Exploiting Limited Interactions
in
Plan Optimization

by

Qiang Yang, Dana S. Nau
and James Hendler

Research Report CS-89-33
August, 1989



Exploiting Limited Interactions in Plan Optimization*

Qiang Yang'! Dana S. Nau! § ¥ James Hendler18

Abstract

Past planning systems have generally focused on control structures capable of
working in all domains (domain-independent planning) or on specific heuristics for
a particular applied domain (domain-dependent planning). An alternate approach
is to abstract the kinds of goal and subgoal interactions that occur in some set of
related problem domains, and develop planning techniques capable of performing
relatively efficiently in all domains in which no other kinds of interactions occur.
In this paper we will demonstrate this approach on a particular formulation of
multiple-goal planning problems.

In particular, we demonstrate that for cases where multiple-goal planning can
be performed by generating individual separate plans for each goal independently
and then optimizing the conjunction, we can define a set of limitations on the
allowable interactions between goals that allow efficient planning to occur where
the restrictions hold. We demonstrate algorithms which are efficient for certain
cases of this multiple goal planning approach, and propose a heuristic search
algorithm that performs well. We further argue that these restrictions are satisfied
across a significant class of planning domains.

The authors’ email addresses are qyang@dragon.waterloo.edu, nau@mimsy.umd.edu

and hendler@mimsy.umd.edu.

*This work was supported in part by an NSF Presidential Young Investigator award to Dr.
Nau with matching funds from Texas Instruments and General Motors Research Laboratories,
in part by NSF Grant NSFD CDR-88003012 to the University of Maryland Systems Research
Center, and in part by ONR grant N00014-88-K-0560 to Dr. Hendler.

tComputer Science Department, University of Waterloo, Waterloo, Ontario, N2L 3G1,
Canada

tComputer Science Department, University of Maryland, College Park, Md. 20742, USA

§Systems Research Center, University of Maryland.

Institute for Advanced Computer Studies, University of Maryland.



1. Introduction

One of the most widely used strategies in problem-solving is to decompose a
complex problem into several simpler parts. This is particularly true in planning,
where a complicated goal is usually decomposed into two or more subgoals to
solve. The reason for this is that decomposition tends to divide the exponent of
an exponential problem, thus drastically reducing the total problem-solving effort.
Korf [14], for example, has demonstrated that if the subgoals are independent,
then solving each one in turn will divide both the base and the exponent of the
complexity function by the number of subgoals.

The major limitation of the above approach is that although it treats the
goals as independent, this condition does not really hold for most AI problems.
Instead, the goals or subgoals may interact or conflict with each other.! Unfortu-
nately, it appears impossible to achieve both efficiency and generality in handling
goal/subgoal interactions. Domain-independent planners attempt to handle in-
teractions which can occur in many possible forms, and thus they sacrifice the
gains in efficiency which might possibly be achieved in domains where these in-
teractions are limited. Domain-dependent planners can often do better at dealing
with goal/subgoal interactions in their particular domains by imposing domain-
dependent restrictions on the kinds of interactions that are allowed—but the re-
strictions they use are often too restrictive for the planners to be applicable to
other domains.

In this paper, we propose an approach which falls in between domain-
dependent and domain-independent planning: to abstract the kinds of goal and
subgoal interactions that occur in some set of related problem domains, and de-
velop planning techniques capable of performing relatively efficiently in all do-
mains in which no other kinds of interactions occur. We will refer to this approach
as limited-interaction planning.

The restrictions which we impose on the goal interactions allow us to develop
relatively efficient techniques for solving multiple-goal planning problems by de-
veloping separate plans for the individual goals, combining these plans to produce
a naive plan for the conjoined goal, and performing optimizations to perform to
yield a better combined plan. For example, consider the following situation (based

on [30]):

John lives one mile from a bakery and one mile from a dairy. The two

1The most famous example of this is the “Sussman anomaly,” in which solving one goal
undoes the independently derived solution to the other.



stores are 1.5 miles apart. John has two goals: to buy bread and to
buy milk.

The approach usually taken is to conjoin this into the single goal
(GOAL JOHN (AND (HAVE BREAD) (HAVE MILK)))

Suppose that we have developed separate plans for the two individual goals (drive
to the dairy, buy milk, and come home; and drive to the bakery, buy bread, and
come home). Taken together, these two plans will solve the conjoined goal; and
the next step is to recognize that the “come home” step of the first plan can be
merged with the “get there” step of the second, to produce a better plan.

The restrictions required for our approach to be applicable are limiting, but not
as severely limiting as the domain-dependent heuristics used by many application-
specific planners. Our goal has been to develop restrictions with the following
properties:

1. the restrictions are stateable in a clear and precise way (rather than sim-
ply referring to general knowledge about the characteristics of a particular
domain of application);

2. the resulting classes of planning problems are large enough to be useful and
interesting;

3. the classes of problems allowed are “well-behaved” enough that planning
may be done with a reasonable degree of efficiency.

This paper provides background for the limited-interaction approach to plan-
ning, presents one set of restrictions satisfying the above criteria, and argues
that these restrictions are satisfied across a significant class of planning domains.
It also discusses the complexity of the resultant planning problems, and demon-
strates that limited-interaction multiple-goal planning can be performed efficiently
under these restrictions.

