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1. Introduction

The uSystem is a library of C [KR88] routines that provide light-weight concurrency on uniprocessor and
multiprocessor computers running the UNIX! operating system. Concurrent operations in the uSystem are
explicitly specified and not inferred from existing constructs in C. Users first design algorithms that are
inherently concurrent and then explicitly code corresponding concurrent operations using the routines in the
pSystem.

The puSystem uses a shared-memory model of concurrency. This shared-memory is populated by subrou-
tines, coroutines and concurrently executing light-weight processes, called tasks. Coroutine mechanisms are
provided to create coroutines within a task and to communicate information among the coroutines. Concur-
rency mechanisms are provided to create tasks, to synchronize execution of the tasks, and to communicate
information between synchronized tasks. When shared memory exists between UNIX processes, UNIX pro-
cesses are used as virtual processors and task execution is uniformly distributed across them. A clustering
mechanism exists to group virtual processors and tasks together, restricting execution of these tasks to only
these virtual processors. Partitioning into clusters must be used with care as it has the potential to inhibit
concurrency when used indiscriminately. However, in several situations it will be shown that partitioning
is essential. For example, concurrent UNIX I/O operations are possible through the clustering mechanism,
when shared memory exists between UNIX processes.

The uSystem does not enter the UNIX kernel to perform a coroutine or task switch and uses shared
memory among tasks. As a result, performance for execution and communication between large numbers
of tasks is significantly increased over UNIX processes (e.g. two orders of magnitude in some cases). The
maximum number of tasks that can be active is restricted only by the amount of memory available in a
program. The minimum storage overhead for a task is machine dependent, but is as small as 256 bytes.

2. Compile Time Structure of a uSystem Program

A uSystem program is constructed exactly like a normal C program with one exception: the main (starting)
routine is called uMain instead of the normal C name, main, for example:

... mnormal C declarations and routines
void uMain( int argc, char *argv[], char *envp[l ) {

}

The uSystem supplies and uses the main routine to initialize the uSystem runtime environment and create
the first task which starts execution at uMain. The task uMain is passed the same three arguments that are
passed to the routine main: argc, argv, and envp.

When uMain terminates, the current rule is that all other tasks are automatically terminated. It is
not possible to start tasks that continue to execute after uMain terminates. Therefore, uMain must only
terminate when the entire application program has completed. This rule was chosen because we found that
managing multiple UNIX processes running in the background required too much knowledge from novice
users. However, there is nothing in the uSystem that precludes supporting this feature.

e

8. Runtime Structure of a uSystem Program

‘The dynamic structure of an executing uSystem program is significantly more complex than a normal C
program. There are four new runtime entities: coroutine, task, virtual processor, and cluster.

3.1 Coroutine

A coroutine is a program component whose execution can be suspended and resumed (see Reference [Mar80]
for a complete discussion of coroutines). Execution of a coroutine is suspended as control leaves it, only to

1UNIX is a registered trademark of AT&T Bell Laboratories



carry on where it left off when control re-enters the coroutine at some later time. This means that coroutines
are not entered from the beginning on each activation. In contrast, when a subroutine is invoked, it always
starts execution from the beginning and its local variables only persist for that particular invocation. The
state of a coroutine consists of:

e a current location which is initialized to a starting point and then traverses whatever part of the
program that is reachable through the normal control-flow facilities.

e an execution state — blocked or active or terminated — which is changed by the coroutine constructs of
the uSystem.

e a memory which holds the data items created by the code the coroutine is executing. This is the
stack that contains the local variables for the coroutine and any subroutines called by the coroutine.
This stack is the mechanism by which the local variables persist between successive activations of the
coroutine.

As well, a coroutine identifier exists to reference the coroutine.

A coroutine executes synchronously with other coroutines created by the same task, and hence there is
no concurrency among coroutines associated with a particular task. (Although, multiple instances of the
same coroutine could be executing concurrently in different tasks.) While coroutines have no concurrency,
they are valuable constructs in a programming language. A coroutine properly handles the class of problems
that require state information to be retained between successive calls (e.g. finite state problems). Solutions
to such problems without coroutines require variables with external visibility, or local visibility and static
storage class. But since these variables are only allocated once, only one instance of such routines can be
active. Because each coroutine has its own data area, multiple instances of the same coroutine can be active.
Further, this class of problems illustrates the forms of control flow that are present in concurrent programs
without the added complexity and expense of dealing with concurrent execution. Hence, coroutines are an
intermediate step between subroutines and concurrent tasks, and valuable as a teaching device.

A uSystem coroutine is a C routine that is “cocalled”. It can call or cocall any other C routine. A
coroutine can interact with other coroutines by executing communication routines from the C routine started
as the coroutine or from any of the routines it has called.

3.2 Task

A task is a program component with its own thread of control and has the same state information as a
coroutine plus a task identifier. A task’s thread of control is scheduled separately and independently from
threads associated with other tasks. It is this thread of control that results in concurrent execution. On a
multiprocessor computer, task execution is performed in parallel. On a uniprocessor computer, concurrency
is achieved by interleaving of task execution to give the appearance of parallel execution. Because there may
be more tasks to execute than processors to execute them, it is possible for a task to be ready to execute
but not executing. Hence, tasks have one more execution state over a coroutine, the ready state.

Tasks are light-weight because of the low execution time cost and space overhead for creating a task and
the many forms of communication which are easily and efficiently implemented for them. This is possible
as all tasks in the uSystem execute within a single shared memory. This memory may be the address space
of a single UNIX process or a memory shared between a set of UNIX processes. This has its advantages as
well as its disadvantages. Tasks need not communicate by sending large data structures back and forth, but
can simply pass pointers to data structures. However, there is no address space protection between tasks so
one faulty task may overwrite another task’s data area.

A uSystem task is a C routine that is “emitted”. A task is composed of number of communicating
coroutines. In theory, a C routine can be called, cocalled and emitted; in practise, the forms of communication
used by a routine dictate how it must be started. When a C routine is emitted, a new thread of control is
created and begins execution by cocalling the C routine; hence, the emitted task is also a coroutine. The
coroutines created by a task’s thread belong to that task and cannot communicate with coroutines from
other tasks. This restriction follows naturally from the fact that only one thread can be using a coroutine’s
state, and in the pSystem, that thread is the one associated with the task that created it.



‘While a task that creates another task is conceptually the parent and the created task its child, the
uSystem makes no implicit use of this relationship nor does it provide any facilities that perform actions
based on this relationship. Once a task is emitted it has no special relationship with its emitter.

uSystem tasks are not implemented as UNIX processes for two reasons. First, UNIX processes have a
high runtime cost for creation and execution. Second, each UNIX process is allocated as a separate address
space (or perhaps several) and if the system does not allow memory sharing between address spaces, then
tasks have to communicate using pipes and sockets. Pipes and sockets are expensive and would have to be
used to simulate all the forms of interprocess communication that we intend to have. If shared memory is
available, there is still the overhead of page table creation and management for the address space of each
process. Therefore, UNIX processes are heavy-weight because of the high runtime cost and space overhead in
creating a separate address space for a process, and the possible restrictions on the forms of communication
among them. The uSystem provides access to UNIX processes only indirectly through virtual processors.
A user is not prohibited from creating UNIX processes explicitly, but such processes will not be part of the
uSystem.

8.8 Virtual Processor

A uSystem virtual processor is a “software processor” that executes tasks. A virtual processor is implemented
as a UNIX process that is subsequently scheduled for execution on the actual processor(s) by the underlying
operating system. Hence, the uSystem is not in direct control of the hardware processors; but when a
virtual processor is executing, the uSystem controls scheduling of tasks on it. On a multiprocessor UNIX
system, UNIX processes are usually distributed across the hardware processors. Because the UNIX processes
execute simultaneously, the tasks executing on them will execute simultaneously. When multiple virtual
processors are used to execute tasks, the uSystem scheduling may automatically distribute tasks between
virtual processors and, thus, indirectly between hardware processors.

The uSystem uses virtual processors instead of actual processors so that programs do not actually allocate
and hold hardware processors. Programs can be written to run using a large number of virtual processors
and execute on a machine with a smaller number of actual processors. Thus, the way in which the uSystem
accesses the concurrency of the underlying hardware is through an intermediate resource, the UNIX process.
In this way, the uSystem is kept portable across different multiprocessor hardware designs. As long as the
particular multiprocessor machine is running UNIX and has shared memory among UNIX processes, the
puSystem can provide parallelism.

3.4 Cluster

A cluster is a collection of tasks and virtual processors that execute those tasks. Most programs will
have only a single cluster as this will maximize utilization of virtual processors, which minimizes execution
time. However, because of limitations of the underlying operating system or because of special hardware
requirements, it is sometimes necessary to have more than one cluster.

A cluster uses a single-queue multi-server queueing model for scheduling its collection of tasks on virtual
processors. This results in automatic load balancing of tasks on virtual processors. Figure 1 illustrates
the runtime structure of a single cluster. An executing task is illustrated by its containment in a virtual
processor. Because of appropriate defaults for virtual processors and clusters, it is possible to begin writing
uSystem programs after learning about coroutines or tasks. More complex concurrent work may require the
use of virtual processors and clusters. If several clusters exist, tasks can be explicitly migrated from one
cluster to another. No automatic load balancing across clusters is performed by the uSystem.

When the uSystem begins execution, it creates two clusters: a system: clusier and a user clusier. The
system cluster contains a virtual processor which cannot execute user tasks. This is because the system
cluster catches errors that occur on the user clusters, prints appropriate error information and shuts down
the pSystem. A user cluster is created to contain the user tasks; the first user task is uMain. Most user
applications will not explicitly create more clusters; however, certain operations may create clusters implicitly.
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Figure 1: Runtime Structure of the uSystem

4. pKernel

The storage management of all objects in the pSystem, the scheduling of tasks on virtual processors, and the
pre-emptive round-robin scheduling to interleave task execution is performed by the uKernel. The starting
point for the uSystem was provided by the initial zKernel described in Reference [Cor88].

The uKernel exists in both a virtual uniprocessor and a virtual multiprocessor form, referred to as the
unikernel ‘and the multikernel. The form used depends on whether or not the UNIX operating system
supports shared memory among UNIX processes. If there is no shared-memory between UNIX processes,
the unikernel must be used. This limits all task execution to a single cluster containing a single virtual
processor. If there is shared memory between UNIX processes, the multikernel can be used. If the machine
has multiple processors, then tasks may actually execute in parallel if the UNIX processes execute in parallel.
If multiple processors are not present, the multikernel can still take advantage of the shared memory so that
problems like blocking UNIX operations can be handled.

While the interface to both kernels is identical, there are several differences between them, which all
result from the unikernel having only one virtual processor. First, the semantics of the virtual processor and
cluster routines are different for each kernel. In the unikernel, operations to increase or decrease the number
of virtual processors are ignored, creation of a new cluster simply returns the current cluster, and destroying
a cluster is ignored as there is only one. Hence, the system and user clusters are combined into a single
cluster. Second, there is no parallelism in the unikernel so that concurrency must be simulated. This is done
by a pre-emptive scheduling mechanism. The uniform interface allows almost all concurrent applications to
be designed and tested on the unikernel, and then run on the multikernel after re-compiling.

