition is not the effect of some earlier subaction.

16



get-ladder(ladder)

apply-paint-to-ceiling(paint,ceiling)

get-paint(paint)

(Have(ladder), get-ladder(ladder),apply-paint-to-ceiling(paint, ceiling))

(Have(paint), get-paint(paint), apply-paint-to-ceiling(paint, ceiling))

Figure 3.1: A reduction schema for painting a ceiling,.

3. Va; € A(R(a)),Vp € preconditions(a;),V¥b € A(R(a)) such that a; £ b, if -p €
effects(b) then 3¢ € A(R(a)) such that ¢ < a; and b < ¢, and p € effects(c). In other

words, a reduction is a miniature plan free of any conflicts.

The definition of reduction schemata above is intended to capture the formal aspects of
action or goal expansions in a number of systems. In particular, a reduction schema
R corresponds to a “soup code” in NOAH [38], an “opschema” or an “actschema” in
NONLIN [42], and a “plot” in SIPE [47]. Also, we made no distinction between a goal
and an action in our formalization; all the goals are represented as action templates in
A which can be reduced to a special action no-op, a primitive action which means the
action can be achieved by doing nothing.

Let a = af be an instance of a € A. We extend the definition of action reduction
schemata to instances of action templates, as follows: VR € a(a), R(a) = R(a)f3, where
R(a)g is the result of applying the substitution 8 to all the actions in A(R(a)), and to all
the action occurrences in C(R(a)). If R is applicable to a, then R(a) is called a reduction
of a, and each action in R(a) is called a subaction of a. Intuitively, A reduction for an
instance a of a consists of a partially ordered set of actions, each of which is an instance

of an action template in A(R(a)). Extended in this way, it is clear that the following
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action preconditions effects
paint-ceiling(ceiling) 0 {Painted(ceiling)}
get-ladder(ladder) 0 {Have(ladder)}
get-paint(paint) 0 {Have(paint)}

apply-paint-to-ceiling(paint, ceiling)

{Have(ladder), Have(paint),

Climbable(ladder)}

{Painted(ceiling), ...}

Table 3.1: Actions in the painting example with their preconditions and effects.

properties hold: Let a = af. Then
1. of(a) = o(a), and

2. a is primitive iff a is.

Fig. 3.1 describes an action reduction schema for painting a ceiling. A set of protection

intervals is also given in the figure. The preconditions and effects of each action are given

in Table 3.1.

Let A be the set of actions and ® be the set of action reduction schemata in a planning

system’s planning knowledge. The following definition characterizes what is meant by

“descendents” of an action template.

Definition 3.1 Leta € A be an action template. TC(a) defined as follows:

1. a € TC(a),

2. Ifa’ € TC(a), then VR € a(a') if a” € A(R(a’)), then template(a”) € TC(a).
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As an example of TC(a), consider the set of action reduction schemata in Fig. 3.2. For

the action template a in the figure,
TC(a) = {a, ai,az,ag, a-4}

For a given A, suppose each action template has a maximum of k action reduction schemata
applicable to it. Then the relationship between actions and subactions can be represented
as a directed graph, with k X |A|? edges. For any given action template a, the computation
of TC(a) can be implemented as a depth first search in this graph. Thus, the worst case

time complexity for computing TC for one action template is O(k x |A|?).

Figure 3.2: A set of plan reduction schemata

3.2 Planning with Action Reductions

A plan is defined as a partially ordered set of actions. Let P be a plan, then P =
(Ap, Ep,Cp), where Ap is a set of actions, Ep defines a partial ordering among the
actions in Ap, and Cp is a set of protection intervals. Each action in Ap is an instance of
some action template in A.

Let a be an action in a plan P, and R be a reduction schema applicable to a. Then
R(P) is the plan which results when a is replaced by R(a) in P. Let § = {p,a,b) be
a protection interval in P. § is not associated with R(P), instead R(P) will have one
or more protection intervals derived from § which involve subactions a; € A(R(a)). In

particular, let a; be a subaction of a such that
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1. p € effects(a;), and
2. Va; £ a;, ~p ¢ effects(a;).

By the definition of R, one or more such a; always exists. Then (p,a;,b) is a protection
interval associated with R(P).

Similarly, let b be an action in a plan P, and R’ be a reduction schema applicable to b.
Let R'(P) be the plan which results when b is replaced by R'(b) in P. Suppose {p, a, b) is
a protection interval in P. Then R'(P) is associated with one or more protection intervals
involving the subactions of b. Let b; be a subaction in A(R'()), satisfying the following

conditions:
1. p € preconditions(d;),
2. Vb; € A(R(D)), if p € effects(b;) then b; < b;.

Then (p, a,b;) is a protection interval associated with R'(P).
Let P be a plan, and Ry, R,,..., R, be reduction schemata. Then

Q(P) = Ri(Ry(...(Ra(P)).. )

is a composite reduction of P. Furthermore, if A is a set of protection intervals associated
with P, then Q(A) is the corresponding set of protection intervals associated with Q(P).

A hierarchical planner starts planning for a given set of goals by finding appropriate
actions to achieve them. I G(X) is a goal, then the action chosen to achieve this goal
should have G(z) as one of its effects. These actions form a plan at the highest level. The

subsequent problem solving process can be described in the following steps:

1. Choose a non-primitive action, and replace it by one of its reductions. Let the new

plan be P.

2. Find out the set of interactions among the actions in P, and suggest ways to handle

them.
3. If all the actions in P are primitive then terminate planning. Else go to step 1.

After step 1is done, certain new interactions may appear. Depending on the particular

domain of application, interactions can be of different types. In this part of the thesis, the
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only type of interaction considered is deleted-condition conflict between a pair of actions.
This type of interaction occurs when an action in a plan deletes a precondition or an
intended effect of some other action. More formally, let P be a plan, and (p,a,a’) be a
protection interval in P. Suppose there is some action b in P such that -p € effects(b).
If b £ a and a’ £ b, then a deleted-condition conflict occurs in the plan P (see Fig. 3.3).

This conflict can be characterized according to whether —p is also an intended effect of b:

1. both (p, a,a’) and ({~p,b,b’) are protected intervals in P, so the conflict is denoted
by the pair ({(p, a,a’), (-p,b,b")). In this case, one way to remove the conflict is to
impose a time ordering such that a’ occurs before b (Fig. 3.4), or b’ occurs before a

(Fig. 3.5).

2. If -p is not needed by any action in P, then it is not a protected condition, so
the conflict can be denoted by the pair ({p, a, @), (~p,b)). In this case, one way to
remove the conflict is to order b before a (Fig. 3.6) or after o’ (Fig. 3.7).

Figure 3.3: A deleted-condition conflict.

Consider the following example adopted from [38]. The goals are to paint a ladder and
to paint a ceiling. A top level plan for the goal consists of a single conjunctive formula, as
shown in Fig. 3.8. At the next level, this plan is broken down into two separate actions
in parallel (Fig. 3.9). Since at this level of reduction, there is no interaction between the
two parallel actions, the actions are further reduced into more detailed plans, consisting
of several component steps (Fig. 3.10).

At this point, an interaction can be detected between the action apply-paint-to-

ladder(Paint, Ladder) and the action apply-paint-to-ceiling(Paint, Ceiling), because if
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L

Figure 3.4: Romoving the conflict by introducing an ordering.

Figure 3.5: Removing the conflict by introducing an ordering.

the ladder is painted first, the precondition Climbable(Ladder) of the action apply-paint-
to-ceiling(Paint, Ceiling) will be deleted. One way to handle nteraction is to order apply-
paint-to-ladder(Paint, Ladder) after the action apply-paint-to-ceiling(Paint, Ceiling), re-
sulting in the plan in Fig. 3.11. At this point, every action in the plan is primitive, and

no conflicts occur. Thus, planning can be terminated.

3.3 Overview

A hierarchical planning system achieves its efficiency by taking care of more important
interactions first, and worrying about detailed ones later. This technique is made possi-

ble by representing the domain knowledge hierarchically in the form of action reduction
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Figure 3.6: Removing the conflict by introducing an ordering.

Figure 3.7: Removing the conflict by introducing an ordering.

schemata. The efficiency of hierarchical planning depends upon how the action reduction
schemata are defined. If one is not careful in the definition, one can lose the efficiency of
hierarchical planning. In the next two chapters, we will demonstrate this point in terms
of two important properties of hierarchical planning systems.

First, if a planner faces conflicts in a plan that are impossible to resolve, in general
it has to try to reduce its actions further in order to resolve the conflicts by interleaving
the subactions. This greatly reduces the efficiency of a planner, since it has to search the
an extra portion of the planner’s search space, even if there is strong indication that no
solution exists in that space. In Chapter 4, we show that a class of domains exists, in
which the action reduction schemata can be defined so that unresolvable conflicts in a
plan cannot be resolved in any reduction of the plan.

Second, at each step of planning, a hierarchical planning system has to constantly
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Paint (Ceiling) and Paint(Ladder)

Figure 3.8: A top level plan containing a single node.

paint-ceiling(Ceiling)

paint-ladder(Ladder)

Figure 3.9: A plan at the second level of reduction.

make decisions on which ordering among a set of alternative ones to impose on a plan.
Chapter 5 shows that it is often possible to extract information about goal interactions
beforehand, and make use of them to make better decisions for the orderings.

More specifically, we discuss two properties in the next two chapters. The downward-
unlinearizability property is defined as follows. Suppose a plan cannot be linearized while
preserving all of its protected conditions. Then this plan corresponds to a “dead-end”
to the planner. Thus, whenever such a property is satisfied, backtracking from an unlin-
earizable plan will not lose any solution. The ordering-induced independence property is
satisfied by two actions @ and b, whenever an ordering a < b in a plan cannot be undone
later by the subactions of either @ or b. Associated with each property is a set of sufficient
restrictions. We show through a set of theorems that these restrictions are imposed upon

the action reduction schemata, and can guarantee both the downward-unlinearizability
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get-ladder(ladder)

apply-paint-to-ceiling(paint,ceiling)

get-paint(paint)

get-paint(paint) apply-paint-to-ladder(paint,ladder)

Figure 3.10: A plan containing interactions among its actions.

and the ordering-induced independence properties.

The results of Chapters 4 and 5 provide methods for preprocessing a given set of
action reduction schemata ®. Given ®, one can use the syntactic restrictions to check
if the downward-unlinearizability property is satisfied by the action reduction schemata
in ®. Also, one can check if any pair of action templates satisfies the ordering-induced
independence property. If these properties are satisfied, then the actions and schemata
are marked as so. The marked action templates and reduction schemata are then used for
planning. This process is shown in Fig. 3.12, where ® represents the set of given action
reduction schemata, and A represents the set of given action templates.

We demonstrate how these two properties can be used during planning through the
following examples. Suppose now that instead of painting the ceiling and the ladder, one
wants to paint the ceiling and the floor. Assume the hierarchical planner has come up with
a plan as shown in Fig. 3.13. Assume that if one paints the ceiling first, the paint will drip
down and makes it impossible to paint fhe floor next. But if one paints the floor first, one
cannot get in the room to paint the ceiling. That is, the action “apply-paint-to-ceiling”
deletes a precondition for “apply-paint-to-floor”, and the latter also deletes a precondition

for the former. Therefore, the plan in Fig. 3.13 is unlinearizable. Suppose that the set
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get-ladder(ladder)

apply-paint-to-ceiling(paint,ceiling)

—»——1 get-paint(paint)

get-paint(paint) apply-paint-to-ladder(paint,ladder)

Figure 3.11: A plan with an interaction taken care of.

of action reduction schemata for the painting domain have been marked as satisfying the
downward-unlinearizability property, it can backtrack from this plan, and try other ways
to fulfill the goals. If no other way exists, the planner can announce failure. However, if
the schemata does not satisfy the property, then the planner cannot rule out reducing the
actions further as a means of resolving the conflicts. One such situation will be shown
later in Fig. 4.1.

To see how a planner can make use of the ordering-induced independence property,
consider a portion of a plan shown in Fig. 3.14. A conflict exists in this part of the
plan involving two protection intervals (p, a,b) and (-p, ¢, d). To resolve this conflict, two
orderings are possible: the planner can impose either b < ¢, or d < a. Suppose that
through preprocessing, it is known that (b, ¢) satisfies the ordering-induced independence
property, while (d,a) does not, then the ordering b < c is prefered and tried first.

Equally important to preprocessing, these properties and restrictions also provide a
standard over how the reduction schemata should be déﬁned. For a given domain, there
are usually several ways of defining the action reduction schemata. If one can define them
in such a way that the action templates and the reduction schemata satisfy the restrictions,

then planning can be done more efficiently.
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P, A I - - - HPreprocessor

Figure 3.12: An overview of the results in Chapters 4 and 5.

get-ladder

apply-paint-to-ceiling

get-paint apply-paint-to-floor

Figure 3.13: A plan containing unresolvable conflicts.
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Figure 3.14: Part of a plan containing conflicts.
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Chapter 4

The Treatment of Unresolvable

Conflicts

4.1 Motivation

A hierarchical planner plans by repeatedly selecting and reducing the non-primitive ac-
tions, and applying critics to detect and resolve conflicts in a plan. Sometimes the critics
may find conflicts in a plan that are impossible to resolve. A plan in this situation is said
to have unresolvable conflicts. A number of planners such as NONLIN [42] or SIPE [47]
will backtrack from such a plan to try other ways to achieve the goals, or announce failure
if no alternative ways exist. However, this is not always the correct behavior, because
there exist situations in which conflicts that are unresolvable in a plan may be resolvable
in a composite reduction of the plan.

As an example of this, suppose a plan contains two higher-level actions a and b, with
no constraints on their relative ordering (Fig. 4.1 (a)). Suppose that their effects and

preconditions are
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preconditions(a) = {z}, effects(a) = {u, -y},

preconditions(d) = {y}, effects(b) = {w, -z},

where the propositions u, w, z,y are all distinct. Then the following conflicts will occur:
an effect of a deletes a preconditions of b, and a effect of b deletes a precondition of a. This
kind of conflict is often called a “double cross,” meaning that neither possible ordering of a
and b will work. Unless a planning system can resolve this conflict by inserting additional
actions between a and b to restore the needed preconditions, it will normally announce

failure. However, suppose that

1. action a can be reduced to the subactions a; < a2, with preconditions(a;) =

preconditions(a), effects(az) = effects(a), and z ¢ preconditions(ay), and

2. bcan bereduced to by < bs, with preconditions(b;) = preconditions(b) and effects(bs) =
effects(b), and y ¢ preconditions(b;).

Then the interaction can be resolved in the reduced plan by assigning orderings such that
a1 < by and b; < a3 (Fig. 4.1 (b)).

In the above example, a conflict which appears unresolvable at a higher level is in fact
resolvable at a lower level. Therefore, a planning system should consider reducing a plan
as a way to resolve unresolvable conflicts.

However, it is undesirable to do this for the following two reasons. First, an unre-
solvable conflict usually indicates that it is unlikely for a solution to be found, no matter
how the solution is refined. It would be desirable for a planner to have the property that
whenever a solution exists at the lower level of abstraction, the abstract version of the
solution should also be a solution at the upper level. Tenenberg [43] called such a prop-
erty the upward-solution property for ABSTRIPS type of hierarchical planning, in which
a higher level action can be created by eliminating conditions of a low level action which
are considered as less important. By imposing certain syntactic restrictions on how the
ABSTRIPS abstraction hierarchy is defined, Tenenberg proved that the upward-solution
property holds. One purpose of this chapter is to also ensure this property for the hier-
archical planning systems with action decomposition. Second, the nécessity for a planner
to search through one more branch in its search space makes planning more inefficient. If

one can ensure that a planner can backtrack whenever unresolvable conflicts occur, and
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preconditions: x effects: u, = y

Initial Goal
Situation Situation
b

preconditions: y

effects: w, = x

(a)
preconditions: x
effects: u, - y
2,
Initial Goal
Situation Situation
. b,
preconditions: y effects: w, = x
(b)

Figure 4.1: (a) A plan with unresolvable conflicts, (b) Resolving the conflict by reducing

the plan in (a).

that this can be done without losing any possible solutions, planning efficiency can be
improved. For certain domains, such a property can be enforced by imposing a set of
syntactic restrictions on how the action reduction schemata should be defined. For others,
such a property is not satisfied by all of the actions, but the syntactic restrictions could
enable one to preprocess the set of action reduction schema so that all the actions which
satisfy the restrictions can be identified a priori.

In the following sections, we will first define unlinearizability of a plan, and design
restrictions to be imposed on reduction schemata so that unresolvable conflicts in a plan

indicate that the conflicts cannot be resolved in any composite reduction of the plan.
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4.2 Plan Unlinearizability

4.2.1 Definitions

A partially ordered plan has many possible linearizations, each being a totally ordered
sequence of actions in the plan. If a and b are actions in a plan P and L is a linearization
of P,then a < bin L if a < bin P. A plan can also have different instantiations of its
variables. Any instantiated and linearized plan that is free of conflicts can be viewed as an
instance of the original plan, and can be used to achieve the given goals. In the following,
the word “linearization” of a plan refers to any “ground” linearization of the plan, where

all the terms in a substitution 3 are constants.

Definition 4.1 Let § = (p,a,b) be a protection interval in a plan P. § is violated in the
plan iff 3c € A(P) such that a < ¢, ¢ < b, and —p € effects(c).

In general, a plan may contain several deleted-condition conflicts. For such a plan, we
would like to know whether or not a linearization exists in which none of the protection

intervals is violated.

Definition 4.2 Let P be a plan and A be a set of protection intervals in P. P is said to
be A-linearizable iff there exists a linearization L of P such that ¥6 € A, § is not violated

in L. If L exists, it is said to be A-consistent.

For example, for the plan in Fig. 4.2, the set of all protection intervals is
A= {(p’ ¢ a>, (w7 a, d), (q’ ¢, b>, (—‘p, b, d)}

For this plan, the linearization ¢ < a < b < d is A-consistent.

A linearization of a plan is A-inconsistent if it is not A-consistent. A plan P is A-
unlinearizableiff every linearization of P is A-inconsistent. If A contains a set of protection
intervals in a plan P, and if P A-unlinearizable, then P is said to contain “unresolvable
conflicts.” For example, the plan in Fig. 4.1 (a) contains unresolvable conflicts, since it is

A-unlinearizable for
A= {(x7i7a’), <y,i,b>}a

where ¢ represents the initial situation.

32



Figure 4.2: A plan with four actions, a, b, ¢ and d, along with protection intervals in the

plan.

4.2.2 Imposing Syntactic Restrictions

Let P be a plan, A be a set of protection intervals in P, and Q(P) be a composite
reduction of P. In this section, a set of restrictions will be imposed upon action reduction
schemata to guarantee that Q(P) is Q(A)-unlinearizable if P is A-unlinearizable. To
begin with, it is important to note that different actions are related to A in different ways,
and different kinds of restrictions are needed. The following definitions aim at capturing
these differences.

Let é be a protection interval and a be an action in P.
Definition 4.3 a is e-relevant for § iff either

1. § = (p,a,b) for some p and b, or

2. § = (—p,c,d), where p € effects(a), a £ ¢ and b £ a.

In other words, a is e-relevant for § if a asserts a condition that is protected in §, or a
conflicts with § in the plan. a is e-relevant for A iff 36 € A such that a is e-relevant for

6. For example, the actions a, ¢ and b in Fig.4.2 are e-relevant for A.
Definition 4.4 a is p-relevant for é§ iff § = (p, b, a) for some p and b.

In other words, a is p-relevant for § if a precondition of a is protected in §. Likewise, a is
p-relevant for A iff 36 € A such that a is p-relevant for 6. For example, the actions a, b

and d are all p-relevant for A in Fig. 4.2.

33



Let P be a plan and A a set of protection intervals in P. The actions in P can be
partitioned into four sets, S(A, P), T(A, P), B(A, P), and I(A, P), according to their
relationship with A. These sets are defined as follows:

1. S(A,P)={a|a € A(P), ais e-relevant for A, but not p-relevant for A}.
Intuitively, S(A, P) consists of actions in P which only provide or delete the con-
ditions for some protection intervals in A, but do not appear as a receiver of any
protection intervals in A.