2. Background

As pointed out in the introduction, one of the major problems with planning is
how to handle interactions among goals or subgoals. One approach which has
been used to circumvent this problem is the condition of linearity. This condition
is satisfied in a planning problem if the subgoals are all independent and can be



achieved sequentially in any arbitrary order. Linear planners start by generating
plans for the subgoals as if the planning problem were linear. Thus, to use a
linear planner in domains where subgoals or goals interact strongly, it is necessary
to add ways to detect and resolve the conflicts. As an example, STRIPS [7] did
linear planning for compound goals which are conjuncts of component goals.

An alternative assumption is that it is better not to order operators than to
order them arbitrarily. This results in the least-commitment strategy, in which
an order between two operators is not assigned unless absolutely necessary (for
example, this could occur if an action for one goal deletes an expression that was
a precondition of another goal or subgoal). The plan thus developed is a partially
ordered set of actions. Most of the well-known planning systems (for example,
(24, 27, 19, 29, 4], fall into this catagory.

Although the domain-independent nonlinear planners are more efficient in han-
dling conflicts than their linear counterparts, there is still usually too much com-
putation involved: the problem requires exponential time in most interesting cases
[4]. Such extensive computation is usually not feasible for planning in real-world
domains. This exponentiality is of particular difficulty to systems dealing with
multiple goals: as more subgoals are added to a single conjoined goal, the solution
time is drastically increased.

One way to tackle this problem is to use explicit domain knowledge to lessen
the computational burden of detecting and resolving the goal interactions in plan-
ning. Such domain-dependent planning systems have been built for many practical
problems. Some recent examples include

1. Military command and control planning applications [1, 11, 3];
2. Route planning [15, 10];

3. Autonomous vehicle navigation [2, 16];

4. Automated manufacturing [5, 6, 9, 20].

Another approach is to restrict the number of goals among which interactions
can occur. Vere’s DEVISER [29] approached this problem by using temporal
scopings associated with goals and actions. Much of the planning behavior in the
DEVISER system involved setting up temporal constraints and comparing them
to the durations.

Vere’s approach can be thought of as a special case of a more general idea:
that by placing appropriate kinds of restrictions on goal and subgoal interactions,



it may be possible to achieve efficient planning across a range of applications.
This idea, which we call “limited-interaction planning,” is the primary motivation
behind the current paper.

One example of this limited-interaction approach can be found in multiple
goal planning problems. We consider the situation where, instead of generating a
single conjoined goal, plans are generated for each goal concurrently, and then an
“optimization” step is performed to merge the resultant plans into a single global
plan. The problem of finding the best plan is still NP-hard, but provided that the
interactions in the plans satisfy our restrictions, we have heuristic methods which
appear to perform quite efficiently in the average case. For this approach to be
useful, the set of planning problems satisfying our allowable set of interactions
must be broad enough to be useful and interesting—and we argue that this is the
case.

3. Problem Statement

In this paper, a plan is defined to be a partially ordered set of actions. Each action
has a set of preconditions and postconditions?. Actions can have costs, and the
cost of a plan is the sum of the costs of the actions.

Let G be a goal which is the conjunction of a number of other goals
G1,Ga,...,G,. For the example given in Section 1, (HAVE BREAD) and (HAVE
MILK) are both goals for the conjunctive goal (AND (HAVE BREAD) (HAVE MILK)).
One way to try to achieve G would be to achieve each of the individual goals inde-
pendently, and try to combine the plans for the subgoals into a “global plan” for
G. In this paper, we assume that the plans for the individual goals have already
been found, and we look at how to combine them into a global plan.

Depending on what kinds of interactions occur among the actions in the plans,
it might or might not be possible for the plans to be combined. In this paper, we
consider only the following kinds of interactions.

1. Let A be a set of actions {aj,az,...,a,}. Then there may be a merged
action m(A) capable of accomplishing the effects of all actions in A. The
cost of m(A) could be either higher or lower than the sum of the costs of the
other actions—but it is only useful to consider merging the actions in A if
this will result in a lower total cost. Thus, although we allow the case where

2As discussed later in the paper, a plan may also be associated with certain constraints, such
as one that requires two or more actions to occur at the same time.



cost(m(A)) > 3,4 cost(a), we can ignore it for the purposes of planning.
Thus, we only consider A to be mergeable if cost(m(A)) < 3,4 cost(a);
and in this case we say that an action-merging interaction occurs.

One way in which an action-merging interaction can occur is if the actions
in A contain various sub-actions which cancel each other out, in which case
the action m(A) would correspond to the set of actions in A with these
sub-actions removed. If the cost of each action is the sum of the costs of its
sub-actions, then the cost of m(A) is clearly less than the sum of the costs
of the actions in A.

Note that even though a set of actions may be mergeable, it may not always
be possible to merge that set of actions in a given plan. For example,
suppose a and a’ are mergeable, but in the plan P, @ must precede b and b
must precede a’. Then a and a' cannot be merged in P, because it would
require b to precede itself.

. An action-precedence interaction is an interaction which requires that an
action ¢ in some plan P; must occur before an action b in some other plan
P;. This can occur, for example, if b removes one of the preconditions
necessary for a, and there is no other action which can be inserted after b
to restore this precondition.

Much previous work in planning has dealt with deleted-condition inter-
actions. Some action-precedence interactions are expressible as deleted-
condition interactions, and conversely, some deleted-condition interactions
can be resolved by imposing precedence orderings. Deleted-condition in-
teractions can often be resolved in other ways as well—and thus, in gen-
eral, they are more difficult to deal with than action-precedence interac-
tions. However, there is a significant class of problems, including certain
kinds of automated manufacturing problems and certain kinds of schedul-
ing problems, where action-precedence interactions are the only form of
deleted-condition interactions. Examples of such problems appear later in
this section.