The upKernel provides no support for automatic growth of stack space for coroutines and tasks because
this would require compiler support. The pKernel has a debugging form which performs a number of runtime
checks, one of which is to check for stack overflow whenever flow of control transfers between coroutines and
between tasks. This catches most stack overflows; however, stack overflow can still occur if insufficient stack
area is provided, which can cause an immediate error or unexplainable results.

5. Using the uSystem
To use the uSystem in a C program, include the file:
#include <uSystem.h>

at the beginning of each source file. This file also includes the following system files: <stdio.h>,<sys/file.h>,
<sys/types.h>. These files are included to provide access to UNIX 1/O, exception, and timing facilities.



5.1 Compiling uSystem Programs

Use the command concc to compile program(s) for the unikernel. This command works just like the UNIX
cc command to compile C programs, for example:

concc [C options] yourprogram.c [assembler and loader files]

Use either the parcc command or the command concc with the -multi option to compile program(s)
for the multikernel, for example:

parcc [C options] yourprogram.c [essembler and loader files]
concc —multi [C options] yourprogram.c [assembler and loader files]

The options available on the concc and parcc commands are:

-debug The user program is loaded with the debug version of the unikernel or multikernel. The debug
version performs runtime checks to help during the debug phase of a uSystem program. This will
slow the execution of the program down significantly. This is the default.

-multi The user program is loaded with the multikernel.

-nodebug The user program is loaded with the non-debug version of the unikernel or multikernel. No
runtime checks are performed so errors usually result in immediate program termination.
The runtime checks should only be removed after the program is completely debugged.

-quiet This suppresses printing of the uSystem compilation message at the beginning of a compilation.

-compiler name This specifies the name of the compiler used to compile the uSystem program(s). This
allows compilers other than the default GNU C compiler to be used to compile a uSystem program
using concec.

These commands are available by including /u/ukernel/bin in your command search path, which is
usually located in your .cshre file.

5.2 Preprocessor Variables

When programs are compiled using concc or parcc the following preprocessor variables are passed to the C
preprocessor. If the -multi compilation option is specified, then the preprocessor variable __U_MULTI__ is
passed to the C preprocessor. If the —debug compilation option is specified, then the preprocessor variable
--U_DEBUG__ is passed to the C preprocessor. This allows conditional compilation of programs that must
work differently in these situations.

5.8 Context Switching

A context switch occurs when control transfers from a coroutine or task to another coroutine or task. The
switch involves saving the state of the currently executing party and restoring the state of the other party.
In theory, the compiler can determine the state that must be saved. However, because the uSystem has no
compiler support, it is necessary for a programmer to make part of this determination. All coroutines and
tasks use the fixed-point registers, while only some use the floating-point registers. Hence, the fixed-point
registers are always saved during a context switch, but it may or may not be necessary to save the floating-
point registers. Because there is a significant execution cost in saving the floating-point registers, they are
not automatically saved.

If a coroutine or task performs floating-point operations, then it must invoke the routine uSaveFloat
immediately after starting execution. From that point on, both the fixed-point and floating-point registers
are saved during a context switch. It is possible to revert back to saving just the fixed-point registers by
invoking the routine uSaveFixed. However, in general, switching between saving fixed and floating registers
in the same task is likely a dangerous programming practise. It is too easy to accidently put a floating point
operation outside the range where the floating-point registers are saved. '



5.4 Message passing

Except for arguments passed at creation, communication of information between coroutines and tasks is done
by message passing. A message is a block of untyped bytes that is copied, as is, between communicating
parties. The message is specified by a pointer to the block of bytes and the length of the block. The message
receiver must provide the address of an area that is large enough to contain the message that is sent or the
communication fails. The length of the message can be less than the length of the receiving area, but then
the message must contain information on the actual length of the message. The message and the receiving
area should be specified as data items of the same or structurally equivalent types. Unless the message type
is an array or a pointer, the message data-item must be preceded by an &. The length of the message and
the receiving area should be specified with sizeof (data-item), unless the data item varies in size. There is
essentially no limit on the size of a message (on some machines the implementation limits the length to 64K
bytes). If no message is to be sent during a communication, the message pointer must be set to U_NULL and
its length set to zero.

6. Coroutine Facilities

Like a subroutine, a coroutine can access all the external variables of a C program and the heap area. Also,
any static variables declared within the definition of a coroutine are shared among all instances of that
coroutine.

Two slightly different mechanisms are provided for passing control between coroutines. The first permits
a coroutine to resume its invoker; the second permits it to resume an arbitrary coroutine. These two
mechanisms are provided in order to accommodate two somewhat different styles of coroutine usage: a semi-
coroutine which acts much like a subroutine by always resuming its invoker, and a full coroutine which acts
somewhat like a task by resuming some other coroutine.

A coroutine is associated with the task that created it. If another task attempts to resume a coroutine
that it did not create, an error will result. Since coroutines determine flow of control within a task, their
execution is performed by one of the virtual processors associated with the cluster on which the task is
executing.

6.1 Coroutine Type
uCoroutine is the type of a coroutine identifier, as in:

uCoroutine x, y, z;

which creates three variables that contain coroutine-identifier values.

6.2 Coroutine Creation
The routine uLongCocall starts a C routine running as a coroutine.

coroutine-id = uLongCocall( reply-area, reply-area-length, stack-size,
routine, argument-length, arguments ... );

coroutine-id is an instance of uCoroutine which is the coroutine identifier of the newly created coroutine
and must be retained to subsequently communicate with the coroutine. No coroutine will ever have
the identifier value U_NULL.

reply-area is the address of the reply area into which the reply message from the first suspend or resume
of the newly created coroutine will be copied.

reply-area-length is the size in bytes of the reply area.
stack-size is the size in bytes of the stack that will be allocated for the coroutine.

routine is the name of a C routine to be called as a coroutine. The routine cannot return a value (i.e. it
must have return type void) but may have any parameters allowed by C.



argumeni-length is the number of bytes that will be copied as arguments to the coroutine. This num-
ber should be the sum of the max(sizeof(int), sizeof(argument;)) for all arguments passed to
routine.

arguments ... are any number of arguments passed as-is to routine. Because all arguments in C ate
passed by value, it is necessary to pass an argument’s address if the argument is to be modified
(e.g. £argument).

The cocaller suspends its execution at the uLongCocall and the coroutine begins execution just as if the C
routine is called directly. The difference is that the coroutine is executing on its own stack.

The following example creates a new coroutine with a stack size of 8000 bytes, starting execution in
routine £ with an argument length set to the size of two floating point values and passing two floating point
arguments:

uCoroutine corid;
float a, b, reply; :
void f(float x, float y) { ... } /* routine to be cocalled */

oo

corid = uLongCocall( &reply, sizeof(reply), 8000, f, sizeof(a) + sizeof(b), a, b );

Because users rarely want to bother specifying explicit stack sizes and argument lengths, there exists a
short form of the uLongCocall routine. uCocall performs the same function as uLongCocall using a default
stack size and argument length. The following example starts £ running as a coroutine using uCocall.

corid = uCocall( &reply, sizeof(reply), £, a, b );

The default values start at machine dependent values, which are no less than 4000 bytes for the stack size
and 64 bytes for the argument length. Changing the defaults is discussed in the section on clusters.
The routine uThisCoroutine is used to determine the identifier of the current coroutine.

coroutine-id = uThisCoroutine();

coroutine-id is an instance of uCoroutine which is the coroutine identifier of the calling coroutine.

6.3 Coroutine Communication

The uResume and uSuspend routines are used to transfer control and communicate among coroutines.
The routine uResume suspends execution of the current coroutine and resumes execution of a specifically
named coroutine.

uResume( coroutine-id, reply-area, reply-area-length, send-message, send-message-length )
coroutine-id is a uCoroutine identifier to a coroutine that is be resumed, passing it a particular message.

reply-area is the address of a reply area into which the reply message of a suspending coroutine will be
copied.

reply-area-length is the size in bytes of the reply area.
send-message is the address of the message to be sent to the resumed coroutine.

send-message-length is the size in bytes of the message to be sent.

A resume operation establishes an implicit link from the resumed coroutine back to the resumer. This link
is used by the uSuspend operation to perform an implicit resumption.

The routine uSuspend suspends execution of the current coroutine and resumes execution in ‘the co-
caller /resumer.

uSuspend( reply-area, reply-area-length, send-message, send-message-length )



reply-area is the address of a reply area into which the reply message of a suspending coroutine will be
copied.

reply-area-length is the size in bytes of the reply area.
send-message is the address of the message to be sent to the resumed coroutine.
send-message-length is the size in bytes of the message to be sent.

Routine call uSuspend(...) is essentially equivalent to uResume(cocaller-id/resumer-id, ...) except that
the suspender’s implicit link back to its resumer is set to U_NULL. Therefore, it is not possible to establish
suspend-suspend cycles between coroutines.

6.4 Coroutine Termination

A coroutine is terminated by calling either the uResumeDie or the uSuspendDie routine. These routines can
be invoked at any level of nested subroutine invocation to terminate the coroutine.

The routine uResumeDie terminates execution of the current coroutine and resumes execution of a specif-
ically named coroutine.

uResumeDie( coroutine-id, send-message, send-message-length );

coroutine-id is a uCoroutine identifier to a coroutine that is be resumed, passing it a particular message.
send-message is the address of a message to be sent to the resumed coroutine.

send-message-length is the size in bytes of the message to be sent.

The routine uSuspendDie terminates execution of the current coroutine and resumes execution of the
last cocaller/resumer.

uSuspendDie( send-message, send-message-length );
send-message is the address of a message to be sent to the resumed coroutine.
send-message-length is the size in bytes of the message to be sent.

Routine call uSuspendDie(...) is equivalent to uResumeDie(cocaller-id/resumer-id, ...).

Executing a return statement in a cocalled routine is the same as the routine call uSuspendbie (U_NULL,
0). This resumes the last cocaller/resumer and returns no message. The same action occurs if control runs
off the end of the cocalled routine. Therefore, if a value is to be returned at coroutine termination, it must
be passed back using one of uSuspendDie or uResumeDie.

The following example shows the simple case of a coroutine being used as a function.

void f(float x, float y) {
float result;

uSuspendDie(&result, sizeof(result)); /#* return function result */

}
uMain() {

float result, a, b;

uCoroutine corid;

corid = uCocall(&result, sizeof(result), £, a, b);
}

Appendix A contains a complete coroutine program.



7. Task Facilities

Like a coroutine, a task can access all the external variables of a C program and the heap area. However,
because tasks execute concurrently, there is the general problem of several tasks accessing the same shared
variables. Global references from tasks and static variables within a task that is instantiated multiple times
can lead to inconsistent data values in these variables. The same problem can occur if a coroutine makes
global references or has static variables and is instantiated multiple times by different tasks. Therefore, it
is suggested that these kinds of references not be used or used with extreme caution. The uSystem provides
routines to safely communicate information between tasks and allow safe access to the heap.