2. T(A,P) = {a| a € A(P), ais p-relevant for A, but not e-relevant for A}.
Intuitively, T(A, P) consists of actions in P which only appear as receivers of some
intervals in set A.

3. B(A,P) = {a|a € A(P), ais both p-relevant and e-relevant for A}.

Intuitively, B(A, P) consists of actions in P which either appear both as providers
and receivers of some intervals in A, or appear as receivers in A and deny some
other conditions protected in A.

4. I(A,P) = {a| a € A(P), a is neither p-relevant nor e-relevant for A}.

In other words, set I(A, P) consists of actions which are irrelevant to A.

As an example, consider the plan in Fig. 4.2. In that plan, S(A,P)={c¢ }, T(A,P) =
{d}, B(A,P)={a, b} and I(A,P)=0.

Definition 4.5 Let § = (p,a,b) be a protection interval for some a and b. condition(d) =

p.

Definition 4.6 Suppose a is an action e-relevant for § and p = condition(d).

(
{p} if p € effects(a)
effectss(a) = J

{-p} otherwise

\
Definition 4.7 effectsa(a) = Usea effectss(a), where A’ = {6 € A | a is e-relevant for
6}.
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Intuitively, effectsa(a) is the set of effects of a which are either protected in A, or conflict
with some conditions protected in A. A similar definition can be given for the precondi-

tions of a:

Definition 4.8 preconditionss(a) = Uscan{condition(6)}, where A" = {§ € A | a is
p-relevant for 6}.

The following syntactic restrictions are imposed on the sets of actions classified above.

Let ® be the set of reduction schemata for a planning system.

Restriction 4.1 Given a € S(A,P), VR € & such that R is applicable to a, Ja, €
A(R(a)) such that

1. effectsa(a) C effects(ar,), and
2. Va; € A(R(a)), if a; # am, then effects(a;) N effectsa(a) = 0.

Intuitively, Restriction 4.1 requires that an action in set S(A, P) has a unique “main”

subaction, which asserts all of the effects of a relevant for A.

Lemma 4.1 Leta € S(A, P) be an action satisfying Restriction 4.1. Let R be a reduction
schema applicable to a. Then if P is A-unlinearizable, then R(P) is R(A)-unlinearizable.

Proof (by contradiction): Suppose R(P) is R(A)-linearizable. Let L' be a
linearization of R(P) which is R(A)-consistent. From Restriction 4.1, there
is a unique subaction a,, of a which asserts all the effects of a relevant for
A, and none of the other actions assert any of such effects. Therefore, the
only difference between A and R(A) is that a,, replaces a in every protection
interval of A in which a appears. Let L” be L’ with all occurrences of a; # ay,
deleted, Va; € A(R(a)). Since no subaction a; # a,, appears in R(A), L” is
R(A)-consistent.

Now replace every occurrence of a,, in both L” and R(A) by a, R(A) will
be transformed to A, and the resultant sequence L must be A-consistent.
This is because all of a,,’s effects which are e-relevant to A are kept after
this replacement, and any effects in effects(a) — effects(a,, ) are irrelevant and
not harmful to A. However, L is a linearization of P. Therefore, P must be

A-linearizable, contradicting to the assumption of the lemma. o
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Restriction 4.2 Given a € T(A,P), VR € ® such that R is applicable to a, Ja, €
A(R(a)) such that

1. preconditions, (a) C preconditions(ay,), and
2. Va; € A(R(a)) such that a, £ a;, effects(a;) N effectsa(a) = 0.

Intuitively, this restriction requires that an action a € T(A, P) has at least one sub-

action the preconditions of which include all the preconditions of a p-relevant for A.

Lemma 4.2 Leta € T(A, P) be an action satisfying Restriction 4.2. Let R be a reduction
schema applicable to a. Then if P is A-unlinearizable, then R(P) is R(A)-unlinearizable.

Proof (by contradiction): Suppose that R(P) is R(A)-linearizable. Let L’
be a linearization of R(P) which is R(A)-consistent. From Restriction 4.2,
there is at least one subaction a, of @ which requires all the preconditions of @
relevant for A, and none of the other actions assert any of such preconditions.
Let a,, be any subaction of @ which needs all of a’s preconditions protected in
A. In R(P), every occurrence of a in A is replaced by a,, and none of the
a; € A(R(a)) appears in A if a; # a,. Therefore, deleting every subaction

a; # a, from L', the resultant sequence L” is still R(A)-consistent.
P

Now replace every occurrence of a, in R(A) by a. As a result, R(A) will be
transformed to A. Also, remove all but one a, from L”, and replace this a, with
a. The resultant sequence L must be A-consistent, since preconditionsy(a) C
preconditions(a, ), and a does not deny any protected conditions in A. How-
ever, L is a linearization of P. Therefore, P must be A-linearizable, contra-

dicting to the assumption of the lemma. a

Restriction 4.3 Given ¢ € B(A,P), VR € ® such that R is applicable to ®, Ja,, €
A(R(a)) such that

1. effectsa(a) C effects(am), and Va; € A(R(a)), if ai # am, then effects(a;) N
effectsa(a) = 0, and

2. preconditionsy (a) C preconditions(an,), and Va; € A(R(a)) such that a; # ar, and

am £ a;, effects(a;) N preconditions, (a) = 0.
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Intuitively, Restriction 4.3 requires that an action @ in the set B(A, P) satisfies both

Restrictions 4.1 and 4.2, and the “main” subactions in the two restrictions are identical.

Lemma 4.3 Leta € B(A, P) be an action satisfying Restriction 4.8. Let R be a reduction
schema applicable to a. Then if P is A-unlinearizable, then R(P) is R(A)-unlinearizable.

Proof (by contradiction): Suppose R(P) is R(A)-linearizable. Let L’ be a
linearization of R(P) which is R(A)-consistent. From Restriction 4.3, there is
a unique subaction a,, of a which asserts all the effects of a relevant for A,
which preconditions includes all the preconditions of @ relevant for A, Let L”
be L’ with all occurrences of a; # a,, deleted, where a; € A(R(a)). Similarly,
let A” be R(A) with all the intervals containing a; # a,, removed, where
a; € A(R(a)). Then L" is A”-consistent.

Now replace every occurrence of a,, in both L” and A” by a. A" will be
transformed to A, and the resultant sequence L must be A-consistent. This
is because all of a,,’s effects relevant to A are kept after this replacement,
and any effects in effects(a) — effects(ay,) are irrelevant and not harmful to
A. However, L is a linearization of P. Therefore, P must be A-linearizable,

contradicting to the assumption of the lemma. o

The following theorem combines the results of the above three lemmas:

Theorem 4.1 Let P be a plan and ® be a set of action reduction schemata. Suppose the

following conditions are satisfied:
1. every action in S(A, P) satisfies Restriction 4.1,
2. every action in T(A, P) satisfies Restriction 4.2, and
3. every action in B(A, P) satisfies Restriction 4.3.

Let Q(P) be any composite reduction of P produced by reducing the non-primitive actions

in A(P). Then if P is A-unlinearizable, then Q(P) is Q(A)-unlinearizable.

Proof: Let N be the number of non-primitive actions in P. Also let Q(P)

be any composite reduction of P produced by reducing i actions in A(P),
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where i = 0,1,..., N. We prove by induction that for any ¢, Q(P) is Q(A)-

unlinearizable, where Q(A) is the corresponding reduction of A.

The base case corresponds to P before any reduction is done. Since P is A-
unlinearizable, the theorem holds for this case. For the inductive hypothesis,
assume that Q(P) is a composite reduction of P produced by reducing : < N
actions in P, and that Q(P) is Q(A)-unlinearizable. Let a be a non-primitive
action in both P and Q(P). We will prove that Q'(P) is Q'(A)-unlinearizable,
where Q'(P) is produced from Q(P) by reducing a.

The action a must belong to any of the four partitions of the actions in Q(P).
These partitions are S(A, P), T(A, P), B(A, P), and I(A, P). From the as-
sumption of the theorem and Lemmas 4.1, 4.2 and 4.3, if a belongs to the
first three sets, then Q’(P) is Q'(A)-unlinearizable. If a belongs to I(A, P),
then a’s effects and preconditions are not e-relevant nor p-relevant for Q(A).
Therefore, reducing a will not affect the linearizability of Q'(P) with respect
to Q'(A). Thus, Q'(P) must be also Q'(A)-unlinearizable. O

Notice that the conditions of the theorem are only sufficient, and there may be
schemata which do not satisfy the restrictions but still have the property that, when a
plan P is reduced, it remains unlinearizable if P is. Thus, it is important to show that our
restrictions are close to “minimum”. Below, we show this through an example. Consider
the plan in Fig. 4.3 (a). If a asserts both —p and —g, then this plan is A-unlinearizable,

where
A= {(p7 ) b>7 <q, b, d)}

In this plan P, a belongs to the set S(A, P). Suppose a can be reduced into a; < ay,
such that —q is asserted by a; and -p is asserted by as. Note that a does not satisfy
Restriction 4.1, since the effects of a are distributed among its subactions. The reduction
of P as a result of reducing a is shown in Fig. 4.3 (b). Note that A is unchanged by this
reduction. The plan in Fig. 4.3 (b) is now A-linearizable. In particular, the linearization
c<a; <b<ay <dis A-consistent.

If P contains unresolvable conflicts, and if the actions in P satisfy the restrictions
imposed on them, then according to the theorem, the conflicts remain unresolvable even

if the actions in P are reduced. From this theorem, it is possible to define the relationship
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a -p,q

(b)

Figure 4.3: Resolving unresolvable conflicts in (a) by reduction to (b).

between a non-primitive action and its set of subactions precisely. These criteria enable
one to check for the desired properties before planning starts. In the next section, we

discuss how this can be done using the results developed in this section.

4.3 Downward-Unlinearizability

4.3.1 The “Unique Main Subaction” Restriction

In this section, a set of restrictions is provided which restricts the way an action relates
to its set of subactions in its reduction. This set of restrictions enable one to check and
possibly modify a given set of reduction schemata. Whenever the restrictions are satisfied,
backtracking from a plan with a set of unresolvable conflicts will not lose any potential

solutions at any level of reduction below.
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Definition 4.9 A set @ of action reduction schemata is downward-unlinearizable iff the
following condition holds. Let P be a plan and A be a set of protection intervals in P.
Also let Q(P) be any composite reduction of P using the action reduction schemata in ®,
and Q(A) be the corresponding reduction of A. Then if P is A-unlinearizable then Q(P)

is Q(A)-unlinearizable.

Our method for checking if a given set of reduction schemata is downward-unlinearizable
is to develop a set of sufficient syntactic restrictions upon action templates in A and re-
duction schemata in ®, based on Theorem 4.1.

Consider the following restriction:

Restriction 4.4 Let a be an action and R be a reduction schema applicable to a. Reduc-

tion R(a) satisfies Restriction 4.4 iff da,, € A(R(a)) such that

1. effects(a) C effects(a.,) and Va; € A(R(a)), if a; # am, then effects(a;) Neffects(a) =
0.

2. preconditions(a) C preconditions(an,), and Va; € A(R(a)) such that a; # any, if
am £ a; then effects(a;) N preconditions(a) = .

This restriction will be referred to as the Unique-Main-Subaction Restriction. Intuitively,
this restriction requires that the reduction R(a) of an action a contains a “main” subaction
a,, which asserts everything a asserts. In addition, the preconditions of ¢ are required to
“persist” till the beginning of a,,. A number of planning domains can be represented in
ways that satisfy this restriction. For example, consider an action of fetching an object
“objectl” in a room “room1” (based on [48]). The action “fetch” can be reduced into a
sequence of three subactions: getting into room1, getting near objectl, and picking up
objectl, in that order. The third subaction, picking up objectl, can be considered as
the main subaction in this reduction. Notice that the condition that objectl is in room1
is a precondition of both the non-primitive action “fetch” and the main subaction. The
complete reduction schema is given in table 4.1.

The following lemma, can be easily verified:

Lemma 4.4 Let A be a set of protection intervals associated with a plan P. Suppose
a € A(P) is non-primitive, and VR € o(a), R(a) satisfies the Unique-Main-Subaction

Restriction. Then
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action preconditions effects
fetch Inroom(objectl,room1) | Holding(robot1,0bject1)
achieve(Inroom(robotl,room1)) @ Inroom(robotl,room1)
achieve(Nextto(robotl,object1)) 0 Nextto(robot1,object1)
pickup Inroom(objectl,room1) | Holding(robot1,objectl)
Inroom(robot1,room1)
Nextto(robot1,0bject1)

Table 4.1: An action reduction schema satisfying the Unique-Main-Subaction Restriction.
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1. ifa € S(A,P) then a satésﬁes Restriction 4.1,
2. ifaeT(A,P) thena satisfies Restriction 4.2,
3. if a € B(A, P) then a satisfies Restriction 4.3.

Let A be the set of actions of a planning system, and ® be the set of action reduction

schemata.

Restriction 4.5 ® satisfies Restriction 4.5 iff for every reduction schema R € ® and
every action template a € A to which R is applicable, R(a) satisfies the Unique-Main-

Subaction Restriction.

Theorem 4.2 FEvery set of action reduction schemata satisfying Restriction 4.5 is downward-

unlinearizable.

Proof: Let ® be a set of action reduction schemata, and let P be a plan
which is A-unlinearizable. We prove the theorem by induction on the number
of reductions applied to P. Specifically, we prove that for any ¢ > 0, Q(P) is
Q(A)-unlinearizable, where Q(P) is any composite reduction of P produced

by reducing ¢ non-primitive actions, using the reduction schemata in .

The base case, i = 0, corresponds to the plan P without any reduction. Since

P is assumed A-unlinearizable, the theorem holds for the base case.

For the inductive hypothesis, assume that Q(P) is Q(A)-unlinearizable, where

Q(P) is a composite reduction of P produced by reducing » > 0 actions.

Let Q'(P) be produced by reducing a non-primitive action in Q(P), and let
the corresponding reduction of Q(A) be Q'(A). Since every action in Q(P)
is an instance of some action in A and since ® satisfies Restriction 4.5, from
Lemma 4.4 the assumptions of Theorem 4.1 hold. Therefore, any reduction
Q'(P) of Q(P) must be Q'(A)-unlinearizable. Thus, the theorem holds for any

composite reduction of P. O

Before discussing how this theorem can be used for checking the downward-unlinearizability

property, we would like to comment on the applicability of the Unique-Main-Subaction
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Restriction to planning domains. Intuitively, the Unique-Main-Subaction Restriction re-
quires that every non-primitive action a has a unique main subaction a,, that asserts every
effect of a, and requires every precondition of a as its precondition. Domains that satisfy

this restriction have the following characteristics:

1. The goals to be achieved can always be broken down to several less complicated
subgoals to solve. For each subgoal, a number of primitive actions are available
for achieving it. Each such action requires several preparation steps before it can
be performed, and a number of clean-up steps after it is done. This action can be

considered as the main step in a reduction schema.

2. For each group of actions mentioned above, a hierarchy is built by associating with
a non-primitive action a set of effects which are the purposes of the main step men-
tioned above, and a set of preconditions which are certain important preconditions

of the main step.

A number of domains can be formulated in ways that satisfy the property of downward-
unlinearizability. In Appendix A, we provide a representation of the planning knowledge
of the blocks-world domain. In this domain, a number of blocks exist on the top of a
table. A robot can move a block on the top of another, or onto the table. Each block
can have at most one block on top of it, and a block can be on at most one other block.
Condition On(z,y) represents that the block z is on top of another block y, Ontable(z)
means that the block z is on the table, and Cleartop(z) means that block z has no other
blocks on top of 2. The top level actions are also the subgoals that the system knows
how to solve. They are achieve(On(z,y)), achieve(Ontable(z)) and achieve(Cleartop(z)).
More complicated goals can be composed from the conjunction of these.

It is not hard to verify that every reduction satisfies the Um’que-Ma.in—Subaction Re-
striction. For example, consider the reduction R; for achieve(On(z,y)). Notice that the
in R;(achieve(On(z,y))), the action makeon-block-1(z,y) is the main subaction, which
asserts the effect On(z,y) of achieve(On(z,y)). In addition, the set of preconditions of
achieve(On(z, y)) is empty, and neither achieve(Cleartop(z)) nor achieve(Cleartop(y)) as-
serts On(z,y). Thus, the Unique-Main-Subaction Restriction is satisfied. Likewise, the
reduction Rj; for makeon-block-1(z,y) also satisfies this restriction, since the reduction

contains only one subaction. For the rest of the reductions, the Unique-Main-Subaction

43



Restriction can be similarly verified.

As another example, consider a domain in which there is a room, a ladder, supplies
for painting as well as a robot whose goal is to paint portions of the room and/or the
ladder. Part of the representation for this domain has been given in Chapter 3. Suppose
in addition to the actions and reduction schemata for painting, the robot also knows how
to fetch an object using the action ‘fetch’ in Table 4.1). Represented in this way, every
action reduction schema satisfies the Unique-Main-Subaction Restriction. For instance,
the ‘apply-paint-to-ceiling’ step in the reduction of ‘Paint(Ceiling)’ is the main subaction.
Also, the ‘pickup’ step in the reduction of ‘fetch’ is also a main subaction. Moreover, these
reduction schemata all satisfy the Unique-Main-Subaction Restriction.

Restriction 4.5 does not depend on any particular plan, and it enables one to verify
its validity for any given set of action templates A and action reduction schemata ®. This
verification process can be done before planning starts. The algorithm for verification is

given in the next section.

4.3.2 Checking for Downward-Unlinearizability

The algorithm for preprocessing a set of action reduction schemata makes use of Restriction
4.5. This algorithm is run after the planning knowledge for a domain is defined, taken
as input the set of action reduction schemata ® and action templates A. Two goals will
be achieved through preprocessing: (1) to see if the set of action reduction schemata is
downward-unresolvable, and (2) if not, try to modify the schemata so that they have this
property. Let ® be a set of action reduction schemata and A be a set of actions. Together
® and A provides the planning knowledge for a system. The algorithm for preprocessing
is presented below. It returns True if ® satisfies the restrictions imposed in the previous

sections. If so, the set ® of schemata satisfies the downward-unlinearizability property.
Algorithm Checking.
begin
B :=A;

while B # @ do
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a := pop(B);
if VR € a(a), R(a) satisfies the Unique-Main-Subaction Restriction then
Mark a;
B := B —{a};

end; (while)

if all the action templates in A are marked then

return(True)
else return(False)

end

To check if R(a) satisfies the Unique-Main-Subaction Restriction, first check to see if there
is an unique main subaction in A(R(a)) that asserts every effect a asserts and has in its
set of preconditions every precondition of a. If such a main subaction a,, exists, then

check for every other subaction a; in A(R(a))
1. Vp € preconditions(a), (p, a;,am) ¢ C(R(a)), and
2. effects(a;) N effects((a) = 0.

To check each R(a) for Unique-Main-Subaction Restriction, the above algorithm suggests
a worst case time complexity of O(|A|), where |A| is the number of actions in A. Let k
be the maximum number of action reduction schemata applicable to an action template.
Then Algorithm Checking has a worst case complexity of O(k x |A|?).

If the algorithm Checking returns True, then the set ® of reduction schemata satisfies
the downward-unresolvability restriction. In which case, whenever a hierarchical planner
detects unresolvable conflicts in a plan, it does not have to consider the reduction of the

plan as a means of resolving the conflicts.

4.3.3 Modifying Action Reduction Schemata

If algorithm Checking returns False for ®, then in some cases it might be possible to modify

the schemata, so that @ is made to satisfy the restrictions of previous sections.
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For example, let a be an action template with a precondition p and an effect q. Suppose
R(a) consists of two subactions a; followed by ag, such that the precondition of a; is p,
and the effect of a; is g (see Fig. 4.4 (a)). If (-p, a1,az) is a protection interval associated
with R(a), then clearly the Unique-Main-Subaction Restriction is violated. One way to
modify this reduction schema is to remove the precondition p from effects(a), so that a;
becomes the main subaction of a. As a result, the modified reduction R’ satisfies the

Unique-Main-Subaction Restriction. This new reduction schema is shown in Fig. 4.4 (b).

