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Abstract: This presentation is not a survey on the estimation of selectivities. It
Is rather a biased selection of topics on selectivity estimation reflecting our own
opinions and preferences on what are some worthwhile research areas in selec-
tivity estimation, what has been done in the past, and what should be investi-
gated in the future. We apologize for not including all research areas or results
in this short presentation. The interested reader can find an extensive survey on
selectivity estimation in [Manino, Chu, and Sager 88]. We study the behaviour of
several cost functions for varying probability distributions in the attributes of
relations. Several new results related to selectivity estimation and data base per-
formance evaluation are presented. Specific results include join costs, projection

costs, buffer costs, sample sizes, and file organizations.

1. Introduction

We define record selectivity to be the number of records qualifying in a
query, block selectivity to be the number of blocks containing the qualifying
records, average record selectivity to be the average number of qualifying records
in a set of queries, and average block selectivity to be the average number of

blocks containing qualifying records for each of a set of queries.



Selectivities have been extensively used in performance analysis of file organi-
zations, physical data base design (such as index selection and attribute partition-
ing or attribute clustering), and query optimization. The requirements for each
problem may be different. Although in this presentation we emphasize the use of
selectivities in query optimization, the research topics described are also applica-

ble to other areas of performance evaluation.

2. Selectivities in Query Optimization

A statistical profile describes the statistics kept or estimated for a relation.
Usual statistical profiles frequently assumed are variations of the original query

optimization research in System R and they typically include:
1. The number of tuples in a relation.

2. The number of distinct values of each domain.

3. The number of bytes for a value for each domain.

4. The number of distinct values (or the range of values) currently in an attri-

bute.
5. The average number of records per block.
Based on these statistics a typical optimizer should calculate:
1. The cost of individual operations (selections, projections, joins, semi-joins).

2. A new statistical profile for the relation derived from a single operation.
This statistical profile is needed in order to calculate the cost of subsequent

operations.

3. The cost of a sequence of operations. This is done by utilizing the cost of

individual operations and the statistical profiles of the intermediate relations.

Note that the accurate calculation of the statistical profile resulting from a
single relational operation is very important if a sequence of operations is taking
place. This problem has been discussed only in passing in the current literature.

We present some new results in this paper.



3. More Detailed Models

The statistical profiles described in the previous section assume that the
tuples of a relation are uniformly distributed over the attribute values of an attri-
bute, and that attribute values of different attributes are independent. This is
not a realistic assumption in many environments. Attribute values are frequently
skewed, and attributes are placed together in a relation precisely because there is
some relationship (dependency) among them. It is therefore reasonable to investi-
gate more accurate statistical profiles than those assuming uniformity and

independence of attribute values.

3.1 Parametric Techniques

Parametric techniques model the distribution of data points in a multivariate
space by using a member of a class of distributions. A particular class of distri-
butions is characterized by a (small) set of parameters. A member of the class is
selected by calculating the parameters of the class using the existing set of data

points. The advantages of parametric techniques are:

1. They are simple and intuitive. Typically only a few moments are calculated.
Since the parameters are typically easy to understand and even give an
approximate estimate in case that all the data points are not known, or
expensive to calculate, or update on-line, parametric techniques may be use-
ful in environments that the user is responsible for providing information
about the distributions followed. This may often be the case in data base
design for example, or in systems where the user is responsible for inserting
or updating statistics. Finally, they may be useful in performance studies
where the system has to be tested under certain possible workloads. The
results can be interpreted easily in such a case due to the intuitive nature of

the parameters of the parametric models.

2. When a multivariate space is described with a parametric model, it is easy to
find the distributions followed in each subspace. This is useful, since only a
subset of the dimensions (attributes of a relation) may be of interest (speci-

fied in a user query).



3. Typically, it is easy (requires one file pass) to generate the parameter values
for such models from an existing set of data points. It is also typically easy
to update the parameter values by considering the new set of data points

only. (The old points are not needed.)

A major limitation of the parametric techniques is that the shape of a partic-
ular class of distributions can not change arbitrarily by tuning the parameters of
the model. For example all multivariate Pearson type 2 and type 7 distributions

are unimodal.

This limitation may be overcome if clusters are detected in the multivariate
space and each cluster is approximated by a parametric distribution. The proba-
bility distribution at a point in space will be described as the weighted sum of the
probabilities of each cluster at this point. This technique can be used successfully
to model a multivariate space with high concentrations of points in particular
locations. Such is the case with many populations. However, good cluster detec-
tion and update are expensive. Cluster updates, if they are not too many, can
be done easily on top of the existing clusters. However, periodic re-clustering is

needed in this case.

3.2 Non-Parametric Techniques
Non-parametric techniques can be either algebraic or histogram based.

Algebraic techniques use a polynomial to approximate the density of the
distribution of points in a multivariate space. The polynomial has variables that
correspond to each attribute. The higher the degree of the polynomial the better
(hopefully!) the approximation. For a given degree of the polynomial, the coeffi-
cients of terms are calculated from the set of data points so that certain error

criteria are satisfied. The coefficients typically have no intuitive interpretation.

The calculation of the coefficients can be done in one file pass in some
models, and updating the coefficients of the polynomial can be done by only con-
sidering the new set of data points. The approximation of the multivariate space

using this technique can be very good. However, non-numeric attribute values



have to be converted to numbers before parameter estimation or selectivity esti-
mation. (This is also the case with parametric techniques). The conversion can
be done by either using a table or a hashing function. The table may be expen-
sive to maintain and search. The hashing function approach may destroy existing
clusterings of data points in the multivariate space and therefore reduce the accu-
racy of approximation with a given number of terms. Finally, in order to find the
distribution followed in a subset of the multidimensional space an integration is

needed.

Histogram based techniques use a histogram in each dimension to approxi-
mate the distribution of points. The histogram may be constructed by utilizing
equal width intervals or equal height intervals [Manino 88]. Multidimensional his-

tograms can be constructed in an analogous manner.