7.1 Task Type
uTask is the type of a task identifier, as in:

uTask x, y, 2;

which creates three variables that contain task identifier values.

7.2 Task Creation
The routine uLongEmit starts a C routine running asynchronously with the calling task.
task-id = uLongEmit( cluster, stack-size, routine, argument-length, arguments ... );

task-id is an instance of uTask which is the task identifier of the newly created task and must be retained
to subsequently communicate with the task. No task will ever have the identifier value U_NULL.

cluster is a uCluster identifier that this task is associated with. (Clusters are discussed in a following sec-
tion. Most tasks are created on the current cluster, which is given by calling routine uThisCluster().)

stack-size is the size in bytes of the stack that will be allocated for the task.

routine is the name of a C routine to be executed asynchronously. The routine cannot return a value
(i.e. it must have return type void), but may have any parameters allowed by C.

argument-length is the number of bytes that will be copied as arguments to the task. This number should
be the sum of the max(sizeof(int), sizeof(argument;)) for all arguments passed to routine.

arguments ... Any number of arguments passed as-is to routine. Because all arguments in C are passed by
value, it is necessary to pass an argument’s address if the argument is to be modified (e.g. &argument).

The following example creates a new task executing on the current cluster with a stack size of 8000 bytes,
starting execution in routine £ with an argument length set to the size of two floating point values and
passing two floating point arguments:

uTask tid;

float a, b;

void £( float x, float y ) { ... } /* routine to be emitted */

tid = uLongEmit( uThisCluster(), 8000, f, sizeof(a) + sizeof(b), a, b );

There is a short form of uLongEmit, called uEmit, that assumes the current cluster, a default stack size,
and a defaunlt argument length. The following example starts £ running as a task using uEmit:

tid = uEmit( £, a, b );

The default values for stack and argument length are the same as for coroutines.
The routine uThisTask is used to determine the identifier of the current task.

task-id = uThisTask( );

task-id is an instance of uTask which is the task identifier of the calling task.



7.3 Task Synchronization and Communication
7.3.1 Counting Semaphore

Semaphores are a mechanism for synchronizing the execution of tasks. The semaphores implemented in the
uSystem are counting semaphores as described by Dijkstra [Dij68]. A counting semaphore has two parts:
a counter and a list of waiting tasks. The counter is accessible to users, while the list of waiting tasks is
managed by the uKernel. .
uSemaphore is the type of a semaphore and it must be initialized before it is used; appropriate coun
values are integer values > 0. To initialize a semaphore variable, the macro U_.SEMAPHORE is used, as in:

uSemaphore x = U.SEMAPHORE(O0), y = U_SEMAPHORE(1), z = U_SEMAPHORE(4);

This declares three variables that are semaphores and initializes them to the value 0, 1, and 4, respectively.
The macro can be used at execution time to initialize a declared semaphore or initialize a dynamically
allocated one, as in:

uSemaphore x = U_SEMAPHORE(0), y, *z;

y

= U_SEMAPHORE(1);
z = uMalloc( sizeof (uSemaphore) );
*z = U_SEMAPHORE(4);

(The routine uMalloc is provided by the uSystem and detailed below. uMalloc returns void * and so it
is unnecessary to cast its result to uSemaphore * before assigning to z.) Normally, a semaphore is only
initialized once; any further modification to the semaphore is done only by routines uP and uVv. However, if
a semaphore is re-initialized, it should have no tasks waiting on it. This is because initialization is done by
assignment, and hence, there is no way to generate an error or unblock the waiting tasks. Any waiting tasks
will remain blocked and be inaccessible.

The routines uP and uV are used to perform the classical counting semaphore operations. uP decrements
the semaphore counter if the value of the semaphore is greater than zero; otherwise, the calling task blocks.
uV wakes up the task blocked for the longest time if there are tasks blocked on the semaphore; otherwise,
the semaphore counter is incremented.

uP( semaphore-address );
uV( semaphore-address );

semaphore-address is the address of a uSemaphore variable which is modified by uP or uVv. Unless the
argument is already a pointer to a uSemaphore, it must be preceded by an &.

The routine uC returns the current value of a semaphore’s counter.
counter = uC( semaphore-address );
counter is the value of the semaphore’s counter

semaphore-address is the address of a uSemaphore variable. Unless the argument is already a pointer to
a uSemaphore, it must be preceded by an &.

If the counter is positive, that indicates the number of uP operations that can occur before a task blocks. If
the counter is zero or negative, then the absolute value of the counter value is the number of blocked tasks
waiting on the semaphore.

Appendix B contains a complete P/V program.
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7.8.2 Send/Receive/Reply

Message passing is used for synchronizing tasks and passing data between them. The two tasks involved in
a communication are called the sender and receiver tasks. What characterizes send/receive/reply is that the
sender blocks (i.e. does not continue execution) until the receiver receives the message and explicitly replies.
All sends must be replied to, but the receiver does not need to reply to messages in the order that they weze
received. The following routines perform send/receive/reply communication between tasks and are largely
derived from Thoth [Che82]. '

The sender takes on one of two states during a communication:

send-blocked which means the sender has done a send but the message has not been received.

reply-blocked which means the sender’s message has been received but a reply has not been performed.
The receiver can be in the following state during a communication:

receive-blocked which means the receiver has done a receive but no message has been sent.

The routine uSend is used to transmit a message to another task. uSend blocks until the receiver has
replied to the sent message.

replier-task-id = uSend( receiver-task-id, reply-area, reply-area-length,
send-message, send-message-length )

replier-task-id is the uTask identifier of the task that replied to this send. Because of the ability to
forward a message (detailed below), the replying task is not necessarily the same as the task sent to.

receiver-task-id is the uTask identifier of the receiving task.

reply-area is the address of a reply area into which the reply message of the receiving task will be copied.
reply-area-length is the size in bytes of the reply area.

send-message is the address of a message to be sent to the receiving task.

send-message-length is the size in bytes of the message to be sent.

Send transmits the argument send-message to the receiving task’s receive-area.

The routine uReceive is used to receive a message sent from another task. uReceive receives a message
sent to it from any task; it cannot be used to receive a message from a particular task. uReceive blocks if
there is no task currently sending to it.

sender-task-id = uReceive( receive-area, receive-area-length )

sender-task-id is the uTask identifier of the sending task.

receive-area is the address of a receive area into which the sent message of the sending task will be copied.
receive-area-length is the size in bytes of the receive area.

When a message arrives, data from the sender’s send-message argument is copied into the receiver’s receive-
area argument. After a task has received a message, it is obligated to reply to the sender task or to delegate
the reply responsibility to another task by forwarding.

The routine uReply is used to reply to another task and to transmit a message back to the sender. uReply
does not block.

uReply( sender-task-id, reply-message, reply-message-length )

sender-task-id is the uTask identifier of a task that has sent a message to this task. The reply will fail if
the specified sender task did not send a message to the replying task, or the replying task has already
replied to this message from that sender.
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reply-message is the address of a reply message to be sent back to the sender.
reply-message-length is the length of the reply message to be sent back to the sender.

The reply copies the argument reply-message back to the sending task’s reply-area argument and the sending
task is then unblocked and continues execution.

The routine uForward is used to transmit a message to another task on behalf of the task that originally
sent the message. Once a message is forwarded, only the new receiving task can reply to it, unless the
new receiving task forwards the message again. uForward blocks until the new receiver has received the
forwarded message; no reply is necessary to the forwarder of a message, nor can a receiving task determine
if a message was forwarded or sent by the original sender.

uForward( forward-task-id, send-message, send-message-length, sender-task-id )
forward-task-id is the uTask identifier of the task to which the message is forwarded.
send-message is the address of a message that is to be forwarded.
send-message-length is the length of the message to be forwarded.

sender-task-id is the uTask identifier of the original message sender. The forward will fail if the specified
sender task did not send a message to the forwarding task.

There is no obligation on the part of the forwarder to forward the same message that it originally received
from a sender. The forwarder can receive a message and forward a new message to another task on behalf
of the original sender. The receiving task will service this new message and reply to the original sender or
it can perform another forward.

Appendix C contains a complete message passing program.

7.4 Task Termination

A task is terminated by executing the uDie routine. This routine can be invoked at any level of nested
coroutine or subroutine invocation to terminate a task. uDie is used in conjunction with routine uAbsorb,
which allows a task to wait for the completion of another task. The pair of routines allows a result to be
passed from the terminating task back to the task waiting for its completion.

The routine uAbsorb waits for completion of a specified task, accepts its last result sent by uDie, and
deallocates its resources.

uhbsorb( task-id, reply-area, reply-area-length );

task-id is the uTask identifier of the completing task.

reply-area is the address of the reply area into which the message sent from ubDie will be copied.
reply-area-length is the size in bytes of the reply area.

The routine uDie terminates execution of a task and passes back a result to some task awaiting its
completion using uAbsorb.

uDie( send-message, send-message-length );
send-message is the address of the message to be sent to a task waiting for termination of this task.
send-message-length is the size in bytes of the message to be sent.

Each task terminated using uDie must be absorbed by only one task. If the terminating task is not absorbed,
its resources will not be recovered. If multiple tasks absorb a task, only one will be successful and continue
execution. The other absorbing tasks will block forever. Currently, there is no mechanism to explicitly
unblock such a task (or any tasks that are blocked on it) or a timeout facility that can be specified on
uAbsorb to implicitly unblock it.

The following shows how uAbsorb and uDie can be used to return a result from a task:
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void f(float x, float y) {
float result;
.o /* calculate result concurrently with emitter */
uDie(&result, sizeof(result)); /* terminate task and return result */

}

uMain() { .
float result, a, b;
uTask tid;
tid = uEmit(f, a, b); /* start a task running f concurrently */
.. /* continue concurrently with f */
uAbsorb(tld &result, sizeof(result)); /* wait for task’s completion and result */

}

Executing a return statement in an emitted routine is the same as the routine call ubie(U_NULL, 0).
This canses the task to terminate and wait to be absorbed. The same action occurs if control runs off the
end of the emitted routine. Therefore, if a value is to be returned at task termination, it must be passed
back with an explicit call to uDie.

8. Virtual Processor and Cluster Facilities

A cluster is a collection of uSystem tasks and virtual processors; it provides a runtime environment for their
execution. This environment contains a number of variables that can be modified to affect how tasks and
virtual processors behave in the cluster.

The creation of a cluster allocates a data structure to store the values of the cluster environment variables
and a list of virtual processors that are associated with the cluster. A number of routines are available to
modify the cluster environment variables, and to add and remove virtual processors. The address of the
cluster data-structure acts as the cluster reference. A cluster reference can be used in operations like
uLongEmit to create a task on a particular cluster.

To ensure maximum concurrency, it is desirable that a task does not execute an operation that will cause
the virtual processor it is executing on to block. It is also essential that all virtual processors in a cluster only
execute on hardware processors that can execute any task in that cluster, since task execution is distributed
across all virtual processors of a cluster. When tasks or virtual processors cannot satisfy these conditions, it
is essential that such tasks or virtual processors be grouped into a separate cluster in order to avoid adversely
affecting other tasks. Each of these points will be examined.