. Plans for different goals may sometimes contain some of the same actions.
The identical-action interaction occurs when an action in one plan must be
identical to an action in one of the other plans.

. Sometimes, two different actions must occur at the same time. We call
such an interaction a stmultaneous-action interaction. This is different from



the identical-action interaction, because these simultaneous actions are not
identical. An example would be two robotic hands working together in order
to pick up an object.

Depending on what interactions appear in a given planning problem, it may
or may not be possible to combine the plans into a global plan. Of the kinds
of interactions disussed above, three of them (the action-precedence, identical-
action, and simultaneous-action interactions) place constraints on how a set of
plans might be combined into an overall global plan. The other kind of interaction
(the action-merging interaction) places no constraint on how the plans might be
combined, but instead allows possible optimizations of the global plan once it has
been created. Thus, the only kinds of interactions which might make it impossible
to combine a set of plans into a global plan are the action-precedence, identical-
action, and simultaneous-action interactions. The problem of finding out whether
or not a set of plans can be combined into a global plan we call the multiple-goal
plan existence problem.

As an added complication, each goal G; may have several alternate plans
capable of achieving it, and thus there may be several different possible identities
for the global plan for G. The least costly plan for G; is not necessarily part of the
least costly global plan, because some more costly plan for G; may be mergeable
in a better way with the plans for the other goals. For example, Fig. 1 shows the
results of merging a plan P; with two different plans P, and P;.

We define the multiple-goal plan optimization problem to be the problem of
choosing which plan to use for each goal, and which actions to merge in these
plans, so as to produce the least costly global plan for G.

Problems involving optimizing multiple-goal plans occur in a large number
of interesting problem domains, such as automated manufacturing and factory
scheduling. In these domains multiple goals must be achieved within the context
of a set of constraints (deadlines, machining requirements, etc.) The general class
of all such problems clearly will not fit within the confines of the restrictions
specified in this paper (for example, we have not yet extended our approach to
deal with scheduling deadlines), but significant and useful classes of problems
can be found which satisfy these restrictions. Several specific examples are given
below.

Example 1. Consider again the shopping example given in Section 1, in which
John has two goals: (HAVE BREAD) and (HAVE MILK). To achieve the (HAVE
BREAD) goal, a plan could be:



(GO HOME BAKERY), (BUY BREAD), (GO BAKERY HOME)
To achieve the (HAVE MILK) goal, a plan could be:
(GO HOME DAIRY), (BUY MILK), (GO DAIRY HOME).

If it takes less time to go between the bakery and the dairy than to go back
from the bakery and then to the dairy, then the action (60 BAKERY HOME)
can be merged with the actions in the second plan. The result is a cheaper
overall plan:

(GO HOME BAKERY), (BUY BREAD), (GO BAKERY DAIRY),
(BUY MILK), (GO DAIRY HOME).

Example 2. Consider the automated manufacturing problem of drilling holes
in a metal block. Several different kinds of hole-creation operations are
available (twist-drilling, spade-drilling, gun-drilling, etc.), as well as several
different kinds of hole-improvement operations (reaming, boring, grinding,
etc.). Each time one switches to a different kind of operation or to a hole
of a different diameter, one must put a different cutting tool into the drill.
Suppose it is possible to order the operations so that one can work on holes
of the same diameter at the same time using the same operation. Then these
operations can be merged by omitting the task of changing the cutting tool.
This and other similar manufacturing problems are of practical significance
(see [20, 9]) and, in fact, much of the work in this paper derives from our
ongoing work in developing of a computer system for solving such problems.

Suppose hole h; can be made by the plan
P;: spade-drill hy, then bore Ay;
and hole k; can be made by either of the plans

Ps: twist-drill Ay, then bore hy;
5. spade-drill h,, then bore h;

with cost(P,) < cost(P;). If hy and h, have different diameters, then the
least costly global plan will be to combine P; and P,. However, if they have
the same diameter, then a less costly global plan can be found by combining
P; and Pj, merging the two spade-drilling operations, and merging the two
boring operations.



Example 3. In a machine shop, consider the problem of finding a minimum-time
schedule for satisfying some set of orders for products that can be produced
in the shop. For each order, there may be a set of alternative schedules for
producing it, and each such schedule consists of a set of operations to be
performed on various machines.

An operation in a schedule is usually associated with a machine for carrying
it out. If two or more operations require the same type of set-up, then doing
them on the same machine may reduce the total time required—and thus
reduce the total time required to complete all the schedules. In this case,
we consider these operations as mergeable.

4. Solving the Problem

In this paper we consider two different cases of the multiple-goal plan optimization
problem. The first case is where a single plan is generated for each goal. In
this case, there is a set of restrictions which defines a class of problems that is
reasonably large and interesting, but which can be solved in low-order polynomial
time.

The second case is where more than one plan may be generated for each goal—
necessitating choosing among the plans available for each goal in order to find an
optimal global plan. This case is NP-hard, but there is a heuristic approach which
works well in practice on this problem.

4.1. One Plan for Each Goal

Planning is often so difficult that most planning systems stop once they have
found a single plan for each goal, without trying to find other plans as well. This
section discusses the multiple-goal plan optimization problem in the case where
only one plan is available for each goal.

4.1.1. Complexity

In analyzing the computational complexity of the problem, if we can show that
a special case is NP-hard, it follows that the general case is also NP-hard. To
do this, we consider the special case in which the following conditions hold: for
each goal G;, the plan P; for G; is a linear sequence of actions, each action has a



10

cost of 1, and there are no interactions among the plans except for action-merging
interactions.