A major advantage of the histogram based techniques is that they avoid the
conversion table needed by parametric and polynomial techniques for the non-
numeric attributes. This is important for large data bases with many (possibly
non-numeric) attributes, as opposed to typical statistical experiments where this

aspect is ignored.

One-dimensional histograms are easy to construct. The point density in
higher dimensionalities will have to be approximated assuming independence of
attributes. Higher dimensionality histograms are typically more expensive to con-
struct especially for large relations. Updates may also be expensive because they

may result in different subdivisions of the space.

3.3 The Principle of Maximum Entropy

Jaynes first ([Jaynes 57a), [Jaynes 57b]) proposed that the Shannon’s measure
of uncertainty (entropy [Shannon 48]), be used to define the values of probabili-
ties when only limited information about the probability distribution is known.
This proposal resulted in the foundations of “The Maximum Entropy Principle”

([Levine and Tribus 78]).



Let H = —fp(x)lfnp(x)dx be the entropy function, where x is a point in the

multivariate space. Assume that certain constraints are known about P(x) (e.g.
ranges, means, averages, etc.). The maximum entropy principle states that if the
probability density function is not known, the probability density function which
maximizes the entropy of the random variable subject to any known constraints
is the logical choice ([Levine and Tribus 78], [Tou and Gonzales 74, pp.134-135]).
Application of this principle leads to the minimum bias solution, since any other

function would show a bias toward information available from known data.

The maximum entropy probability density function is particularly easy to
determine when all known constraints are in the form of averages, such as means
or variances for the probability density function. For example if the range is only
known a uniform density would be chosen by the application of this principle, and
if mean and variance are known, a normal probability density would be chosen.
Parametric and non-parametric techniques developed in statistics frequently use
the maximum entropy principle as a starting point for approximating probability

densities.

3.4 Future Research

Future research in the area of providing more detailed multivariate statisti-
cal models for the approximation of the distribution of a data point set is diffi-
cult. This difficulty arises because such research has extensively been done in the
area of statistics and pattern recognition. There is a serious danger of effort
duplication. On the other hand, if such models are directly adopted from other
disciplines, the estimation of the various selectivities and statistical profiles should
be very straightforward. It is also intuitive that the more detailed the model the
more accurate the estimation of the costs of operations. More research could
possibly emphasize the computational aspects (e.g. efficiency of calculations and

updates of the statistics for large relations).

The problem that we are after is how to encode maximum information about
the distribution of data points in a minimum amount of space. There are alterna-

tive ways of viewing the problem at hand: For example, we may want to



incorporate some information about the distribution of points only if this results
in a significant acquisition of information. The fact that a certain attribute value
involves a large number of tuples gives us a lot of information in the informa-
tion theoretic sense. Not only we know that this value involves many tuples, but

also that the remaining values involve a small number of tuples.

We suggest here an information theoretic approach to the problem of

deciding what statistics to incorporate in the statistical profile.

Let P =(p,...,p,) be a probability vector. The information that is
revealed from the knowledge of the value of a particular component of the vector

is
Iy = —p,logp,

It is obvious that extreme values of probabilities reveal more information about

the contents of the data base. This easily extends to multivariate spaces.

Formal research is needed in the area to incorporate information theoretic

approaches to the selection of statistical profiles.

4. Sensitivity Analysis and Error Propagation

A Statistical Profile is the instance of a statistical model (parametric or
non-parametric) with a given choice and number of terms (parameters in the case
of parametric models, coefficients in the case of algebraic models, etc.). A statist-
ical profile always approximates the distribution of points in a multivariate
space. Given that it is only an approximation, an important question to ask is
what is the impact of this approximation in the quality of the performance esti-
mates that we get using this particular statistical profile. This is loosely called

sensitivity analysis.

There are some results that have been derived in the area of sensitivity
analysis for the case of the “usual” simple model of selectivities that assumes uni-
formity and independence of attribute values, random placement of qualifying

tuples among the blocks of a relation, and constant number of tuples per block.



It has been shown [Rosenthal 80] that the calculation of the size of the join
assuming uniformity and independence can also produce accurate results for cer-
tain distributions that do not satisfy the uniformity and independence assump-
tions. This more general class of distributions however is not well characterized
or easy to detect. We show a related general result on the average join size later

on.

4.1 The Majorization Theory, Its Importance, and Probability Approxi-

mations for Database Performance Evaluation

Consider two decreasing probability density vectors P = (p,,...,p,), and
q=(q,---,9)- A branch of Mathematics (theory of majorization) can fre-
quently be used to compare values of functions of vectors that are of a specific

kind (Schur functions). In the theory of maJorlzatlon it is said that P majorizes q
if S,: p; > i) g; for all j <n and Ep, E g;. Intuitively if P majorizes q, P 1

f==] =] i=1 i=1
“more skewed” that q. If a function 4(x) is a Schur convex (or Schur increas-
ing ) and P majorizes q, then ¢(P) > ¢(q). If a function ¢(x) is a Schur con-
cave (or Schur decreasing, ) and P majorizes q, then ¢(P) < ¢(q). Thus it is
easy to describe how a Schur function will behave for more uniform or more

skewed probability distributions.

Precise conditions for testing if a function is a Schur function are described
in [Marshall and Olkin 79]. For continuously differentiable functions ¢ a neces-
sary and sufficient condition for ¢ to be Schur convex (concave) is that ¢ is sym-
metric, and that for all i#jy, (z;—z;) [—aa—f‘-—:—i] > (K)o.

In [Christodoulakis 81] and [Christodoulakis 84] the theory of majorization
and Schur functions has been associated with data base performance estimates
for the first time. It was shown that several performance functions used in data
base design as well as performance functions used in query optimization are Schur
functions. As a result the performance estimated by these functions is not the
average performance, nor even has some random deviation from the aver-

age performance. It is a bound on performance in the sense of the theory of



majorization.