For each virtual processor that blocks, the potential for concurrency decreases; therefore, it is better to
have a separate cluster that contains a task that performs a blocking operation on a sepamte virtual processor.
This maintains a constant number of virtual processors for concurrent computation in a computational
cluster. Computational tasks can then communicate with the tasks that execute blocking operations in the"
separate cluster without causing any of the virtual processors in the computational cluster to block. In most
versions of UNIX, all I/O operations cause the UNIX process to block, and therefore, all I/O in the uSystem
is delegated to tasks on separate clusters. The relationship between a computational and an I/O cluster is
illustrated in Figure 2. Depending on the kind of 1/O, there may be one or several tasks on the I/0 cluster.
To simplify the complexity of cluster creation for I/O operations, the uSystem supplies a library of 1/0
operations that perform the cluster creation automatically (detailed below).

On some multiprocessor computers, all hardware processors are not equal. For example, all of the
hardware processors may not have the same floating-point units; some units may be faster than others.
Therefore, it may be necessary to create a cluster of virtual processors that are attached to these specific
hardware processors. (The mechanism for attaching virtual processors onto hardware processors is operating
system specific and not part of the uSystem.) All tasks that need to perform high-speed floating-point
operations can be created on this cluster. This still allows tasks that do only fixed-point calculations to
continue on another cluster, potentially increasing concurrency, but not interfering with the floating-point
calculations.
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Figure 2: Multiple Clusters

8.1 Cluster Variables

Each cluster has a number of environment variables that are used implicitly by tasks and virtual processors
associated with that cluster (see Figure 3):

stack size is the default stack size used when coroutines or tasks are created with uCocall or uEmit on
a cluster.

argument length is the default argument length used when coroutines or task are created with uCocall
or uEmit on a cluster.

number of virtual processors is the number of virtual processors currently allocated on a cluster.
time slice duration is the interrupt duration for all virtual processors on a cluster.

spin duration is the spin duration before an idle virtual processor sleeps for all virtual processors on a
cluster.

Each of these variables is either explicitly set or implicitly assigned a system-wide machine-dependent default
value when the cluster is created. The mechanisms to read and reset the values are detailed below.

4000 stack size
argument length

|

I

| number of virtual processors
!

|

|

200 time slice duration
10000 spin duration

Figure 3: Cluster Variables

8.1.1 Default Stack Size

The routine uSetStackSize is used to set the default stack size value for a cluster.

uSetStackSize( new-stack-size );

new-stack-size is an integer value representing the number of bytes that is used as default stack size.

14



For example, the call uSetStackSize(8000) sets the default stack size to 8000 bytes.
The routine uGetStackSize is used to read the value of the default stack size for a cluster.

default-stack-size = uGetStackSize();
default-stack-size is an integer value that is the current default stack size value.

For example, the call i = uGetStackSize() sets integer i to the value 8000.

The uSystem provides the routine uVerify to verify whether or not the current coroutine or task has
overflowed its stack. If it has, a uSystem error results and is handled by the uSystem’s error handling
mechanisms. When debugging is enabled, uVerify is called on each context switch. Since a coroutine or
task often calls no other subroutines, it is suggested that a call to uVerify be included at the beginning of
each, as in the following example:

void £( ... ) {
.+ declarations
uVerify();
... routine body

}

Thus, after each coroutine or task has allocated its own local stack space, a verification is made that the
stack has not overflowed. If a coroutine or task calls subroutines, each subroutine would have to start with
a call to uVerify to check for stack overflow.

8.1.2 Default Argument Length

The routine uSetArgLen is used to set the default argument length for a cluster.

uSetArgLen( new-argument-length );

new-argument-length is an integer value representing the number of bytes that is used as the default
argument length.

For example, the call uSetArgLen(100) sets the default argument length to 100 bytes.
The routine uGetArglen is used to read the value of the default argument length for a cluster.

default-argument-length = uGetArgLen() ;
default-argument-length is an integer value that is the current default argument length.

For example, the call i = uGetArgLen() sets integer i to the value 100.

In theory, it is possible to determine the argument length automatically from the argument list; however,
this is only possible if the facilities to start a coroutine or task are integrated into the programming language.
There are problems when an argument length is specified that is not the exact size of the argument list.
If the length is greater, extra bytes are copied, which is runtime inefficient. If the length is less, argument
information is not copied, which results in unpredictable behaviour or failure of the coroutine or task.

8.1.83 Virtual Processors on a Cluster

The routine uSetProcessors will create or destroy virtual processors as needed to have the specified number
of processors on the current cluster.

uSetProcessors( number-of-processors ) ;
number-of-processors is the number of virtual processors that will exist on the current cluster.

For example, the call uSetProcessors(5) will increase or decrease the number of virtual processors on a
cluster to 5.
The routine uGetProcessors is used to read the current number of processors on a cluster.
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current-number-of-processors = uGetProcessors();

current-number-of-processors is an integer value that is the current number of virtual processors on this
cluster

For example, the call i = uGetProcessors() sets integer i to the value 5.

The system dependent macro U_PHYSICAL_PROCESSORS returns the maximum number of hardware pro-
cessors available on a computer.

Changing the number of virtual processors is expensive, since a request is made to UNIX to allocate
or deallocate UNIX processes. This operation often takes at least an order of magnitude more time than
task creation. Further, there is often a small maximum number of UNIX processes (e.g. 20-40) that can be
created for a UNIX program. Therefore, virtual processors should be created judiciously, normally at the
beginning of a program.

The following are points to consider when deciding how may virtual processors to create for a cluster.
First, there is no advantage in creating significantly more virtual processors than the average number of
simultaneously active tasks on the cluster. For example, if on average three tasks are eligible for simultaneous
execution, then creating significantly more than three virtual processors will not achieve any execution speed
up and wastes resources. Second, while it is possible to create more virtual processors than actual hardware
processors, there is usually a performance decrease in doing so. Having more virtual processors than actual
processors can result in extra context switching of the heavy-weight UNIX processes, which is runtime "
inefficient. This same problem can occur between clusters. If a computational problem is broken into multiple
clusters and the total number of virtual processors associated with all the.clusters exceeds the number of
hardware processors, extra context switching of the UNIX processes will occur. The exception to this rule
is when multiple clusters are used to handle blocking I/O problems. In this case, the virtual processors
associated with I/O clusters spend most of their time blocked and do not interfere with virtual processors
on computational clusters. Finally, a uSystem program usually shares the actual hardware processors with
other user programs. Therefore, the overall UNIX system load will affect how many virtual processors should
be allocated to avoid unnecessary context switching of UNIX processes.

8.1.4 Implicit Task Scheduling

Pre-emptive scheduling is enabled by default on both unikernel and multikernel. Each virtual processor in
the pSystem is periodically interrupted by a UNIX timer in order to reschedule the currently executing task.
Note that interrupts are not associated with a task but with a virtual processor; hence, tasks do not receive
a time slice, virtual processors do. A task is pre-empted at non-deterministic locations in its execution when
the virtual processor’s time-slice expires. All virtual processors on a cluster have the same interrupt duration
but the interrupts are not synchronized. The default virtual-processor time-slice is machine dependent but
is approximately 0.1 seconds on most machines. The effect of this pre-emptive scheduling ensures that users
do not write programs that depend on the order or the speed of execution of any particular task or tasks in
their program. Further, on the unikernel, the effect is to accurately simulate parallelism.

The routine uSetTimeSlice is used to set the default interrupt-duration for each virtual processor on
the current cluster.

uSetTimeSlice( milliseconds ) ;
milliseconds is an integer value representing the number of milliseconds between interrupts.

For example, the call uSetTimeS1lice(50) sets the default interrupt-duration to 0.05 seconds for each virtual
processor on this cluster. To turn pre-emption off, call uSetTimeSlice(0). On many machines the minimum
time slice duration may be 10 milliseconds (0.01 of a second). Setting the duration to an amount less than
this simply sets the interrupt time interval to this minimum value. (On System V UNIX, pre-emption occurs
at most once a second, which may not be often enough to adequately test that a concurrent program does
not depend on order or speed of execution of its tasks.)

The overhead of pre-emptive scheduling depends on the frequency of the interrupts. Further, because
interrupts involve entering the UNIX kernel, they are relatively expensive. We have found that an interrupt
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interval of 0.05 to 0.1 seconds adequately verifies that a concurrent program does not depend on order or
speed of task execution and increases execution cost by less than 1% for most programs.
The routine uGetTimeSlice is used to read the current default interrupt-duration for a cluster,

time-slice-duration = uGetTimeSlice();
time-slice-duration is an integer value that is the current interrupt duration on this cluster.

For example, the call i = uGetTimeSlice() sets integer i to the value 50.

8.1.5 Idle Virtual Processors

When there are no tasks on a cluster ready queue for a virtual processor to execute, the idle virtual processor
has to spin in a loop or sleep or both. In the uKernel, an idle virtual processor spins for a user specified
amount of time, before it sleeps. During the spinning, the virtual processor is constantly checking the ready
queue for the arrival of new work. An idle virtual processor is ultimately put to sleep so that machine
resources are not wasted. The reason that the idle virtual processor spins is because the sleep/wakeup
cycle can be large in comparison to the execution of tasks in a particular application. If an idle virtual
processor goes to sleep immediately upon finding no work on the ready queue, then the next executable
task will have to wait for completion of a UNIX system call to restart the virtual processor. Alternatively,
if the idle processor spins for a short period of time any task that arrives during the spin duration will be
processed immediately. Selecting a spin time is application dependent and it can have a significant affect on
performance. ‘

The routine uSetSpin is used to set the default spin-duration for each virtual processor on the current
cluster.

uSetSpin( microseconds ) ;

microseconds is an integer value representing the number of microseconds the idle virtual processor will
spin before it sleeps.

For example, the call uSetSpin(50000) sets the default spin-duration to 0.05 seconds for each virtual
processor on this cluster. To turn spinning off, call uSetSpin(0).
The routine uGetSpin is used to read the current default spin-duration for a cluster.

spin-duration = uGetSpin();
spin-duration is an integer value that is the current spin duration on this cluster.

For example, the call i = uGetSpin() sets integer i to the value 50000. The precision of the spin time is
machine dependent and can vary from 1 to 50 microseconds.

8.2 Cluster Type
uCluster is the type of a cluster identifier, as in:
uCluster x, y, 2z;

which creates three variables that contain cluster identifier values.

8.3 Cluster Creation

uClusterVars is the type of a structure that contains the initial defaults for a new cluster created by
uLongCreateCluster (detailed next):
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typedef struct {
long Processors;
long TimeSlice;
long Spin;
long StackSize;
long Arglen;

} uClusterVars;

uClusterVars variables must be initialized with the macro U_CLUSTER_VARS() before use, as in:
uClusterVars cv = U_CLUSTER_VARS();

This initializes the fields of cv to the system-wide machine-dependent default values. Individual fields
can then be changed to user specified values. By always initializing uClusterVars variables with macso
U_CLUSTER_VARS(), new cluster variables can be added in the future and programs do mnot have to be
changed, only re-compiled.

