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Abstract

Right invariant metrics (ri-metrics) have several applications in
the theory of rank correlation methods. For example, ranking models
based on ri-metrics generalize Mallow’s ranking models. We explore
the relationship between right invariant metrics and measures of pre-
sortedness (mops). The latter have been used to evaluate the behavior
of sorting algorithms on nearly-sorted inputs. We give necessary and
sufficient conditions for a measure of presortedness to be extended to a
ri-metric; we characterize those ri-metrics that can be used as mops;
and we show that those mops that are extendible to ri-metrics can
be constructed from sets of sorting operations. Our results provide a
paradigm to construct mops and ri-metrics. '

1 Introduction

Right invariant metrics (ri-metrics) on permutations were introduced by Di-
aconis and Graham [3] as a formal concept that includes natural metrics
on the set S, of permutations and allows relabeling or reordering of the
data. Intuitively, ri-metrics evaluate the distance between two permutations.
By normalizing these metrics, statisticians obtain non-parametric measures
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of association that have the properties of a rank correlation coefficient [16,
paged4]. Fligner and Verducci [9] use ri-metrics to generalize Mallow’s [19]
ranking models. Inv, Enc, Rem, || ||, Ham, || ||p, and Grp are ri-metrics
appearing in the statistical literature. Given a sequence X of elements from
a total order, the sorting problem consists of rearranging the elements in X
in ascending order. Computer scientists have been studying the behavior of
sorting algorithms on nearly-sorted sequences for some time ([1], [2], [4], [13],
[17], [20] and [21]). It is desirable to design sorting algorithms that require
computational resources proportional to the amount of disorder in the input.
Intuitively, nearly-sorted sequences should be sorted faster than arbitrary se-
quences. A measure of presortedness (mop) evaluates the existing disorder in
a sequence, and usually gives an approximation to the number of operations
of a certain (and sometimes very obscure) type that need to be performed to
sort the sequence.

In this paper, we explore the relationship between ri-metrics and mops. In
Section 3 we give necessary and sufficient conditions for a mop to be extended
to a ri-metric. If a mop can be extended to a ri-metric, we say it is normal.
We will show how this result applies to mops appearing in the computer
science literature, namely, Inv, Ezc, Rem, Par, || ||, Enc, Osc, Dist, mq,
mo; and Runs. In Section 4 we give necessary and sufficient conditions for
a ri-metric to be used as a mop and in Section 5 we show that normal mops
are constructed naturally by using sets of sorting transformations.

We use the following notation. Let X = (z;,z,,...,z,) be a sequence
of length n from some linear order. We denote a subsequence of X by
(i(1), Ti(2)y - - - » Ti(m))» Where 7 : {1,2,...,m} — {1,2,...n} is injective and
monotonically increasing. We denote the empty sequence by (). Let X =
(z1,...,2zn) and Y = (y1,...,Ym) be two sequences; then their catenation
XY is defined to be (z1,...,%n,Y1,---Ym). Sn denotes the group of permu-
tations of {1,2,...,n} and id is the identity permutation in S,. The product
of two permutations 7,0 € S, is denoted by 7 - o and defined by = - o(i) =
w(o(i)). If © € Sy, then (r) denotes the sequence (x(1),7(2),...,7(n)).
For a sequence X, |X| denotes its length, and for a set I, ||I]| denotes its
cardinality.

2 Definitions and examples

Statisticians regard metrics on permutations as measures of disarray and
normalize these metrics to obtain coefficients of correlation; see (3], [7] [11]
7, 1m(2) — o(?)|? is the metric associated

and [16] For example, ||o, 7|3 = S |
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with Spearman’s coeflicient of correlation p = 1 — %‘%;. Right invariant

metrics (ri-metrics) were introduced by Diaconis and Graham [3].

Definition 2.1 {d.},cny is a ri-pseudo-metric, for d, : S, x S, — R, if
there is ¢ > 0 such that, for allm € N,

1. dp(7,0) >0 and d,(7,0) =0 if and only if * = o,
2. du(7,0) = dp(o,7), for all m,0 € S,

3. du(o,7) < ¢ [du(o,7) + du(r, )], for all m,0,7 € Sy,
4. dp(o,7)=dp(oc 1,7 -7), for allw,0,7 € S,.