Preconditions: p a Effects: q

0
P

1
Preconditions: p a 1 ‘_IIX Effects: q

(a)

Preconditions: a Effects: q
1P
Preconditions: p a, a, Effects: q

(b)

Figure 4.4: Modifying a reduction schema (a) by removing some preconditions of an action

template (b).

The above example shows how modify a reduction schema by removing the precondi-
tions of an action template. As another example, let a be an action template with two
effects ¢ and g such that the subaction a; of a has a effect ¢ while another subaction as
has the effect g (Fig. 4.5 (a)). In this case, moving either g or ¢ from the effects set of a

will make the reduction schema satisfy the Unique-Main-Subaction Restriction . This is
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shown in Fig. 4.5 (b).

Preconditions: p a Effects: g, q

&P
a, "l az Effects: q

(a)

Preconditions: p a Effects: q

U

&P
a az Effects: q

(b)
Figure 4.5: Modifying a reduction schema (a) by removing effects of action template a (b)

Unfortunately, the above examples do not suggest any general procedures for modifying
a given set of action reduction schemata. This is because changing the representation of
the action templates in A may make them less expressive than before. This can occur
when, for example, some effects of an action are removed from its effects set. In extreme
cases, changing the representation of an action template may cause planning to be less
efficient than before. For example, removing the preconditions from an action may delay
the detection of deleted-condition conflicts with the removed conditions, and as a result,
more reasoning may be needed to fix those interactions after the modification. On the
other hand, there may exist classes of planning problems for which a particular kind of
schemata modification method exists, and finding out the characteristics of these domains

is one of our future research directions.

47



4.4 Preprocessing Individual Action Template

Restriction 4.5 requires that for every action template in A, all of its reductions satisfy
the Unique-Main-Subaction Restriction. Sometimes not all the action templates in A fit
this requirement, but only some of them do. In situations like this, it may still be possible
to ensure that unresolvable conflicts in a plan cannot be resolved in any of the plan’s
reduction.

For example, if P is a plan which is A-unlinearizable. Suppose for all the actions a in
P, all the reductions of their corresponding action templates in A and their “descendents”
satisfy the Unique-Main-Subaction restriction, then from Theorem 4.1, any composite

reduction Q(P) of P is Q(A)-unlinearizable.

Restriction 4.6 Let A be the set of action templates and ® be the set of action reduction
schemata of a planning system’s planning knowledge. Let a € A be an action template.

Va' € TC(a) and VR € a(a’), R(a’) satisfies the Unique-Main-Subaction Restriction.

The following theorem can be easily proved as a corollary to Theorem 4.1.

Theorem 4.3 Let P be a plan A-unlinearizable. If for every action a in the plan,
template(a) satisfies Restriction 4.6, then Q(P) is Q(A)-unlinearizable for any composite

reduction Q.

The set of action templates in A can be preprocessed in a way similar to the previous
section. First, Algorithm Checking can be performed on A. If it returns False, then the
following processing can be done: for each action template a € A, if every action template
in TC(a) is marked by Algorithm Checking, then a satisfies Restriction 4.6. Mark all the
action templates in A which satisfies Restriction 4.6. Suppose P is a plan unresolvable
with respect to its set of protection intervals. If for every non-primitive action a in P,
template(a) is marked in the above sense, then from Theorem 4.1, no composite reduction
of P is linearizable with respect to its set of protection intervals. Therefore, backtracking

from P will not lose any possible solutions.
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4.5 Augmented Reduction of Protection Intervals

The downward-unlinearizability property requires that Q(P) is Q(A)-unlinearizable when-
ever P is A-unlinearizable. The protection intervals in Q(P) consists of Q(A), as well as
a set of new protection intervals associated with the reductions. In some cases, it is possi-
ble that although Q(P) is Q(A)-linearizable, @(P) is not linearizable with respect to the
union of @(A) and the set of new protection intervals.

Let P be a plan and

Q(P) = Ry(Rs(...(Ra(P))...)
be a composite reduction of P. Also let A be a set of protection intervals associated
with P, and Q(A) be the corresponding composite reduction of A. Let C be the set
of protection intervals associated with the reduction schemata R;. Then the augmented
composite reduction of A is
AUgp(A) =CuQ(A).

In this section, we look for restrictions that guarantee the following property: if P is
A-unlinearizable, then Q(P) is AUg(A)-unlinearizable.

Consider a blocks-world example where there are three parallel actions put-block-on-block(A4, B),
put-block-on-block(B, C)) and put-block-on-block(C, A) (see Fig.4.6 (a)). Assume that
three robot hands are available, which are designated as H,,H; and Hs. Let ¢ be the

initial situation, and
A ={ (Cleartop(A), i, put-block-on-block(4, B)),
(Cleartop(B), %, put-block-on-block( B, C)),
(Cleartop(C), i, put-block-on-block(C, A))}.
Let the plan in Fig.4.6 (a) be P. Then P is A-unlinearizable.
Now consider the composite reduction Q(P) of P in Fig.4.6 (b), with
Q(A)={ (Cleartop(4),i, grab(4),
(Cleartop(B), i, grab( B)),
(Cleartop(C), 1, grab(C))}.

Since it is now possible to interleave the subactions of the actions in P, Q(P) is Q(A)-

linearizable by imposing ordering constraints as in Fig.4.7. However, Q(P) is not lineariz- -
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____,l pus-block-on-block(A,E,B) I—;

_>| put-block-on-block(B,F,C) |—>

,l put-block-on-block(C,G,A) l—)

(2)

F!‘ab(AH lift(A) I ,l put-on-top(A,ﬂ

grab(B)I__,[ life(B) |—D|;xt-on-top(B,C) |

grab(C)I____4 lift(C) I_,I put-on-top(C,A) |

(v)

Figure 4.6: A plan with unresolvable conflicts.
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grab(A)

lifs(A) H put-on-top(A,B) |

grab(B) lift(B)

put-on-top(B,C) ]

grab(C)

1ift(C) I__,l put-on-top(C,A) I

Figure 4.7: A plan is AUg(A)-unlinearizable.

able with respect to the set of all protection intervals associated with it. This is because

Q(P) is also associated with

{ (Holding(H,, A),grab(A), put-on-top(4, B)),
(Holding(H,, B), grab( B), put-on-top(B, C)),
(Holding(Hs, C), grab(C), put-on-top(C, A))}.

Let AUg(A) be the union of Q(A) and the above set of protection intervals. Since a robot
cannot hold a block when another block is on top of it, it is not hard to see that Q(P) is
AUg(A)-unlinearizable.

Consider the following restriction:
Restriction 4.7 A reduction R(a) satisfies Restriction 4.7 iff Jan, € A(R(a)) such that
1. effects(a,,) C effects(a),
2. Va; € A(R(a)), if a; denies conditions in effects(a) then a; < am,
3. Vp € preconditions(a), either of the following is true:

(a) p € preconditions(an) and Va; € A(R(a)), (p,a;,an) is not a protection inter-
val in C(R(a)), or
(b) a; € A(R(a)) such that

i. a; < an, in R(a), p € preconditions(a;),
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ii. 3p' € preconditions(an) such that (p',a;,anm) is a protection interval in
C(R(a)), and
iit. p' satisfies the following condition: Vb € A, if b # a;,

(effects(b) D —p) D (effects(b) D —p')
where “D7” is logical implication.

Restriction 4.7 is different from Unique-Main-Subaction Restriction in part 3.(b). In
Restriction 4.7, not all the preconditions are needed by the main subaction of a. Notice
that the action put-block-on-block(z,y) in the blocks-world example does not satisfy the
Unique-Main-Subaction Restriction, but it satisfies Restriction 4.7. For example, a,, is
put-on-top(z, y), a; is grab(z), p is Clear(z), and p' is Holding(H;,z). Restriction 4.7 is

satisfied because
Vz,y, z, h.(effects(puton(y, z)) D ~Clear(z)) D (effects(puton(y, z)) O -Holding(h, z)).

Theorem 4.4 Suppose R(a) satisfies Restriction 4.7. Then if P is A-unlinearizable, then
R(P) is AUR(A)-unlinearizable.

Proof (by contradiction): Let L be a linearization of R(P) AUg(A)-consistent
, where R(P) is obtained by reducing an action a in P. Let Gg be the set of
a; satisfying 3.(b) in Restriction 4.7. Below, we show provide a transformation
which converts L into a linearization of P and AUR(A) to A, and show that
this transformation does not violate any protection interval of A in L. The

transformation is defined as follows:

1. Let X be A(R(a)) — (GrU {an}). Eliminate all the actions in ¥ from L.
Also for any action &' in the set GrU{a,,}, remove every the precondition
of @’ which is achieved by any actions in X. Let the new sequence be
L'. Remove every interval in AUg(A) which contains an action a; € I,
obtaining AUR(A). After this step, the new sequence L’ is AUR(A)-
consistent. This is because removing subactions from in ¥ from both
AUg(A) and L only removes protection intervals, and no new conflicts

between the actions are created.
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2. For every action b € A(P) such that a; < b < a,, in L, where a; € Gp,
relocate b to the position immediately before the first a; in L’. Repeat
this step for all such b in a left to right order. After all the relocations
are done, merge all the subactions in Gr U {a,,} into a. After this step,
there is still no new conflicts introduced. This is because according to
the second part of Restriction 4.7, if b denies a precondition p of a; € Gp,
then it would have violated the protection interval (p’,a;, an,), because
(effects(b) D —p) D (effects(b) O —p’). Let the resultant sequence after
this modification be L”.

3. Replace every occurrence of a; € (R(R(a)) U {an} in AUG(A) by a.

After the above modification steps, L is transformed to a linear sequence L”
of the actions in P. Similarly, the set of protection intervals AUG(A) is trans-
formed to A. Since no protection interval violations are created after the
transformations, L” must be A-linearizable, violating the assumption of the

theorem. Therefore a contradiction is derived. a

The following corollary can be easily proved by induction using the previous theorem.

Corollary 4.1 Let @ be a set of action reduction schemata. Suppose Va € A, VR € o(a),
R(a) satisfies Restriction 4.7. Then for for any plan P with protection intervals A, and
any composite reduction Q(P) of P produced by the reduction schemata in ®, if P is
A-unlinearizable then Q(P) is AUg(A)-unlinearizable.

Preprocessing can be done in a similar manner as Algorithm Checking for the whole set of
action templates in A, or as done in the previous section for individual action templates.
Because of step (b).its of Restriction 4.7 checking for each action reduction schemata
takes O(]A|?). Thus, the total time complexity for checking all the action templates and
reduction schemata is O(k x |A|®), where k is the maximum number of action reduction

schemata applicable to an action template.
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4.6 Point-Protected Conditions

4.6.1 Definitions

In the previous sections, we have considered unresolvable conflicts among the actions in a
plan, which contains a set of conditions that have to be protected throughout intervals of
time. This type of condition can be referred to as interval-protected conditions. There is
another kind of condition in planning which requires only the validity of a set of conditions

right before an action is started. This type can be called point-protected conditions.

Definition 4.10 A point-protected condition v is a pair: (p,a), where p is a condition

which has to hold immediately before the action a.

Let P be a plan and v = (p,a) be a point-protected condition in P. Suppose that
the reduction schema R is applicable to a. Let R(P) be the plan which results when a
is replaced by R(a) in P. Then R(P) has one or more point-protected conditions derived
from v which involve the subactions ¢; € A(R(a)). In particular, let a; be a subaction
of a in A(R(a)) such that p € preconditions(a;). Then R(P) will have a point-protected
condition (p, a;).

Let Q(P) be a composite reduction of P. If T is a set of point-protected conditions

associated with P, then the corresponding composite reduction of T is denoted by Q(T).

Definition 4.11 LetT' be a set of point-protected conditions. A sequence L of actions is

I'-consistent if for every element (p,a) of T, 3b in L such that
1.b<ainl,
2. p € effects(a), and
3. Ve such that a < ¢ and ¢ < b, —p ¢ effects(c).
Definition 4.12 A plan P is I'-unlinearizable iff no linearization of P is I'-consistent.

Suppose a plan P is I'-unlinearizable. R(P) may be R(T)-linearizable. This can occur
when there is a subaction w of an action in the plan P which achieves the precondition of
some of the actions in the conflict, and thus resolves it. Such actions has been referred to
as white knights[7]. For instance, suppose there is a double cross conflict involving actions

a and b. A white knight in this situation could be an action w such that
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1. effects(w) D preconditions(a),
2. effects(b) 7 —preconditions(w) and
3. effects(w) 7 —effects(b).

Therefore the conflict can be resolved by the ordering b < w < a. The action w can be a
subaction of some existing action ¢ in the plan. Because w only appears in some reduction
of the current plan, an unresolvable conflict in P can be resolved in Q(P). As in the

previous sections, we will develop restrictions under which such cases do not occur.

4.6.2 Strong Unresolvability

The following definition characterizes a special class of conflicts involving pointed-protected

conditions in T,

Definition 4.13 P is said to be I'-strongly-unresolvable if by definition P is I'-unlinearizable,
and Y(p,b) € T, the following condition holds: Va € A and Vq € effects(a), g8 # p for all
the substitution j.

Intuitively, a plan is I'-strongly-unresolvable if P is I'-unlinearizable, and no action can
assert any conditions protected in I'.
As an example, consider the plan in Fig. 4.8. Suppose there are no actions in the

action reduction schemata which assert either p or ¢. Let I' be

{{p,a),{q,b)}.

Then the plan is I'-strongly-unresolvable.

Theorem 4.5 Let P be a plan and T' be a set of point-protected conditions in P. Sup-
pose the set of reduction schemata ® of a planning system is downward-unlinearizable.
Then if P is T-strongly-unresolvable, then any composite reduction Q(P) of P is Q(T)-

unlinearizable.

Proof: Since ® is downward-unlinearizable, the only situation in which Q(P)

is Q(T)-linearizable is when Q(P) contains one or more actions w not in A(P),
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Figure 4.8: An example of strongly-unresolvable-conflicts.

such that w asserts some conditions protected in I'. But this cannot hap-
pen, because P is I'-strongly-unresolvable and therefore no action asserts any

conditions in I'. Thus, Q(P) must remain I'-unlinearizable. O

Notice that the condition of strong-unresolvability is more strict than unresolvability
of conflicts in general, since it requires that no actions which can assert any conditions
in I' exist at the time when the conflicts occur. To see why this requirement is needed
intuitively, consider the following example.

Consider a plan containing three actions a, b, and ¢ unordered with each other (Fig. 4.9
(a)). Suppose their preconditions and effects are

preconditions(a) = {p}, effects(a) = {~q},
preconditions(b) = {q}, effects(b) = {-p},
preconditions(c¢) = {e}, effects(c) = {—e}.

Then the current plan is I-unlinearizable, where T is

{{p, a),{q,b), (e, c)}.
Suppose a reduction of ¢ contains two subactions in a sequence v < w, with
preconditions(w) = {e}, effects(w) = {—e, ¢}

(Fig. 4.9 (b)). Then the reduced plan is now linearizable with a linearization v < a < w <
b, although inserting w into the plan Fig. 4.9 (a) will still result in a set of unresolvable

conflicts, which are between a and b, and between ¢ and the inserted w.
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Figure 4.9: Resolving conflicts by reduction only.

In general, knowing whether P contains a set of conflicts that are unresolvable is very
difficult. If an action @ is inserted to restore some deleted conditions in the plan, the
insertion of @ may bring about new conflicts if @ deletes the precondition of some other
actions, or a’s preconditions are deleted by some existing actions. In general, asking
whether a plan is unresolvable is equivalent to asking whether a plan exists for achieving a
given set of goals—an undecidable problem. This is part of the reason why we concentrate
only on strong-unresolvable conflicts.

One way to efficiently tell if a plan is strongly unresolvable is to check all the conditions
protected in I' are non-restorable, i.e., all of these conditions are present only in an initial
situation, none of which can be restored once it is deleted by some actions in the plan.
One practical example is in the domain of automated manufacturing, where a machining
part is produced by a sequence of metal cutting operations. If a piece of metal is cut off
through one operation, in general it is impossible to put the piece back onto the stock.

This type of interaction will be discussed in more detail in the second part of the thesis.
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4.7 Other Kinds of Goal interactions

In the previous sections, we have considered some formal properties of hierarchical plan-
ning systems, under the assumption that all goal interactions are deleted-condition con-
flicts. That is, the only way for the actions in a plan to interact with one another is to
have one action’s effects delete the other action’s preconditions. When using these restric-
tions, one has to be careful when extending the results to domains where other types of
interactions exist.

For example, consider a plan P consisting of two actions @ and b (Fig. 4.10 (a)).
Suppose in addition to the preconditions and effects, each action is also associated with
a duration value, which is a lower bound on how long the action will take. Suppose the
durations for both a and b are T'. If there is a constraint that both @ and b have to be
completed in time S < T, then an unresolvable conflict occurs in P—no linearization can
satisfy the constraint.

Suppose that a can be reduced to a; < a3, and b can be reduced to b; < b2 (Fig. 4.10
(b)). Suppose also that a; and by can be replaced by another action ¢ (Fig. 4.10 (c)), such
that ¢ can achieve the effects of both @y and b; within less time. If the new plan containing
¢, az and b, requires less time than @, then the temporal conflict which is unresolvable in
P is resolvable in @(P), although a and b may both satisfy the restrictions in the previous
sections.

To see why this is the case, consider the types of interactions involved. The first
new type of interaction can be referred to as a temporal interaction, in which there is a
deadline as to when the plan has to be completed. The second type of interaction, the
one which made it possible to resolve the conflicts at a level below, can be referred to as
action-merging interaction. We will consider this type of interaction in much more detail

in the later chapters.
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Figure 4.10: Resolving a conflict by plan reduction and then merging.
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Chapter 5

Ordering-Induced Independence

5.1 Motivation

One desirable effect of hierarchical planning is that important interactions between actions
can be dealt with first, while unimportant ones are resolved later. Such interactions are
often handled by introducing temporal orderings among the actions which interact. Ideally,
handling the interactions in this way has the following effect: if a and b are actions at a
higher level of reduction, and a time-ordering is assigned between them, then at the latter
stages of planning, there is no need to check for conflicts between the subactions of a and
the subactions of b. If this ordering-induced independence property can be satisfied by a
and b, and if the ordering between them is not undone at a later stage, then an exponential
amount of computational effort can be saved.

To illustrate this, consider a hierarchical planning problem with & levels of reduction,
and suppose that each non-primitive action can be reduced into m subactions at the level
below. Suppose the levels of reduction are numbered in ascending order from top-down,
so that the bottom level is Level k and the top level is Level 0. A hierarchical nonlinear

planner will finish removing all the goal interactions on the ¢’th level before it goes into
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the (¢ 4 1)* level. An action at the ¢’th level will be reduced into m‘ actions at Level .
Therefore, each time-ordering arc which can be introduced at the i’th level avoids (m*—*)?
number of interaction checks at the k’th level. Thus, if the planner can add e time ordering

arcs at each level of abstraction, the total amount of planning time saved will be
k-1 _
Z(em2(k_‘)) = O(em?®").
=0

Knowing which actions satisfy the ordering-induced independence can provide a plan-
ner with a better control strategy. To take care of deleted-condition conflicts, a planner
may have several alternate choices as to upon which actions certain precedence orderings
should be imposed. A good decision is to choose the ones which satisfy the ordering-
induced independence property.

As an example, consider part of a plan in Fig. 5.1. In this plan, there are two protection
intervals (p, a,b) and (-p, ¢, d). They also create a conflict between the actions. To resolve
the conflict, either b is ordered before ¢, or d is ordered before a. If the subactions of b
will not delete the preconditions of ¢, and the subactions of ¢ will not delete the useful

effects of b, and also a and d do not have this property, then a sensible choice is to choose

the ordering b < c.