Consider a simple example to illustrate the concept. Let a file F of N
records, and an attribute A of F. Let P(n,, ... ,nu) be a vector describing the
number of record occurrences n; for the ith value of attribute A. Assume that

the file is in main memory and that user queries are uniformly distributed over all

the values of the file. The expected cost is
1 ¥ N 1 {N N N _ '
M Z =T M [M+M+'"+M . The last cost is precisely the cost of a

uniform probability distribution of attribute values. In this case, using a uniform
approximation to the attribute value probability distribution introduces no errors
on the average (is exact). However, under the same assumptions, if the file resides
on secondary storage, record accesses have to be mapped into block accesses. In
this case the expected cost is different for different vectors P. It can be shown
that the cost function in this case is a Schur concave function and that among all
possible vectors P, the uniform vector results in a maximum expected cost. In
this respect then using a uniform approximation to the probability distribution

results in a bound (upper bound in this case) of the expected cost.

In any scientific discipline it is very important to understand precisely what
we are doing when we use approximations and heuristics. This is also true in per-
formance evaluation. The theory of inequalities in general, and the majorization
theory in particular, can help understand better the effect of the approximations

involved in every step of database performance evaluation.

In the same paper ([Christodoulakis 84]) it was also pointed out that entropy
1s a Schur concave function of the probability distribution, thus associating the
usual methods of probability density approximation which are based on the max-

imum entropy principle with the Schur cost functions.

Note that these results are not only applicable to finding an extreme (max-
imum or minimum in performance) which can be also found by finding the
extreme of the cost function subject to the known constraints (e.g. using
Lagrange multipliers to show that uniformity results in an extreme of perfor-

mance [Christodoulakis 81]). This is a special case only. The application of
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majorization theory can also be used to compare the expected performance when
any two non-uniform probability vectors describe the probabilities in two dif-
ferent attributes or files for example. In the previous example, if attribute A has
a more skewed probability distribution than attribute B, under the same assump-
tions, the expected cost for A will be less than the expected cost for B. In the
extreme case that a uniform or a single-valued vector are used, bounds of the

performance for all possible distributions are obtained.

The application of majorization theory can also be used to study the perfor-
mance of algorithms for a class of distributions without resorting to exhaustive
simulations. A small number of test probability vectors can be used (including
the extreme allowed vectors such as the uniform). If the vectors majorize each
other the performance observed will monotonically increase or decrease, and the
performance for all vectors “in between” two of those vectors (in between
according to majorization) will be bound from the performance observed for the
two vectors. This observation may save exhaustive simulation studies and very

large tables describing results.

Note also that the theory of majorization is not necessarily restricted to
showing that uniform distribution approximations of the probability distributions
result in performance bounds. Even if more accurate approximations were used,
such a possibility exists. This is frequently a consequence of the method used for

deriving approximations of the probability densities.

Intuitively, the reason that this may be the case is the fact that the entropy
is Schur concave function [Christodoulakis 84]. As we have stated before the
maximum entropy principle is frequently the starting point for approximating
probability density functions. The approximations used maximize the entropy
subject to known constraints (range, mean, variance, etc.). If there are any other
constraints (unknown, or not taken into account due to space limitations
imposed) the entropy of the actual probability distribution will be less than the
entropy of the computed probability distribution. The only majorization relation-
ship that can exist in this case between any actual probability vector P and the

computed one q (which is an approximation subject to the known constraints) is
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P majorizes q. Therefore for any performance cost function S that is Schur con-
cave (convex) it will be S(P) <(>)S(q). In this sense, S(P) will be a bound on

performance.

This argument implies that the computed value may be a bound of the cost
even if a more detailed (than uniform) probability density function is used. It is
expected however that, the more constraints incorporated (the more information
about the probability distribution is known) the less the difference of the com-
puted entropy from the actual entropy (or the computed performance cost from

the actual cost).

What makes the observations in [Christodoulakis 84] important is that

majorization theory has many applications in data base performance evaluation.

4.2 Applications in Data Base Performance Evaluation

In [Christodoulakis 84] the following approximations are shown to result in

upper bounds of cost estimates (block accesses) under certain conditions:
o uniformity and independence of attribute values

o random placement of qualifying records in the file

o constant number of records per block

It is also shown that uniformity and independence of attribute values may result
in upper bound estimates of the selected number of distinct values in a joining
domain (useful for semi-join cost estimates in distributed systems). In section
4.2.1, we study costs of joins and projections as well as profile estimation prob-

lems with applications in query optimization.

Since the first application of majorization to show that certain performance
estimates were in fact performance bounds [Christodoulakis 81] a number of
other estimates were also shown to be bounds of performance: Zahorian, Bell,
and Sevcik observed that when the probabilities of record requests are assumed
to be uniform over the records of a life, an (upper) bound of the cost will be cal-
culated [Zahorian, Bell and Sevcik 83]. Piatiensky-Shapiro [Piatiensky-Shapiro 85

used majorization and Schur functions to show that when sampling is used for



~-12 -

estimating the number of distinct values of an attribute a lower bound of the
number of distinct values (cost) will be calculated if uniform distribution of attri-
bute values is assumed. In section 4.2.4, we describe some other cost functions

involved in sampling.

Two more performance problems that may result in bound estimates are
described in [Christodoulakis 81, pp. 138]. The first is the problem of calculating
the expected cost in the case that transactions update objects in a data base. It
is intuitively understood that if transactions are assumed to uniformly lock
objects in the data base (e.g. the probability that an object is updated is uniform)
this will result in a lower bound of performance. The reason is that if the proba-
bility of an object is high there will be queueing delays for transactions that wait
until an object is unlocked. A proof for this result has been difficult. However

recently some efforts for such a proof have been made ([Singhal 86], [Singhal 88)).

The second problem proposed in [Christodoulakis 81] is the problem of calcu-
lating the expected cost when a large main memory buffer is used. It is expected
that when block reference is uniform an upper bound in the performance will be

reached. We give in section 4.2.2. a formal proof using majorization.

In [Christodoulakis 84], it is conjectured that uniformity is good (e.g. gives
lower bounds of performance) in certain file organizations. In section 4.2.3. we
study the impact of non-uniformity in file organizations. The approach is
interesting in that it shows the generality of the applicability of Schur functions

in performance, and it shows how complex Schur functions can be combined.