We say that {d,}.en is a ri-metric if c = 1. We will omit the subscript of d,
when this is clear from the context. Kendall’s 7, the most popular coefficient
of correlation, is defined as 7 = 1 — 4Inv(o,7)/n(n — 1), where Inv(w,0) =
the minimum number of pairwise adjacent transpositions required to bring
(z71(1),77%(2),...,77(n)) into the order (¢7%(1),07%(2),...071(n)). In
general, for a ri-metric d, if the maximum value of d is m, we obtain the co-
efficient of correlation 1 —2d/m. Fligner and Verducci [9] have studied rank-
ing models based on Cayley’s measure and the Hamming distance. Cayley’s
measure is denoted by Ezc, and Exzc(r, o) is defined as the minimum number
of exchanges required to bring (7 (1),...,7(n)) into the order (o(1),...a(n)).
The Hamming distance between permutation  and o equals the number of
positions where the sequences (7(1),...,n(n)) and (o(1),...o(n)) differ, and
is denoted by Ham(o, ).

It is instructive to verify that Grp(w,o) = ||{¢|for all 7, k such that 1 <
7 <i<k<nwehavew 071(j) < w-0~(k)}|, which is defined implicitly
by Gordon [10], is a ri-metric. Other examples of ri-metrics are:

—

N oll, = (5k, |7(3)—a(3)P)/?, p > 1. (p = 1is the metric associated

=1
with Spearman’s footrule.)

[3

. |Im, o)leo = maxicica |7 (2) — o (2)].

w

. mo(m,0) =0, for all 7, 0.
4. moy(w,0) = 0if 7 = o, and mei(m, o) = 1 otherwise.

Let X = (z1,...,z,) be a sequence of distinct elements from a total
order. X defines a permutation Pr[X]in S, by

Pr[X](¢) = final position of z; when X 1s sorted.
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Intuitively, we could use a ri-metric d to evaluate the disorder in X by
defining mp,(X) = d(id, Pr[X]).

Mehlhorn [21] and Guibas et al. [12] have studied sorting algorithms and
data structures that perform optimally on presorted inputs with respect to
Inv. Cook and Kim [2] and Wainwright [23] have used Rem(X) (the mini-
mum number of elements that need to be removed from X to obtain a sorted
sequence) empirically as a measure of presortedness. Other researchers have
proposed and used other measures. Mannila [20] has shown that natural-
merge sort is optimal with respect to Runs(X) = ||{i]|1 <7 < n and z;4; <
z;}||. The study of lower bounds for parallel sorting algorithms led to the
concept of p-sortedness and to the Par measure; see [5] and [14]. X is p-
sorted if and only if, for all 7,5 € {1,...,n}, ¢ — 7 > p implies z; > z;, and
Par is defined by Par(X) = min{p | X is p — sorted}. Skiena has proposed
a measure named Enc [22] which has been adapted in [6] to qualify as a mop
without modifying its algorithmic properties. Katajainen, Levcopoulos and
Peterson [15] and [18], defined

1X| IX|
Osc(X) =Y |lcross(z;)|]] and Dst(X) =) |[rcross(z;)|,
i=1 =1

where cross(z;) = {j]1 < 7 < |X|, zjy1 < =i < z;} and reross(z;) = {jli <
j < |X|, zj4+1 < z; < z;}. They studied local-insertion sort and heapsort
with respect to these measures.

The functions introduced above are examples of measures of presorted-
ness. The first formal definition was introduced in [20]. We will use the
following refined definition; see [6].

Definition 2.2 Let N<V denote the set of finite sequences of nonnegative
integers, and let m : N<¥ — R be some function. We say that m is a
measure of presortedness (mop) if and only if there is ¢ > 0 such that

1. If X is in ascending order, m(X) = 0.

2. If X = (z1,22,..,2a), Y = (Y1,¥2,...,Yn) and z; < z; if and only if
yi < yj, for alli,j € {1,2,...,n}, then m(X) = m(Y).

3. IfY is a subsequence of X, m(Y) < m(X).

4. If X <Y (that is, every element of X is no greater than every element
of Y), then m(XY) < m(X) +m(Y).

5. If X < Z,Y<Z, W< X, W<Y and m(X) < m(Y), then
m(WXZ) <m(WYZ).
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6. For allz in N, m(X (z)Y) < ¢|XY| 4+ m(XY).
We note the following technical result about ri-metrics.

Lemma 2.1 Ifd is a ri-pseudo-metric, then
d(id, ) = d(r71,id) = d(id, =" "); and
d(id,7 - o) < c[d(id, w) + d(7, 0 - 7)] = c[d(id, 7) + d(id, 7)].