The routine uLongCreateCluster creates a cluster with at least one virtual processor associated with
it.

cluster-id = uLongCreateCluster( cluster-variable-address ) ;

cluster-id is the uCluster identifier of the new cluster. This value must be retained as it is used to
subsequently place tasks on the cluster, or to destroy the cluster.

cluster-variable-address is the address of a uClusterVars variable which contains the initial defaults for
the new cluster.

The maximum number of clusters that can be created is indirectly limited by the number of UNIX processes
a program can create, as the sum of the virtual processors on all clusters cannot exceed the limit set by
UNIX for a program.

The following shows how a cluster is created with 5 processors, no time slicing, a stack size default of 8000
bytes, and the machine-dependent default for the task argument-length and virtual-processor spin-time.

uClusterVars cv = U_CLUSTER_VARS(); /* set machine-specific defaults */

uCluster c;

cv.Processors = 5; /* change specific fields */
cv.TimeSlice = 0;
cv.StackSize = 8000;

c = uLongCreateCluster( &cv );

There is a short form of uLongCreateCluster, called uCreateCluster, that assumes the machine specific
defaults for all cluster variables except number of processors and virtual-processor time-slice.

cluster-id = uCreateCluster ( number-of-processors, milliseconds );

cluster-id is the uCluster identifier of the new cluster. This value must be retained as it is used to
subsequently place tasks on the cluster, or to destroy the cluster.

number-of-processors is the number of virtual processors that will be initially associated with the new
cluster.

milliseconds is an integer value representing the number of milliseconds between interrupts for each
virtual processor on the cluster.

The routine uThisCluster is used to determine which cluster a task currently resides in.
cluster-id = uThisCluster();

cluster-id is the uCluster identifier of the cluster on which the calling task resides.
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8.4 Cluster Termination

The routine uDestroyCluster deallocates the specified cluster, which destroys all virtual processors associ-
ated with the cluster.

uDestroyCluster( cluster-id );
cluster-id is a uCluster identifier of the cluster to be destroyed.

It is the user’s responsibility to ensure that no tasks are executing on a cluster when it is destroyed; therefore,
a cluster can only be destroyed from a task on another cluster. If tasks are executing on a cluster when it
is destroyed, they will block and be inaccessible.

8.5 Explicit Task scheduling

The routine uYield gives up control of the virtual processor to another ready task. For example, the routine
call uYield() returns control to the uKernel to schedule another task, hence giving up control of the virtual
processor. If there are no other ready tasks, the yielding task will be restarted.

uYield allows a task to relinquish control when it has no further work to do or when it wants other tasks
to execute before it performs more work. An example of the former situation is when a task is polling for
an event, such as a hardware event. After the polling task has determined the event has not occurred, it
can relinquish control to another ready task. An example of the latter situation is when a task is creating
other tasks. The creating task may not want to create a large number of tasks before the created tasks
have a chance to begin execution. (Task creation occurs so quickly that it is possible to create 30-50 tasks
before pre-emption occurs.) If after the creation of several tasks the creator yields control, then each created
task will have an opportunity to begin execution (possibly only one instruction before pre-emption occurs)
before the next group of tasks is created. This facility is not a mechanism to control the exact order of
execution of tasks like resume does with coroutines; pre-emptive scheduling and/or multiple processors make
this impossible.

The routine uDelay invokes u¥ield N times. For example, the routine call uDelay(5) calls u¥ield() 5
times, hence immediately giving up control of the virtual processor and ignoring the next 4 times the task
is scheduled for execution.

8.6 Defaults for uMain

Because all the defaults are set for the initial user cluster before uMain begins execution, the task uMain is
normally created with the machine-dependent cluster-values. This can cause problems if the default stack
size is insufficient for the variables declared in uMain. If the default stack size for uMain is exceeded, uMain
will terminate with an addressing error on the first reference to a local variable beyond the stack. It is
possible to reset any of the defaults for the initial user cluster by defining an optional routine uStart in the
user application and calling the above routines to change the defaults, for example:

void uStart( void ) {
if ( uGetStackSize() < 8000 ) { /* check machine dependent stack size */
uSetStackSize( 8000 ); /* set stack size to at least B000 bytes */
}

uSetTimeSlice( 0 ); /% turn off time slicing before uMain begins */

}

uStart is called by the uKernel to set up the user cluster before it emits uMain. If the user does not supply
a nStart routine, a defanlt routine with a null execution body is supplied.

8.7 Migration

Most tasks will execute on only one cluster. However, some applications may need to move a task from one
cluster to another so that it can access resources that are peculiar to that cluster’s virtual processors. The
routine uligrate moves a specified task to a specified clustei.
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uMigrate( task-id, cluster-id )
task-id is a uTask identifier of the task to be moved.

cluster-id is a uCluster identifier of the cluster that the task is moved to.

9. Memory Management

All data that the uSystem manipulates must reside in shared memory. In the unikernel case, there is a single
data address-space. All memory allocated during execution comes from this address space, and hence, is
shared. In the multikernel case, several data address-spaces exist, one for each UNIX process. These data
address-spaces have private memory accessible only by a single process and shared memory that is accessible
by all the UNIX processes.

In order to make memory management operations portable across both versions of the uSystem and
guarantee that storage is sharable, the uSystem provides memory management routines, called uMalloc,
uRealloc and uFree, that will allocate and free memory correctly for each version of the uSystem. These
routines provide identical functionality to the UNIX malloc, realloc and free routines.

9.1 Memory Allocation
The routine uMalloc allocates memory.

address = uMalloc( number-of-bytes );

address the address of a block of memory of at least the requested size. uMalloc returns void * and so
it is unnecessary to cast its result to the pointer type expected at the usage site.

number-of-bytes the number of bytes of memory to be allocated.

If uMalloc cannot allocate the requested memory, an error is reported via the uSystem error handling
facilities.
The following code shows an example of how to allocate memory.

int size;
void *addr;

addr = uMalloc( size );

The routine uRealloc increases or decreases the size of an existing allocated block of memory or moves
the block to a new location that is at least of the specified size.

address = uRealloc( allocated-memory-address, number-of-bytes );

address the address of a block of memory of at least the requested size. uRealloc returns void * and
so it is unnecessary to cast its result to the pointer type expected at the usage site.

allocated-memory-address the address of an existing allocated area of memory.

number-of-bytes the number of bytes that the old allocated area is to be re-sized to.

If uRealloc cannot allocate the requested memory, an error is reported via the pSystem error handling
facilities.



9.2 Memory Deallocation
The routine uFree deallocates memory.
uFree( address );

address of the block of memory to deallocate.

The following code shows how to deallocate memory.

void *addr;

uFree( addr );

10. Interaction with the UNIX File System

In UNIX, file and socket operations cause the UNIX process performing the operation to block. This defeats
concurrency in the unikernel and inhibits concurrency in the multiprocessor. Different techniques are used
to mitigate this problem in the unikernel and multikernel. In both cases, cover routines to perform the I/0
operations should be used. The I/O cover routines have essentially the same syntax as the normal UNIX
1/0O routines; however, instead of a UNIX file descriptor being passed around as the reference to a file or
socket, a uSystem file descriptor is used. None of the uSystem I/O routines return an error code; errors are
checked for and handled through an internal mechanism in the uSystem (detailed below).

10.1 Unikernel File Operations

UNIX supports non-blocking I/O operation; however, not all UNIX systems support a signalling mechanism
to indicate completion of the I/O operation. In general, it is necessary to poll for completion of non-blocking
1/0O operations.

To retain concurrency in the unikernel during I/O operations, the uSystem I/O routines check the
ready queue before performing their corresponding UNIX I/O operation. If there are no tasks waiting to
execute, a blocking I/O operation is performed. If there are tasks to execute, a nonblocking 1/O operation
is performed. The task performing the I/O operation then goes into a polling loop checking for completion
of the I/O operation and yielding control of the processor if the operation has not completed. This allows
other tasks to progress with a slight degradation in performance due to the polling tasks.

If all ready tasks are performing I/O operations, then these tasks spin checking for /O completion, which
wastes processor resources. If one or more of the I/O operations are to disk, then the spin time is relatively
low {e.g. tens of milliseconds). Only if all the I/O operations are to terminal like devices will the spin time
be a potential problem; however, we believe that multiple terminal input operations are rare. Hence, this
solution is a compromise between retaining concurrency and not wasting processor resources given the lack
of a signalling facility to indicate I/O completion. In general, it works sufficiently well to accurately test
programs performing concurrent I/O operations on a uniprocessor.

10.2 Multikernel File Operations

In the multikernel, not only is there the blocking I/O problem, but some UNIX systems associate the internal
information needed to access a file (i.e. a file descriptor) with a virtual processor (i.e. UNIX process) in a
non-shared way. This means that if a task opens a file on one virtual processor it will not be able to read or
write the file if the task is scheduled for execution on another virtual processor. Both problems can be solved
by creating a separate cluster that has a single virtual processor containing the file descriptor. Any task
that wants to access the file migrates to the 1/O cluster to perform the operation. In this manner, a task
performing an I/O operation can access the private UNIX file descriptor, and the blocking I/O operations do
not affect virtual processors of a computational cluster only the task that called the uSystem cover routine.

In detail, a cluster and a virtual processor are automatically created when a user task opens a file. Hence,
each open file has a corresponding UNIX process. The exception to this rule is stdin, stdout and stderr
which are all open implicitly on the system cluster. A user task then performs I/OQ operations by executing
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the equivalent uSystem cover routine, which migrates the task to the cluster containing the file descriptor
and performs the appropriate operation. When the user task closes the file, the cluster and all of its resources
are released. To ensure that multiple tasks are not simultaneously performing I/O operations, each uSystem
file descriptor has a semaphore that is used to serialize operations. Figure 4 illustrates the runtime structures
created for accessing a file (UNIX resources are illustrated with an oval).
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Figure 4: UNIX File I/O Cluster

Notice that serialization only occurs per file descriptor. If a file is opened multiple times, each opening
creates a new and independent cluster, virtual processor and file descriptor. Access to these file descriptors
on different clusters are not synchronized. This is not a problem if all tasks are reading, but will not work,
in general, for multiple writer tasks or a combination of reader and writer tasks to the same file.

11. Formatted I/0

To aid the programmer, there are cover routines for the UNIX formatted I/O operations, which work like
their UNIX counterpart, but perform their operations on a separate cluster. In the unikernel case, creating
a cluster returns a reference to the current cluster so all files are open on the virtual processor for this
single cluster. As well, there are three file identifiers uStdout, uStdin, and uStderr which identify the file
descriptors managing the corresponding files stdout, stdin, and stderr, respectively. For complete details
on each cover routine, first refer to the man pages for the corresponding UNIX routine. None of the uSystem
formatted I/O routines returns an error code, as errors are handled in a different way (detailed below).
11.1 Stream Type
uStrean is the type of a formatted file identifier, as in:

uStream input, output;

which creates two variables that contain formatted file identifier values.