4.2.1. Applications to Query Optimization

In this section we describe applications of majorization theory to query
optimization. We describe applications related to the cost of joins and projec-
tions. The case of selections, semi-joins and other operations has been described

in {Christodoulakis 84].
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Consider first the case of the join. We will investigate the cost of the join,
the size of the result of the join, and the number of distinct values in the join
result (new profile), as a function of the distribution of the attribute values of the

joining attributes.

Consider first the cost of the join. We do not hope to examine the cost of all
join algorithms here. We will examine two well known general cases. In the first
case, both relations are sorted on the joining attributes, in the second case one or

both relations are not sorted on the joining attributes.

When both relations are sorted on the values of the joining attribute the cost
is proportional to the cost of the sequential retrieval of the blocks of each relation
from the secondary storage. (We consider the CPU cost of merging to be zero.)

g

. . n . -
In this case, the cost is b—l + 5 where n; and n, are the relation sizes, and b,
1 2

and b, are the block sizes for each relation. Therefore the cost is independent on

the probability distribution on the joining domains.

When one or both relations are not sorted and an index is used for accessing
the values of the joining attribute(s), the cost depends on the probability distribu-
tions in the two domains. Consider the case that one of the relations is not
sorted on the joining attribute, and an index is used to access its tuples. The cost

can be expressed as

ny=by
g + N 19,

n
by i3 C!

np;

(We have not included the cost of accessing the index itself.) This cost function is
Schur concave [Christodoulakis 84] and therefore the more uniform the probabil-

ity distribution of the indexed attribute is, the higher the expected cost.

The same conclusion holds for the second attribute if the second attribute is

indexed as well. In this case the cost is expressed as
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n,—b no—b
N Cpb N CoE "
1 2%
S 3 e
f=1 n i =1 C"Q
= nyp; v nog;

where P = (p;,...,py) and Q = (¢, .. .,qn) are the probability distributions of
the two attributes. When a uniform probability distribution in each attribute is
assumed (instead of the actual one) an upper bound of the expected cost is calcu-

lated.

In summary, we examined only the cost of two possibilities for the join.
Merging sorted relations residing on secondary storage, and using indexes to
access the tuples of one or two unsorted relations from secondary storage. In the
first case the cost is independent on the probability distribution on the joining
domains, in the second case the cost is a Schur concave function of the probabil-
ity distribution of the joining domains, and therefore it increases for more uni-
form distributions (according to majorization). The uniform distribution results

in an upper bound of the expected cost.

We will examine next the size of the result of the join. The size of the result
enters the cost of a sequence of operations in two ways. First, if the result is
written temporarily on secondary storage. Second, if a subsequent join is to be
performed, the size of the result of the first join enters the cost formula as
described above. The size of the result of course is independent on the join algo-
rithm and therefore this cost is entering the cost formulae for all different join
algorithms. The size of the join iIs given by

N
"1"22 Piq;

i=1

where n; and n, are the sizes of the two relations and P = [pl,pg, c ,pN] and

Q= [ql,qg, - ,qN] are the probability distributions followed by the two joining

attributes.

All costs that we considered so far are for secondary storage data bases.
Note however that in the case of main memory data bases the cost of the join

algorithm itself may frequently be proportional to the size of the join result
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[Weddell 87]. When such is the case, the analysis of the size of the join that we
provide below also applies to the cost of the join algorithm for main memory

resident data bases.

From the above formula we can see that when the probability distribution in
one of the two attributes is uniform, the result of the join does not depend on the

probability distribution in the joining domains. (The expected cost in this case is
1

iy ) We will investigate what happens in more complex situations.

Consider next the case where both probability distributions are the same,
both increasing or decreasing, and “not too different” e.g. P~ Q. In this case the

cost becomes
N 2
C = ningy; [Pi] .
i=1

oC aoc¢C

api Bl apj

This cost function is symmetric and satisfies (p;—p,) > 0. Therefore it

is Schur convex (or Schur increasing). As a result, the more skewed the probabil-
itles P, the higher the cost. The cost is minimized (among all distributions

P ~ Q) when P and Q become uniform.

However, it is typically the case that the probability distributions of the two
attributes are not the same. When the probabilities are not the same, the cost

may not be minimized for uniform probabilities in each attribute.

In fact, it can be shown, that, given attributes A and B with probabilities P
and Q respectively, the join size (and the cost of their main memory join) is less

or equal to the cost of the join of two attributes that have as probabilities the

+ai Pita o
Pl Pivd (This is true

average probabilities of A and B, eg. Y, p;q; <Y 5 >

i
because for a constant sum the product of two numbers maximizes if the

i+ .
numbers are equal). In the special case that 3-2—(1 = % for all 7 it holds that
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In other words, the cost is lower than the cost of uniform approximations for all

those vectors P and Q that have a uniform average.

It 1s more difficult to describe what happens in the general case when P and
Q are not the same, and they do not have a uniform average. Two theorems
from the theory of inequalities are applicable in this case. The first states that

for py <py- - <py (e.g. if the values are rearranged so that probabilities are

increasing for P ) then

N N
Y ap: <Y 4
t=1

i=1
for all @ and Q' so that

k k
Eq;ZEq’;, k=1,...,N-1
1 i =1

g

and

In other words, if P is increasing, then the “less decreasing” the Q is, the higher

the size of the join [Marshall and Olkin 79, pp. 445].
The second theorem is the well known theorem of Hardy, Littlewood and
Polya [Hardy, Littlewood and Polya, 1952, pp. 261] that states that

X0 P < D0 P < D5 Py
i=1 i=1

i=1

where p;),g;) indicates the rearranged probabilities so that both py) and ¢;) appear

in decreasing order. This inequality states that if the two probability vectors are
not both increasing or decreasing, the expected cost will be somewhere in
between the cost of arranging both probability vectors in the same order (both
increasing or both decreasing, in which case the cost is maximized) and the cost

of arranging P in increasing order and Q in decreasing order (when the cost is
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minimized ).