We abbreviate d(id, v) by d(x). All the ri-metrics introduced above give the
corresponding mop. For example, Inv(X) = Inv(id, Pr[X]) = the number of
inversions in X and Ezc(X) = the minimum number of arbitrary exchanges
required to sort (z1,...,z,).

3 Mops as ri-metrics

We now give necessary and sufficient conditions for a mop to be extended to
a ri-metric. We will require two technical results.

Lemma 3.1 If m is a mop such that
1. m(X) = 0 implies X 1s sorted, and

2. there are constants a,b > 0, such that, for allm € N, and for all
7,0 € S,, we have m((m - o)) < a m((x)) + b m({(o)),

then
m((r-o7!)) + m({o - 771))
a+b

m(r,0) =

is a ri-pseudo-metric.

Proof: We need only verify Condition 3 of Definition 2.1, since Conditions 1,
2 and 4 follow immediately. Now,

m(r,0) = (m((ro7))+m{(o-7))/(a+b)
(m({m 777 0) +m(o -7 r717)) /(o +b)

IA

(am({m-1)+bm(r~-071))
+am({o-7)+bm(r v 1)))/(a +b)
< max(a,b)(m(o, ) + (T, T)).

The following Corollary follows immediately from Lemma 3.1.
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Corollary 3.2 Under the hypotheses of Lemma 3.1, if max(a,b) < 1, then
7 is a ri-metric.

In the next definition we describe those mops that are extendible to ri-
metrics.

Definition 3.1 Let m be a mop. We say that m is normal if and only if,
1. m(X) = 0 implies X is sorted,
2. for alln € N, and for all w € S,,, m((7)) = m((z™*)), and
3. for alln € N, and for all w,o € S,,, m({o - 7)) < m((a)) + m({(r)).

Normal mops are well-behaved measures in the following sense. If we are
told that there is no disorder in a sequence, then it is because the sequence is
sorted. By applying a permutation o to a sorted sequence and then applying
another permutation 7, we can produce only as much disorder as the disorder
produced by each of the permutations o and 7. Since we only need to apply
7! to sort a permutation 7, and we only need to apply 7 to sort ==, the
disorder in 7 should be the same as the disorder in 7~ 1. We now show that
the conditions in Definition 3.1 are independent.

1 A2 # 3. Let Ry(X) = Runs((Pr[X]))+ Runs(((Pr[X])™!)). The reader
can verify that R, is a mop satisfying Conditions 1 and 2 in Definition
3.1; however, it fails Condition 3.

2 A3 % 1. Let mo(X) =0 for all X € N<V. my is a mop that satisfies
Conditions 2 and 3; however, it does not satisfy Condition 1.

1A3#A 2 Let my(X) = Elxl(Pr[X](i) — Y2 my is a mop satisfying

i=1
Conditions 1 and 3 but it does not satisfy Condition 2. The reader may
supply the details.

Using Lemma 2.1 and Corollary 3.2 we obtain the following characterization
result.

Theorem 3.3 Letm be amop. Letm(w, o) = (m({m-oc™))+m({o-x71)))/2.
m is a ri-metric such that m(id, 7) = m((7)) if and only if m is normal.

Examples of this result are given in the following lemma.

Lemma 3.4 The mops mq, Inv, Grp, Ezc, Ham, and Rem are normal.
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Proof: Notice that if d is a ri-metric such that d(X) = d(7x,d) is a mop,
then Lemma 2.1 proves this result for d(X). In particular, this proves the
cases mgy, Grp, Ham, Inv, and Exzc. We now give the proof for Rem. If
I C{1,...,n}, wedenote {1,...,n} — I by I°.

[Rem({c - m)) < Rem({c)) + Rem({n)).] Let Las(X) be the length of
the largest ascending subsequence of X. Then, Rem(X) = |X| — Las(X).
Therefore, Rem((s-7)) < Rem({o))+ Rem((r)) is equivalent to Las((r)) <
Rem((o))+Las((c-m). Let I = {i;,.. -y Las((x))} De such that i; < i, < ... <
1Las((x)) and (i) < w(iy) < ... < W(iLa,((,,))). Let J = {j,... ,jLa,((,))} be
such that n<zp<...< jLa,((a)) and O'(j1) < O'(jz) <...< U(jLas((a)))- Let
K = Jn{n(i1),7(i2),...,7(iras((x)))} and the elements of K be denoted by
{ki, k2, ...k} where ky < by < ... < k,; then, m-o(k)) <7-0(ky) < ... <
7 - o(k,). Therefore, Las(((w - o)) > |K| > |I| — |J¢| = Las({m)) — Rem({c))
as claimed.