P

Figure 5.1: A plan in which ordering has to be imposed to resolve conflicts.

For a given problem domain, there may be many different ways to define a set of
action reduction schemata. Some ways result in non-primitive actions which satisfy the
ordering-induced independence property, while others may not. Below we consider syn-
tactic restrictions that can ensure this property, and enable preprocessing for a given set

of actions.
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5.2 Imposing Syntactic Restrictions

If an ordering a < b is assigned in the current plan, all the subactions of action & will
precede that of action b. Therefore, at any later stages of plan reduction the effects of
any of the subactions of b cannot delete the preconditions of the subactions of @, and
the effects of the subactions of @ cannot delete any of the effects of the subactions of b.
However, it is possible that some subactions of a may delete some preconditions of b, and
certain subactions of b may delete the effects of the action a which are protected.

Let a be a non-primitive action in a plan and R(a) be a reduction of a. Since R(a) is
partially ordered, it may have more than one possible linearization. At the end of every
linearization L, a set of conditions hold, which are asserted by the actions in L. We use
effects(R(a)) to denote the union of these sets of conditions, for all the linearizations.

More formally,

effects(R(a)) = {p|3a; € A(R(a)) such that
p € effects(a;), and
Vb € A(R(a)) such that a; < b, ~p ¢ effects(b)}.

Let |R(a)| be the number of actions in R(a), then effects(R(a)) can be found in time
O(|R(a)|) by computing the transitive closure of the plan.

Definition 5.1 Let P be a plan, and a,b € A(P) be actions in the plan. The ordering-
induced independence property holds for (a,b) if the following conditions are satisfied: for

any composite reductions Q1 and Qq of a and b, respectively,
1. Vp € preconditions(b) and Vq € effects(Q1(a)), =p and q are not unifiable.

2. Vq € effects(a) such that {g,a,c) is a protection interval and b < ¢ in P, —q is not
unifiable with any p € effects(Q2(b)).

Notice that since p and q are literals, checking whether or not they are unifiable is straight-
forward. Thus, if (a, b) satisfies the ordering-induced independence property, and a < b in
a plan, then no subactions of a can conflict with the preconditions of b, and no subactions
of b can conflict with the effects of a which has to persist over them.

Consider the following restrictions.
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Restriction 5.1 Let a and b be two actions. VR € a(a) and Vp € effects(R(a)), if
—q € preconditions(b) and p and q are unifiable, then p € effects(a).

This restriction says that if any subaction a; of a can possibly deny a precondition of b,
then this effect of a; should also be an effect of a. If this restriction is satisfied by actions

a and b, then we say that a satisfies Restriction 5.1 with respect to b.

Restriction 5.2 Let a and b be two actions. VR € a(b) and Vq € effects(R(b)), if -q €
effects(a) and p and q are unifiable, q € effects(b).

This restriction says that if a subaction b; of b can possibly deny an effect of a, then this
effect of b; should also be an effect of b. If a and b satisfies this restriction, then we say
that a satisfies Restriction 5.2 with respect to b. If actions @ and b satisfy both of these
restrictions, then we say (a, b) satisfies the Condition-Promotion Restriction.

The following theorem allows one to check if a pair of actions satisfies the ordering-

induced independence property.

Theorem 5.1 The ordering-induced independence property holds for (a,b) if the following

conditions hold.

1. every action template in TC(template(a)) satisfies Restriction 5.1 with respect to

template(b), and

2. every action template in TC(template(b)) satisfies Restriction 5.2 with respect to
template(a).

We prove the first part of the conclusion of the theorem: Let Q(a) be a composite
reduction of a. Then Vp € preconditions(b), ~p ¢ effects(Q(a)). The second part can be

proved in a similar way.

Proof: The proof is done by induction on the level ¢ of composite reduction
Q(a) of a, for ¢ > 0. The base case ¢ = 0 corresponds to the plan P. Since
an order is assigned between a and b in P by a least-commitment planner, the

effects of a cannot delete any precondition of b. Therefore, the base case holds.

For the inductive hypothesis, assume that Vp € preconditions(d), -p ¢ effects(Q(a)),
where Q(a) is any composite reduction of a produced by applying n > 0 re-

duction schemata to a.
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Now consider the reduction R(Q(a)), produced by applying R to a non-primitive
action @’ in Q(a). Suppose to the contrary of the theorem that 3p € preconditions(b)
such that -p € effects(R(Q(a))). Let a; be the descendent of a which asserts
—p. Since —p does not occur in effects(Q(a)), a; can only be a subaction of a’,
that is, a; € A(R(a’)). Then —p € effects(R(a')) for some p € preconditions(b)
and -p ¢ effects(a’). This violates Restriction 5.1. Thus, a contradiction

results. ]

This theorem allows one to preprocess the planning knowledge of a planning system.
If all the information is gathered before planning starts, then a planner can make deci-
sion more intelligently during planning, by using these information. Specifically, if the
Condition-Promotion Restriction is satisfied by @ and b, then the ordering a < b will never

be undone because of the interactions between the subactions of a and b.

5.3 Checking for “Ordering Induced Independence” Prop-

erty

As in the case of downward-unlinearizability in the previous chapter, we would like to
preprocess a given set of action reduction schemata, to check whether the actions in
the schemata satisfy the Condition-Promotion Restriction. Again, the purpose of this
process is (1) to recognize and mark pairs of actions that satisfy the condition promotion
restriction, and (2) if a pair of actions does not satisfy the restriction, suggest ways to fix
the definition of the reduction schemata so that they do.

Let a and b be two action templates in A. The following algorithm checks if (a, b)

satisfy the Condition-Promotion Restriction:

Algorithm 5.3

1. Compute TC(a) and TC(b). This step can be done in time O(k X |A|?) using depth
first search, where k is the maximum number of reduction schemata applicable to

an action.

2. Check for every action template a; € TC(a), (aj, b) satisfies Restriction 5.1 with respect

to b. Notice that TC(a) can have at most |A| elements. To check the restriction
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for each pair (aj, b), one can first compute e = (effects(R(a;)) — effects(a;)). (aj, b)
satisfies Restriction 5.1 if Vp € e and Vg € preconditions(b), p and ¢ is not unifiable.
If this is done for all the actions in TC(a), then the time complexity for this step is
O(E? x |A|?), where E is the maximum number of conditions in the preconditions

or effects of an action.

3. Check if for every action template b; € TC(b), (a, b;) satisfies Restriction 5.2. This

step is similar to the previous one, and has a time complexity of O(E? x |A|?).
The total time complexity for running this algorithm is O((EZ+ k) x |A|?)=0((E%*+|®|) x
IAJ2).

If both the second and third steps of Algorithm 5.3 succeed, then the ordering-induced
independence property holds for the pair (a,b). In that case, every pair actions which are
instances of a and b also satisfy the property.

As an example, consider the action templates and their reduction schemata for the
blocks-world domain, which are listed in Appendix A. Let a be makeon-table-1(z,y),
and b be makeon-block-1(u). Then

TC(a) = {put-block-on-table(u,v)},

TC(b) = {put-block-on-block(z, z,y)},

preconditions(a) = {Block(u), Cleartop(u)},

preconditions(b) = {Block(z), Block(y), Cleartop(z), Cleartop(y)},
effects(a) = {Ontable(u)},

effects(b) = {—~Cleartop(y), On(z,y)}.

Let e; be effects(R7(a)) — effects(a). Then

e; = {Cleartop(v), =On(u, v)}.
Also, let eg be effects(R5(b)) — effects(b). Then

ez = {Cleartop(z), ~On(z, 2)}.

Thus, no conditions in e; deny any conditions in preconditions(b), and no conditions in e;
deny any conditions in effects(a). Therefore, the pair (a, b) satisfies the ordering-induced

independence property.
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During planning, choices have to be frequently made for imposing orderings among
the actions. If two actions a and b satisfy the ordering-induced independence property,
while the other pairs do not, then the ordering ordering a < b should be favored, since no
backtracking can be incurred as a result of the conflicts between the subactions of a and
b.

As in the previous chapter, there may not be a general procedure available for mod-
ifying a set of reduction intervals. However, in some special cases, modifications to the
schemata definitions can be made by “promoting” certain effects of actions to their parent

actions in order to guarantee the ordering-induced independence property.

5.3.1 A Special Case Of Schemata Definition

A special case of action reduction schemata definition exists which allows one to simplify
the algorithm for checking if the ordering-induced independence property holds for all the
actions in a set of schemata. This special case occurs when all the actions in the set of

action reduction schemata have only positive literals as their preconditions.

Restriction 5.3 A non-primitive action a satisfies the negation-promotion restriction if

by definition VR € a(a) and V-p € effects(R(a)), -p € effects(a).
The result is given in the following corollary to theorem 5.1.

Corollary 5.1 Let ® be the set of action reduction schemata and A be the set of action
reduction schemata for a planning system. Suppose for every action template a in A, all
the preconditions of a are positive literals. If all the actions in A satisfy the negation-
promotion restriction, then every pair of actions in the domain satisfies the ordering-

induced independence property.

Proof: Since every action template a in A satisfies the Negation-Promotion
‘Restriction, and only negated propositions can deny any precondition of an
action, it follows that any pair of actions must also satisfy the Condition-
Promotion Restriction. Therefore, from Theorem 5.1, every pair of actions in

A satisfies the ordering-induced independence property. a
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The advantage of this corollary is that it allows a set of action reduction schemata
to be checked for ordering-induced independence property in a more efficient manner. In
particular, the Negation-Promotion Restriction only restricts the way each action is related
to its own set of subactions in its reduction schema. For each element p of effects(R(a)),
if p is a negative literal, then a check can be made to see if p is also in effects(a). If two
actions @ and b satisfy the Condition-Promotion Restriction, then both (a,b) and (b,a)

have the ordering-induced independence property.
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Part 11

Multiple Goal Plan Optimization

with Limited Interactions
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Chapter 6

Planning For Multiple

Goals—Definitions

6.1 Problem Statement

In Part I we described conditions under which planning efficiency can be improved by
preprocessing a planner’s planning knowledge. Below, another approach to improving
planning efficiency is presented. As discussed in Chapter 2, domain-dependent planning
and domain-independent planning can be considered as two extremes on a spectrum of
planning methods. An intermediate method is to restrict the types of goal interactions
that can occur, and design planning algorithms for domains where no other types of
interactions occur. This method will be called the limited-interaction planning approach.

Limited-interaction planning will be presented in the context of multiple goal planning
problems. A multiple goal planning problem can be defined as follows. Given g goals
G1,Gy,. .., Gy to be achieved, find a plan to solve all of them. Many planning problems

can be considered as special cases of the multiple goal planning problem. As an example
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in the domain of automated manufacturing, a machined part usually consists of several
manufacturing features, where each feature can be considered as a individual goal, and
the whole part as the conjunction of the goals.

In general, the problem is difficult due to the interactions between the goals. An
action for achieving one goal may interfere with other actions for achieving other goals.
Some of the interactions between goals are harmful, while others are useful. Detecting
and handling these interactions has been very inefficient in general. A planner planning
for multiple goals has to check for interactions among the actions every time an action
is inserted. Without knowing what kinds of interactions are allowed, and what kinds of
restrictions the interactions obey, a planner has to spend a large amount of computation
on handling the interactions.

However, in many practical domains the goals are only loosely coupled with each other.
In other words, the interactions between the goals are limited. In the following, we will try
to characterize what is meant by “limited interactions”, and propose an efficient approach
to handle multiple goal interactions when there are limited interactions between the goals.
Specifically, our approach is to develop one or more plans for each goal individually, and
then combine them together. During this combination phase the interactions between the
goals are detected and handled. The reason for using this approach is to achieve more
efficiency than conventional approaches, in which the goals are achieved all together.

To see this, let GI,GQ, ..., Gy be the goals to be achieved. For each goal G, let b; be
its branching factor and d; its depth !. If the goals are solved conjunctively, the size of

the search space is

(3 1) i %),
=1

which is O((nb)™?), where b = max?_, b;, and d = max?_, d;.
On the other hand, if we can solve the goals individually and then combine the solutions

to form a global plan, the complexity of the method will be
Oo(nb® +T),

where T is the complexity for identifying and handling interactions between the plans.

Moreover, in cases where there are several alternative plans for each goal, T' will also

these notations are adopted after [20]
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include an additional complexity for choosing one plan for each goal in order to satisfy
certain optimality criteria. In general, T is still exponential. However, when the goal
interactions are limited, we can construct branch-and-bound algorithms with good heuris-
tics for combining and optimizing the plans. As a result, the total time complexity can
be reduced. We demonstrate this claim in the following sections.

As mentioned earlier, one of the major challenges is to characterize “limitedness” of
the interactions between the goals. The specific questions to ask are then (1) what kinds
of interactions do we allow in our domains of application? (2) for those interactions which
are hard to handle, what kinds of restrictions can we impose so that the resulting problem
is well-behaved enough for us to handle? Notice that the restrictions should also allow the
planning methods to be applicable to a large enough problem domains to be interesting.

Below, a plan is defined in the same way as in Part I. In addition, we allow actions to
have costs, and the cost of a plan is the sum of the costs of the actions. A plan can also
be associated with a set of constraints, such as one that requires certain actions to occur

at the same time.

6.2 Types of Inter-Goal Interactions

Depending on what kinds of interactions occur among the actions in the plans, it might or
might not be possible for all of the goals to be achieved. In this and the next two chapters,

we consider only the following kinds of interactions.

1. An action-precedence interaction is an interaction which requires that an action a in
some plan P; must occur before an action b in some other plan P;. This can occur,
for example, if b removes one of the preconditions necessary for a, and there is no

other action which can be inserted after b to restore this precondition.

Much previous work in planning has dealt with deleted-condition interactions. Some
action-precedence interactions are expressible as deleted-condition interactions, and
conversely, some deleted-condition interactions can be resolved by imposing prece-
dence orderings. Deleted-condition interactions can often be resolved in other ways
as well—and thus, in general, they are more difficult to deal with than action-

precedence interactions. However, there is a significant class of problems, including
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certain kinds of automated manufacturing problems and certain kinds of schedul-
ing problems, where action-precedence interactions are the only form of deleted-

condition interactions. Examples of such problems appear later in this section.

. Plans for different goals may sometimes contain some of the same actions. The
identical-action interaction occurs when an action in one plan must be identical to

an action in one of the other plans.

. Sometimes, two different actions must occur at the same time. We call such an
interaction a simultaneous-action interaction. This is different from the identical-
action interaction, because these simultaneous actions are not identical. An example
would be two robotic hands working together in order to pick up an object. As for
identical-action interactions, we require that an action can occur simultaneously

with at most one other action.

. Let A be a set of actions {ai,as,...,a,}. Then there may be a merged action m(A)
capable of accomplishing the effects of all actions in A. The cost of m(A4) could
be either higher or lower than the sum of the costs of the other actions—but it is
only useful to consider merging the actions in A if this will result in a lower total
cost. Thus, although we allow the case where cost(m(A4)) > Y ,c4 cost(a), we can
ignore it for the purposes of planning. Thus, we only consider A to be mergeable
if cost(m(A4)) < 3,4 cost(a). Formally, we say that an action-merging interaction

occurs among the actions in set A iff there is an action m(A4) such that

() Ujean effects™(a) C effects(m(A)), where effects*(a) for action @ is the set of
effects of @ which are needed by some other actions in the same plan in which
a is,
(b) preconditions(m(A)) C |J,e4 preconditions(a), and
(c) cost(m(A)) < Y ,ea cost(a).
Notice that for a given set of actions, there may be more than one action m(A)
capable for achieving all of the effects of the actions while having a lower cost.

Moreover, these merged actions can have different side-effects, which are effects

other than those in J,¢ 4 effects*(a).
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One way in which an action-merging interaction can occur is if the actions in A
contain various sub-actions which cancel each other out, in which case the action

m(A) would correspond to the set of actions in A with these sub-actions removed.

Note that even though a set of actions may be mergeable, it may not always be
possible to merge that set of actions in a given plan. For example, suppose a and
a’ are mergeable, but in the plan P, ¢ must precede b and b must precede a’ (see
Fig. 6.1) . Then @ and o’ cannot be merged in P, because it would require b to

precede itself.

Figure 6.1: A plan containing actions that cannot be merged

Consider a set of plans P, Ps,..., P, with a set of interactions of the types consid-
ered above. The action-precedence, identical-action and simultaneous-action interactions
impose more precedence restrictions among the actions in the plan. These precedence
restrictions, along with the original precedence arcs in the plans, determine whether the
goals can be achieved by these plans. It is impossible to achieve the goals if the resulting
global plan contains cycles of the actions. However, it the resulting plan is still a partially
ordered set of actions, then the goals can be achieved together through the plans. In
this case, we say that the plans can be combined, and define combine({ Py, P, ..., P,}) to
be the set of plans with the action-precedence, identical-action and simultaneous-action
interactions handled.

The other kind of interaction (the action-merging interaction) places no constraint on
how the plans might be combined, but instead allows possible modifications to the global

plan once it has been created. Thus, the only kinds of interactions which might make it
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impossible to combine a set of plans into a global plan are the action-precedence, identical-
action, and simultaneous-action interactions. The problem of finding out whether or not
a set of plans can be combined into a global plan we call the multiple-goal plan ezistence
problem.

As an added complication, each goal G; may have several alternate plans capable of
achieving it, and thus there may be several different possible identities for the global plan
for G. The least costly plan for G; is not necessarily part of the least costly global plan,
because some more costly plan for G; may be mergeable in a better way with the plans

for the other goals.

O O
gripper-1 gripper-2
A B C

Figure 6.2: A blocks world problem where there are two different kinds of grippers

We define the multiple-goal plan optimization problem to be the problem of choosing
which plan to use for each goal, and which actions to merge in these plans, so as to produce
the least costly global plan for G.

The multiple-goal plan optimization problem occurs in a number of problem domains.

Two examples are given below.
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Example 6.1 Consider a blocks-world problem in which the robot hand has several dif-
Jerent grippers, for picking up several different types of blocks (Fig. 6.2). Only one gripper
can be mounted on the hand at any given time. Suppose the action pickup(B) consists
of mounting the appropriate gripper for block B and then picking up B, and the action
putdown(B) consists of putting down B and removing the current gripper. Then the se-

quence of actions

(putdown(A), pickup(B))

would consist of putting down A, removing the gripper for A, mounting the appropriate
gripper for B, and picking up B. If A and B were the same kind of block, then these
actions could be merged into an action which put down A and picked up B without changing
grippers.

Suppose there are several stacks of blocks on a table, and the goal is to transform
each stack into a desired goal stack. The transformation of each stack can be considered
as an indwidual goal, and the collection of the goals constitutes a multiple goal planning
problem. If the table is large enough, then moving the blocks on one stack does not interfere
with any other stacks, and therefore, the only kind of interaction among the goals is the

action-merging interaction described above.

Example 6.2 Consider the automated manufacturing problem of drilling holes in a metal
block. Several different kinds of hole-creation operations are available (twist-drilling, spade-
drilling, gun-drilling, etc.), as well as several different kinds of hole-improvement oper-
ations (reaming, boring, grinding, etc.). FEach time one switches to a different kind of
operation or to a hole of a different diameter, one must put a different cutting tool into
the drill. Suppose it is possible to order the operations so that one can work on holes of
the same diameter at the same time using the same operation. Then these operations can
be merged by omitting the task of changing the cutting tool. This problem is of practical
significance (see [31]). (A related practical problem is discussed in [15].)

For ezample, consider the problem of deciding how to make two holes Holel and Hole2

in a metal block (see Fig. 6.3). Suppose the best plan for Holel is

spade-drill(Holel), rough-bore(Holel), (6.1)
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and the best plan for Hole2 is
twist-drill(Hole2), rough-bore(Hole2). (6.2)
If Plans 6.1 and 6.2 are combined naively, the result is
spade-drill(Holel), rough-bore(Holel), twist-drill(Hole2), rough-bore( Hole2),

which requires four tool changes. If the two holes have the same diameter, a more intel-
ligent way to combine the plans is to do the two rough bore operations at the same time,

saving a tool change:

spade-drill(Holel), twist-drill( Hole2), rough-bore(Holel, Hole2).