In summary, the size of the join is always between the size calculated by the
product of an increasing rearrangement for P and Q (maximum size for all rear-
rangements) and an increasing rearrangement for P and a decreasing one for Q
(minimum size for all rearrangements). If the values of P appear in an increasing
value order then the “more increasing” according to majorization the Q is, the
higher the expected size. If both P and Q follow approximately the same distri-
bution then the expected cost is Schur convex function and therefore the more
skewed P or Q is the more the expected cost. If one of P or Q is uniform the
expected cost is independent on the distribution of the other attribute. Finally,
among all P and Q, the expected cost is maximized when P and Q are the same
permutation of the vector (1,0, ...,0). The expected cost is minimized when the

non-zero values of P correspond to zero values of Q. For example

1 1 1 1 1
—0=0— = [0—0—
4774)} ]Q H My

P = 2 277

0l

The above results state that the expected size of the join does not only
depend on how skewed the probabilities in each attribute are, but also on the per-

mutation (order) of the probabilities within the probability vectors.

One interesting question to consider is what is the expected size of the join
for all permutations of two given probability vectors e.g., given P and Q, what is
the expected cost of the join for all permutations of the components of P and all
permutations of the components of Q. The answer to this question will give us
an intuition on how the skewness of the probability distributions affects the size
of the join. Note also that it is much easier for the optimizer to keep information
on the skewness of the sorted components of a probability vector, than to keep

information on the probability height of individual values.
The expected size of the join for all permutations of P and Q is:

E q;
; LHSUD

wn® pi = T

Therefore the expected size of the join for all permutations of two given vectors
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P and Q is independent on the probability distributions P and Q, and it is equal
to the expected size of the join of two uniform probability distributions. The
skewness of the probability distributions on A and B has no effect on the average
(for all permutations of values) on the size of the join (or the cost of joins in main

memory).

Consider next the change in the statistical profile as a result of a join opera-
tion. In particular we want to examine the effect of distributions on the expected
number of values in the joining domain. In the case that several joins are per-
formed, the number of values selected by the join may be a very important cri-
terion for query optimization. It may be desirable to select even an expensive
join to be performed early in the query processing stage, if this join is to reduce
significantly the remaining values in the joining domain. This may have a signifi-
cant impact on the reduction of the overall cost of the sequence of joins. In that
respect this cost may be even more important to study than the size of the join
since it may result in more joins or more expensive joins later on in a sequence of

operations.

The expected number of values selected by the join on attribute A with pro-

bability vector P and on vector attribute B with probability Q is

o= o) boaar

where n,; and n, are the number of tuples in the two relations, and N is the
number of distinct values in the joining domain,
It is easy to verify that when one of the probability distributions is uniform

the cost C becomes a symmetric function on the other. Let P be uniform, e.g.

1 .
P = Then the cost is

(1=(1-q:)")

M=

]
-

C= [1—(1—]—1\[—)”‘]

oCc 0¢C

aqi 8‘]1

T

It can be verified that (¢:—q;) < 0. Therefore C is Schur concave

and it maximizes for a uniform probability distribution Q.
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In many cases the cost function C can be simplified

C = ;‘: [1—(1—17,-)"1] [1—(1—q.-)"2]

N
=yl ( —(1-p;)"*—(1~¢;)" + (l—p;)"l(l-qf)"z]

i=1
Keeping the highest terms we can have

OlNE [ —(1-p;) —(l‘qz')%]

or

2 1—(1-p;) —(I—Qi)n2+1—nxpi—"2%~

i=
It can be easily verified that the cost function in this case is symmetric, and that
it is Schur concave on P and Q. The cost is increasing for more uniform proba-
bilities.

In summary, we showed that frequently the result of the join has a number
of distinct values which increases for more uniform probability distributions and
it maximizes if a uniform probability distribution in the joining domain is
assumed. (The conditions under which this statement is true where described
above.) In comparison to the join size, the number of distinct values selected in
the join is more dependent on the shape of the probability distribution in each
domain than on the particular permutation of the probability values of a vector.
As a result, it may be easier to predict accurately the number of remaining values
than the result size. More intuition on this is given in the section of sampling

(4.2.4).

We consider next the expected number of distinct values selected in the join
result for all permutations of two given probability vectors. E.g. given P and Q
we consider what is the expected number of distinct values selected in the join
result for all permutations of the components of P and Q. This will give us an
intuition on the effect of skew of the probability distribution, independent on the

particular permutation of the probability vectors.



Given a permutation of P, the probability that a particular value A; of A

exists 1s
1— [1'—]71) l.

For this permutation of P, and this value A;, the probability that the value

appears in the result when all permutations of @ are considered is

Y [1—(1-—q3-)""]
[1—(1*1’5)"1] : N

The expected number of distinct values in the resulting relation for all per-

mutations of P and Q therefore is

5 (1-1-4,)
> [1—(1—17;)"1] : N

i

_ % [E [1—(1—p,-)"‘]J [E [1-(1—%)"2]]

i 7

This cost function is Schur concave in P or Q, and therefore it increases for
more uniform distributions for P or Q. The number of distinct values selected
maximizes for uniform distributions in both attributes. The skewness of the pro-
bability distributions therefore has an impact on the expected number of distinct
values selected by the join, and this fact can be easily exploited by query optimiz-

ers.

In summary, we have shown that the join size and the number of distinct
values selected by the join depend not only on the skewness of the sorted proba-
bility distributions of the two attributes but also on the particular permutation of
the probability vector components (to a lesser degree for the number of the
selected values in the join result). On the average, for all permutations of the
probability vectors P and Q, the expected size of the join is independent on the
skewness of the probabilities P and Q (and equal to the expected size of the join
of two uniform probability distributions). However, on the average for all permu-

tations of the probability vectors P and Q, the expected number of distinct
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values in the join result depends on the skewness of P and Q, and it increases for

more uniform P or Q.