[Rem((m)) = Rem((r~1)).] * and =~ have Young tableaux with the same
shape [17, Section 5.1.4] and Las({w)) is the length of the first row in the
Young tableaux for . O

We conclude that, Rem(id,0) = Rem({o)) and the ri-metric given in [11]
follows from Theorem 3.3.

We now discuss other mops appearing in the computer science literature.
Osc and Dst are not normal since there are unsorted sequences X such that
Osc(X) = Dst(X) = 0. We only state the following result which is easily
proved.

Lemma 3.5 Par({o-7)) < Par({s)) +2 Par((r)) and this bound is tight.

Therefore, Par is a mop that gives a ri-pseudo-metric but does not give a
ri-metric. Runs is a mop; however, there are no constants a,b > 0 such that,
for all permutations 7 and o,

Runs({m - o)) < a Runs((w)) + b Runs({c)) (1)
as the following example shows. Let n = p(k + 1) and define
7(i) = (k — (i — 1)/p))p + [( — 1) mod p] + 1, and

o(i)=[(i = 1) mod (k+ 1)]p— [t — 1)/(k +1)J;
then,

x-o(@) =p(k+2—[(i—1)mod (k+1)+1]) — [ — 1)/(k + 1)}
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For p = 3 and k = 5 this gives
(r) = (1617181314151011 12789456123 ),

(c) =(369121518258111417147101316 ), and
(m-0)=(181512963171411852161310741).
The reader may verify that

Runs((r)) =k, Runs((c))=p—1and Runs({r-0o))= pk.

Letting p = [logn|, (1) would imply that there are constants a,b > 0 such
that n —logn < a((n/logn) — 1) + b(logn — 1), for all n, which is a contra-
diction. Similarly, it can be shown that Enc is not a normal mop.

4 Ri-metrics as mops

Conversely to Theorem 3.3, we want to characterize those ri-metrics that
naturally provide a mop. We call these ri-metrics regular.

Definition 4.1 Let {d,}nen be ari-metric. Let mp,(X) = dix|(id, Pr[X]).
We say that {d,}nen is regular, if and only if, mp, is a mop such that, for
all n € N, and for all 0,7 € S,, Mp,(0,7) = du(7,0).

Clearly, if {d,}ren is regular, then mp, is a normal mop. A mop is defined
for all sequences of finite length. By Definition 2.2, in a mop, the value
of a sequence is related to to the values of several types of subsequences.
A ri-metric has an independent function for each permutation size. It is
intuitively clear that in a regular ri-metric the function d, is closely related
to d,, for all m < n. A simple example of a ri-metric that is not regular is
given by:

do(o,7) = { Ezc(o,7) if nis even (where o, € S,).

mo1(o, ) if nis odd

We say that two permutations m,0 € S, agree on a set I C {1,...,n} (de-
noted ® =y o) if 7 € I implies 7(z2) = o(2). The relation =y is an equivalence
relation. We recall that 7¢ denotes {1,...,n} —I. If ] is a set of indexes, I =
{iy < 43 < ... < i,} C {1,...,n}, we denote by Sb(I, X) the subsequence
{z;), @, ... w;,) of elements in X with indexes in I.

The following results confirm that in a regular ri-metric the d,, are related.
They show that if two permutations agree on several entries, their distance
depends heavily on the distance between the disagreeing entries.
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Lemma 4.1 If {d,}nen is a regular ri-metric, then, for alln € N, I C
{1,...,n}, m,0 € S,, and m =1 o implies

dn(7,0) 2 dnyr(Pr[SH(I°, (m))}, Pr{Sb(I°, (o))]).

In order to prove this result we present the following proposition. Although
the proof of the proposition is not immediate, we omit it, confident that the
reader can supply it.

Proposition 4.2 For all I C {1,...,n}, and for all o,7 € S,
1. Prl(n)] = 7 and (Pr[{x)]) = (x).
2. Pr[Sb(x(I), (x~1))] = (Pr[Sb(I, (m))])".
3. If 7 =1 o, then Pr[Sb(a(I), (r-o~*))] = id.
4. Pr(Sb(o(I), (m - o71))] = Pr[Sb(I°, (x))] - Pr[Sb{a(I)°, (o7"))].