Holel Hole2

spade-drill(Holel) ———» rough-bore(Hole1)

twist-drill(Hole2) ~————> rough-bore(Hole2)

Figure 6.3: Merge two process plans for creating two machining holes

6.3 The Detection of Goal Interactions |

In this section, we discuss how the interactions between the multiple goals can be found.
It is assumed that g goals are to be solved, and there is one plan for each goal.
If a planner has no e priori knowledge about what kinds of goal interactions it is

dealing with, then in general it is very costly to figure out what these interactions are. Take
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deleted-condition conflicts as an example. Due to the undecidability of logical implications,
it is not always possible to determine whether or not a proposition is denied by a group
of others. Therefore, it is in general an unsolvable problem to find out a complete set of
harmful goal interactions in a given set of plans. Moreover, even without the presence of
axioms, the problem of determining the truth of a proposition in a set of plans in which
the representation of actions are rich enough to represent effects dependent upon the input
situation is NP-complete (see [7]). Therefore, even without axioms, the problem of finding
out a complete set of harmful interactions is NP-hard.

However, the situation is not hopeless. First of all, when all the pre- and post-
conditions of actions are simple first order logic propositions not dependent upon input
situations, and when there are no additional axioms, the problem of finding out a set of
deleted-condition conflicts between pairs of actions has a complexity that is quadratic as
a function of the number of actions involved.

Even when there are external axioms, or there are actions with effects dependent upon
input situations, it is possible that the propositions through which the goals interact are
not dependent upon input situations, and not present in the axioms. This is the case with
many problems in automated manufacturing domain. For example, a bore operation can
have effects such as size(hole) = size(hole) + §. This effect depends on the size of the hole
before a bore action is applied, that is, it depends on the input situation. However, the
size of one hole cannot be affected by the bore operations applied to other holes, as long as
the holes are far away enough from each other. Therefore, the complexity of the planning
algorithm is not increased because of this action representation.

Among the four kinds of goal interactions listed, the action-precedence interactions
can be detected by comparing every pair of actions in the plans. If any precondition of
one action a; is deleted by the effects of another action a;, then (a;, a;) should be recorded
as an action-precedence interaction.

Identical-action and simultaneous-action interactions can be detected in terms of the
domain knowledge available. They can also be detected via the constraints imposed
upon the plans during planning for each individual goal. Action-merging interactions
can be detected in terms of the representation of actions. For example, in example 6.2, a
twist-drill operation is an compound action which can be decomposed into several subac-

tions: mount(twist-drill) < twist-drill(Hole) < unmount(twist-drill). If two holes exist so
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that the same twist-drill can be used for both, then the unmount(twist-drill) operation for
the first hole can be canceled with the mount(twist-drill) operation for the second hole.
The resultant overall plan then is of shorter length than without merging.

In the next two chapters, we consider two different cases of the multiple-goal plan
optimization problem. The first case is when a single plan is generated for each goal.
In this case, we show that the global plan optimization problem is NP-hard. However,
a set of restrictions exists which defines a class of problems that is reasonably large and
interesting, and can be solved in low-order polynomial time.

The second case is where more than one plan may be generated for each goal, making
it necessary to select among the alternate plans for each goal to find an optimal global
plan. This case is still NP-hard even with the restrictions, but there is a heuristic approach

which works well in practice.
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Chapter 7

One Plan For Each Goal

Planning is often so difficult that most planning systems stop once they have found a
single plan for each goal, without trying to find other plans as well. This section discusses
the multiple-goal plan optimization problem in the case where only one plan is available

for each goal.

7.1 Complexity

To examine the computational complexity of the problem, consider the special case in
which the following conditions hold: for each goal G;, the plan P; for G; is a linear
sequence of actions, each action has a cost of 1, and there are no interactions among the
plans except for action-merging interactions.

In this special case, all interactions that might prevent the plans from being combined
into a global plan are disallowed. Thus, at least one global plan is guaranteed to exist:
IT = Y._, P.. However, Il may not be an optimal plan, because it may be possible to merge
some of its actions. In fact, Il may contain several different sets of mergeable actions, and

merging some of them may preclude merging others. Different choices of which sets to
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merge may result in plans of different cost. For example, consider two plans P; and P,
in Fig. 7.1 (a). Assume that actions which name start with the same characters can be

merged. Fig. 7.1 (b) and (c) show two different ways the two plans can be merged.

b3 al b1 Plant
b2 a2 Plan2
(2)
b2,b3 al,a2 b1
(b)
b3 al b1,b2 a2

(c)
Figure 7.1: Plans which can be merged in different ways.

Since this special case requires that each P; be a linear sequence of actions and each
action have the same cost, the problem of finding the best global plan is equivalent to
the problem of finding the shortest common supersequence (SCS) of n sequences. This
problem has been shown to be NP-hard [27]. Since the special case is NP-hard, it follows
that the multiple-goal plan optimization problem is NP-hard.

7.2 Plan Existence

The last section showed that the multiple-goal plan optimization problem with one plan

per goal is NP-hard, by showing that a special case of that problem is NP-hard. In this
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section, we return to the original problem with one plan per goal, in which the plans
can interact with each other via action-precedence, action-merging, identical-action and
action-merging interactions.

One way to handle a NP-hard problem is to simplify it either by relaxing the crite-
ria for what constitutes a valid solution, or by imposing restrictions on what problem
instances will be considered. For the current problem, one way to do this is to look not
for the optimal global plan, but for any global plan that works—in other words, to solve
the multiple-goal plan existence problem rather than the multiple-goal plan optimization
problem. Whether a global plan exists is independent of whether there are any action-
merging interactions, so for the multiple-goal plan existence problem we can ignore all
action-merging interactions completely.

In particular, suppose that we are given the following:

1. A set of plans S = Py, P,,..., P, containing one plan P; for each goal G;. Let n be

the total number of actions in S.

2. A list of interactions among the actions in the plans (for example, members of this
list might be statements such as “action « in plan P; must precede action b in plan

P;”). Let i be the total number of interactions in this list (note that : = O(n?)).

If we do not do any merging of actions, the global plan is just the set of individual plans
in S, plus certain ordering constraints upon the actions which are required for handling
the interactions. If the resultant global plan exists, this combined plan, combine(.S), can

be produced by the following algorithm:

Algorithm 7.2

1. For each plan P in 5, create a graph representing P as an adjacency list. Also, create a

sorted linear index of the actions in the plans. This step can be done in time O(n?).

2. For each action-precedence interaction in the interaction list, modify the graph by
creating a precedence arc between the actions named in the interaction. For each
simultaneous-action interaction in the interaction list, create a simultaneous-action
arc between the actions named in the interaction. For each identical-action inter-

action in the interaction list, combine the actions named in the interaction into a
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single action. If this step is done by sorting the interaction list and then checking it

against the index of actions, it can be done in time O(ilogi + (¢ + n)n) = O(n?).

3. Check to see whether the graph still represents a consistent partial ordering (this can be
done in time O(n?) using a topological sorting algorithm [19], with a straightforward
extension to handle the simultaneous-action interactions). If it does not, then exit

with failure (no global plan exists for this problem).

Algorithm 7.2 produces the combined plan combine(.S) if it exists, in the case where
there is one plan for each goal G;. The total time required is O(n?®), where n is the total

number of actions in the plans.

7.3 Plan Optimality with Restrictions

Section 7.2 dispensed with action-merging interactions by considering the multiple-goal
plan existence problem rather than the multiple-goal plan optimization problem. In this
section, we consider how to solve the multiple-goal plan optimization problem by imposing
restrictions on how the actions can interact with each other. As in the previous section,
we assume that one plan is available for each goal.

According to our definition, merging a set of actions corresponds to replacing them by
another action with less cost. We have demonstrated that in general the plan optimization
problem is NP-hard. One of the reasons for this complexity is that merging one set of
actions may preclude merging some other sets of actions. In order to find out which set
of actions gives the best choice for merging, the results of all possible ways of merging
should be compared.

Another source of complication is that merged actions may inflict new conflicts in the
plans. Suppose it is decided to merge the actions in the set {ay,as,...,a;} into another
action a,,, such that a,, can achieve all of the effects of the g;s. In addition to the effects
of a;, 1 = 1,...,k, a,, may also assert some other effects, say —q, where ¢ is part of the
preconditions for some other action a,. Effects like this can be called harmful side-effects.
In this case, merging the actions in set {a1, as,...,ax} may create an action-precedence
interaction, depending on the relative positions of a,, and a,. If a,, and a, are unordered

in the multiple goal plan, then it is necessary to introduce precedence link from a, to a,,
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after the merging is done. However, if a,, is before a, in the plan, and no other actions
can restore the precondition of a,, ¢, then merging {a1, as, ..., ax} will produce an invalid
multiple-goal plan.

To make our planning task easier, restrictions will be imposed on how the actions in

the plans can interact via action-merging interactions:
Restriction 7.1 Merging does not have harmful side-effects.

Restriction 7.2 If S is a set of plans, then the set of all actions in S may be partitioned
into equivalence classes of actions Eq, Es, ..., E,, such that sets of actions A and B are

mergeable if and only if A and B are subsets of the same equivalence class.

Restrictions 7.1 and 7.2 are reasonable for a number of problems (for example, it is
already satisfied in the Examples 6.1 and 6.2 discussed previously). These restrictions are
still not restrictive to reduce the complexity of the problems to polynomial. However, they
reduce the total size of the state space by reducing the base of the complexity formula. In
the following, we will present a branch-and-bound algorithm for solving the multiple goal

plan optimization problem where these restrictions are satisfied.

7.3.1 A Branch-and-Bound Algorithm

Consider domains where restrictions 7.1 and 7.2 are satisfied. Let P be combine({ Py, Py, ..
where each P is a plan for achieving a goal G;. P can be computed using Algorithm 7.2.
Let M be a set {43, As,...,A,}, where each set A; is a mergeable set of actions in the
plans. Fach A; is called a merge-set. For the simplicity of the algorithm description,
assume that each merge-set is a pair of actions that belong to the same equivalence class.
It is possible that merging the actions in set A; may preclude merging the actions in set
A;. The goal of the search algbrithm is to select a set of merge-sets so that after merging
the actions in each set, the global plan will be the least-cost plan which is free of cycles.
The state space for the search algorithm is a decision tree based on the set of merge-sets
M (see Fig. 7.2). Each state S in the tree contains a set of chosen merge-sets C(S), the

remaining set of merge-sets M (), and a set U(.S) of action pairs which are not mergeable.
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Figure 7.2: State space tree for the branch and bound algorithm.

The root of the state space search tree contains an empty set of chosen merge-sets. In
the search tree, each state S has two children. The first child corresponds to the decision
to include the next merge-set A; of M(.S) into C(S), and the second child to exclude this
pair from the final selection. A final state is a state S such that M(S) is empty, and a
goal state is a final state with the least cost.

One important question to ask about a search space is whether it is complete. A
complete state space always includes a solution for a problem instance as one of its state,
whenever such a solution exists. Clearly, the state space described above is complete,
because it considers every possible way the actions in the plans can be merged.

Another important issue for branch-and-bound search algorithms is whether an in-
formed lower bound function can be found for each state. Let L(S) be the lower bound
for state S. It can be constructed as follows.

As described above, associated with each state S is the following information:

M(S): aset of remaining merge-sets. For the root R, M(R) = M, where M is the original

set of merge sets.

U(S): a set of pairs of actions that belong to the same equivalence class, but cannot be

merged because of precedence constraints. Initially, U(S)is the set of pairs of actions
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(as,a;), such that there is a precedence arc from a; to a;. The precedence arc may be
imposed because of the initial structure of the plan, or one of the action-precedence,

simultaneous-action or identical-action interactions.

C(S): the set of chosen merge-sets from the root down to the current state. If A;, A; €
C(S) such that A;A; # ¢, then according to Restriction 7.2, A; U A; is a new

merge-set.
P(S): the plan resulting from merging the merge-sets in C(S).

Let U;(S) be the subset of U for the i*" equivalence class. The lower bound cost
function L(S) can be computed by summing up the lower bound L;(S) for each individ-
ual equivalence class 7, since no actions belonging to different equivalence classes can be

merged. Therefore,
L(S)= Z Li(S).

The computation of L;(S) depends on whether the subset of merge-sets belonging to
this class ¢ is empty in set M(S). If it is empty, then the state S is a leaf node of the
search tree, and the exact cost of the part of the global plan composed of actions in this
class ¢ can be obtained as follows:

Li(S)= Y cost(merge(A;)),
A;eC(S)
where each A; is a merge-set consisting of actions in class 1.

If M(S) is not empty, then S is a non-terminal node. In this case, the lower bound
cost function can be computed in terms of the set of unmergeable action pairs in U(S).
Let U;(S) be the subset of U(S) containing only action pairs in class i. Let D;(S) be a
clique defined by the set U;(S). D;(S) is a set of actions such that a,a’ € D;(S) if and
only if (a,a’) € Ui(S). Then '

Li(S) = max{ E cost(a), cost(merge({a | a € equivalence class i }))} . (7.1)

a€Di(S)

A clique D; in U;(S) is computed using a greedy algorithm. Given a set of unmergeable

pairs of actions U;(.S), this greedy algorithm selects a set D;(S) such that no two actions

in D;(.S) can be merged due to the precedence constraints.
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The admissibility of this lower bound function can be proved by showing that, for
each equivalence class i, L;(S) is a lower bound. That is, we have to show L;(S) <
cost;(merge(S5”)), where cost;(merge(S’)) is the cost of the actions belonging to equivalence
class 7, in any final state S’ below the current state S.

Sincein the best situation, all actions of type ¢ can be merged, the cost of S’ contributed

by the actions of in class 7 should be at least
cost(merge({a | @ € equivalence class i }))

On the other hand, since the actions in D;(S) cannot be merged, they cannot be
merged in state S” either. Therefore, the actions belonging to equivalence 4 in S’ must
be divisible to at least |D;(S)| parts so that each part contains the actions that can be
merged, and no two sets have actions that will be merged. For each such set d;;, cost(d;;)
is greater than the cost of any individual action. Therefore,

cost; (merge(S’)) > Z cost(a).
a€D;(9)
Since neither of the formulae in Equation 7.1 is greater than cost;(merge(S’)), L;(S) must
be a lower bound function.

Let S be a non-final state. As we discussed above, a child of S can be obtained by
removing the next merge-set A; from M(S). The first child of S, first(S), can be created
by including 4; in C(S), while the second child, second(S) exludes A; from C(S). In the
following, we consider the complexity of producing only the first child from state S. The
‘complexity of creating the second child can be found in a similar way.

For first(S), the following has to be done:

1. Check the feasib‘ility of the plan in first($). This can be done in time O(n?) using
the topological sort algorithm, where n is the total number of actions in the plan.
In addition, tests have to be made to see whether certain action-pairs in U(S) are
merged as a result of merging the actions in A;. If so, then the state first(S) is

infeasible. Overall, this step takes O(n?) in time complexity.

2. Update M(S). After the actions in Ay are merged, a number of other actions may
no longer be merged. Suppose A = (a;,a;). If an action o’ precedes a;, and a” is

preceded by a;, then even though a’ and a” belong to the same equivalence class,
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they cannot be merged. To find out all the pairs like this, one can check if an arc
exists linking any pairs of the actions in set M(S). If (&', a") is a pair removed from

M(S) in this test, it should be inserted into U(first(.5)). This step takes time O(n?).

3. Compute L(first(S)). This step can be done with the greedy algorithm above. Since
this algorithm takes time linear in the number of unmergeable pairs in U(S’), and
the set U(S’) has a size of O(n?), the worst case time complexity for this step is

O(n?).

Therefore, the worst case time complexity for processing each state is O(n?).

7.3.2 Empirical Results

The total size of the state space can be estimated from the definition of the search algo-
rithm. The branching factor of the search tree is 2, and the depth of the search tree is the
total number of mergeable pairs of actions. Therefore, the size of the whole search tree is
2IM| That is, reducing the total number of mergeable sets of actions can decrease the size
of the search tree by an exponential amount. Furthermore, the amount of processing at
each state is also proportional to the number of merge-sets. Thus one other criterion for
identifying domains with limited action-merging interactions is to check whether the total
number of merge-sets is small. If this number is small, the branch-and-bound algorithm
will be efficient.

A preliminary experiment has been done with the branch-and-bound algorithm. In
this experiment, the cost of each action is assumed to be 1, and the cost of a plan is the
total number of actions in it. This assumption is of practical importance. For example,
this cost definition is useful for minimizing the total number of tool changes in the final
plan, when each equivalence class corresponds to a different tool.

The number of states explored v.s. number of mergeable pairs is shown in Fig. 7.3.
The number of states expanded by the algorithm shows quadratic behavior as a function

of the number of merge-sets, when the number of merge-sets is less than 40.
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7.4 Partial Ordering Restriction

This section considers one more restriction which makes it feasible to look for an optimal
global plan with a polynomial time algorithm, rather than a heuristic search algorithm.
Here we assume that Restrictions 7.1 and 7.2 are satisfied. In addition, we require that

the following restriction is also satisfied:

Restriction 7.3 If combine(S) ezists, then it defines a partial order over the equivalence
classes defined in Restriction 7.2; i.e., if E; and E; are two distinct equivalence classes
and if combine(S) requires that some action in E; occur before some action in E;, then
combine(.S) cannot require that some action in E; occur before some action in E;. (This
does not rule out the possibility of an action in E; occurring immediately before another

action in E;; in such a case, the two actions can be merged.)

Intuitively, Restriction 7.3 requires that merging one set of actions in an equivalence
class does not preclude the possibility of merging other actions in the plans. For example,
the plans in Fig. 7.1 do not satisfy Restriction 7.3, since merging actions b1 and 52 will
preclude merging actions al and a2.

Although this restriction is more limiting, it still allows many interesting problems.
For instance, in Example 6.1 it would be satisfied if the grippers had to be used in a
certain order; and in Example 6.2 it is satisfied since there exists a common sense ordering
of the machining operations (e.g., don’t twist-drill a hole after it has been bored ), which
is quite natural to use for this problem. |

Suppose Restrictions 7.1, 7.2 and 7.3 are all satisfied, and suppose we are given a set of
plans S and a list of interactions, as was done in Section 7.2. If a global plan exists, then
Algorithm 7.2 will produce the global plan combine(S). However, by merging some of the
actions in combine(S), it may be possible to find other less costly plans. The following

algorithm will find the least costly of these plans.

Algorithm 7.4

1. Use Algorithm 7.2 to produce a digraph representing the combined plan combine(.5).
This can be done in time O(n?). If Algorithm 7.2 succeeds, then continue; otherwise,

exit with failure.
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2. For each equivalence class E; of actions in combine(S), merge all of the actions in E;.
This produces a digraph in which each class of action occurs only once (e.g., see
Fig. 7.4). From Restriction 7.3, it follows that this is a consistent plan; we call this
plan merge(combine(S)). From Restriction 7.2 and the definition of mergeability,
it can be proved by induction that this is the least costly plan which can be found
by combining and merging actions in S. Merging the classes will, at worst, require

redirecting all of the arcs in the digraph—and this can be done in time O(n?).

In the case where there is one plan for each goal G;, Algorithm 7.4 produces an optimal
way to combine and merge these plans, if it is possible to combine them at all. The total

time required is O(n®), where n is the total number of actions in the plans.
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Figure 7.3: Experimental results for merging a set of plans
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P1: P2: P3:

)
C

b1 cl c2 c3
di d2 d3

merge(combine(P1, P2, P3)):

al, a2 ed
N,
b1, b3
cl, c2, c3
di, dz, d3

Figure 7.4: Finding an optimal global plan by merging the plans for various goals.
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Chapter 8

More Than One Plan For Each

Goal

For some multiple goal planning problems, it is reasonable to expect that more than one
plan may be found for each goal. (For example, this is done by the SIPS planning system
for the manufacturing problem discussed in Example 6.2 [31]). Finding more than one
plan for each goal is computationally more complex than finding just one plan for each
goal, but it is useful because it can lead to better global plans.