The size of the result relation has an immediate impact on the cost of the
next operation. The number of distinct values in the joining domain, however,
may have a more lasting impact. E.g. it may be desirable to perform a join first
even though it may have a large output size when the join is going to be very
selective (e.g. reduce greatly the number of distinct values in the joining
domain). This is because the next join to be performed may result into an empty
relation. To study such optimizations it may be desirable that more detailed
statistics is kept on the joining domains. If such information is available, it may
be worth in some cases for the optimizer to investigate if performing joins on
very skewed domains first would reduce the number of joins required and/or the
overall cost of a sequence of joins. When statistics on individual vaIues are not
kept, but only information on the skewness of the probability distributions is
available, the above results suggest that a heuristic that could be used is to per-
form early joins on skewed attributes (the size of the relations is also an impor-

tant factor).

Next we analyze the case of projections. The size of projections has been
investigated by several authors. There are two problems of concern. First, given
a projection on an attribute A, what is the expected number of tuples remaining
in the relation (after duplicate elimination)? Second, given a projection on an
attribute A, what is the number of distinct values selected on an attribute B?
The latter is needed if B is going to be used as a joining attribute for subsequent
joins.

Both problems can be modelled as selection problems in a multidimensional
space. Consider the two-dimensional case for simplicity (without a loss of gen-
erality). Let A and B be two attributes of a binary relation of n tuples and let p;;
be the probability distribution in the two-dimensional space which is defined by
the values of A and B. Let ¢ follow the dimension that corresponds to A, and 5
follow the dimension that corresponds to B. Consider a projection on A. The

size of the resulting relation is equal to the number of distinct values of B
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selected by the projection.

The probability that a given value j of B is selected by any of the n tuples is
1— [1—2 p,.]-]
The expected number of values of B selected by the projection is

b)) [1—(1~Z Pij)"]

J

It is clear that this cost function is Schur concave on p; = 3, pij. As a result, the

more uniform the probability distribution of p; is the higher the expected cost.

The expected size of the projection is maximized when a uniform probability
distribution is assumed in each attribute. Since the estimation of the number of
values selected in an attribute as result of a projection can be done using a simi-

lar formula, this cost function is also maximized for uniform distributions.

In summary, both performance estimates in the case of projection (the size of
the resulting relation, as well as the number of distinct values of an attribute
selected as a result of the projection) are Schur concave functions, and they are
maximized when uniform approximations of the probability distributions in each
attribute are assumed. In that respect projection is similar to selection. It was
shown in [Christodoulakis 84] that the average selection cost (for secondary
storage relations) maximizes for uniform distributions, and that the number of
distinct values of another attribute that exist in the relation resulting from a
selection i1s maximized when uniformity and independence of attribute values is

assumed.

4.2.2 Buffered 10 Processing

Consider a main memory buffer of size B blocks. The probability that a

block 7 is not in the buffer at any point in time is (1—p;)?, where p; is the proba-

bility of block ¢. The probability therefore that a request for block ¢ is given

next, and the block ¢ does not exist in the buffer is
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(1-p;)Pp;
Therefore the expected cost in a sequence of N block retrievals is

& B
C =Y (1-p;)Pp;
i1

secondary storage block accesses. Differentiating we obtain

8¢ _ B B
ap [1 Pz] Bp;(1-p;)

= (1-p,) [I—B—l”;]
=p;

This is a decreasing function of p;. Therefore

o B [ | e M g e

<0

[4

and thus C is Schur concave. Therefore the more “uniform” the block probabil-
ity vector according to majorization, the higher the expected cost. In the special

case where the block probabilities are uniform the cost is maximized.

4.2.3. File Organizations

Majorization theory may have many applications in file organization perfor-
mance analysis. In [Christodoulakis 84] it is conjectured that uniformity is desir-
able (e.g. should lead to lower bound estimates in several file organizations. As

examples superimposed coding and hashing are stated.)

It 1s easy to see that more uniform distributions of k bits across the M

blocks of a superimposed coding file organization will result in a lower cost. Let n;

be the number of bits in block ¢, Zn} n; = k. The false drop probability for block

£=1

is [fbl—] where b is the number of bits per signature block [Christodoulakis and

Faloutsos 84] and r is the number of bits set “on” by a single word. The total
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cost then can be expressed as

=]

It can be easily verified that this cost function is Schur convex and therefore
more uniform distributions of bits per signature block will result in better perfor-

mance.

The case of hashing is much more interesting because it illustrates an appli-

cation of compositions of Schur functions with many other potential applications.

The analysis of the expected cost of file organizations frequently uses a mul-
tivariate probability distribution to calculate the probability that a given bucket
will receive = records. The cost is typically calculated by multiplying the proba-
bility of having z records in the bucket times the cost for 2 records, and sum-
ming over all values of z, for all buckets of the file. For example analysis of
hashing organizations frequently employs a Multinominal distribution or a Poisson
distribution to describe the probability of an allocation of records in a file

described by a vector x = (x;, ... ,xy) where M is the number of buckets in the

file. The cost for a given vector x is typically a sum of costs of individual buck-
M

ets, e.g. it has the form ¢(z, .. .,z5) = Y] g(2;) where g(z;) is may be a convex
i =1

function of g(z;).

For example consider the case of hashing where the primary bucket can hold
up to b records, and each overflow record is stored in separate buckets. Using
the Multinomial probability distribution the overflow cost can be written as

Mo
I A/

-2 IM Ji=1

M
C= Z¢(Cli A )CM) [971; N

M
with ¢ = 3 ¢;, ¢; = z;—b for z; > b, zero otherwise. In this cost function }; is

i=1
the probability of bucket ¢, z; the number of records that hash in bucket ¢, and

N the total number of records.
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Using the Poisson approximation the cost can alternatively be expressed as

M M e_xix:’.
C=)Y é,... sep) T ———
i=1 t=1 x;:
. . . M
In both cases the cost function for a given vector x is ¢(cy, . .., ca)=3, ¢,

with ¢; = z;—b for z;>b, zero otherwise. This function is a special case of func-

M
tion of the form ¢(c), ..., cp) =Y, f(z;) with f(x) being a convex function. It
=1

has been shown by Hardy Littlewood and Polya [Hardy, Littlewood and Polya
M

1929] that any function é(c, ...,cp) =Y, f(z;) with f(z;) being convex is a
=1

Schur convex function. It has also been proven [Rinnott 73] that the expectation
for a Multinomial or a Poisson probability distribution of a Schur convex function
1s also a Schur convex function. Therefore the functions

. =z
Mo TN

M
O =3 der .. ep) L

i=1 ;!

and
M N Mo
Clhp -+ pg) = §¢(c1, V| R ): g%
are Schur convex functions with respect to X = (A, ... \y). Both cost functions

for hashing are therefore Schur convex with respect to bucket probabilities. As a

special case this shows that the uniform fix probability X, =X, - - = N, will

minimize the expected cost for hashing.