11.2 Opening a Formatted File
A formatted file is opened with the uFopen routine.

file-id = uFopen( uniz-file-name, open-type );

file-id is a uStream identifier to the formatted file. This value must be retained as it is used to subse-
quently access the file.

uniz-file-name is the address of a string of ASCII characters representing a UNIX path name to the file,
terminated by a null character.

open-flag indicates how the file is to be opened for access. See the man entry for fopen for the options.
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uFopen creates a cluster and places one virtual processor on that cluster. Then uFopen migrates the calling
task to the new cluster, which performs an actual UNIX open operation, creating the UNIX file descriptor
on the virtual processor for that cluster. The calling task is then migrated back to its eriginal cluster. The
following example shows the opening of a formatted file:

uStream input;
input = uFopen( "test.c", "r" );

11.3 Reading and Writing from a Formatted File

The routine uPrintf converts, formats, and prints its arguments on the standard output file which is usually
the interactive terminal.

uPrintf( format, arguments ... );

format is a format string containing text to be printed and format codes which describe how to print the
following variable number of arguments.

arguments ... is a list of arguments to be formatted and printed on standard output. The number of
elements in this list must match with the number of format codes.

The following example shows printing on the standard output file:
uPrintf( "Hello World\n" );
The routine uPutc writes a character on the specified output file (identical to uFputc below).
character = uPutc( character, file-id );
character the character that is written is returned.
character the character to be appended to the end of the file denoted by the specified file-id.
file-id is a uStream identifier to the formatted file.
The following example shows printing a character on an arbitrary output file:

int ch;
uStream output;

ch = uPutc( ’c’, output );

The routine uPutchar writes a character on the standard output file which is usually the interactive
terminal).

character = uPutchar( character );
character the character that is written is returned.
character the character to be appended to the end of the standard output file.
The following example shows printing on the standard output file:
uPutchar( ’c’ );

The routine uPuts writes a character string on the standard output file which is usually the interactive
terminal.

uPuts( character-string );
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character-string the string of characters terminated with *\0’ to be appended to the end of the standard
output file.

The following example shows printing on the standard output file:
uPuts( "abc" );

The routine uFprintf performs the same operation as uPrintf but does not default to printing on
standard output. Instead, it can print formatted output on any specified file.

uFprintf( file-id, format, arguments ... );
file-id is a uStreanm identifier to the formatted file.

format is a format string containing text to be printed and format codes which describe how to print the
following variable number of arguments.

arguments ... is a list of arguments to be formatted and printed on the file denoted by the specified
file-id. The number of elements in this list must match with the number of format codes.

The following example shows printing on an arbitrary output file:

uStream output;

1;.I:‘1;rintf( output, "This is the number '/.c:l\n" , 1)
The routine uFputc writes a character on the specified output file (identical to uPutc above).
character = Fputc( character, file-id );
character the character that is written is returned.
character the character to be appended to the end of the file denoted by the specified file-id.
file-id is a uStream identifier to the formatted file.
The following example shows printing a character on an arbitrary output file:
uStream output;
I;I:'};utc( ’c?, output );

The routine uFputs performs the same operation as uPuts but does not default to printing on standard
output.

uFputs( character-string, file-id );

character-string the string of characters terminated with ’\0’ to be appended to the end of the file
denoted by the specified file-id.

file-id is a uStream identifier to the formatted file.

The following example shows printing a character string on an arbitrary output file:

uStream output;
uFputs( "abc", output );

Unfortunately, when writing to a terminal the occasional carriage return is lost due to a bug in UNIX. If
output is directed into a file (e.g. > or >>) or through a filer (1), there is no problem.
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a.out | more oulput from uSystem program piped into more ensures no loss of carriage returns

The routine uScanf reads characters from the standard input file, interprets then according to the
specified format codes, and stores the result in the arguments.

number-of-characters = uScanf( format, arguments ... );
number-of-characters is the number of successfully matched and assigned input items.

format is a format string containing text to be matched and format codes which describe how to interpret
input text for assignment to the following variable number of arguments.

arguments ... is a list of pointers to variables that are assigned the interpreted text values from standard
input. The number of elements in this list must match with the number of format codes.

The following shows scanning input from the standard input file:
int a, b;
uScant ( "Yd %d", &a, &b );
The routine uGetc reads a character from the specified input file (identical to uFgetc below).
integer-value = uGetc( file-id );

integer-value the next character, returned as an integer, to read from the file denoted by the specified

file-id.
file-id is a uStream identifier to the formatted file.
The following example shows reading a character from an arbitrary output file:
int ch;
uStream input;
ch= uGetc( input );

The routine uGetchar reads a character from the standard input file which is usually the interactive
terminal.

integer-value = uGetchar();
integer-value the next character, returned as an integer, from the standard input file.
The following example shows reading from the standard input file:

int ch;

ch = uGetchar();

The routine uGets reads n-1 characters, or up to a newline, from the standard input file into a string
area.

string-pointer = uGets( siring-pointer, number-of-characters );
string-pointer the value of the first argument.

string-pointer a pointer to a string area into which characters are read from the standard input file. The
string is terminated by a newline character.



number-of-characters the maximum number of characters to be read into the string area plus the newline
character.

The following example shows reading from the standard input file:

char *s;

8 = uGets( s, 21 );

The routine uUngetc pushes the specified character onto the s'peciﬁed input file so that it can be read as
if it appeared in the input.

character = ulngetc( character, file-id );
character the character that is pushed is returned.
character the character to be pushed back onto the file denoted by the specified file-id.
file-id is a uStrean identifier to the formatted file.
The following example shows pushing a character back onto an arbitrary output file:

int ch;
uStream input;

ch = uUngetc( ch, input );

The routine uFscanf performs the same operation as uScanf but does not default to reading from
standard input. Instead, it can read from any specified file.

number-of-characters = uFscant ( file-id, format, arguments ... );
number-of-characters is the number of successfully matched and assigned input items.
file-id is a uStream identifier to the formatted file.

format is a format string containing text to be matched and format codes which describe how to interpret
input text for assignment to the following variable number of arguments.

arguments ... is a list of pointers to variables that are assigned the interpreted text values from standard
input. The number of elements in this list must match with the number of format codes.

The following shows scanning input from an arbitrary input file:

int a, b;
uStream input;

uFscanf( input, "%d %d", %a, &b );
The routine uFgetc reads a character from the specified input file (identical to uGetc above).
integer-value = uFgetc( file-id );

integer-value the next character, returned as an integer, to read from the file denoted by the specified

file-id.
file-id is a uStream identifier to the formatted file.

The following example shows reading a character from an arbitrary output file:
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~ int ch;
uStream input;

ch = uFgetc( input );

The routine uFgets performs the same operation as uGets but does not default to reading from standard
input.

string-pointer = uFgets( sitring-pointer, number-of-characters, file-id );
string-pointer the value of the first argument.

string-pointer a pointer to a string area into which characters are read from the file denoted by the
specified file-id. The string is terminated by a newline character.

number-of-characters the maximum number of characters to be read into the string area plus the newline
character.

file-id is a uStream identifier to the formatted file.

The following example shows reading a character from an arbitrary output file:

char *s;
uStream input;

s = uFgets( s, 21, input );

11.4 Flushing a Formatted File

It may be necessary to flush the output buffer to a file to insure that all output is written before the program
continues. A file buffer is flushed with the uFflush routine.

uFflush( file-id );

file-id is a uStream identifier to the formatted file.
The following shows how to flush a file:

uStream input;

uFf lush( input );
11.5 Closing a Formatted File

A formatted file is closed with the uFclose routine.
uFclose( file-id );
file-id is a uStream identifier to the formatted file.

uFclose closes the file, and destroys the virtual processor and the cluster associated with it. The following
example shows the closing of a file:

uStream input;

uFclose( input );

Appendix D contains a complete formatted file program.
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12. Unformatted I/0

To aid the programmer, there are cover routines for the UNIX unformatted I/O operations, which work like
their UNIX counterpart, but perform their operations on a separate cluster. In the unikernel case, creating
a cluster returns a reference to the current and only cluster. For complete details on each cover routine, first
refer to the man pages for the corresponding UNIX routine. None of the uSystem unformatted 1/0 routines
returns an error code, as errors are handled in a different way (detailed below).

To use the unformatted I/O facilities in a C program, include the file:

#include <uFile.h>
at the beginning of each source file. This file also includes the following system files: <sys/types.h>,

<sys/file.h>, <sys/un.h>, <socket.h>.

12.1 File Type
uFile is the type of a file identifier, as in:
uFile input, output;

which creates two variables that contain unformatted file identifier values.

12.2 Opening an Unformatted File
An unformatted file is opened with the uOpen routine.
file-id = uOpen( uniz-file-name, open-flag, protection-mode );

file-id is a uFile identifier to the unformatted file. This value must be retained as it is used to subse-
quently access the file.

uniz-file-name is the address of a string of ASCII characters representing a UNIX path name to the file,
terminated by a null character.

open-flag indicates how the file is to be opened for access. See the man entry for open for the options.

protection-mode is the protection mode for a newly created file. See the manual entry for open for the
protection modes.

uOpen creates a cluster and places one virtual processor on that cluster. Then uOpen migrates the calling
task to the new cluster, which performs an actual UNIX open operation, creating the UNIX file descriptor
on the virtual processor for that cluster. The calling task is then migrated back to its original cluster. The
following example shows the opening of an unformatted file:

uFile input;
input = uOpen( "test.c", O_RDONLY, 0 );

12.3 Reading and Writing from an Unformatted File

After opening a file, it is read and /or written with the routines uRead and uWrite. Both uRead and uWrite
have the same parameters.

count = uRead( file-id, buffer-address, number-of-bytes );
count = uWrite( file-id, buffer-address, number-of-bytes );

count is the number of bytes actually read from the file by uRead or written to the fle by uWrite. This
number may not be the same as the number of bytes requested either because the end of file is reached
for a read operation, or no more bytes can be written by the write operation.
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file-id is a uFile identifier to the unformatted file.
buffer-address is the address of an area into which the bytes are read into or written from.
number-of-bytes is the number of bytes to be read from or written to the file buffer.

The following example shows reading from and writing to a file:

uFile input, output;

char *buf;

int len, count;

count = uRead( input, buf, len );
count = uWrite( output, buf, len );

124 Random Access Within an Unformatted File
The current location of the file pointer associated with an open file may be modified with the uLseek routine.
pos = ulseek( file-id, offset, whence );
file-id is a uFile identifier to the unformatted file.

offset depending on the value of whence, this value sets the file pointer, increments the file pointer, or
extends the file. :

whence determines how the value of offset is interpreted.
pos receives the updated value of the file pointer.
The following example shows how to modify a file pointer:

uFile direct;

off_t pos;
pos = ulLseek( direct, 0, L_SET ); /* move pointer to beginning of file */
pos = uLseek( direct, 100, L_INCR ); /* pointer is moved forward 100 bytes */

pos = uLseek( direct, 200, L_XTND }; /* pointer is moved 200 bytes past end of file */

12.5 Synchronizing an Unformatted File

The routine uFsync causes all modified data and attributes of a file to be saved on permanent storage. This
normally results in all modified copies of buffers for the associated file to be written to disk.

uFsync( file-id );

file-id is a uFile identifier to the unformatted file.