To see this, consider once again the process planning example described in Example
6.2 of Chapter 6. Suppose in addition to the plans given in Example 6.2, Hole2 can also
be created (at slightly higher cost) using the plan

spade-drill(Hole2), rough-bore(Hole2). (8.1)

(see Fig. 8.1) Even though this plan costs slightly more than plan 6.2, it results in a
better overall plan when combined with plan 6.1, because one additional tool change can

be saved:

spade-drill(Holel, Hole2), rough-bore(Holel, Hole2).
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Holel Hole2

spade-drill(Hole1l) ————— rough-bore(Holel)

twist-drill(Hole2) ———> rough-bore(Hole2)

Another plan for Hole2:

spade-drill(Hole2) ————> rough-bore(Hole2)

Figure 8.1: More than one process plan is available for Hole2.

In the following, we first show that the multiple goal plan existence problem is NP-hard
when there is more than one plan for each goal. Then a branch-and-bound algorithm will

be presented for solving the problem.

8.1 Complexity

If more than one plan is available for each G;, then there may be several different possible
identities for the set S discussed in the previous chapter, and it may be necessary to try
several different possibilities for S in order to find one for which combine(.S) exists. This
problem is NP-hard, even with Restrictions 7.1, 7.2 and 7.3; this is proved in Appendix B
by reducing CNF-satisfiability to it.

Since the multiple-goal plan existence problem is a special case of the multiple-goal plan

optimization problem, the above result means that the multiple-goal plan optimization
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problem is also NP-hard.

Polynomial-time solutions do exist for a number of special cases of the multiple-goal
plan existence and optimization problems. One such special case was the one discussed in
Section 7.1, in which the number of plans for each goal was taken to be 1. Another special
case is the case where the number of different equivalence classes of actions is less than 3,
and each action has the same cost. In this case, if no conflicting constraints are allowed
to exist, the multiple-goal plan optimization problem can be solved in polynomial time,
even if Restriction 7.3 is lifted. For example, this would occur in example 6.1 if there were

only two different grippers and two different types of blocks.

8.2 A Heuristic Algorithm

Although the general case of the multiple-goal plan optimization problem is NP-hard, there
is a heuristic approach that performs well in practice on this problem. The approach is to
formulate the problem as a state-space search and solve it using a best-first branch-and-
bound algorithm. In the following, we assume that Restrictions 7.1, 7.2 and 7.3 hold for

the problem domain.

¢
Pya P2
Py1,P21 P11,Ppp Py1,P3 P1g,Ppq Pyg,Pap P13,Pp3

Figure 8.2: An example state space. Here P;; is the 4t* alternative plan for the goal G;.

Suppose we are given the following: (1) for each goal G, a set of plans T; containing
one or more plans for G;, and (2) a list of the interactions among the actions in all of the

plans. In the state-space search, the state space is a tree. Each state is a set of plans; it
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contains one plan for each of the first ¢ goals for some ¢. The initial state is the empty
set (i.e,, 2 = 0). If S is a state containing plans for the goals Gy,Gs,...,G;, then an
immediate successor of S is any set S U {P} such that P is a plan for G;;1;. A goal state
is any state in which plans have been chosen for all of the goals G1, Gy, ..., G,. The cost

of a state S is the cost of the plan obtained by applying Algorithm 7.4 to S; i.e.,
cost(S) = cost(merge(combine(S5))).

Fig. 8.2 displays part of an example state space.

The search algorithm will be referred to as Algorithm 8.2. As the algorithms in the
previous chapter, this algorithm is a best-first branch-and-bound search, which uses a
lower bound function L to order the members of the list of alternatives being considered.
Except for the use of U for pruning, this algorithm can also be thought of as a version of
the A* search procedure, with h(S) = L(S) — cost(S) as the heuristic function.

In the search algorithm, pruning may be done by computing an upper bound on
the cost of the best global plan. For each G, let best(G;) be the plan for G; of least
cost. The plans best(G;), 1 = 1,2,...,9, may or may not be combined depending on
the interactions among them. This can be determined using Algorithm 7.2 in time
O(m3), where m is the total number of actions in {best(Gy), best(Ga), ..., best(G,)}.
If they cannot be combined, U can be initialized to be infinity. On the other hand, if
combine({best(G1), best(G), ..., best(G,)})) exists, then the upper bound is

U = cost(merge(combine({best(G1), best(G3), ..., best(Gy)}))). (8.2)

During the search, any state S such that L(S) is greater than U is discarded.

If L(S) is a lower bound on the costs of all successors of S that are goal states, then
L is admissible, in the sense that Algorithm 8.2 will be guaranteed to return the optimal
solution. We now discuss various possible functions to use for L. To do this, we temporarily
assume the following property: that merging plans for two different goals always results
in a plan at least as expensive as either of the two original plans. In other words, if P and

@ are plans for two distinct goals, then
cost(merge(combine( P, Q)))) > max(cost(merge( P)), cost(merge(Q))). (8.3)
We will later discuss what happens when this property is not satisfied.
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If Eq. 8.3 is satisfied, then clearly Lo(5) = cost(5) is a lower bound on the cost of any
successor of S (this would correspond to using A = 0 in the A* search algorithm). However,
a better lower bound can be found as follows. Suppose S contains plans for Gy, .. ., G,
For each j > i,let P*(S, j) be the plan P for G;; which minimizes cost(merge(combine(S U

{P}))). Let

Li(S) = max cost(merge(combine(S U {P*(S,7)}))). (8.4)

To show that L, is admissibIe, let S be any state, and let $* be any descendant of S
that is a goal state. We must show that L1(S) < cost(S*). From Eq. 8.4, there is some

7 > % such that
Ly1(S) = cost(merge(combine(S U {P*(S,5)}))). (8.5)

But $* contains some plan P; for the goal G, and from the definition of P*(S,7),
cost(merge(combine(S U {P*(S5,3}))) < cost(merge(combine(S U {P;}))). (8.6)
Thus, by repeated application of Eq. 8.3,
L1(S5) < cost(merge(combine(S*))), (8.7)

so L1 is admissible.

One way to find P*(S, j)is to compute merge(combine(SU{P})) for each plan P € T}
using Algorithm 7.4, and then select the plan P that yields the minimum cost. If P is a
plan, let A(P) be the set of actions in P. If the above approach is used to compute Ly(S),

the time required is

> 20 OUAS)|+1AP)))°. (8.8)

J=i+1 PeT;

During this computation, it may be realized that some P cannot be combined with S,
due to conflicting constraints. In that case, the plan P can be removed from further
consideration, simplifying the computation of L; on successors of S. Also, if none of the
plans in T can be combined with S, then there is no possible way that § can be extended
into a complete global plan, so search can be discontinued at 5.

By sacrificing the quality of the lower bound somewhat, we can compute it more
efficiently. We associate with each state S some sets H1(S), Ha(S),.. ., Hg(S), which are
computed as follows. For the initial state (S = @), for j = 1,2,...,¢,

H;(S) = {A'(P)|P is a plan for G,}, (8.9)
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where A’(P) is merge(A(P)). That is, A'(P) is the set of actions in the plan resulting
from merging all the actions in P.

Let S be any state at level 4 — 1, and let S5’ be the state formed by including a plan P;
for the goal G;. Then, forj =¢+1,...,9,

H;(8") ={Q'|Q € H;(S)}, (8.10)

where Q' is @ minus each action which falls into the same equivalence class as some action

in P;. We now define
Ly(S") = cost(merge(combine(S')) + _m%;x1 min{cost(Q)|Q € H;(5")}, (8.11)
J=

where cost(Q) is the sum of the costs of the actions in @, and where the min of an empty

set is taken to be 0.

We now show that Ly is admissible. Let S’ be defined as above. From Eq. 8.4, for
k=14+1,...,9,

L1(8") > cost(merge(combine(S’ U {P*(5’,k)}))). (8.12)

For each k, partition the actions in A(P*(S’,k)) into two sets, A; and A;. Ay contains all
the actions in A(P*(S’,k)) that fall into the same equivalence class as some action in S,

while Ay contains the rest in A(P*(S’,k)). From Eq. 8.4,
cost(merge(combine(S’ U {P*(5',k)}))) > cost(merge(combine(S’' U {45}))).  (8.13)

Since A; contains actions that cannot be merged with the actions in $’, and since com-

bining the actions in a plan does not change the cost of the plan,

cost(merge(combine(S’' U {42}))) > (8.14)

cost(merge(combine(S’))) + cost(merge(combine({42}))). -  (8.15)
From the definition of @ (in Eq. 8.10),
cost(merge(combine({43}))) > min{cost(Q)|Q € Hx(5")}. (8.16)
To sum up, for k = i+ 1,..., g,
L1(S") > cost(merge(combine(S")) + min{cost(Q)|Q € Hix(S")}. (8.17)
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Therefore,

Li(S") > cost(merge(combine(S)) + jrili%xl min{cost(Q)|Q € H;(S")} (8.18)
= Ly(5"). (8.19)

Thus, from Eq. 8.18 and the admissibility of Ly, Ly is also admissble.

Computing Ly(5) takes time

S ovI+AE) (8.20)

j=i+1 VeH,(S)

This is much less than the time required for computing L;(S), for several reasons:

1. Comparing the expression |V|+|A(P;)|in Eq. (4.11) to the expression |A(S)|+|A(P)|
in Eq. (4.7), |A(F;)| is about the same as |A(P)| assuming that the size of the
plans are not very different, but |V| is much smaller than |A(S)|. Furthermore, the
expression |A(S)|+ |A(P)| is cubed in Eq. (4.7), and the expression |V| + |A(F;)]| is
not raised to a power in Eq. (4.11).

2. Initially, 7; and H; have the same number of elements, which is the number of
alternate plans for goal G;. For increasing values of %, the size of H;(S) decreases,
so that fewer elements are summed in Eq. (4.11). But in Eq. (4.7), the size of T} is

independent of i.

L is usually less informed than L;, because it only takes into account the actions which
are not in the same equivalence classes as any actions in S’. However, if all actions have
the same cost, then Ly = L.

Some problems (e.g., example 6.1) satisfy the restriction given in Eq. (4.2), and others
do not. If Eq. (4.2) is not satisfied, then there will be some states S such that Lo(S),
L1(S), and Ly(S) are not lower bounds on S. For most reasonable planning problems,
S can be shown to be dominated by states on other paths in the search tree, in which
case Algorithm 8.2 is still guaranteed to return a least-cost solution (for a mathematical
analysis of such cases, see [34]). In other cases, such S might not be dominated by states
on other paths, in which case Algorithm 8.2 might not return the optimal solution—
but in this case, Algorithm 8.2 will still return results that are close to optimal (for a

mathematical analysis of such cases, see [16]).
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Plan | Action; Cost | Actiony Cost | Actions Cost | Total
Py a 20 b 15 c 5 40
Pys d 35 e 10 45
Py a 20 f 10 g 5 35
Py h 10 b 15 i 10 35
Pss3 J 30 e 10 40

Table 8.1: Plans with their actions and costs.

Consider the following example. Suppose two goals G; and G, are given along with
their plans: Pi1, Pyg, Py, Pyg, Pa3, where P;; is the 4th alternate plan for goal GG;. Table
8.1 lists the costs for the actions involved in each plan. Each plan is a linear sequence of
actions, so that an action under Action; precedes an action under Action; if ¢ < j. Suppose
that the only kind of goal interaction in this example is action-merging interaction. Also
assume that for all actions z, # and z’ belong to the same equivalence class. Moreover,
merge(z,z’) = z.

The search space for this example is shown in Fig. 8.3. The values of the heuristic
functions L; and Ly applied to the states S; are shown below. Notice that the upper

bound U can be computed by merging the plans Py and Pz, yielding

U=55."

If the heuristic function L; is used, then the following computation is done.

Ll(Sl)i
merge(combine({ Py, P21})) = Z cost(z) = 55,

zET
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P11
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S

P12

P11,P21

P11,P22

P11,P23

P12,P21

P12,P22 P12,P23

where ¢ = {a,b,¢, f,g};

where 0 = {a,b, ¢, h,i};

where 0 = {a,b,¢,j,e}.

Therefore, L1(S1) = 55.

Ll(Sz):

where 0 = {d,e,q, f,g};

where 0 = {d, e, h,b,1};

Figure 8.3: The search space for the example.

merge(combine({ P11, Pa2})) = Z cost(z) = 60,

TET

merge(combine({ P11, Pos})) = E cost(z) = 80,

zE€o

merge(combine({Piz, Pa1})) = Z cost(z) = 80,

rE€T

merge(combine({ P12, Pa2})) = Z cost(z) = 80,

zEo

merge(combine({ P12, Pa3})) = Z cost(z) = 75,

where o = {d, J, €}.

Therefore, L1(S2) = 75.
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Since both L1(S) and L1(S;) are no less than U, both states are pruned. As a result, the
algorithm terminates claiming that the optimal plan is obtained by merging P;; and Py;.
If the heuristic function L is used, then the following computation is done. First, the

H; functions are computed for the initial state So:

H1(S) {A(Pn1), A(Pr2)}
= {{a'7 b, c}, {d’ e}},
Hy(S0) = {A(Pa1), A(Pr2), A(P23)}

= {{ala fag}’ {h’ bl, i}, {.77 e’}} .

The compution with the heuristic function L, involves the following:

Lz(sl):
Hy(S1) contains an empty set,
H2(Sl) = {{f, g}, {h’ Z}, {]a 6,}},
Therefore,
Ly($1) = cost(Piy) + min{15,20,40}
= 55.
Lz(Sg):
H;(S2) contains an empty set,
H2(52) = {{alv f)g}’ {h7 bl, Z}, {.77 }},
Therefore,
Lg(Sz) = COSt(P]_z) + mjn{35, 35, 30}
= T75.

Since both Ly(S7) and L2(S2) are no less than U, both states are pruned. As a result, the

algorithm terminates claiming that the optimal plan is obtained by merging P;; and Py;.
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Notice that with both heuristic functions L; and Ly, the number of states generated
is 3, although the total number of states in the search space is 9, and the number of states

along the path from the initial state to the goal state is 5.

8.3 Experimental Results

In the worst case, Algorithm 8.2 takes exponential time. Since the multiple-goal plan
optimization problem is NP-hard, this is not surprising. What would be more interesting
is how well Algorithm 8.2 does on the average. However, the structure of the multiple-goal
plan optimization problem is complicated enough that it is not clear how to characterize
what an “average case” should be; and there is evidence that the “average case” will
be different for each application area. Therefore, we have restricted ourselves to doing
empirical studies of Algorithm 8.2’s performance on a class of problems that seemed to us
to be “reasonable.”

Experiments with the algorithm have been conducted for planning in the automated
manufacturing domain. The problem to be solved involved planning how to drill several
holes in a piece of metal stock, as described in example 6.2. For the test, the procedure was
to create randomly generated sets of holes with varying machining requirements (such as
depth, surface finish, etc.), and to generate plans for each hole individually using EFHA
[44], a process planner which can generate one or more alternate plans for creating a
machined feature. For each set of holes, Algorithm 8.2 was invoked on the plans for these
holes to produce a global plan with the least cost. The total cost of a process plan is the
sum of the costs of operations in the plan and the costs for changing tools.

The input plans P;;, j = 1,2..., for making each hole G; are ordered in the increasing
values of their costs. Once the plans for all the holes are gathered, the upper bound U is
computed by combining and merging the locally best plans P;; for each hole,: = 1,2,...,g.
As was pointed out before, this computation takes time O(m?), where m is the total
-number of actions in the locally best plans. Notice that U is the cost of a leaf node Sy in
the search tree, where Sy is the state at the bottom left corner of the search tree shown
in Fig. 8.2. Notice also that the computation of Syy does not involve the expansion of any

states in the search tree, and therefore, the computation is less expensive than searching
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down the left most branch of the search tree in Fig. 8.2. During the execution of the
branch-and-bound algorithm, any state with a cost greater than or equal to U is cut off.
If the plans Py, ¢ = 1,2,...,9, can be merged into a least cost global plan, then it is
possible that all branches can be quickly cut off, even before the bottom of the tree is
reached. In such a case, it is possible that the total computation is less expensive than
searching down the optimal branch of the tree.

The experimental result is given in table 8.2. It was done with a specific cost for
performing one tool change operation, and each entry in the table represents an average
result over 10 randomly generated problems. In the table, the attribute “Holes” is the
number of machined holes to be planned for. Attribute “With L2” is the number of states
expanded by the Algorithm 8.2 with heuristic function L2. “Without L2” is the number
of states expanded using only the total cost accumulated so far as the guide in best first
searches. “Goal-Path” is the number of states along the path from the root of a search
tree to the goal state. And finally, “Total” is the total number of states in the whole
search tree. Notice that the number of states expanded with L2 can sometimes be less
than the number of states along the path from the root to the goal node. As explained
above, this is because the upper bound U is computed by merging and combining the
locally optimal plans. When the set of locally optimal plans is also the globally optimal,
most of the paths can be very quickly cut off by U.

The experimental results are also plotted in Fig. 8.4. As shown in the figure, the
number of possible states in the search space grew exponentially as a function of the
number of holes in the set, but the number of states searched by Algorithm 8.2 with the
heuristic function L2 grew only linearly. Intuitively, this means that the portion of the
search space explored by our search algorithm is a narrow region around the optimal path

from the root of the search tree to the goal state.
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*unit-tool-change-cost*= 50

HOLES | WITH L2 | WITHOUT L2 | GOAL-PATH TOTAL
5 2 16 12 149

10 16 53 24 8381

15 45 70 38 1924861

20 58 135 52 268569213
25 67 312 65 25479050199
30 90 1773 80 8196661999742
35 98 2164 91 545251761730719

Table 8.2: Number of states expanded when *unit-tool-change-cost*=50.
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200 =
total number of states

Number
of States

150 = best-first only,

without heuristic
100 — with heuristic
along the optimal path
50

10 20 30 40

Number of Holes

Figure 8.4: Experimental results of merging process plans for making machined holes,

when *unit-tool-change-cost*=>50.
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Chapter 9

Preprocessing Search Spaces for

Single Goal Planning

9.1 Introduction

In Chapters 7 and 8, we have discussed how plans for multiple goals can be constructed
when the interactions among the goals are limited. Our approach has been to develop
plans for each of the individual goals separately, and then combine the plans and resolve
the interactions. For this approach to be applicable, efficient planning systems must exist
for solving each goal individually. In many cases, each individual goal can be solved
via a straightforward heuristic search method. In this chapter, we discuss a method to
preprocess the search spaces so that planning for each goal can be done faster than using
the conventional methods.

Most heuristic search procedures (for example, A*, $SS*, B*, AO*, and alpha-beta)
have been shown to be special cases of best-first Branch-and-Bound search [22, 30]. These

procedures search several solution paths at the same time, expanding some paths more
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quickly than others depending on which paths look most promising. One source of com-
putational overhead during such search is the time spent keeping track of the alternate
partial solutions that the procedure is examining. Typically, the search algorithm stores
these partial solutions on a list called the agenda, open list, or active list, in order of their
estimated cost. Any time a new partial solution is generated, its estimated cost must be
compared with the estimated costs of the other partial solutions already on the list, in
order to find the appropriate place to put it on the list. Thus, significant computational
overhead is required just to maintain the active list.

Certain problem domains have special properties which allow us to eliminate this over-
head. In particular, in some problem domains it is possible to do automatic preprocessing
or “compiling” of the search space, to extract control knowledge which can be used to do
the heuristic search without having to maintain the active list explicitly. In this chapter,
we discuss what kind of domains allow us to do such preprocessing, how to do the prepro-
cessing, how to use the information gathered from the preprocessing, and how much time
can be saved by doing this preprocessing. We also present an example from a problem
domain of particular interest to us: generative process planning for the manufacture of

machined parts.