Several more probability density functions preserve the Schur property when
they are used to find the expected value of a Schur cost function. Such probabil-
ity densities for example are the binomial, hypergeometric, negative multinomial,
negative hypergeometric, etc. [Marchal and Olkin 79]. These probability func-
tions frequently appear in many performance analysis problems. For example, it
has recently been shown that the probability distribution followed in ISAM organ-

izations is negative binomial [Christodoulakis, Manolopoulos, and Larson 89]. It is
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this generality of applicability of the majorization theory to stochastic majoriza-
tion, and to probabilistic and statistical applications that makes the theory

important to performance studies.

4.2.4. Sampling

Sampling has been used as a way to estimate the parameters of a distribu-
tion. Since sampling requires only part of the data base it may result in more

inexpensive calculation of the parameters.

When sampling there are three important considerations. First, how the
results of sampling with or without replacement compare. Second, how the
expected number of distinct values selected by a sample relates to the total
expected number of distinct values in the population. Third, how the expected
number of distinct values selected by two samples of the same size from different

populations relate to each other.

Consider a selection of n records with replacement. The expected number of

values selected is given by

M n; "
Cy =), [1- 1—_17

i=1

1nin
N

where N = n; + ny +...4 ny, is the number of records in the file. The expected

M
- M-3
f=]

number of values selected by sampling without replacement is:

N-n,

MO

Co=M-=Y——.
o O

It can be shown by expansion that C, > C;. Therefore the non-replacement sam-
pling results in higher expected distinct values selected than the sampling with
replacement. It is also clear that in both models the number of distinct values
selected is an increasing function of the sample size, and that for n = N the non-

replacement sampling results in selecting all the distinct values, while the
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replacement sampling results in less that M distinct values.

Consider now two different populations P = (p,...,py) and
Q = (q1, - . -,qn)- The expected number of values selected using sampling with

replacement is

M=

Clx) = X, (1-(1-x;)")

i=1

Since this function is Schur concave with respect to x, if P majorizes Q then the
sample from P will select less distinct values than the sample from Q (in the

expected case).

Sampling from a uniform distribution will produce the highest number of dis-

tinct values in the expected case.

Sampling relates to the problem of estimating the number of distinct values
remaining in a domain after a relational operator is applied to a relation.
According to the above, the more uniform the distribution is, the higher the
expected number of distinct values selected. In the case of Join, sampling hap-
pens in two attributes A and B. The result of sampling is two vectors of zeros
and ones. The multiplication of the corresponding vector components gives the
vector with the selected values. The more uniform distributions in A or B will
result in a higher number of ones in the vectors representing the results of sam-
pling. On the average over all permutations the product of the corresponding

components will increase for more uniform distributions.

4.3 Limits of Applicability and Extensions

In [Christodoulakis 81, pp.138] it is also explicitedly stated that the impli-
cations of the assumptions (used in the probability approximations) have been
studied in isolation. If a single cost function (one of those described above)
completely characterizes the problem then the results described above can
directly be applied. It is not however understood how performance estimates
interact in a more complicated environment where several operations take place

(as a sequence or in parallel). It is dangerous to make such generalizations
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without a formal theory to back them up. One reason is that the overall perfor-
mance ratio (calculated versus actual) may depend heavily on the frequency of
operations in the particular environment. Nevertheless experimental results for
particular environments have been reported by various researchers. Results on
the composition of cost functions similar to those described above for the file
organizations may be applicable to more formal studies of the cost behavior in

cases where a sequence of operations takes place.

It is clear that the results reported in [Christodoulakis 81] and [Christo-
doulakis 84] are applicable to data bases residing on magnetic disks since all cost
functions map record accesses to block accesses. (The only exception is the
semi-join size estimates). The same results may not be applicable when other
storage devices are used for storing the data base. A particular example is
main memory resident data bases. An extensive set of performance estimates for
main memory resident data bases was reported by Weddell in his Ph.D. thesis
[Weddell 87]. It was early observed that the cost of selections for main memory
data bases is exact (e.g. not a bound as it was for secondary storage selections)
even when attributes have non-uniform distributions and dependencies exist (pro-
vided that the queries are uniformly distributed) [Christodoulakis and Weddell

86). An example for selections in main memory was given early in this paper.

The results of the size of the join presented earlier, and the number of dis-
tinct values selected in the join result are also applicable to main memory
resident data bases. Moreover, the cost of performing a join is often proportional
to the size of the join for main memory databases. In this case, the previous
results also apply to the join cost. The results of projection are also applicable to

main memory resident databases.

The effect of skew of the probability distributions in joining domains on vari-
ous join algorithms in main memory databases with multiple processors has been
extensively studied at IBM Watson Center and reported in [Lakshmi and Yu 88].
It has been found that skew has a major impact on performance and it should be
used as one of the major parameters modeling performance. It is shown that

when no skew exists performance is best, and it is suggested that straightforward
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generalizations of conventional join algorithms may not be adequate to handle the
skew problem in environments with large number of processors. In this environ-
ment assuming uniform distributions in the joining domains may lead in lower

performance bounds.

4.4 Future Research

More research is badly needed in the area. It is important to understand the
import of the assumptions made on performance. It is also crucial to understand
when to use or reject a particular profile. If a profile is unreliable it makes no
sense to use it in query optimization. Most models evaluate a profile based on an
average error minimization criterion using the data points of the distribution.
The average error does not allow an error bound on an individual query. How-
ever, it is well known that in a given environment queries are highly skewed
(80/20 rule). If it is the case that queries in an environment are directed towards
values with large deviations from the profile estimate then the overall error may
be high. Approaches that bound the error of individual value estimates when

they calculate a particular profile may be more reliable.