12.6 Closing an Unformatted File

An unformatted file is closed with the uClose routine.
uClose( file-id );
file-id is a uFile identifier to the unformatted file.

uClose closes the file, and destroys the virtual processor and the cluster associated with it. The following
example shows the closing of a file:

uFile input;

uClose( input );
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18. Socket I/O

To aid the programmer, there are cover routines for the UNIX socket operations, which work like their
UNIX counterpart, but performs the operations on a separate cluster. In the unikernel case, creating a
cluster returns a reference to the current and only cluster. For complete details on each cover routine, first
refer to the man pages for the corresponding UNIX routine. None of the uSystem socket routines returns an
error code, as errors are handled in a different way (detailed below).

A client-server model of socket communication is be used, where each client connects with a particular
server and each server can connect with multiple clients. Once a connection is established between client
and server, communication can be bidirectional between them. After a socket is created, it is specialized
as either a server socket or a client socket. A socket can be closed and subsequently re-specialized. The
following discussion on socket routines indicates for each routine, whether it is used by a client application,
or a server application.

To use socket I/O facilities in a C program, include the file:

#include <uFile.h>

at the beginning of each source file. This file also includes the following system files: <sys/types.h>,
<sys/file.h>, <sys/un.h>, <socket.h>.

13.1 Socket Creation
Both client and server applications must create a socket with the uSocket routine.

socket-id = uSocket( address-format, communication-type, protocol );

socket-id is a uFile identifier to the socket. This value must be retained as it is used to subsequently
specialize the socket as a client or server.

address-format is an address format for interpreting subsequent addresses in socket operations. See the
man entry for socket for the formats.

communication-type is a type which indicates the semantics of communication. See the man entry for
socket for the types.

protocol is a particular protocol to be used with the socket. See the man entry for socket for the different
protocols.

uSocket creates a cluster and places one virtual processor on that cluster. Then uSocket migrates the
calling task to the new cluster, which performs an actual UNIX socket operation, creating the UNIX socket
descriptor on the virtual processor for that cluster. The calling task is then migrated back to its original
cluster. The following example shows the creation of a socket:

uFile socket;
int af, type, protocol;

socket = uSocket( af, type, protocoi )

13.2 Server Socket Routines

The following routines are used by applications using sockets for the server side of the model.

13.2.1 Binding a Name to a Socket

A server application will bind a name to a socket with the uBind routine.

uBind( socket-id, socket-name, socket-name-length );
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socket-id is a tt uFile identifier of a socket.

socket-name is an address for a sockaddr structure in which the socket name will be placed.

socket-name-length is a the length of the new socket name.

This socket is now a server. The following example shows the binding of a socket with a socket name making
it a server: :

uFile server;
struct sockaddr *name;
int namelen;

uBind( server, name, namelen );

13.2.2 Listening to a Socket

A server application must set a limit on the number of incoming connections from clients that will be buffered
with the uListen routine.

uListen( server-id, maz-queue-length );

server-id is a uFile identifier of a socket that is now a server from a call to uBind.
maz-queune-length is the maximum length the queue of pending connections.

The following example shows the setting of 2 maximum number of connections to a server socket:
uFile server;
int logsize;

uListen( server, logsize );

13.2.3 Accepting a Connection
A server can accept multiple connections with the uAccept routine.

connection-id = uhccept( server-id, sockei-name, socket-name-length );

connection-id is a uFile identifier to the connection through which communicate can occur with a client.
server-id is a uFile identifier of a server that is managing connections on a socket.
socket-name is an address for a sockaddr structure containing the socket name.

socket-name-length is a the length of the socket name.

When a client arrives, a connection is established between client and server and uAccept returns (unless the
server is marked nonblocking). The connection-id is use in transfer data through the connection between the
client and the server. After the connection is created, the server is available to establish more connections
with other clients. The following example shows how to accept a connection on a socket.

uFile server, connection;
struct sockaddr *name;
int namelen;

connection = uAccept( server, name, namelen );



13.3 Client Socket Routines

The following routines are used by applications using sockets for the client side of the model.

13.3.1 Making a Connection
A client application makes a connection to a server with the uConnect routine.
uConnect ( socket-id, server-socket-name, server—socket-nqme-length );
socket-id is a uFile identifier of a socket.
server-socket-name is an address for a sockaddr structure containing a server socket name.
server-socket-name-length is a the length of the server socket name.

uConnect returns when the socket has connected with a server socket. This socket is now a client and it
communicates with the server through the connection that was created by the server’s accept. The following
example shows the connection of a socket with a server making the socket into a client:

uFile client;
struct sockaddr *server_name;
int server_namelen;

uConnect( client, server_name, server_namelen );

13.4 Communicating on a Socket

The following routines are used to communicate among clients and connections.

13.4.1 Reading and Writing from a Socket

After a connection has been established between a client and a connection for a server, communication
between client and connection is performed with the uRead and uWrite routines. Both uRead and uWrite
have the same parameters.

count = uRead( {client,connection}-id, buffer-address, number-of-bytes );
count = uWrite( {client,connection}-id, buffer-address, number-of-bytes );

count is the number of bytes actually read from the socket by uRead or written to the socket by uWrite.
This number may not be the same as the number of bytes requested if the requested amount of bytes
had not yet arrived.- uRead operations do not always block until the socket receives the requested
amount of bytes. Rather, when some bytes have arrived, and a significant delay has passed, the uRead
routine will return with only those bytes. Therefore, an application may have to poll the socket until
it receives the requested number of bytes.

{client,connection}-id is a uFile identifier to a client or a connection.
buffer-address is the address of an area into which the bytes are read.
number-of-bytes is the number of bytes to be read from the socket into the buffer.
The foliowing example shows bidirectional communication from a client to some connection:

uFile client;
char *buf;
int len, count;

count = uRead( client, buf, len );
count = uWrite( client, buf, len );
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13.5 Closing a Socket

A client application can close a socket with the uClose routine. A server application can close either a
connection or close the socket with the uClose routine.

uClose( {client,server,connection}-id ) ;
{client,server,connection}-id is a uFile identifier to a client, server or connection.

There is a significant difference between closing a server or closing a connection. Closing a server causes the
entire socket to be destroyed, and no more communication is possible. Closing a connection causes only that
connection to be terminated, and the server remains available for further communications from clients. The
following is an example of closing a server.

uFile server;

uClose( sexrver );

Appendix E contains a complete socket program.

14. Errors

Errors in the uSystem are divided into three categories:

o A user task detects an error and wants to abort execution. The preferred way for a user’s program to
stop execution while running within the uSystem is to call routine uError. The UNIX routines exit
and abort are designed for single process programs and will not work as expected in the multikernel.

o The pKernel discovers that some error has occurred and it calls uError. Examples of such errors are
running out of memory or sending a message that is too long to be received.

e A user task executes some code that causes the UNIX process representing the virtual processor to
fault. The death of the UNIX process will be caught by a task executing on the parent process of the
terminating process. In general, this is a task in the system cluster, which calls routine uError. For
example, if a task tries to divide by zero or access memory out of the address space currently available
to the application, these errors will be trapped. In such situations, the UNIX signal number of the
terminating process is displayed in the error message. Hence, when the uSystem displays a message
saying that a UNIX process died, the cause of that UNIX process’s death can be determined.

The following is a list of the possible errors that the pKernel may report as the result of a user task
request.

o task deadlock

o stack overflow

o death message too long
¢ send message too long
o reply message too long
o reply not to sender

o forward not from sender
e out of memory

e out of processors

o processor death

The list of UNIX errors that may be reported as the resuit of processor death may be looked up in
/usr/include/signal .h.
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14.1 Error Handling

The current uSystem error handling facilities are simple and result in immediate program termination.
Currently, there is no way for a user task to deal with errors in a programmatic way. Error handling
facilities will be extended in the immediate future by an exception handling mechanism.

The routine uError prints a user specified string which is presumably a message describing the error, and
then prints the identity of the task calling the routine and the current value of the UNIX signal number.

void uError( format, arguments ... )

format is a format string containing text to be printed and format codes which describe how to print the
following variable number of arguments.

arguments ... is a list of arguments to be formatted and printed on standard output. The number of
elements in this list must match with the number of format codes.

14.2 Symbolic Debugging

The symbolic debugging tools (e.g. dbx) do not necessarily work well with the uSystem. This is because
each coroutine and task has its own stack, and the debugger does not know that there are multiple stacks.
When a program terminates with an error, only the stack of the coroutine or task in execution at the time of
the error will be understood by the debugger. Further, in the multiprocessor case, there are multiple UNIX
processes that are not necessarily handled well by all debuggers. Nevertheless, it is possible to use many
debuggers on programs compiler with the uniprocessor uKernel. At the very least, it is usually possible to
examine some of the variables, externals and ones local to the current coroutine or task, and to discover the
statement where the error occurred. The gdb debugger works well in uniprocessor form, but time-slicing
must be turned off if breakpoints are to be used.

15. Pre-emptive Scheduling and Critical Sections

In general, the uKernel and UNIX library routines are not written to allow multiple tasks to execute them.
For example, many random number generators maintain an internal state between successive calls and there
is no mutual exclusion on this internal state. Therefore, one task that is executing the random number
generator can be pre-empted and the generator state can be modified by another task. This can result in
problems with the generated random values or errors. One solution is to supply cover routines for each
UNIX function, which guarantees mutual exclusion on the call. In general, this is not practical as too many
cover routines would have to be created.

Our solution is to allow pre-emption only in user code. When a pre-emption occurs, the handler for
the interrupt checks if the interrupt location is within user code. If it is not, the interrupt handler resets
the timer and returns without rescheduling another task. If the current interrupt point is in user code,
the handler causes a context switch to another task. In the unikernel case, this means that pSystem cover
routines like uOpen are not necessary; however, in the multikernel case ubpen is necessary to deal with the
blocking I/O problem. To ensure portability between unikernel and multikernel, uSystem supplied cover
routines, like uOpen, should always be used. R

Determining whether an address is executing in user code is done by relying on the loader to place
programs in memory in a particular order. uSystem programs are compiled using a program that invokes
the C compiler and includes all necessary include files and libraries. The program also brackets all user
modules between two precompiled routines, uBeginUserCode and uEndUserCode, which contain no code.
We then rely on the loader to load all object code in the order specified in the compile command. This
results in all user code lying between the address of routines uBeginUserCode and uEndUserCode. The pre-
emption interrupt handler simply checks if the interrupt address is between the address of uBeginUserCode
and uEndUserCode to determine if the interrupt occurred in user code.
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16. Installation Requirements

The uSystem runs on the following processors:
o 68000 series
o NS32000 series
e VAX
e MIPS
o Intel 386
The pSystem runs on the following operating systems:
e BSD 4.{2,3}

¢ UNIX System V that has BSD system calls setitimer and a sigcontext passed to signal handlers
which contains the location of the interrupted program

¢ Apollo SR10 BSD
e Sun OS 4.0

o Tahoe BSD 4.3

e Ultrix 3.0

e DYNIX

The uniprocessor uSystem runs on the following vendor’s computers: DEC, Apollo, Sun, MIPS, Sequent,
SGL The multiprocessor System runs on the following vendor’s computers: Sequent Symmetry and Balance,
SGIL

The uSystem requires at least GNU C 1.35 [Sta89] for all computers except the MIPS, which requires at
least GNU C 1.36. This compiler supports both K&R C and ANSI C [KR88] (see man gcc for information)
and can be obtained free of charge. The uSystem will NOT compile using other compilers due to the inline
assembler statements that appear in the C machine dependent files and the use of structure constructors for
initialization. The Sequent versions is setup so that GNU C always uses the Sequent assembler because the
GNU assembler does not handle the assembler directives generated from GNU C when the ~fshared-data
flag is used. This allows the uSystem to function when GNU C is installed using the GNU assembler.