In this special case, all interactions that might prevent the plans from being
combined into a global plan have been disallowed. Thus, at least one global plan
is guaranteed to exist: II = (Ji_; P,. However, Il may not be an optimal plan,
because it may be possible to merge some of its actions. In fact, Il may contain
several different sets of mergeable actions, and merging some of them may preclude
merging others. Different choices of which sets to merge may result in plans of
different cost. For example, Fig. 2 shows two plans P; and P, and the results of
merging them in different ways.

Since this special case requires that each P; be a linear sequence of actions
and each action have the same cost, the problem of finding the best global plan is
equivalent to the problem of finding the shortest common supersequence (SCS) of
n sequences. This problem has been shown to be NP-hard [18]. Since the special
case is NP-hard, it follows that the multiple-goal plan optimization problem is
NP-hard.

4.1.2. Plan Existence

The last section showed that the multiple-goal plan optimization problem with
one plan per goal is NP-hard, by showing that a special case of that problem is
also NP-hard. We now return to the general case, in which all of the interactions
defined in Section 3 are allowed.

One way of handling an NP-hard problem is to simplify it either by relaxing
the criteria for what constitutes a valid solution, or by imposing restrictions on
what problem instances will be considered. For the current problem, one way to
do this is to look not for the optimal global plan, but for any global plan that
works—in other words, to solve the multiple-goal plan existence problem rather
than the multiple-goal plan optimization problem. Whether a global plan exists
is independent of whether there are any action-merging interactions, so for the
multiple-goal plan existence problem we can ignore all action-merging interactions
completely.

In particular, suppose that we are given the following:

1. A set of plans S = Py, P,,..., P, containing one plan P; for each goal G;.
Let n be the total number of actions in S.

2. A list of interactions among the actions in the plans (for example, members
of this list might be statements such as “action a in plan P; must precede



11

action b in plan P;”). Let ¢ be the total number of interactions in this list

(note that : = O(n?)).

Unless the interactions prevent the plans in $ from being merged into a global
plan, the global plan is just the set of individual plans in S, with additional
ordering constraints imposed upon the actions in these plans in order to handle
the interactions. This combined plan is called combine(S), and the following
algorithm will produce it.

Note that combine(S), if it exists, is a unique, but it is not a totally ordered
plan. Every valid embedding of combine(S) within a total ordering is guaranteed
to be a valid plan, and Step 3 of the algorithm can easily be modified to produce
all of these embeddings.

Algorithm 1.

1. For each plan P in S, create a graph representing P as a Hasse diagram.® Also,
create a sorted linear index of the actions in the plans. This step can be
done in time O(n?).

2. For each action-precedence interaction in the interaction list, modify the graph
by creating a precedence arc between the actions named in the interaction.
For each simultaneous-action interaction in the interaction list, create a
simultaneous-action arc between the actions named in the interaction. For
each identical-action interaction in the interaction list, combine the actions
named in the interaction into a single action. If this step is done by sorting
the interaction list and then checking it against the index of actions, it can
be done in time O(ilogi + (i + n)n) = O(n®).

3. Check to see whether the graph still represents a consistent partial ordering
(this can be done in time O(n?) using a topological sorting algorithm [13],
with a straightforward extension to handle the simultaneous-action interac-
tions). If it does not, then exit with failure (no global plan exists for this

problem).

Algorithm 1 produces the combined plan combine(S) if it exists, in the case
where there is one plan for each goal G;. The total time required is O(n?), where
n is the total number of actions in the plans.

3This is a standard representation of a partially ordered set (e.g., see [23]).



12

4.1.3. Plan Optimality

In order to avoid the NP-hardness of the general problem, Section 4.1.2 attacked
the simpler problem of trying to find any plan that will work, rather than an
optimal plan. If we want an optimal plan, then the task is much more difficult.
This section considers some restrictions that make it feasible to look for an optimal
global plan, rather than just a consistent one.

Restriction 1. If S is a set of plans, then the set of all actions in S may be
partitioned into equivalence classes of actions Ei, Es, ..., E,, such that sets
of actions A and B are mergeable if and only if A and B are subsets of the
same equivalence class.

Restriction 2. If combine(S) exists, then it defines a partial order over the equiv-
alence classes defined in Restriction 1; i.e., if E; and E; are two distinct
equivalence classes and if combine(S) requires that some action in E; occur
before some action in Ej, then combine(S) cannot require that some action
in E; occur before some action in E;. (This does not rule out the possibility
of an action in E; occurring immediately before another action in E;; in such
a case, the two actions can be merged.)

Restriction 1 is reasonable for a number of problems (for example, it is already
satisfied in the Examples 1, 2 and 3 discussed previously).

Intuitively, Restriction 2 requires that merging one set of actions in an equiva-
lence class does not preclude the possibility of merging other actions in the plans.
So, for example, the plans in Fig. 2 do not satisfy Restriction 2, since merging
actions Bl and B2 will preclude merging actions A1 and A3. Although this re-
striction is more limiting, it still allows many interesting problems. For instance,
Restriction 2 is trivially satisfied in Example 1 since there is only one possible
merge. In Example 2 it is satisfied in a more interesting way, since there exists a
common sense ordering of the machining operations (e.g., don’t twist-drill a hole
after it has been bored, or the class of milling operations always precedes the class
of drilling operations) which is quite natural to use for this problem. In Example
3, it may or may not be satisfied, depending on the particular scheduling problem
being considered. For example, if the problem is to schedule setups of machin-
able parts on various machine tools for various machining operations, Example 3
satisfies Restriction 2 for the same kind of reason as Example 2.