In the case that multidimensional histograms are used, this suggests the con-
struction of histograms based on a maximum error criterion [Christodoulakis 81].
In the case that a maximum error criterion is used the histogram based approach
may result in certain high values of distributions stored separately (for skewed

distributions).

Little is understood about the effect of the profile chosen on the cost of a
sequence of operations. Not all cost estimates for the usual model are pessimistic
(for example join estimates are not necessarily pessimistic). Combining joins with

other operations may result in unpredictable (upper or lower) estimates.

If we consider a sequence of operations such as a sequence of joins it is worth
knowing the error propagation in our estimates. The error propagation will
tell us for how many operations we may use our selectivity estimates reliably. If
the error in the estimation is large in some sense, alternative query optimization

techniques that do not rely on selectivity estimates may be used. Note that the
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acceptable error may depend on the alternative query optimization strategies

availlable.

We suggest here that formal research is needed in the area. Such research is
well accepted and understood in other disciplines (for example numerical
analysis). It is surprising to us that it has not yet been applied to selectivity esti-
mation. We note also that the study error propagation in a sequence of opera-
tions may imply some restrictions in the choice of the original statistical model.
We suggest here again that a more appropriate criterion for the design of mul-
tivariate approximations is a maximum error criterion as opposed to an average

error criterion.

5. Capturing Attribute Dependencies and Estimating Block Selectivities

Attributes depend on each other. Attribute dependencies may result in seri-
ous errors in selectivity estimation if they are not captured by the model. Func-
tional dependencies, multivalued dependencies, and correlations are well under-
stood, frequently encountered, and it is relatively easy to capture them in a
model (requires little space). There are many other forms of dependencies of
attribute values which may be more difficult to detect and more space consuming
to capture automatically. However, some of these dependencies may be captured
as part of the data base design phase (during interviews). This is an advantage
over traditional statistical approaches that derive all their information from exist-

ing data points.

Dependencies have serious impact in the quality of block selectivity esti-
mates. Consider a relation clustered on the values of an attribute A, and selec-
tions on an attribute B. If there are dependencies between the values of A and
B the cost estimates of selections may be highly pessimistic. For example, in a
relation of employees where the employees are clustered on the values of the
attribute Department, any employees with the skill of an engineer will be located
in a small number of blocks since only one department or two may have
engineers. To capture reliably the block selectivity in such a query, the depen-

dencies between attributes A and B must be modeled.
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Another case where the block selectivities may be overly pessimistic is when
new records are always inserted at the end of a file. Such insertions create high
correlations between time and block number. Attributes that correlate highly
with time will also correlate highly with the block number. For example, if new
employees are always inserted at the end of the file, then salary, age, number of
years in the organization, rank and other attributes will highly correlate with the

block number. R

Future research in this area is promising. Frequent types of attribute depen-
dencies should be identified. For example one type of dependency may be the
maximum number of non-zero pairs of values of two attributes. Dependency
types that are identified should be used to derive cost estimates and new profiles

in sequences of operations.

6. Other Topics

Several other topics in selectivity estimation are worth investigating. Such

topics include:

e Proposing systematic ways to deal with model adaptability and periodic
changes. Such questions have already been discussed in the context of index

selection.

e Investigate sampling as a means of verifying the reliability of selectivity esti-
mates during the process of query evaluation. The system could dynamically
modify the query evaluation strategy when significant discrepancies are

observed.

o Estimate selectivities in large text dbms’s. Selectivities in such an environ-
ment are important not only for query optimization but also for returning an

estimate about the size of the response to the users.

e Provide selectivity estimates for accessing information from new storage dev-

ices (such as optical disks).
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7. Conclusions

We have presented a highly biased view of topics in selectivity estimation for

use in query optimization.

We have suggested what in our view are the most promising directions for

research in this area and what topics should be avoided.

In summary information theoretic approaches, maximum error bound
approximations, attribute dependency modeling and its use in block selectivities
and other cost estimates, and error propagation studies in a sequence of opera-

tions are in our opinion the most important research directions in the area.

We have emphasized the applications of the theory of functional inequalities
and in particular of majorization and Schur functions in data base performance
problems. We have produced new results significantly extending the results in

[Christodoulakis 84] showing the large range of applicability of this theory.

We studied the impact of the probability distributions on the cost functions
used for joins, projections, and new profile calculation. The cost of join in gen-
eral depends on the join algorithm. Merge joins for sorted relations on secondary
storage are independent on the probability distribution in the joining domains
while when an index is used for one or both attributes, more uniform distribu-
tions result in higher costs. The size of the join result is very sensitive to the
probability distributions in the joining domains. The size increases when the
peaks of the two distributions are rearranged to correspond to the same values
and it decreases when the peaks of the first distribution are rearranged to
correspond to the valeys of the second distribution. On the average however,
overall permutations of the two probability vectors the size of the join is indepen-
dent on the skewness of the probability distributions involved. The number of
remaining values in the joining domain (new profile) is important when a
sequence of joins is performed. This number increases in general for more uni-
form probability distributions in the two attributes. When all permutations of
two probability vectors are considered, the number of distinct values selected in
the join is a Schur concave function on the probability distributions involved, and

therefore it increases for more uniform distributions in each attribute.
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We showed that the size of the projection as well as the number of distinct
values of an attribute remaining after the projection depend on the probability
distribution of the attributes of the projection. The more uniform distributions

result in higher costs in both cases.

We studied the effect of the assumption of uniform access probabilities to the
blocks of a buffer and we showed that uniformity leads in an upper bound of the

cost.

These results complement the results presented in [Christodoulakis 84],
where the impact of the skewness of probability distributions was studied for the
case of selections, semi-joins, and block accesses for non-randomly placed records

was studied.

We proved that uniformity results frequently in a lower bound of the cost in
file organizations such as hashing and superimposed coding, and we showed some

applications of Schur functions in sampling.

Finally we suggested several important research directions for the estimation

of selectivities.
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