Proof of Lemma 4.1 : Let {d,}.cn be a regular ri-metric. The plan of
the proof is as follows. First, we use the fact that {d,}nen is a ri-metric to
write dn(m, o) as d,(id, 7 - 071) which is mp,((r - ¢71}). Since mp, is a mop
we can use the properties in Definition 2.2. Then the special form of I and
the relationship 7 =; o provide contiguous subsequences or blocks of indexes
such that, for all indexes ¢ in a block 7 - 072(¢) = ¢. These blocks of (7 - 71)
are also in their correct relative order, thus we can use the axioms to relate
mp, and blocks. Finally we use Proposition 4.2 to translate this result back
to the desired claim in terms of {d,}nen-

Let I C {1,...,n}, 7,0 € S,, and ® =1 0. Since {d.}nen is a ri-metric,
dn(o,7) = dp(id, 7 - 071) = mp,({(w-071)). Let 7 =7 - 071 Let J = o(I)°
and write the elements of J as {j1 < j2 < ... < j,} where s = n — |I|. Let
X = {r(41),---,7(Js)) = Sb(J, (r)); X is a subsequence of (7). Since mp, is
a mop, mp.((1)) > mp.(X). Now, {dn}nen is a ri-metric, statements 2 and
4 in Proposition 4.2 and since o is a bijection, imply

dn(m,0) = mp,.((r)) > d,(id, Pr[X])
= d,(id, Pr[Sb(a(I), (w - 71))])
= d,(id, Pr[Sb(I¢, (m))] - Pr[Sb(a(1)%, (¢™1))])
= d,(id, Pr[Sb(I¢, (x))] - (Pr[Sb(I°, ()™
= d,(Pr[Sb(I¢,(x))], Pr[Sb(I*,(a))]).
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The following theorem gives necessary and sufficient conditions for reg-
ularity. In a regular ri-metric, the axioms in Definition 2.2 translate to
conditions that strongly relate the d,. Statements 1 and 2 show that the
value of d,(7, o) is essentially determined by the disagreeing entries. State-
ment 3 shows that the role of the disagreeing entries implies a certain type of
monotonicity, namely, that a qualitative difference in the values of {d, }nen
on disagreeing entries for d,, with m < n is preserved for d,. Statement
4 shows that d, is polynomially bounded since d, is bounded by a linear
combination of n and d,_;.

Theorem 4.3 {d,}.cn is a regular ri-metric if and only if there is a constant
¢ > 0, such that, for alln € N,

1. I C{1,...,n}, m € Sy, implies dn(7,id) > dn_jy(Pr[SH(I¢, (r))],id).

2.1 C{l,...,n}, m,0 € 8o, m =10, ] =LUL, L ={1,...,u},
L={v,v+1,...,n}, w<v, n(l1) = I and (1) = I, implies

duoini(PrISB(IE, (x))], PrIS(I, (0))] > du(, o).

3. I cA{l...,n}, mo,r€ Sy, =10, I =5LUL L =1{1,...,u4},
L ={v,v+1,...;n}, u < v, (L) = L, n(lz) = L, 7(L1) = L,
T(Iz)=.[2, and

i (Pr[SB(I, (m))], Pr[Sb(I¢,(1))]) <
dp\(Pr[SB(I%, ()], Pr[Sb(I°, (7))

implies dn(m,7) < dp(0, 7).
4. s€{l,...,n} and w,0 € S, implies

dn(m, @) < en + dos (Pr[SH({s}", ()], PrSH({s}, (o).

Proof: Assume {d,}.cn is a regular ri-metric. It is straightforward to verify
that mp,(X) = djx|(id, Pr[X]) is a mop such that, for all n € N and for all
7,0 € Sp, Mpr(0o,7) = dn(o,7). We follow the same approach used in the
proof of Lemma 4.1. For each statement we use an axiom from Definition
2.2.

1: This is a special case of Lemma 4.1.

2: Let I C{1,...,n}, my0 € Sy, m=ro, I =L UL I ={1,...,u},
L = {v,o+1,...,n}, v < v, #(ly) = I and w(l;) = I,. By definition,
dn(m,0) = d.(id, 7 - 0™1) = mp,((r - ¢71)). Let 7 = 7 - 07!. Notice that,



Metrics and Presortedness 11

since w(I,) = I, if j € I1, then there is ¢ € I; such that (1) =jand v =0
gives m(i) = o(i) = j. Therefore, 7(j) = 7 - 07 (o(i)) = 7, and we conclude
that 7 =, 4d. Similarly 7 =, 4d.