17. Reporting Problems

If you have problems or questions or suggestions, you can send e-mail to usystem@maytag.waterloo.eduor
mail to:

puSystem Project

c/o Peter A. Buhr

Dept. of Computer Science
University of Waterloo
Waterloo, Ontario

N2L 3G1

CANADA

35



References

[Che82] D. R. Cheriton. The Thoth System: Multi-Process Structuring and Portability. American Elsevier,
1982.

[Cor88] G.V. Cormack. A Micro Kernel for Concurrency in C. Software-Practice and Ezperience, 18(4):485~
491, May 1988.

[Dij68] E. W. Dijkstra. The Structure of the “THE”-Multiprogramming System. Communications of the
ACM, 11(5):341-346, May 1968.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Pentice Hall Software
Series. Prentice Hall, second edition, 1988.

[Mar80] Christopher D. Martlin. Coroutines: A Programming Methodology, a Language Design and an
Implementation, volume 95 of Lecture Notes in Computer Science, Ed. by G. Goos and J. Hartmanis.
Springer-Verlag, 1980.

[Sta89] Richard Stallman. The Free Software Foundation’s Gnu C Compiler. Free Software Foundation,
1000 Mass Ave., Cambridge, MA, U. S. A., 02138, 1989.

36



A Coroutine Example

/* Producer—consumer problem, full coroutines */
#include <uSystem.h>
long random( void );

void Producer( uCoroutine *cons, uCoroutine creator, int NoOfItems ) {
int i, product;

uSuspend( U_NULL, 0, U NULL, 0 ); / * wait for consumer to be created */
uPrintf( "Producer will produce %d items for the consumer\n", NoOfltems )A
for (i = 1;i <= NoOfItems; i += 1 Y {
product = random() % 100 + 1;
uPrintf( “Producer: %d\n", product A
uResume( *cons, U NULL, 0, &product, sizeof(product) );
}/*for ¥/

product = —1; /* terminal value */
uResume( *cons, U NULL, 0, &product, sizeof(product) ); /* terminate consumer *
uResumeDie( creator, U NULL, 0 ); /¥ return to creator */

} /* Producer */

void Consumer( uCoroutine *prod ) {
int product;

uSuspend( &product, sizeof(product), U NULL, 0 ); / * wait for producer */
while ( product >=0) {
uPrintf( "Consumer: %d\n", product );
uResume( *prod, &product, sizeof(product), UNULL, 0 )
} /* while */
} /* Consumer */

void uMain() {
uCoroutine prod, cons;

prod = uCocall( UNULL, 0, Producer, &cons, uThisCoroutine(), 10 ); /* create producer */
cons = uCocall( UNULL, 0, Consumer, &prod ); /* create consumer */

uResume( prod, UNULL, 0, U NULL, 0 ); /* start producer */

uPrintf( "successful completion\n" );
} /* uMain */
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B P/V Example

[ * Producer end Consumer Problem using P/V with a Bounded Buffer */

#include <uSystem.h>
#define QueueSize 10

extern long int random( void );

struct shrqueue {
int front, back;
uSemaphore full, empty;
int queue[QueueSize];

}i /% shrqueue */

void Producer( struct shrquecue *q, int NoOfltems ) {
int i, product; :

/¥ position of front and back of queue */
/* synchronize for full and empty buffer */

/* queue of integers */

uPrintf( "Producer will produce %d items for the consumer\n", NoOfltems );

for (i =1;i <= NoOfftems; i +=1) {
product = random() % 100 + 1;
uPrintf( * Producer: %2d\n", preduct );
uP( &(q~>empty) );
q—>queue[q— >back] = product;
q—>back = ( q->back + 1 ) % QueueSize;
uV( &(q—>full) );

Y/ tor ¥

product = —1;

uP( &(q->empty) );

q—>queue[q—>back] = product;

q->back = ( q—>back + 1) % QueueSize;

uV( &(q—>full) );

uDie( UNULL, 0 );

} /* Producer */

void Consumer( struct shrqueue *q ) {
int product;
for () {
uP( &(q~>full) );
product = q— >queue[q— >front];
q—>front = ( q—>front + 1 ) % QueueSize;
uV( &(q—>empty) );
if ( product < 0 ) break;
uPrintf( "Consumer : %2d\n", product )
} /¥ for ¥/
uDie( U NULL, 0 );
} /* Consumer */

void uMain( ) {

/* produce a number of items */
/¥ generate random product */

[ * wait if queue is full */

[ * insert element in queue */
/* increment back sndex */
/* signal consumer */

/ * terminal value */

[ * wait if queue is full */

[ * insert element in queue */
/* increment back indez */
/* signal consumer */

/* wait for producer */

/* remove element from queue */
/* increment the front index */
/* signal empty queue space */

struct shrqueue quene = { 0, 6, USEMAPHORE( 0 ), U SEMAPHORE( QueueSize ) };

uTask Prod = uEmit( Producer, &queue, 10 );
uTask Cons = uEmit( Consumer, &queue );

uAbsorb( Prod, UNULL, 0 );
uAbsorb( Cons, U NULL, 0 );
uPrintf( "successful completion\n" );

} /* uMain ¥/

/* create producer */
/* create consumer */

/ * wait for completion */
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C Message Passing Example

/* Producer—consumer problem with send/receive/reply communication. */
#include <uSystem.h>
long random( void );

void Producer( uTask Cons, int NoOfItems ) {
int i, product;

uPrintf( "Producer will produce %d items for the consumer\n", NoOfltems ); 10

for (i = 1;i <= NoOfltems;i +=1 ) {
product = random() % 100 + 1;
uPrintf( " Producer: %2d\n", product );
uSend( Cons, U_NULL, 0, &product, sizeof(product) );

Y /* for ¥/

product = —1; /* terminal value */
uSend( Cons, U NULL, 0, &product, sizeof(product) ); /* terminate consumer */
uDie( UNULL, 0 );
} /* Producer */ 20

void Consumer( ) {
int product;

for (53 ) {
uReply( uReceive( &product, sizeof(product) ), U NULL, 0 );
if ( product < 0 ) break;
uPrintf( "Consumer : %2d\n", product );
} /¥ for ¥/
uDie( U NULL, 0 ); 30
} /* Consumer */

void uMain( ) {
uTask Prod, Cons;

Cons = uEmit( Consumer ); [ * create consumer */

Prod = uEmit( Producer, Cons, 10 ); /* create producer */

uAbsorb( Prod, U NULL, 0 ); /* wait for completion */

uAbsorb( Cons, UNULL, 0 ); 40

uPrintf( “successful completion\n" );
} /* uMain */




D File Example

#include <uSystem.h>

/* This application simply reads a file, and prints its contents on standard output. */

void uMain( int argc, char *argv]] ) {

uStream input;
int ch;

switch ( arge ) {

case 2:
break;

default:
uError( "usage: %s file-name\n",argv(0]);
break;

} /* switch ¥/

input = uFopen( argv[1], “x" );

for (;;) {
ch = uGete( input );
if ( ch == EOF ) break;
uPutchar( ch );
Y /% for ¥/

uFclose( input );

}

/* Local ‘Variables: */
[ * compile—-command: "concc —quiet —work —O File.c” */
/* End: */

/¥ program takes file name as argument */

/* open file */

/¥ read characters from file */
/¥ end of file # */

/* write character on standard output */

/* close input file */
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E Socket Example

E.1 Client Socket

#include <uSystem.h>
#include <uFile.h>
#include <sys/un.h>

void uMain( int arge, char *argv[] } {

uFile sd;

struct sockaddr un server;
int c;

void strcpy( char *, char * );

switch ( arge ) {
case 2:
break;
default:
uError( "usage: %s socket-name", argv([0] );
} /¥ switch */

sd = uSocket( AF_UNIX, SOCK_STREAM, 0 );

server.sun family = AF_UNIX;
strepy( server.sun path, argv{1] );
uConnect( sd, &server, sizeof( server ) );

for (3} {
¢ = uGete( uStdin };
if ( ¢ == EOF ) break;
uWrite( sd, &, sizeof( c ) );
} /% dor 7
uWrite( sd, &e, sizeof( ¢ ) );
for (i) {
uRead( sd, &ec, sizeof( ¢ ) );
if ( ¢ == EOF ) break;
uPutc( c, uStdout );
} /% for ¥

uClose( sd );
} /* uMain ¥/

/* Local Variables: */

10

/* create a socket */
20
| * specify socket domain */
| * specify destination socket name */
/* connection to destination socket */

/* get a byte */
/* no more bytes? */
[ * write byte to socket */

30
/* write end of file marker to socket */

/* read byte back from socket */
/* no more bytes? */
/* put a byte */

[* close socket */
40

/* compile—command: "concc —quiet —work —multi ~O —o Client SocketClient.c” */

/* End: */
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E.2 Server Socket

#include <uSystem.h>
#include <uFile.h>
#include <sys/un.h>

void uMain( int argc, char **argv ) {

int c;

uFile sd;

uFile fd;

struct sockaddr un server;
void strcpy( char *, char * );

switch ( arge ) {

case 2:
break;

default:
uError( "usage: %s socket-name", argv[0] );
break;

} /¥ switch ¥/

sd = uSocket( AF_UNIX, SOCK STREAM, 0 );
server.sun family = AF_UNIX;
strepy( server.sun path, argv{1] );

uBind( sd, &server, sizeof( server ) );

uListen( sd, 5 );

for (i) {
fd = uAccept(sd, 0,0 ); /* accept a connection */
for () {
uRead( fd, &c, sizeof( ¢ ) ); /* read byte from socket */
uWrite( fd, &c, sizeof( ¢ ) ); ] * write byte to socket */
if ( ¢ == EOF ) break; /* no bytes left? */
} /% for %
uClose( fd ); /* close the connection */
} /% for ¥

} /* uMain ¥/

/* Local Variables: */
/* compile—command: "conce —gquiet —work —maulti — 0 —o Server SocketServer.c” */

/* End: ¥/
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