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ABSTRACT

Optimal data placement on the surface of a disc has as an objective the minimiza-
tion of the expected access cost of random data retrievals from the disc when the proba-
bilities of access of data items are different. The problem of optimal data placement for
optical discs is both more important and more difficult than the corresponding problem
on magnetic discs. A good data placement on optical discs is more important, because
data on optical discs such as WORM and CD ROM cannot be modified or moved once
they are placed on the disc. Even rewritable optical discs currently are best suited for
applications which are archival in nature. The problem of optimal data placement on
CLV format optical discs is more difficult mainly because the useful storage space is not
uniformly distributed across the disc surface (along a radius). This leads to a positional
performance trade-off not present for magnetic discs.

We present a model which encompasses all the important aspects of the placement
problem on CLV format optical discs. The model takes into account the non-uniform
distribution of useful storage, the dependency of the rotational delay on disc position, a
parameterized seek cost function for optical discs, and the varying access probabilities
of data items. We show that the optimal placement satisfies a unimodality property.
Based on this observation, we solve the optimal placement problem. We also study the
impact of the relative weights of the problem parameters and show that the optimal
data placement may be very different than the optimal data placement on magnetic
discs.

1. Introduction

One important goal of physical database design is to obtain the best retrieval performance possible
from the storage system or device on which a database resides. An accurate measure of retrieval perfor-
mance is the expected time delay required to access the records qualifying in a query. For both magnetic
and optical discs this delay is dominated by the time needed to physically reposition the device’s access
mechanism during the retrieval process. Typical seek times for magnetic and optical discs are 30 and 400

milliseconds respectively. For some optical discs such as CD ROM, the seek time can be as much as one



second. It is obviously of critical importance to minimize the expected delays that result from using such

slow devices.

A technique frequently employed in physical database design to improve retrieval performance is
data clustering. Clustering improves performance by storing those records which are likely to be
retrieved frequently, in locations on the storage device that are physically near each other, such as in the
same or adjacent tracks. This physical grouping reduces both the expected number of seeks that the
access mechanism will execute, and the expected distance it will travel. The idea of positioning data to
improve performance can be extended to encompass the entire arrangement of sectors on the disc and
leads directly to the problem of finding a total disc sector arrangement that minimizes the expected cost

of a single disc access.

This optimal sector placement problem is an important one for optical discs. Their large storage
capacities and low cost make them ideal for large database systems, their only real drawback is their
slower seek performance. Any technique that can mitigate the impact on retrieval performance of the
slow retrieval times. This is particularly true for CLV optical discs. First because they typically have
slower access times than CAV optical discs. Second, because data on CD ROM’s and WORM’s are never
modified or placed in a different position (unlike magnetic disks where data is modified frequently, and
also data placement is frequently variable and transparent to users). Even rewritable CLV optical discs
may be used very frequently an an archival medium. Since CD ROM'’s are media used for distribution of
information, and other optical discs are typically media for archiving information, the benefit of finding
an optimal or good sector arrangement for the data will be reaped over the many, usually thousands, of

copies of the discs, or over may years of use.

The problem of record or sector arrangement to improve retrieval performance has been investi-
gated previously for magnetic discs. The results of those investigations, however, have very limited appli-
cability to the same problem for optical discs. The differences in the physical characteristics of magnetic
and optical discs are significant enough to invalidate many important underlying assumptions used in
determining the solutions for magnetic discs. For instance, all previous investigations of the optimal sec-

tor placement problem for magnetic discs, implicitly (and quite naturally, since virtually no other formats
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were available) assumed that the disc employed the CAV storage format. This assumption implies that
each track on the disc has the same uniform storage capacity (same number of sectors). This is simply
not valid for optical discs that use the CLV storage format. With this format, the distribution of storage
space varies across the disc surface; the tracks nearest the centre of the disc have fewer sectors than
those nearest the outer edge. For CD ROM discs, which use the CLV format, the ratio between the capa-

city of the outer and inner tracks can be as great as three to one.