Since mp, is a mop, and Sb(Iy, (1)) < Sb(I¢, (r)) < Sb(Is, (r))

’

dn(7,0) = m((r)) <
mp(Sb(T1, (7)) + M (SK(I?, (7)) + mpe(SH(T:, (7).

By Proposition 4.2 (3), mp,(Sb(I1, (7)) = mp,(Sb(Is, (7)) = 0. Therefore,
dn(m,0) < mp,(Sb(I°, (7)) = dp_yp(2d, Pr[Sb(I¢, (r))). Since I = n(I) and

m =1 0, we have o(I) = I and we conclude, using Proposition 4.2,

dn(m,0) < mp,.(Sb(I¢, (r - o71))
= du i (PrSH(EE, (<)), PrSH(E, (o).

3: Let I C{l,...,n}, M0 €8y, n=10,I=LUL, I, ={1,...,u},
I = {vio+1,...,0}, v < v, 7(fh) = L, n(lz) = L, 7(I;) = I, and
7(I;) = I,. Suppose

dnniai(Pr[SB(I<, ()], Pr{SB(I<, (r))]) <
dn-r(Pr[SH(IC, (0))], Pr{SE(IC, (r))]).

From 7(I) = I and Proposition 4.2 this is equivalent to
mpe(SE(I%, (x771)]) < mpn(SH(I%, (o771)))).

The shape of I; and I, with the assumptions 7 =; o, n(I1) = I, n(l,) =
L, 7(I) = L, and 7(I;) = I, imply Sb(I, (x771)) < Sb(I, (rr71)) <
Sb(Iz, (w771)) and Sb(I1, (o771)) < Sb(I,(o77t)) < Sb(Iy, (o771)). Since
mp, is a mop, we conclude that m({rr~)) < mp,({c771)). That is,

dn(id, Pr[(x - 7)) < d,.(id, Pr{{o - 771)]),

or d,(m,7) < d.(0,7) as claimed.
4: Let s € {1,...,n}, and 7,0 € Sy. Again, d.(7,0) = mp,((7 - 0c71)).
Let 7 = o(s). Since mp, is a mop, there is ¢ > 0 independent of n, such that

mp({r 7)) < |
mp.((7-071(1),...,m-07(G—-1),m 0" j+1),...,7- 07 (n)) +c|m -0
= mp(Sb({j}*, (r-o7")) + en

= dn_1(Pr[SH(({s}*, (m))], Pr[Sb(({s}", (o))]) + en.
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Conversely, let {d,}nen be a ri-metric that satisfies 1, 2, 3 and 4 above.
We must show {d,}nen is regular. Each condition will correspond to an ax-
jom in Definition 2.2. It is almost direct to verify that mp, = djx|(id, Pr[X])
is a mop, however, some care must be taken, for example, when proving ax-
iom 5 we must include the cases when | X| # |Y|. We leave the details to the
reader. m]

5 Constructing normal mops

Sorting can be regarded as a particular case of the following problem. Given
a set of valid operations that act on sequences, we are asked to transform
an input sequence to a special target sequence. Sequences that require fewer
operations are closer to the target sequence. In the context of sorting we say
that they are nearly sorted.

A natural measure of the difficulty of the transformation is the minimum
number of operations required to perform the transformation. This measure
should be symmetric, that is, the number of operations required to transform
the input into the target should be the same as to generate the input from the
target. In the context of sorting, if we have a sorted file, and we perform a
small number of operations on it, the resulting file must be nearly sorted. In
this section we present results that show that normal mops can be constructed
in this way. Consider a permutation = € S,, We can apply 7 to a sequence
X = (z1,...,2,) to give Xz = (Tx(1),- .-, Tn(n)). This captures in a general
setting a rearrangement of the elements of X. We are interested in applying
sequences of permutations to X so as to sort X. Forn > 1, let W, C S,
be a set of legal sorting transformations on sequences of length n and let
W = Un»1 Wa. The disorder in a sequence X can be evaluated either as the
minimum number of valid sorting operations (in W)x|) required to sort X,
or as the minimum number of valid operations to introduce the disorder of
X in a sorted file. More precisely, we define muy, mV:N<¥ — Z+ U {0} by

mw(X) = min{k | my,...,m € Wix| and (... (Xay)n2 - - )m, is sorted},
and
mW(X) = min{k | 71,...,7m € Wix; and Pr[X]=m -m2-... - Tk}

Note that mw(X) = 0 if and only if X is sorted, and if and only if m%(X) =
0.
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The following result shows that by specifying a set of valid sorting op-
erations W, such that the difficulty of sorting any sequence is the same as
the difficulty of generating it with the given set of operations, we obtain a
normal mop, and therefore a ri-metric.