9.2 Problem Characteristics

Preprocessing of the search space is possible whenever the following conditions are satisfied:

1. With the exception of feasibility /infeasibility of nodes, the search space has the same
shape regardless of the particular problem instance being considered. Thus, if P and
P’ are two problem instances, then there is a one-to-one mapping between the nodes
of their search spaces S and $’, such that if some feasible node @ in § has n children
b;, i =1...n, then its corresponding node @' in S’ will either have n children b, for

¢ = 1...n such that b; corresponds to b}, or be infeasible.

2. Corresponding nodes need not have the same cost—but if two nodes a and b in 5;
have cost(a) > cost(b), then for the corresponding nodes a’ and &' in §’, we must

have cost(a’) > cost(d’).
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Nearly all heuristic search problems satisfy the first condition above, but fewer satisfy
the second one. However, there are still many problems which do satisfy it. One example
is generative process planning for the manufacture of machined parts. In the generative
process planning system SIPS[31], a machinable part is considered to be a collection
of machinable features. For each feature, SIPS finds an optimal plan for that feature
via a best-first Branch-and-Bound search in its knowledge base. SIPS’s knowledge base
consists of information on a large number of different machining processes, organized in a
taxonomic hierarchy. For two different machinable features, different machining processes
may have different costs—but if process a costé more than process b on feature f, it generally
also costs more than process b on feature f' as well.

Robotic route planning[23] is another problem domain which also satisfies the second
condition. In this domain, a route map corresponds to a graph, in which a node represents
a region and an arc represents connectivity between two regions. The cost of a node can
be the time needed to pass through the region it represents, and the feasibility of a node
indicates whether or not the region is passable. In general, although the passability of a
region may change from one problem instance to another, the relative costs of the regions

stay the same. In such cases, preprocessing is possible.

9.3 Threaded Decision Graphs

Suppose that for a given problem instance the search space is as shown in Fig. 9.1. The
goal is to search for the cheapest leaf node for which all the nodes along the path from
the root are feasible. Suppose the problem solver is checking the conditions associated
with node c. If ¢ succeeds, thent the next node to check will be f, since ¢ must be the
current minimum costly node to be checked, and f’s cost is the same as ¢’s. If ¢ fails, the
next node to check in the search space must be j. This is because at the time c is being
checked, nodes a, b, d, e, h and k must all have been checked, since they all have costs less
than that of ¢’s. Control information like this is independent of the particular problem
instances, and can be gathered before the problem solving process starts. Therefore, we
can assign a success thread from node ¢ to node f, and a failure thread from c to j. If

node c is reached, and if all the conditions are satisfied, then the success thread of ¢ can
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Figure 9.1: An example search space. The numbers associated with the nodes are their
cost values.

be followed to get to the next node to be checked. On the other hand, if the conditions
are not satisfied, then the failure thread of ¢ should be followed to get to the next node to
be checked. Fig. 9.2 shows such a structure. In this figure, the solid arrow is c¢’s success

thread, and the dotted arrow is its failure thread.

Figure 9.2: The search space in Fig. 9.1 with threads inserted at node c.

If all the success and failure links are built for a state space, then it is no longer
necessary to maintain an active list for storing control information. Before problem solving

starts, the information can be used to construct a data structure that contains one or more
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3

occurrences of each action, and for each action occurrence there is a success and a failure
thread. We will call such a data structure a threaded decision graph of the original search
space. Problem solving can then be completely guided by its threaded decision graph.
Fig. 9.3 shows the threaded decision graph for the search space in Fig. 9.1. In this figure,

a solid arrow represents a success thread, and a dotted arrow a failure thread.

Success

Fail |

Figure 9.3: The threaded decision graph for the search space in Fig. 9.1.

Two special nodes in Figure 9.3 are worth noting. The node marked “success” is called
a success node. If this node is reached through the success threads, then the search process
terminates with success. The path from the root node to success in the threaded decision
graph contains the solution path which should be returned. The node marked “fail” is
called a failure node, which marks the termination of the search process without success.
In the following, we first discuss in detail how problem solving is done with the help

of threaded decision graphs. We then consider how such a data structure could be auto-
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matically constructed.

9.4 Search with the Threaded Decision Graphs

Assume that a threaded decision graph has been constructed for a search space. Associated

with each node, the following information is attached.
1. a success and a failure thread,
2. feasibility conditions, and
3. a list of the node’s ancestors in the search tree.

A request to solving the problem would correspond to finding out the cheapest path
in the tree. For the given threaded decision graph, this is done by checking the conditions
associated with each node, starting from the root node. The success thread of the current
node should be followed if the node is tested to be feasible, and the failure thread should
be followed if it is infeasible. Each node is also marked as “success” or “failure” depending
on the result of its feasibility test.

If, during the traversal process, a success node is reached via a success thread, then
the search ends with success. If a failure node is reached through failure thread, then no
actions satisfying the criteria exist. In this case, search is terminated with failure.

After tracing down the failure thread of some node, it is possible to reach some other
node whose ancestor in the original search tree failed the feasibility test. For example,
suppose node b in figure 3 is infeasible and node f is being checked. If f is infeasible
then the next node to be checked should be j. Since b is an ancestor of 7 which failed,
no feasibility test need be done at 7, and the failure thread of it should automatically
be followed. In general, whenever a node = is reached via some failure thread, it should
always be checked to see if » has any ancestor m which failed the feasibility test. If so,
the failure thread of node n should be followed, without conducting its feasibility test.

To check if a given node n has any infeasible ancestor is straightforward: we can
retrieve the traversal information associated with the parent node of the given node in the
original search space. The node n has an infeasible ancestor if its parent node is unvisited

or marked as infeasible.
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9.5 The Construction of Threaded Decision Graphs

In this section, we consider the problem of how the threaded decision graphs are con-
structed. For simplicity, it is assumed that the search space is not very large. Later we
will discuss cases where the search space is too large to be preprocessed.

With the above restrictions, the following algorithm generates the threaded decision

graph. This algorithm is a modified version of best-first search.

procedure Construct
begin
A:={ap} {A is the active list, and ag is the root of the search space}
while A is not empty do
begin
n = pop(A).
if A is empty then Failure-thread(n):=Failure-node
else Failure-thread(n):= head(A);
if n is a leaf node, then Success-thread(n):=Success-node
else begin
A:=insert(A, Children(n)); {Insert the successors of n into A.}
Success-thread(n):=head(A);
end{else}
end{while}

end Construct

During preprocessing of the search space, each node in the tree appears at the head of
the active list once and only once, and the resultant threaded decision graph has the same

number of nodes as the original search space. Each node has only two threads. Therefore,
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the number of threads of the threaded decision graph is twice the number of nodes as that

of the search space. This argument guarantees the absence of cycles of threads.

9.6 Very Large or Infinite Search Spaces

If the search space is very large, the time it takes to preprocess it may be prohibitive.
In such cases, and in cases when the search space is infinite, we can preprocess a finite
portion of it. This partial threaded decision graph can be created by running the algorithm
Consiruct for a finite number of iterations, until one or more goal states appear in the
graph.

During the problem solving process, the threaded decision graph can be used in the
same manner as described in the previous sections, until a node which has no success and
failure threads is reached. At this point, conventional branch-and-bound search can be
utilized as follows: An active list is constructed by including all of the successor nodes of
the current node and the children of the feasible nodes along the path back to the root
node in the state space. This list is sorted according to the costs of its nodes, and the
least costly of these is expanded.

The construction of the threaded decision graph may also be done with the following
strategy: For each particular problem instance, every time a node is tested we will look
for its success or failure threads. If they do not exist, we will use the search procedure
to find out which node we should test next. The success or failure threads can then be
assigned to this node. In other words, the threaded decision graph is partially built on
the job.

9.7 Discussion

By gathering all the possible static control information beforehand, preprocessing of the
search space can greatly improve problem solving efficiency. In order to see this claim
more quantitatively, consider a simplified example. Assume that the search space is in
the shape of a tree with a branching factor of m and depth k (the root of the tree has a

depth of 1). To see how much time the problem solver spends on manipulating the list of
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incomplete paths using conventional search methods, consider the following two extreme
cases.

In the best case, the search procedure expands only one path down the tree. The time
for manipulating the active list is O(kmlogm).

In the worst case, the search procedure expands the tree in a breadth first manner. The
total time spent on manipulating the list in this case is bounded by m x ZZ’;(: ™ log(i X
m) = O(m*log m*).

On the other hand, search with a threaded decision graph is guided completely by the
success and failure threads, and no additional computational effort is needed for manipu-
lating the search control information. Therefore, the time saved by using the threaded de-
cision graph to guide the search procedure can be between O(kmlogm) and O(mF*log m*),
where k is the depth of the tree and m is the branching factor.

The idea of preprocessing search spaces has some similarity to that of threading of
binary trees for tree traversal. However, the way such threading is done, and the way it

is used, are both clearly different from our threaded decision graphs.

Figure 9.4: An example AND/OR tree in the worst case situation in terms of preprocess-
ing.

As described in the chapter, the technique of preprocessing search space works well on
state-spaces that are trees. An extension of the work is to allow the search space to be an

AND/OR graph. When AND branches are allowed, the problem can be very complicated

depending on how the costs are assigned its nodes. In the worst case, the threaded decision
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graph can contain an exponential number of the occurrences of nodes in the original search
space. An example of this situation is given in Fig. 9.4. The problem is that the i** and
i + 1th best paths, for i = 1,2, ..., are not next to each other, but on the left and right
subtrees respectively. One way to tackle this problem is to partially preprocess the search
space. For example, we can assign success and failure threads only to the nodes which are

in the first k£ best paths.
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Chapter 10

Conclusion

10.1 Summary

Symbolic planning involves extensive reasoning about interactions among different parts
of plans. Past planning systems can be classified as domain-independent or domain-
dependent according to their method of detecting and handling goal interactions. Domain-
independent planners focus on control structures capable of working in all domains, and
are for the most part inefficient because of the generality they try to achieve in dealing
with interactions. Domain-dependent planners, on the other hand, make use of domain-
specific knowledge and have been more efficient than their domain-independent counter-
parts. However, because of their problem-specific nature they are difficult to apply to
other domains.

This thesis presented two approaches to improving the efficiency of planning without
losing the generality of planning téchniques. In Part I, it was demonstrated that useful
information about conflicts between actions can be extracted by preprocessing the planning
knowledge. In particular, a set of syntactic restrictions is imposed on the relationship

between a non-primitive action and its set of subactions. These restrictions entail a number
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of properties for hierarchical planning systems. First, it is possible to determine that a
plan is unlinearizable at any level of reduction below, given that it is unlinearizable at the
current level. If this downward-unlinearizability property holds for a set of action reduction
schemata, hierarchical planners need not reduce an unlinearizable plan further to explore
possible solutions at some level or reduction below, and can backtrack from such a dead end
point. Moreover, because of the static nature of the restrictions, it is possible to preprocess
a given set of reduction schemata to check which schema satisfy the restriction before the
planning process starts. Second, it has also been possible to define another property, the
ordering-induced independence property, which hoids whenever the condition-promotion
restriction is satisfied. Like the downward-unlinearizability property, the ordering-induced
independence property allows preprocessing of a set of action reduction schemata, and
computational savings at planning time.

In Part I, limited-interaction planning was proposed to overcome the shortcomings of
both domain-dependent and domain-independent planning methods. This approach is to
abstract the kinds of goal and subgoal interactions that occur in some set of related prob-
lem domains, and develop planning techniques capable of performing relatively efficiently
in all domains in which no other kinds of interactions occur. The limited-interaction plan-
ning approach was applied to the multiple-goal planning problems. Four kinds of goal
interactions were allowed: action-precedence, identical-action, simultaneous-action and
action-merging. It was demonstrated that the multiple-goal plan optimization problem is
NP-hard even when only one plan is available for each goal. However, it is possible to im-
pose restrictions upon the action-merging interactions so that polynomial time algorithms
can be constructed to solve the problem. When more than one plan exists for each goal,
the problem is still NP-hard even with the restrictions. But in this case there is a good
heuristic approach for solving the problem.

Chapter 9 presents a method for improving the planning efficiency for solving each
individual goal, by gathering all the possible static control information beforehand. This
information is stored in a data structure called the threaded decision graph. During a
search, the control information for manipulating the list of incomplete paths can be ob-
tained from this graph. Since no time is spent on processing the list of incomplete paths,
problem solving efficiency is improved. It is interesting to note that the idea of prepro-

cessing underlying Chapter 9 is similar to that of Part I.
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Part I and II are related in several aspects. First, the type of hierarchical planning
considered in Part I is a special case of planning with limited interactions, in which the
only type of interaction allowed is deleted-condition conflict between two actions. Second,
the approach to multiple goal plan optimization in Part II is to first plan for each goal
separately, and then combine the results into a global plan. Thus, planning for each goal
can be done with a hierarchical planner, while the optimization process is done on the
same level of planning hierarchy.

In the next section, we discuss limitations of the current research and possible future

work.

10.2 Limitations And Future Work

10.2.1 More Expressive Action Representations

In Chapters 4 and 5, several properties of hierarchical planning were considered with
a particular kind of action representation, in which the preconditions and effects of an
action are sets of literals in first order logic. This restricts the techniques developed to
be only useful for a subset of the existing hierarchical planning systems. For example,
SIPE [47] allows in its action representation conditions which can be context-dependent,
quantified, and disjunctive. In addition, some effects can be deduced from a set of external
axioms. With action representations as expressive as these, some of our result does not
apply anymore. For example, consider actions which preconditions contain disjunctions of
conditions. Then the effects of a group of actions can collectively deny the preconditions
of other actions. Thus, the ordering-induced indep;:ndence property in Chapter 5 may not
hold anymore with the given restrictions, since although the effects of the descendents of
an action does not directly deny the precondition of another action, a set of actions can.
With this action representation, the detection of interactions during planning is a more
complicated problem, since at every step of planning, groups of actions have to be tested
for possible interactions. We believe that the same idea of extracting information about
interaction a priori can still be used to help ease this computation burden, in the same
way as we did in this thesis. For example, information about which actions are more likely

to interact may be obtained through preprocessing, and used to provide a better control
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strategy for the detection and handling of interactions.

10.2.2 Choosing Among Alternative Reduction Schemata

Preprocessing can provide a planner with good heuristics for choosing among alternative
action reduction schemata. To reduce a non-primitive action, there is usually more than
one available schemata, and current hierarchical planning systems selects the alternatives
in a depth-first manner. Depending on which reductions are chosen, different conflicts
may be introduced, and this may affect the planning efficiency.

One heuristic one can use in choosing a reduction is to minimize the amount of conflicts
introduced. Preprocessing can be helpful for predicting which reductions are likely to yield
a set of conflicts that is small—and just as importantly, a set of conflicts which are easy
to resolve.

For example, consider a plan which consists of two actions a¢ and b, with no con-
straints on the relative ordering of a and b. Suppose that action a has two possible
reductions Ry1(a) and Rjz(a), and the action b has also two reductions Rp1(b) and Ra2(b).
For each reduction R;;(x) of action z, let preconditions(R;;(z)) be the set of precon-
ditions for the subactions in R;;(z) which are not achieved by any subactions in the
reduction. Also let all-effects(R;;j(z)) be the union of the effects for the all subactions,
and let protected(R;;(z)) be the set of conditions protected in R;;(z). Then the number
of possible conflicts between Ry;(a) and R,;(b) can be estimated by

C(R1i(a), Ryj(b)) =  |{p € protected(Ry;(a)) : -p € protected(Rq;(b))}|+
|{p € preconditions(Rz;(b)) : —p € all-effects(Ry;(a))}|+
[{p € preconditions(Ry;(a)) : -p € all-effects(Rz;(b))}|.

According to the heuristic discussed above, the reductions to be chosen for actions a and
b are those Ry;(a) and R;(b) such that C(Ry;(a), Ry;(b)) is minimum for all 4,5 = 1,2.
One major problem with searching for a good set of reductions is that the search itself
also takes time. Let 77 be the amount of time needed to remove the conflicts presented
by the “worst” set of actions (i.e., the set of actions presenting the largest number of
conflicts). Let T; be the same figure for the best set of actions (i.e., the set of actions

presenting the smallest number of conflicts). Also, let T3 be the time needed to search for

119



the best set of actions. Then finding the best set of actions is useful if and only if
T, > T 4 T3.

If this condition is not satisfied, then we may just want to find any set of actions, rather
than looking for the best set. There are two specific problems to solve. First, T5 will
presumably be dependent upon the way action reduction schemata are constructed. Thus,
restrictions need be set up for guaranteeing that 75 be small. Second, in domains where
T is prohibitively large, it may be better for the planning system to look for a suboptimal
set of reduction schemas, and algorithms for computing the suboptimal solutions need be

designed.

10.2.3 Computing Planning Orderings

During hierarchical planning, a plan often has more than one non-primitive action to
be reduced. A least-commitment planner delays commitment to both decisions about
orderings between the actions and bindings of the variables. Therefore, a plan usually
contains a set of variables yet to be bound. The order in which the non-primitive actions
are reduced may affect how the variables are bound in a plan, which in turn affects both
the efficiency of planning and the quality of the final plan. The order in which the non-
primitive actions are reduced can be called planning order, which may be quite different
from the temporal orderings.

Smith [39] presented a method for determining the planning order for a set of con-
junctive goals. His method is based on a cost model for achieving each atomic condition,
and is applicable only to non-hierarchical systems. It would be useful to extend his work
to hierarchical planning, in which a correct planning order may depend on both the cost
model for actions and the way a non-primitive action relates to its subactions. Thus, a
good starting point for extending Smith’s work is to impose syntactic restrictions on the

reduction schemata, in a way similar to what was done in Part I.

10.2.4 Relaxation of Some Restrictions on Multiple Goal Planning

Part II concerns improving the efficiency of multiple goal planning by imposing restrictions

on the goal interactions. One question which of interest is whether some of the particular
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restrictions are too restrictive. Relaxing certain restrictions imposed on multiple goal
planning domain may require the imposition of some other restrictions in order to keep
the problem at low complexity. A related question is how to extend this approach to
creating plans, rather than just optimizing existing plans.

As an example of the relaxation of restrictions, consider the restriction upon action-
merging interactions requiring that the merged action m(A) for a set of actions A does not
have any harmful effects. Lifting this restriction would make it necessary to modify our
control mechanism correspondingly. For example, if in addition to achieving all the effects
of the actions in A, m(A) also achieves —p, where p is one of the preconditions of another
action a’. If m(A) and o' are unordered in the plan, then there is a conflict between
these two actions. In this case, it may or may not worth while to merge the actions in
A, depending on how easy it is to handle the deleted-condition conflict. In general, it
may be necessary to insert new actions to re-achieve some deleted conditions as a result of
merging. Thus, it is necessary that certain elements of “traditional” planning techniques
have to be added to multiple goal planning systems if some restrictions are relaxed.

The multiple goal planning problem considered in the thesis concerns finding the least
cost multiple goal plan for a set of goals. Other types of multiple goal planning problems
exist, each of which may have a different optimality criterion. For example, consider
the problem of finding a global plan with the minimum number of ordering constraints
between the individual plans. Such a problem can be referred to as the most parallel
multi-goal planning problem. When the goals interact with each other in a limited fashion,
it is expected to be more efficient to plan for each goal first, and then combine them into
a global plan with the minimum number of ordering constraints. For this approach to be
applicable, again one needs to be clear about what kind of goal interactions are allowed.
This problem is of practical importance, since maintaining maximal parallelism allows one
to make use of as many available agents as possible to save time. Research is under way

to solve this problem.

10.2.5 Suboptimal Multiple Goal Plans

The multiple goal planning problem is defined as the problem of finding the least-cost

plans. To solve this problem, two different cases have been distinguished, based on whether
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there is more than one plan for each goal. In both cases, branch-and-bound algorithms
are given that take as input a set of plans and return the least-cost plan. Several implicit
assumptions have to hold for this formulation to work. One of the assumptions is that
there is no time limit on the optimization algorithm. Therefore, the algorithms can wait
until all the the alternate plans are available, and then perform the optimization. There
may be some practical situations when such a assumption is invalid. For example, in
an environment where decisions have to be made within a certain time limit, one may be
satisfied with a good suboptimal plan, but cannot always afford to wait for the computation
of the optimal one. In this case, good approximation algorithms are needed. Thus, one
of our future work is to design polynomial time algorithms that return good plans on the

average.