The asymmetric distribution of storage capacity changes the optimal sector arrangement problem
significantly for CLV format optical discs. The higher capacity tracks at the disc’s outer edge allow for
more data clustering there than at the disc’s inner edge. To add a further difficulty to the problem, the
rotational latency also varies as a function of position. These characteristics of the recording formats lead
to a three-way positional performance trade-off, the balance point of which is determined by the parame-
ters of the problem. The presence of the trade-off makes the placement problem much more complex and

difficult than the CAV format placement problem.

In the next section, we describe previous investigations of this problem for (CAV format) magnetic
discs. In the sections following that, we give an overview of the placement problem and discuss the posi-
tional performance trade-off in more detail. We then develop a model for our analysis which encompasses
virtually all aspects of the placement problem, including the distribution of storage across the disc, the
access probability distribution, the seek performance of the drive, and the complication of a rotational
latency function which varies with the position of the access mechanism. Next, we develop an analysis of
the problem and then analyze the performance trade-off and the roles played by the model parameters in

determining the optimal solution.

2. Previous Research

The problem of finding an optimal arrangement of probabilities to minimize the expected distance
function between regularly spaced probability points in linear space, was first investigated by [Hardy 34].
They found that an arrangement called the Organ-Pipe Permutation produced the optimal solution. This
permutation places the largest probability in the centre of the space and then positions the rest of the

probabilities, in decreasing order, on alternating sides of the centre. This results in two optimal solutions,



one the mirror of the other.

This work was extended by [Bergmans 72| who developed the notion of the Pairwise Majorizing
Property or PMP as a necessary condition for the optimality of probability arrangements. The basic
notion behind the condition is that all probabilities on one side of a point, line, or plane, depending on the
dimensions of the space, must be greater than or equal to their respective probabilities on the opposite
side. Bergmans showed that the PMP was a sufficient condition for optimality in linear and circular
spaces (i.e., the probabilities are placed around the circumference of a circle) and result in the Organ-Pipe
permutation (an analogue of the organ-pipe is produced for circular spaces). The PMP condition, how-
ever, is not a sufficient condition for general spaces, but it does imply that all optimal solutions under

these assumptions must be unimodal.

These results were later applied to the problem of optimal track arrangements on magnetic discs.
In the models used to approach the problem, the tracks or cylinders of the disc were viewed as forming a
linear space. [Grossman 73] considered the case of assigning a single data element with a known access
probability per position (track/cylinder) and showed that the Organ-Pipe permutation was optimal for

the physical characteristics of a magnetic disc.

The problem of optimal arrangement when each position can be assigned more than one data ele-
ment (i.e., a sector or record), and each position contains exactly the same number of elements, was stu-
died by [Yue 73]. They showed that with an Organ-Pipe permutation of the tracks, based on the sum of
the access probabilities of the sectors/records assigned to the track, that the “ranking partition scheme”
or “greedy partition scheme” [Wong 80] was optimal. This partition scheme results in each track being
assigned a continuous subsequence of the total ordering of the data elements (sectors/records) according
to their access probabilities; this implies, that the access probabilities of the elements in each track are
consecutive in value with regard to a total ordering of all element access probabilities. Thus, the sectors
in the centre track, which has the highest probability sum, will have the sectors with the highest access

probabilities.



3. Problem Overview

The optimal placement problem for optical dises which employ the CLV format is considerably dif-
ferent and more difficult than the same problem for discs which use the CAV format. The reason for this
increased difficulty is that a positional performance trade-off is present for discs which use the CLV for-
mat. This trade-off is not present for discs which use the CAV format and is primarily a consequence of
the constant recording density of CLV discs which skews the distribution of storage capacity towards the

outer edge of the disc (where disc tracks are longer and they can contain more data).

This skewed distribution produces variations in the amount of clustering possible at different posi-
tions on the disc and in the rotational latency encountered at different positions. These variations can be
exploited to improve access performance. For example, improved access performance might be obtained
by clustering more frequently accessed sectors together in the higher capacity tracks (near the outer disc
edge) or by reducing their rotational latency (by placing them closer to the first recording track near the
centre of the disc). It might also be obtained by placing frequently accessed sectors near the middle of
the set of tracks on the whole disk in order to reduce the average distance the access mechanism must
travel between them and other parts of the disc. The cost function that we derive reflects all of the

above factors. The optimal solution finds the position which best balances these improvements.