Suppose the above restrictions are satisfied, and suppose we are given a set of
plans S and a list of interactions, as was done in Section 4.1.2. If a global plan



13

exists, then Algorithm 1 will produce the global plan combine(S). However, by
merging some of the actions in combine(.S), it may be possible to find other less
costly plans. The following algorithm will find a least costly plan.

Algorithm 2.

1. Use Algorithm 1 to produce a digraph representing the combined plan
combine(S). This can be done in time O(n®). If Algorithm 1 succeeds,
then continue; otherwise, exit with failure.

2. For each equivalence class E; of actions in combine(S), merge all of the actions
in E;. This produces a digraph in which each class of action occurs only
once (e.g., see Fig. 3). From Restriction 2, it follows that this is a consistent
plan; we call this plan merge(combine(S)). From Restriction 1 and the
definition of mergeability, it can be proved by induction that this is the
least costly plan which can be found by combining and merging actions in
S. Merging the classes will, at worst, require redirecting all of the arcs in
the digraph—and this can be done in time O(n?).

In the case where there is one plan for each goal G;, Algorithm 2 produces an
optimal way to combine and merge these plans if it is possible to combine them
at all. The total time required is O(n®), where n is the total number of actions in
the plans.

4.2. More than One Plan for Each Goal

For some multi-goal planning problems, it is reasonable to expect that more than
one plan may be found for each goal. (For example, this is done by the SIPS
planning system for the manufacturing problem discussed in Example 2 [20]).
Finding more than one plan for each goal is more complex computationally than
finding just one plan for each goal, but it is useful because it can lead to better
global plans.

To see this, consider once again the planning situation described in Section 1:

John lives one mile from a bakery and one mile from a dairy. The two
stores are 1.5 miles apart. John has two goals: to buy bread and to
buy milk.

This time, however, let us add the fact that



14

John lives 1.25 miles from a large grocery store (based on [30]):

The best plans for the individual goals involve two separate trips: one to the store
and one to the dairy. Given these plans, the approach described in the previous
section would merge them so as to allow John to go directly from one store to the
other. The best global plan, however, is to use the second-best plan for each goal
(going to the grocery store), since this allows greater merging. If the planners for
the individual goals deliver more than one solution for each goal, this better plan
may be found.

4.2.1. Complexity

If more than one plan is available for each G;, then there may be several different
possible identities for the set S discussed in Section 4.1, and it may be necessary
to try several different possibilities for S in order to find one for which combine(S)
exists. This problem is NP-hard, even with Restrictions 1 and 2; this is proved in
the Appendix by reducing CNF-satisfiability to it.

Since the multiple-goal plan existence problem is a special case of the multiple-
goal plan optimization problem, the above result means that the multiple-goal plan
optimization problem is also NP-hard.

Polynomial-time solutions do exist for several special cases of the multiple-goal
plan existence and optimization problems. For plan existence, one such special
case is the one discussed in Section 4.1, in which the number of plans for each
goal was taken to be 1. For plan optimization, such a special case occurs if the
number of different equivalence classes of actions is less than 3, and each action
has the same cost. In this case, if no conflicting constraints are allowed to exist,
the multiple-goal plan optimization problem can be solved in polynomial time,
even if Restriction 2 is lifted. For example, this would occur in Example 2 if there
were only two different kinds of machining procedures to be considered.

4.2.2. A Heuristic Algorithm

Although the general case of the multiple-goal plan optimization problem is NP-
hard, there is a heuristic approach that performs well in practice when Restrictions
1 and 2 are satisfied. The approach is to formulate the problem as a state-space
search and solve it using a best-first branch-and-bound algorithm.

Suppose that we are given the following: (1) for each goal G;, a set of plans
T; containing one or more plans for G;, and (2) a list of the interactions among



15

the actions in all of the plans. In the state-space search, the state space is a tree.
Each state is a set of plans; it contains one plan for each of the first i goals for
some ¢. The initial state is the empty set (i.e., ¢ = 0). If S is a state containing
plans for the goals G, Gy, ..., G;, then an immediate successor of S is any set
S U {P} such that P is a plan for G;;;. A goal state is any state in which plans
have been chosen for all of the goals G1,Ga,...,G,. The cost of a state S is the
cost of the plan obtained by applying Algorithm 2 to S; i.e.,

cost(S) = cost(merge(combine(S))).

Fig. 4 displays part of an example state space.

The search algorithm appears below. This algorithm is a best-first branch-
and-bound search, which uses a lower bound function L to order the members of
the list of alternatives being considered. Except for the use of U for pruning, this
algorithm can also be thought of as a version of the A* search procedure, with

h(S) = L(S) — cost(S) as the heuristic function.
Algorithm 3.

A= (0) (A is the branch-and-bound active list)
U := upper bound, computed as described in the text
loop
S := pop(A) (remove the first element of the list)

if S is a goal state then return S
if L(S) < U then begin
B := the successors of S, in order of least L-value first
A := the result of merging the list A with the list B
(Here we are doing merging of lists, not merging of actions.
This is to maintain A in order of least L-value first.)
end
repeat

In the search algorithm, pruning may be done by computing an upper bound on
the cost of the best global plan. For each G;, let best(G;) be the plan for G; of least
cost. The plans best(G;),7 =1,2,...,g, may or may not be able to be combined,
depending on the interactions among them. If they cannot be combined, then U
can be initialized to co. However, if combine({best(G,), best(Gz), ..., best(Gy)}))

exists, then the upper bound is

U = cost(merge(combine({best(G1), best(G,), ..., best(Gy)}))). (4.1)



16

Whether U exists—and if so, what its value is—can be determined in
time O(m?®) using Algorithm 2, where m is the total number of actions in
{best(G1), best(Gz),. .., best(Gy)}. During the search, any state S such that L(S)
is greater than U is discarded.