Theorem 5.1 If W = U, W, (W, C S,,) is such that,
1. for adll X € NV my(X) = mY(X), and
2. mw 1s a mop,

then mwy is a normal mop.

The proof of this result follows from the use of the following lemma. The
reader should not have any difficulty in verifying it.

Lemma 5.2 Ifn,0 € S,, then (7), = (7 - o).

Proof of Theorem 5.1: We only need to show that my satisfies Conditions
2 and 3 in Definition 3.1. Let v € S,,.

mw({r)) = min{k | m1,...,m € W, and (... ((%), )r2...)m, is sorted}
= min{k | 71,...,m € Wy and (7 -7y - mp... - m) = (3d)}
= min{k|7r1,...,7rk€W,,and7r“1=7r1-7r2-...-1rk}

= m"((z71) = mw({x™1)).

Now, let m,0 € Sy, and suppose mw({m)) = ko and mw((c)) = k;. Since

mw((r)) = mW((r)), there are 71, 7a, ..., Tk, € Wi, such that = = my-7p-. . .-
Tke- Similarly, there are 0y,03,...,04, € W,, such that c =07 -0p-... 0y,.
Therefore, w0 = w1+ Wa+...* My + 0103+ . .. Ok, . This implies m" (( - a)) <
ko + k1 as required. O

The reader may also verify that both conditions in Theorem 5.1 are nec-
essary. Condition 2 requires mw to be a mop, this basically forces the set of
sorting operations to be consistent with all possible lengths. The following
lemma gives an alternate, more useful, form of the first condition.

Lemma 5.3 For all X € NV, my(X) = mW(X) if and only if, for all
n€ N, n e W, impliest™! €¢ W,.

Conversely, if we are given a normal mop, we can almost always identify a
set of operations that defines the mop up to ranking. More precisely, let m
be a mop and denote the rank function of m by rk,, and define it by

rkm(X) = [{m((r)) | 7 € Sp and m((r)) < m(X)}|
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The function rk,, scales the mop to nonnegative integers preserving the prop-
erty that it evaluates to zero on sorted sequences. Moreover, rk,, also pre-
serves the algorithmic properties of m since the “below” sets are the same;
see [20]. Notice that if mu is a mop that satisfies the conditions of Theo-
rem 5.1, it is already normalized and, therefore, rk,,,, = mw. Moreover, if
m € Sy and 7 € W,,, then rk,((0)) — 1 < rkn((o - 7)) < rkn((c)) + 1.

Theorem 5.4 Let m be a normal mop such that, for alln € N, o € S,
and 7 € {r € S, | rkm((7)) = 1} implies rkm((0)) — 1 < rk ({0 -7)) <
rkm({o)) + 1. Then, there are W,, C S, such that,

1. forall X € NV, vk, (X) = mw(X) = mW(X), and
2. rky is a normal mop.
Moreover, W,, = {w € S, | rkm((m)) = 1}.

The proof of the result is not immediate. It requires a careful induction on
the value of rk,, and the use of results that rely heavily on the axioms for
mops. For example, the following result shows that, if m is a normal mop,
then W, = {r € S, | 7k ({m)) = 1} is always a set of generators of S,,.

Lemma 5.5 Let m be a normal mop and W, = {r € S,, | rk.((r)) = 1}. If
7w € S, s a transposition of adjacent elements, then m € W,.

Proof: Let (m) = (1,...,4— 1,74+ 1,4,5+2,...,n). m({r)) # 0 since (m)
is not sorted and m is a normal mop. m((m)) > m(( +1,7)) = m((2,1))
by axioms 3 and 2 in Definition 2. Moreover, m((r)) < m((1,...,1 —1)) +
m((t+ 1,2)) + m({( +1,...,n)) by axiom 4. Therefore, m({n)) = m((2,1)).
Since, for any nonsorted sequence X, m(X) > m((2,1)) by axioms 3 and 2,
we conclude that 7k, ((7)) = 1. 0