10.2.6 Preprocessing Search Spaces

Chapter 9 presented an approach to preprocess search spaces to improve the problem
solving efficiency. One underlying assumption for this technique is that the relative costs
associated with the states stay the same for a class of problems. This is satisfied by
a number of problems. For some others, the relative costs of some nodes in different
problems may not be the same, but may change with different situations. However, if
the cost of nodes change with different situations in some predictable manner, and if the
number of such changes is finite, the preprocessing technique can still be made to work.
For example, it may be possible to divide the situations into separate classes, each with a
different threaded decision graph. Many domains satisfy this property, including process

planning in automated manufacturing and robotic path planning.
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Appendix A

Action Templates and Reduction
Schemata for the Blocks-World
Domain

This appendix provides a representation of the planning knowledge in the blocks-world
domain!. In this domain, there are a table and a number of equally sized blocks. A block
can have at most one other block immediately on top of it. A robot can stack blocks on
top of each other, or put a block on the table. The table is considered to be always clear.
The robot can handle only one block at a time.

The following actions are non-primitive:

1. achieve(On(z, y))
comment: a goal for achieving On(z,y).
‘preconditions={}

effects={On(z, y)}

!This domain representation is adopted from [37].
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2. achieve(Ontable(z))
comment: a goal for achieving Ontable(z).
preconditions={}

effects={Ontable(z)}

3. achieve(Cleartop(z))
comment: a goal for achieving Cleartop(z).
preconditions={}

effects={Cleartop(z)}

4. makeon-block-1(z,y)
comment: put block z on the top of block y.
preconditions={Block(z), Block(y), Cleartop(z), Cleartop(y)}

effects={-Cleartop(y), On(z,y)}

5. makeon-table-1(z)
comment: move z to the table
preconditions={Block(z), Cleartop(z)}

effects={Ontable(z)}

6. makeon-block-2(z,y, 2)
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comment: move z from the top of y to the top of z.
preconditions={Block(z), Block(y), Block(z),
On(z, y), Cleartop(z), Cleartop(z)
e#y,e# 2y # 2}

effects={Cleartop(y), On(z, z), =Cleartop(z)}

7. makeon-table-2(z, y)
comment: move z from top of y to the table.
preconditions={Block(z), Block(y), Cleartop(z), On(z, y)}

effects={Ontable(z), Cleartop(y)}

The following actions are primitive:
1. put-block-on-block(z,y, z)
comment: move & from the top of y to the top of z.
preconditions={Block(z), Block(y), Block(z),
On(z, y), Cleartop(z), Cleartop(z)
e# Y, e # 2y # 2}

effects={Cleartop(y), On(z, z), ~Cleartop(z), ~On(z, y)}

2. put-block-on-table(z, y)
comment: move z from top of y to the table.
preconditions={Block(z), Block(y), Cleartop(z), On(z, y)}

effects={Ontable(z), Cleartop(y), -On(z, y)}
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Below are action reduction schemata:
1. R;(achieve(On(z,y))):
actions: {achieve(Cleartop(z)),achieve(Cleartop(y)), makeon-block-1(z,y)}
orderings: {achieve(Cleartop(z)) < makeon-block-1(z,y)
achieve(Cleartop(y)) < makeon-block-1(z,y)}
protection intervals: {(Cleartop(z), achieve(Cleartop(z)), makeon-block-1(z,y))

(Cleartop(y), achieve(Cleartop(y)), makeon-block-1(z, y))}

2. Ry(achieve(Cleartop(z))) :
actions: {achieve(Cleartop(y)), makeon-block-2(y,z, 2)}
orderings: {achieve(Cleartop(y)) < makeon-block-2(y,z, z)}

protection intervals: {({Cleartop(y), achieve(Cleartop(y)), makeon-block-2(y, z, z))}

3. Rs(achieve(Cleartop(z))):
actions: {achieve(Cleartop(y)), makeon-table-2(y, z)}
orderings: {achieve(Cleartop(y)) < makeon-table-2(y, z)}

protection intervals: {(Cleartop(y), achieve(Cleartop(y)), makeon-table-2(y, z))}

4. R4(achieve(Ontable(z))):
actions: {achieve(Cleartop(z)), makeon-table-1(z)}

orderings: {achieve(Cleartop(z)) < makeon-table-1(z)}
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protection intervals: {(Cleartop(z),achieve(Cleartop(z)), makeon-table-1(z))}

5. Rs(makeon-block-1(z,y)):
actions: {put-block-on-block(z, z,y)}
orderings: {}

protection intervals: {}

6. R¢(makeon-block-2(z,y)):
actions: {put-block-on-block(z, z,y)}
orderings: {}

protection intervals: {}

7. Rr(makeon-table-1(z)):
actions: {put-block-on-table(z,y)}
orderings: {}

protection intervals: {}

8. Rg(makeon-table-2(z,y)):
actions: {put-block-on-table(z,y)}
orderings: {}

protection intervals: {}
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In addition to the above reduction schemata, every non-primitive action of the form
“achieve(C(2))” can also be reduced to “no-op”, which is a primitive action requiring no
real action. no-op corresponds to a phantom goal in NONLIN [42] or SIPE [47], and can
be considered as a primitive action whose precondition and effect are both the condition

C(z) to be achieved.
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Appendix B

NP-Completeness of the
Multiple-Goal Plan Existence

Problem

The purpose of this appendix is to show that if there may be more than one plan for each
goal, then the multiple-goal plan existence problem is NP-complete. To do this, we show
that NP-completeness occurs in the special case where the only kind of goal interaction
that occurs is the identical-action interaction.

It is easy to see that the problem is in NP, so the proof will be complete if the problem
is shown to be NP-hard. We do this by reducing the CNF-satisfiability problem to it.

Given a set U of variables and a collection C of clauses over U, the CNF-satisfiability
problem asks whether there is an assignment of truth values to the variables in U which
satisfies every clause in C. To reduce this problem to the multiple-goal plan existence
problem, we associate a goal G; with each clause C; of C. G is the conjunct of the
individual goals G;. For each literal l;; € C;, we create a plan (a;j, b;;) for the goal G;. If
l;; = Iy, then we specify that a;; and ar; must be identical, and b;; and bg; must also be
identical. If [;; = -y, then we specify that a;; and by must be identical, and b;; and ax

must also be identical.
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It is easy to see that that this reduction can be computed in polynomial time. It
remains to be shown that (1) if C is satisfiable, then there is a consistent global plan
for G; and (2) if there is a consistent global plan for G, then C is satisfiable. These two

statements are proved below.

1. Suppose there is an assignment of truth values to the variables in U which satisfies
C. Then we construct a set S of plans, one for each goal G;. For each i, the clause
C; in C contains some literal I} in C; whose value is TRUE; we let S contain the
corresponding plan (a;j,b;;). Suppose that the plans in § cannot be combined into
a consistent global plan. Then there are two plans p; = (aij, bi;) and pr = (axs, bir)
such that a;; and by are constrained to be identical, and b;; and ay; are constrained
to be identical. But this means that I} = -}, violating our requirement that both I}
and I} have the value TRUE. Thus, the plans in S can be combined into a consistent

global plan.

2. Conversely, suppose there is a set of plans S which can be combined into a consistent
global plan. Then we assign truth values to the variables in U as follows: for each
variable v € U, if its corresponding plan is in S, then assign it the value TRUE;
otherwise, assign it the value FALSE. Since S can be combined into a consistent
global plan, this means that no variable can receive both the values TRUE and
FALSE. Furthermore, since S must contain at least one plan for each goal G;, at
least one literal in each clause will receive the value TRUE. Thus, this assignment

of truth values satisfies C.
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Appendix C

Branch-and-Bound Search

Problem solving involves search. Many different kinds of heuristic search methods have
been developed, and many of them (for example, A*, SSS*, B¥, AO* and alpha-beta) have
been shown be be special cases of best-first Branch-and-Bound search ([22, 30]). This
appendix describes an abstract formulation of the branch-and-bound search procedures
based on [30].

A general branch-and-bound search problem can be stated as follows:

For an arbitrary discrete set X ordered by a real valued merit function f whose

domain is X, find some z* € X such that for all z € X, f(z*) < f().

Branch-and-bound procedures decompose the original set X into sets of decreasing
size. The decomposition of each generated set S is continued until either of the following

happens.

1. Tests reveal that S is a singleton of the set X. In that case, f(S) can be obtained

and compared with the currently best member’s cost.

2. S is proved not to contain an optimum element. In this case, S is removed from

further consideration. In other words, S is pruned.

To give an abstract formulation of branch-and-bound procedures, it is necessary to

defined the following functions.
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Let A be a subset of the power set of X, i.e., A C 2X. U(A) is defined as
U{X; | X; € A}.

Let X; be an element of A. Then f*(X;) is defined as the minimum of the costs of the
elements in X;.

A branching function, BRANCH(A), is defined as follows:
1. f X; € BRANCH(A), then X; C X; for some X; € A.
2. U(BRANCH(A)) = U(A).

A dominance relation D is the binary relation between elements of A. Specifically, let
X; and X; be two elements of A. Then X;DX; if and only if f*(X;) < f*(X;). Thus, if
X;DX;, then X; should be pruned.

The pruning function PRUNEcan be defined according to the dominance relation D.
Define AP as

AP = {X; € A|3X; € A— AP such that X;DX;.}

Then PRUNE(A) = A — AD.
With the above functions defined, an abstract formulation of the branch-and-bound

procedure is given below.

Procedure BB

begin
= {X}; {Initialize A}
while | U (4)| # 1 do begin {loop until A contains only one element}
A := BRANCH(A);
A := PRUNE(A);
end
end

An important property of this procedure is: If Procedure BB terminates, A contains only

an optimal element of X. However, the termination itself is not guranteed yet.
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A lower bound function Ib can be defined on elements of A as follows. Let X; be an

element of A, then
1. For all z € X;, Ib(X;) < f(=).
2. for all z € X;, Ib({z}) = f(z).

A branch-and-bound procedure is besi-first if the function BRANCHis defined as fol-

lows.

BRANCH(A) = (A - {X;}) USPLIT({X,}),
where X is an element of A such that VX; € A, Ib(X;) < Ib(Xj). The function SPLIT is
any function satisfying the properties of a branching function.

An important property of a best-first branch-and-bound procedure is that whenever a
singleton is selected, Procedure BB terminates. In other words, a best-first branch-and-
bound procedure is admissible.

For the branch-and-bound search algorithms presented in this thesis, a special im-
plementation of the Procedure BB are used. This procedure, Procedure BB’, performs
a best-first branch-and-bound search, and can be considered as a variation of the A*
algorithm.

Procedure BB’
begin
A= (I);
{A is the branch-and-bound active list,
and I is the initial state.}
U := upper bound;
loop
S := pop(A) {remove the first element of the list}

if S is a goal state then return S

if Ib(S) < U then begin
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B := the successors of S, in order of least L-value first
A := the result of merging the list A with the list B
{Here two lists are merged into a sorted list.
This is to maintain A in order of least L-value first.}
end
repeat

end

In Procedure BB/, a state S corresponds to an element X; of A in Procedure BB. The
successors of S corresponds to the output of the function SPLIT considered before. A
goal state is one which contains the optimal element of A. The upper bound function U in
Procedure BB’ should satisfy the condition that if z* is a solution, then f(z*) < U. This
value is used for pruning: any state S with 1b(S) > U should be removed from further

consideration.

134



Bibliography

[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman, Data Structures and Algorithms,
Addison-Wesley Publishing Co., Reading, Mass., 1983.

[2] K.R. Baker, Introduction to Sequencing And Scheduling, Jone Wiley and Sons, 1974.

[3] T.C. Baker, J.R. Greenwood “Star: an environment for development and execution of
knowledge-based planning applications” Proceedings DARPA Knowledge-based Plan-
ning Workshop, Dec. 1987.

[4] Berlin, M., Bogdanowicz, J. and Diamond, W. “Planning and control aspects of the
scorpius vision system architecture” Proceedings DARPA Knowledge-based Planning

Workshop, Dec. 1987.

[5] A. Brown and Gaucus, D. “Propsective Situation Assessment” Proceedings DARPA
Knowledge-based Planning Workshop, Dec. 1987.

[6] T. C. Chang and R. A. Wysk, An Introduction to Automated Process Planning Sys-
tems, Prentice-Hall, Englewood Cliffs, NJ, 1985.

[7] D. Chapman, “Planning for Conjunctive Goals,” Artificial Intelligence (32), 1987,
333-377.

[8] E. Charniak and D. McDermott, Introduction to Artificial Intelligence, Chapter 9,
Addison-Wesley Publishing Co., 1984.

[9] M. R. Cutkoski and J. M. Tenenbaum, “CAD/CAM Integration Through Concur-
rent Process and Product Design,” Proc. Symposium on Integrated and Intelligent

Manufacturing at ASME Winter Annual Meeting, 1987, pp. 1-10.

135



[10] T. Dean and M. Boddy, “Reasoning about Partially Ordered Events,” Artificial In-
telligence, (36), pages 375-399, 1988.

[11] R. E. Fikes and N. J. Nilsson, “STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving,” Artificial Intelligence (2:3/4), 1971, 189-208.

[12] M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theory
of NP-Completeness, Bell Laboratories, Murray Hill, New Jersey, 1979.

[13] Garvey, T. and Wesley, L. “Knowledge-based Helicopter Route Planning” Proceedings
DARPA Knowledge-based Planning Workshop, Dec. 1987.

[14] D.P. Glasson, and J.L. Pomarede “Navigation Sensor Planning for Future Tactical
Fighter Missions” Proceedings DARPA Knowledge-based Planning Workshop, Dec.
1987.

[15] C. Hayes, “Using Goal Interactions to Guide Planning,” Proc. AAAI-87, 1987, 224-
228.

[16] L. R. Harris, “The Heuristic Search Under Conditions of Error,” Artificial Intelligence
(5), 1974, 217-234.

[17] James A. Hendler, “Integrating Marker-Passing and Problem-Solving: A Spreading
Activation Approach to Improved Choice in Planning,” Ph.D. Thesis, Brown Univer-
sity, TR-86-01.

[18] E. Horowitz and S. Sahni, “Fundamentals of Computer Algorithms,” Computer Sci-
ence Press, Potomac, MD, 1978.

[19] D. E. Knuth, The Art of Computer Programming, Volume 1: Fundamental Algo-
rithms, Addison-Weseley, Reading, Mass., 1968.

[20] R. E. Korf “Planning as Search: A Quantitative Approach,” Artificial Intelligence
(33), 1987, 65-88.

[21] R. E. Korf, “Real-Time Path Planning” Proceedings DARPA Knowledge-based Plan-
ning Workshop, Dec. 1987.

136



[22] V. Kumar and L. Kanal, “A General Branch and Bound Formulation for Understand-
ing and Synthesizing And/Or Tree Search Procedures,” Artificial Intelligence (21),
1983, 179-198.

[23] T. A. Linden and J. Glicksman, “Contingency Planning for an Autonomous Land
Vehicle,” Proceedings of the Tenth International Joint Conference on Artificial Intel-

ligence, pages 1047-1054, Milan, August, 1987.

[24] T. A. Linden and S. Owre, “Transformational Synthesis Applied to ALV Mission
Planning” Proceedings DARPA Knowledge-based Planning Workshop, Dec. 1987.

[25] V. Lifschitz, “On the Semantics of STRIPS,” Proceedings of the Workshop on Rea-
soning About Actions and Plans, Oregon 1986.

[26] M. Luria, “Goal Conflict Concerns,” Proc. IJCAI 1987, 1025-1031.

[27] D. Maier, “The Complexity of Some Problems on Subsequences and Supersequences,”

J. ACM (25), 1978, 322-336.

[28] M. S. Fox, “Constraint-Directed Search: A Case Study of Job-Shop Scheduling,”
Ph.D Thesis, CMU-RI-TR-83-22, 1983.

[29] D. McDermott Flezibility and Efficiency in a Computer Program for Designing Cir-
cuits, AI Laboratory, Massachusetts Institute of Technology, Technical Report Al-
TR-402, 1977.

[30] D.S. Nau, V. Kumar and L. Kanal, “General Branch and Bound, and Its Relation to
A* and AO*,” Artificial Intelligence, (23), 1984, 29-58.

[31] D. S. Nau, “Automated Process Planning Using Hierarchical Abstraction,” Award
winner, Texas Instruments 1987 Call for Papers on Industrial Automation, Tezas

Instruments Technical Journal, Winter 1987, 39-46.

[32] D. S. Nau, Q. Yang and J. A. Hendler, “Planning for Multiple Goals with Limited
Interactions,” Fifth IEEE Conference on Artificial Intelligence Applications, Miami,
Florida, March 1989,

137



[33] D. S. Nau, N. Ide, R. Karinthi, G. Vanecek Jr. and Q. Yang, “Solid Modeling and
Geometric Reasoning for Design and Process Planning,” AAAI 88 Workshop on Pro-
duction Planning and Scheduling, St. Paul, August, 1988.

[34] D. S. Nau, V. Kumar, and L. N. Kanal, paper in preparation.

[35] N. Nilsson, Principles of Artificial Intelligence, Chapters 7 and 8, Tioga Publishing
Co., 1980.

[36] F. P. Preparata and R. T. Yeh, Introduction to Discrete Structures, Addison-Wesley,
Reading, Mass., 1973.

[37] Subbarao Kambhampati, Ph.D Thesis, University of Maryland, in preparation.

[38] E. D. Sacerdoti, “A Structure of Plans and Behavior,” American Elsevier, New York,

1977.

[39] D.E. Smith, “A Decision-Theoretic Approch to the Control of Planning Search,” Tech.
Report No. LOGIC-87-11, Stanford Logic Group, Department of Computer Science,
Stanford University.

[40] M. Stefik, “Planning with Constraints (MOLGEN: Part 1),” Artificial Intelligence,
(16), 1981, 111-140.

[41] G. Sussman, “A Computer Model of Skill Acquisition,” American Elsevier, New York,
1982.

[42] A. Tate, “Generating Project Networks,” Proc. IJCAI, 1977, 888-893.

[43] J. Tenenberg, “Abstraction in Planning,” Tech. Report TR250, Computer Science
Department, University of Rochester, Rochester, NY 14627, May 1988.

[44] S. Thompson, “Environment for Hierarchical Abstraction: A User Guide,” Tech.
Report, Computer Science Department, University of Maryland, College Park, 1989.

[45] S. A. Vere, “Planning in Time: Windows and Durations for Activities and Goals,”
IEEFE Transactions on Pattern Analysis and Machine Intelligence (PAMI-5:3), 1983,
246-247.

138



[46] R. Wilensky, Planning and Understanding, Addison-Wesley: Reading, Massachusetts,
1983.

[47] D.E. Wilkins, “Domain-independent Planning: Representation and Plan Genera-
tion,” Artificial Intelligence, (22), 1984.

[48] D.E. Wilkins, Practical Planning:Extending the Classical AI Planning Paradigm,
Morgan Kaufmann Publishers, Inc., San Mateo, California, 1988.

[49] Q. Yang, D. Nau, and J. Hendler, “Optimizing Multiple Goal Plans with Limited
Interaction,” Tech. Report UMIACS-TR-88-49, July, 1988.

[50] Q. Yang, D. S. Nau and J. Hendler, “An Approach to Multi-Goal Planning with
Limited Interactions,” AAAI 1989 Spring Symposium Series, Stanford University,
Stanford, CA., March 1989.

[51] Q. Yang and D. S. Nau, “Preprocessing Search Spaces for Branch and Bound Search,”
to appear at the Eleventh International Joint Conference on Artificial Intelligence,
Detroit, Michigan, August 1989. Also Tech. Report No. UMIACS-TR-88-71, Univer-
sity of Maryland, College Park, October 1988.

139



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