If L(S) is a lower bound on the costs of all successors of S that are goal states,
then L is admissible, in the sense that Algorithm 3 will be guaranteed to return
the optimal solution. We now discuss various possible functions to use for L. To
do this, we temporarily assume the following property: that merging plans for two
different goals always results in a plan at least as expensive as either of the two
original plans. In other words, if P and @ are plans for two distinct goals, then

cost(merge(combine( P, Q))) > max(cost(merge(P)), cost(merge(Q))).  (4.2)

We will later discuss what happens when this property is not satisfied.

If Eq. (4.2) is satisfied, then clearly Lo(S) = cost(S) is a lower bound on the
cost of any successor of S (this would correspond to using A = 0 in the A* search
algorithm). However, a better lower bound can be found as follows. Suppose S
contains plans for Gy,...,G;. For each j > 7, let P*(S,j) be the plan P for G;
which minimizes cost(merge(combine(S U {P}))). Let

L,(S) = max cost(merge(combine(S U {P*(S, 5)})))- (4.3)

To show that L; is admissible, let .S be any state, and let S’ be any descendant
of S that is a goal state. We must show that L;(S) < cost(S’). From Eq. (4.3),
there is some j > 7 such that

L,(S) = cost(merge(combine(S U {P*(S,7}))). (4.4)

But §' contains some plan P, for the goal G;, and from the definition of P*(S, j),

cost(merge(combine(S U {P*(S,7}))) < cost(merge(combine(S U {P;}))). (4.5)
Thus, by repeated application of Eq. (4.2),

Ly(S) < cost(merge(combine(S"))), (4.6)

so L; is admissible.
One way to find P*(S, 7) is to compute merge(combine(SU{P})) for each plan
P € T; using Algorithm 2, and then select the plan P that yields the minimum



17

cost. If P is a plan, let a(P) be the set of actions in P. If the above approach is
used to compute L;(5), the time required is

g

> 3 o(la($)| + [a(P))?). (@7)

j=i+1 PeT;

During this computation, it may be realized that some P cannot be combined
with S, due to conflicting constraints. In that case, the plan P can be removed
from further consideration, simplifying the computation of L; on successors of
S. Also, if none of the plans in T; can be combined with S, then there is no
possible way that S can be extended into a complete global plan, so search can
be discontinued at S.

By sacrificing the quality of the lower bound somewhat, we can com-
pute it more efficiently. We associate with each state S some sets

Hy(S), Hy(S),...,Hy(S), which are computed as follows. For the initial state
(§=0),forj=1,2,...,g,

H;(S) = {a(P)|P is a plan for G;}. (4.8)

Let S be any state at level ¢ — 1, and let S’ be the state formed by including a
plan P; for the goal G;. Then, for j=¢+1,...,9,

H;(8") = {Q'|Q € H;(5)}, (4.9)

where Q' is Q minus each action which falls into the same equivalence class as
some action in P;. We now define

Ly(S') = cost(merge(combine(S’)) + ;2:”& min{cost(Q)|Q € H;(S)}, (4.10)

where cost(Q) is the sum of the costs of the actions in @, and where the min of
an empty set is taken to be 0. It is left as an exercise for the reader to show that

L, is admissible.
Computing L(S) takes time

g

Y. X Oo(VI+la(P))) (4.11)

j=i+1 VeH;(S)

This is much less than the time required for computing L,(.S), for several reasons:



18

1. Comparing the expression |V| + |a(P;)| in Eq. (4.11) to the expression
|a(S)| + |a(P)| in Eq. (4.7), |a(P;)| is about the same as |a(P)| assuming
that the size of the plans are not very different, but |V| is much smaller than
la(S)|. Furthermore, the expression [a(S)| + |a(P)| is cubed in Eq. (4.7),
and the expression |V| 4 [a(P;)| is not raised to a power in Eq. (4.11).

2. Initially, T; and H; have the same number of elements, which is the number
of alternate plans for goal G;. For increasing values of ¢, the size of H;(S5)
decreases, so that less elements are summed in Eq. (4.11). But in Eq. (4.7),
the size of T} is independent of 7. Therefore, |H;| is always less than or equal
to |TJ|

L, is usually less informed than L;, because it only takes into account the actions
which are not in the same equivalence classes as any actions in S’. However, if all
actions have the same cost, then L, = L;.

Some problems (e.g., Example 2) satisfy the restriction given in Eq. (4.2), and
others do not. If Eq. (4.2) is not satisfied, then there will be some states S such
that Lo(S), L1(S), and L,(S) are not lower bounds on S. For most reasonable
planning problems, S can be shown to be dominated by states on other paths in
the search tree, in which case Algorithm 3 is still guaranteed to return a least-cost
solution (for a mathematical analysis of such cases, see [21]). In other cases, such
S might not be dominated by states on other paths, in which case Algorithm 3
might not return the optimal solution—but in this case, Algorithm 3 will still
return results that are close to optimal (for a mathematical analysis of such cases,
see [12]).