Sketch of proof of Theorem 5.4: Let W, = {7 € S,, | rk.({x)) = 1}, for
n > 1. First, Lemma 5.3 and m is a normal mop are used to prove that, for
all X € NV, my(X) = m%(X). Now, use Lemma 5.5 and induction on ¢
on the following predicate. If rk,,(X) = ¢, then

1. myp =m¥(X)=t,
2. if t > 0, there is a 7 € W|x|, such that t — 1 = 7k, ((Pr[X] - 7])), and

3. if ¢ < max(mw((7))|r € S|x|), there is a 7 € W x|, such that t +1 =
rk.((Pr[X] - 7])).
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The induction proves (1). To prove (2), first verify the axioms in Definition
2.2 to prove rk,, is a mop. This will require using that m is a mop. For
example, to prove that if X is a subsequence of Y, then rk,,(X) < 7k, (Y) we
argue as follows. It is enough to show the claim for | X |+1 = |Y, since a proof
by induction gives the general case. Since m is a mop, m(X) < m(Y). Let
X' be such that | X'| = |X| and m(X’) < m(X). We then take ¢ = | X'| + 1,
and the catenation of (Pr[X’]) with (z). Observe that, since (Pr[X']) is a
subsequence of Y/ = (Pr{X'])(z), :

m((Pr{X'])) < m((Pr[X])(z}).

By axiom 2, m only depends on the relative order of the elements, therefore,
m((Pr[X'])) = m(X'). By axiom 4, m((Pr[X'])(z)) < m((Pr[X'])) + 0.
We conclude that m(Y’') = m(X') < m(X) < m(Y). Since we have shown
that for each value k¥ < m(X) such that there is an X’ with |X'| = |X| and
m(X') = k, we can find a Y’ with |Y’| = Y] and m(Y"’) = m(X') = k, we
conclude that rk,(X) < 7k, (Y) as claimed.

The final step of the proof is now simple. We know that my = m% =
Tkm, and that rk,, is a mop; using Theorem 5.1 we conclude that rk,, is
normal. O

The hypothesis in Theorem 5.4 may seem restrictive, but it cannot be
removed. For example, m(X) = ||Pr[X], ¢d||s is a normal mop, but, if (r) =
(1,3,2,4,...,n), (0) = (1,3,4,2,5,...,n), and (r) = (1,3,2,5,4,2,6,...,n)
we must have rkj,((¢)) > rkj,({(r)) > rkyj,((x)). Since o and 7 are
the product of two transpositions of adjacent elements, we must have 1 <
mw((o)) <2 and 1 < my((r)) < 2 for any set W. Thus vk, = mw gives
a contradiction.

6 Concluding remarks

The connections we have shown between mops and ri-metrics raise several
open questions. Researchers have attempted to compare ri-metrics by estab-
lishing inequalities between them; see, for example [3]. Using the axioms in
Definition 2.2 the reader may verify the following lemma.

Lemma 6.1 If m is a mop that satisfies the two hypotheses of Lemma 3.1,
then there is a K > 0 such that, for all X € N<V|

m(X) < K - Inv(X).
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This implies, for example, that any sorting algorithm that is sensitive to m,
(the smaller the value of m the less time is spent by the sorting algorithm)
is also sensitive with respect to Jnv. Although Inv plays an important role
among ri-metrics and mops, its relevance is not fully understood. Notice that
Inv is defined from a set of operations that includes exactly all transpositions
of adjacent elements. Lemma 5.5 shows that Inv is the normal mop (ri-
metric) most sensitive to disorder. The popularity of Kendall’s 7 is due to
the fact that Inv is asymptotically normally distributed with known mean
and variance for each n. Our results show that normal mops (ri-metrics and
coefficients of correlation) can be constructed in a similar way.

Any linear combination, with nonnegative coefficients, of ri-metrics is a
ri-metric. Also any such linear linear combination of mops is a mop; see
[6]. Moreover, any linear combination, with nonnegative coefficients, of nor-
mal mops is a normal mop, thus the space of normal mops has constructive
mathematical properties. From the practical point of view, the characteris-
tics of the distributions of the ri-metrics provided by Theorem 3.3 must be
described analytically or by a tabulation of their values. Analytical results
may be difficult, as suggested by Ulam’s problem (computing the limiting
behavior of the expected value of Rem). At least, it is desirable to charac-
terize those ri-metrics that decompose into a sum of independent uniform
distributions or other well known distributions.

Finally, if we want to test correlation or agreement of more than two
rankings (because the objects are ranked independently by boards of judges),
the corresponding techniques must be developed as shown in [7], [8] and [9].
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