In the worst case, Algorithm 3 takes exponential time. Since the multiple-goal
plan optimization problem is NP-hard, this is not surprising. What would be more
interesting is how well Algorithm 3 does on the average. However, the structure of
the multiple-goal plan optimization problem is complicated enough that it is not
clear how to characterize what an “average case” should be; and there is evidence
that the “average case” will be different for each application area. Therefore, we
have restricted ourselves to doing empirical studies of Algorithm 3’s performance
on a class of problems that seemed to us to be “reasonable.”

Fig. 5 shows experimental results of using this algorithm for planning in the
automated manufacturing domain. The problem to be solved involved planning
how to drill several holes in a piece of metal stock, as described in Example
2. For the test, the procedure was to create randomly generated sets of holes
with varying machining requirements (such as depth, surface finish, etc.), and



19

to generate a plan for each hole individually using EFHA [28], a successor to our
SIPS process planning system [20]. For each set of holes, Algorithm 3 was invoked
on the plans for these holes to produce a global plan which minimized the total
time required for tool changes. As shown in Fig. 5, the number of possible states
in the search space grew exponentially as a function of the number of holes in the
set, but the number of states searched by Algorithm 3 with the heuristic function
L, grew only linearly. Intuitively, this means that the portion of the search space
explored by our search algorithm is a narrow region around the optimal path from
the root of the search tree to the goal state.

5. Concluding Remarks

This paper has examined some ways in which planning can be done efficiently if the
planning problem satisfies certain simplifying assumptions about the goal/subgoal
interactions. A set of such assumptions has been developed for the the multiple-
goal optimization problem. The main results are summarized below:

1. The multiple-goal plan optimization problem is NP-hard.

2. By imposing some restrictions that are reasonable for some problem do-
mains, the problem can be made computationally easy when there is only
one plan available for each goal.

3. Even with the restrictions, the problem is still NP-hard if each goal has
multiple alternate plans, but in this case there is a good heuristic approach
for solving the problem. A number of problems satisfy these restrictions,
including some problems of practical importance [9, 20].

One major limitation of this paper is that it concentrates on how to combine
plans which have already been developed for individual goals. In the application
domains in which we have been working [20], we have developed domain-dependent
techniques for developing plans for the individual goals—but an obvious question
is whether there is a natural extension of our approach for creating plans rather
than just optimizing existing plans. We are convinced that the answer to this
question is “yes”, and such an approach will probably not require any restrictions
other than the ones discussed in this paper. In addition, it may be possible
to develop similar techniques for use in planning or plan optimization in cases
where the interactions satisfy other kinds of limitations instead of the specific
ones described in this paper. We intend to explore this issue further.



20

Another question which remains to be answered is whether the particular
restrictions discussed in this paper are too restrictive. For example, there may
be reasonable ways to solve the multiple-goal plan optimization problem in the
case where there are a limited number of violations of Restriction 2. In addition,
relaxing these restrictions will not produce exponential behavior in every case.
A further classification of these exceptions may lead to a less restrictive set of
limitations. Moreover, in some problem domains, there may be reasonable ways
to solve the multiple-goal plan optimization problem even when Restriction 2
is lifted. Some of these problem domains are of practical interest, and we are
currently investigating how to characterize these domains.

Appendix: NP-Completeness of the Multiple-Goal Plan
Existence Problem

The purpose of this appendix is to show that if there may be more than one plan
for each goal, then the multiple-goal plan existence problem is NP-complete. To
do this, we show that NP-completeness occurs in the special case where the only
kind of goal interaction that occurs is the identical-action interaction.

It is easy to see that the problem is in NP, so the proof will be complete if the
problem is shown to be NP-hard. We do this by reducing the CNF-satisfiability
problem to it.

Given a set U of variables and a collection C of clauses over U, the CNF-
satisfiability problem asks whether there is an assignment of truth values to the
variables in U which satisfies every clause in C. To reduce this problem to the
multiple-goal plan existence problem, we associate a goal G; with each clause C;
of C. G is the conjunct of the individual goals G;. For each literal I;; € C;, we
create a plan (a;;,b;;) for the goal G;. If I;; = Iy, then we specify that a;; and
ar; must be identical, and b;; and by must also be identical. If I;; = —l;, then we
specify that a;; and by must be identical, and b;; and aj; must also be identical.

It is easy to see that that this reduction can be computed in polynomial time.
It remains to be shown that (1) if C is satisfiable, then there is a consistent global
plan for G; and (2) if there is a consistent global plan for G, then C is satisfiable.
These two statements are proved below.

1. Suppose there is an assignment of truth values to the variables in U which
satisfies C. Then we construct a set S of plans, one for each goal G;. For
each ¢, the clause C; in C contains some literal I} in C; whose value is TRUE,;



21

we let S contain the corresponding plan (a;;,b;;). Suppose that the plans
in S cannot be combined into a consistent global plan. Then there are two
plans p; = (asj, b;;) and p; = (aw, bu) such that a;; and by are constrained
to be identical, and b;; and aj; are constrained to be identical. But this
means that [} = ~l}, violating our requirement that both I} and I} have the
value TRUE. Thus, the plans in S can be combined into a consistent global
plan.

Conversely, suppose there is a set of plans S which can be combined into
a consistent global plan. Then we assign truth values to the variables in U
as follows: for each variable v € U, if its corresponding plan is in S, then
assign it the value TRUE; otherwise, assign it the value FALSE. Since S
can be combined into a consistent global plan, this means that no variable
can receive both the values TRUE and FALSE. Furthermore, since S must
contain at least one plan for each goal G;, at least one literal in each clause
will receive the value TRUE. Thus, this assignment of truth values satisfies
C.

References

[1]

2]

[3]

[4]

(5]

T.C. Baker, J.R. Greenwood “Star: an environment for development and
execution of knowledge-based planning applications” Proceedings DARPA
Knowledge-based Planning Workshop, Dec. 1987.

Berlin, M., Bogdanowicz, J. and Diamond, W. “Planning and control aspects
of the scorpius vision system architecture” Proceedings DARPA Knowledge-
based Planning Workshop, Dec. 1987.

A. Brown and Gaucus, D. “Propsective Situation Assessment” Proceedings
DARPA Knowledge-based Planning Workshop, Dec. 1987.

D. Chapman, “Planning for Conjunctive Goals,” Artificial Intelligence (32),
1987, 333-377.

T. C. Chang and R. A. Wysk, An Introduction to Automated Process Planning
Systems, Prentice-Hall, Englewood Cliffs, NJ, 1985.

M. R. Cutkoski and J. M. Tenenbaum, “CAD/CAM Integration Through
Concurrent Process and Product Design,” Proc. Symposium on Integrated



[7]

8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

22

and Intelligent Manufacturing at ASME Winter Annual Meeting, 1987, pp.
1-10.

R. E. Fikes and N. J. Nilsson, “STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving,” Artificial Intelligence (2:3/4), 1971,
189-208.

M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to
the Theory of NP-Completeness, Bell Laboratories, Murray Hill, New Jersey,
1979.

C. Hayes, “Using Goal Interactions to Guide Planning,” Proc. AAAI-87,
1987, 224-228.

Garvey, T. and Wesley, L. “Knowledge-based Helicopter Route Planning”
Proceedings DARPA Knowledge-based Planning Workshop, Dec. 1987.

D.P. Glasson, and J.L. Pomarede “Navigation Sensor Planning for Future
Tactical Fighter Missions” Proceedings DARPA Knowledge-based Planning
Workshop, Dec. 1987.

L. R. Harris, “The Heuristic Search Under Conditions of Error,” Artificial
Intelligence (5), 1974, 217-234.

D. E. Knuth, The Art of Computer Programming, Volume 1: Fundamental
Algorithms, Addison-Weseley, Reading, Mass., 1968.

Korf, R.E., “Planning as Search: A Quantitative Approach,” Artificial Intel-
ligence (33), 1987, 65-88.

Korf, R.E. “Real-Time Path Planning” Proceedings DARPA Knowledge-based
Planning Workshop, Dec. 1987.

Linden, T., and Owre, S. “Transformational Synthesis Applied to ALV Mis-
sion Planning” Proceedings DARPA Knowledge-based Planning Workshop,
Dec. 1987.

M. Luria, “Goal Conflict Concerns,” Proc. [JCAI, 1987, 1025-1031.

D. Maier, “The Complexity of Some Problems on Subsequences and Super-
sequences,” J. ACM (25), 1978, 322-336.



[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31]

23

D. McDermott Flexibility and Efficiency in a Computer Program for Design-
ing Circuits, Al Laboratory, Massachusetts Institute of Technology, Technical
Report AI-TR-402, 1977.

D. S. Nau, “Automated Process Planning Using Hierarchical Abstraction,”
Award winner, Texas Instruments 1987 Call for Papers on Industrial Au-
tomation, Tezas Instruments Technical Journal, Winter 1987, 39-46.

D. S. Nau, V. Kumar, and L. N. Kanal, paper in preparation.

N. Nilsson, Principles of Artificial Intelligence, Chapters 7 and 8, Tioga Pub-
lishing Co., 1980.

F. P. Preparata and R. T. Yeh, Introduction to Discrete Structures, Addison-
Wesley, Reading, Mass., 1973.

E. D. Sacerdoti, “A Structure of Plans and Behavior,” American Elsevier,
New York, 1977.

M. Stefik, “Planning with Constraints (MOLGEN: Part 1),” Artificial Intel-
ligence, (16), 1981, 111-140.

G. Sussman, “A Computer Model of Skill Acquisition,” American Elsevier,
New York, 1982.

A. Tate, “Generating Project Networks,” Proc. IJCAI, 1977, 888-893.

S. Thompson, “Environment for Hierarchical Abstraction: A User Guide,”
Tech. Report, Computer Science Department, University of Maryland, Col-
lege Park, 1989.

S. A. Vere, “Planning in Time: Windows and Durations for Activities and
Goals,” IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI-5:3), 1983, 246-247.

R. Wilensky, Planning and Understanding, Addison-Wesley: Reading, Mas-
sachusetts, 1983.

D. Wilkins, “Domain-independent Planning: Representation and Plan Gen-
eration,” Artificial Intelligence, (22), 1984.



Ay A3

Figure 1: Results of merging a plan Py with each of two alternative plans P2 and P;’.

Py: Pa:

B2

H
(24
Y

i

OR

C

Figure 2: Two plans that can be merged in different ways. Actions are
: mergeable if their names begin with the same letter.



i=0

i=z1

i=2

merge {combine{Py, P2, P3)):

Figure 3: Finding an optimal global plan by merging plans for various goals.

{
{r.} {p.}
{p.. ) {p..p.} {r..p.} {rup,} {p..p.} {r..P.}

Figure 4: An example state space. Here p, is the jth alternative plan for the ithgoal G;.



A
number
— of states

1500 |—

1000 |—

500 | )

100 |/

!
i best first only,
; without heuristic
|
'
total number /
of states

’
/ : along the
. optimal path

7
/ . -
. with heuristic . )

15 20 25 30 - number of holes

Figure 5: Experimental results of merging process plans for making machined holes.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