It is interesting to note how the uniform storage capacity distribution of a CAV format disc elim-
inates the possibility of trading off positional performance improvements. This is because all tracks on
such discs have the same capacity and rotational latency. This uniformity makes the distance between
disc sectors the only factor in determining the expected retrieval cost. The organ-pipe arrangement,
which minimizes this distance in order of the frequency of sector accesses, is the resulting optimal solu-

tion. In that sense, the problem of optimal placement on CAV discs is much simpler.

The balance point in the performance trade-off for CLV discs is determined by the relative signifi-
cance of each of the performance improvements possible. These in turn are a direct consequence of the
parameters of the placement problem and their own relative significance. These parameters are: 1) the
distribution of storage capacity across the disc surface; 2) the distribution of the relative or absolute sec-

tor access probabilities; 3) the seek cost function, and 4) the rotational latency function.



The distribution of storage space affects the trade-off by determining the variability in both the
clustering of disc sectors and the rotational latency function. The significance of sector clustering is
determined by the sector access probability distribution. For example, if the storage distribution becomes
more skewed, the performance improvement from the increased clustering of frequently accessed sectors
becomes more significant, the opposite is true when the distribution becomes more uniform. On the other

hand, increased skewness will increase the rotational delays of the larger tracks.

Given the previous parameters, the seek cost and rotational latency functions determine the actual
balance point between the performance improvements that can result from increased clustering, reduced
average travel distance or reduced rotational delay. If the seek cost function is the more significant of
the two, and it is relatively independent of distance (e.g., some constant), then increased clustering will
provide the best performance improvement (zero cost for accesses in the same track). If the opposite is
true and seek cost function is relatively more dependent upon distance then the best improvement will
come from reducing the average travel distance. If the rotational latency is the more significant of the
two (the disc turns very slowly compared to the seek time), then the best improvement will come from

reducing the rotational latency.

The complication of the positional performance trade-off in the optimal placement problem for CLV
format discs, necessitates a different model and analysis than the one that has been used in previous
investigations for CAV format discs. In the next section, we present a continuous model which retains the
essence of the placement problem while allowing it to be analyzed to reveal the basic intuition and trade-
offs. The continuous model transforms the problem from one of placing discrete disc sectors on a discrete

disc, to one of placing infinitesimal probability masses on a continuous disc.

In our model, we also adopt a simplification which restricts the sector access probabilities to two
values, a high probability subset and a low probability subset. This restriction retains the essence of the
placement problem while avoiding the extra complication of determining the exact optimal placement of a
general probability distribution. It is also directly applicable when the exact probability distribution of
access is not known. For example, it may often be the case that the only information known is that

indexes are accessed more frequently than all other data (and what the relative ratio between the fre-



quency of access of the two is). In the later part of this report we present extensions to more general pro-

bability density functions.

4. The Placement Model

To avoid some of the inherent complications of a discrete model, we develop a continuous model for
our analysis. In moving from the discrete to the continuous domain, the problem changes from one of
placing sectors on a discrete disc to one of positioning probability masses on a continuous disc. We now

describe the parameters of the continuous model below.

Capacity Distribution
Since the track capacity on discs which employ the CLV formats increases linearly as the track’s

position moves away from the centre of the disc platter (circumference is a linear function of the radius of

a circle), the distribution of storage can be modeled exactly by a straight line function.

The storage distribution function is C(z) and is specified by its relative slope k and intercept j.
The capacity of a position is measured relative to capacity of the middle track on the disc which has
capacity 1. The slope is also specified relative to the capacity of the middle position, since capacity is a
linear function of position and j cannot be less than zero, this restricts the value of the slope to the range
0 to 2. To see that this is so, consider that the greatest value for the slope corresponds to j=0, since the
capacity of the middle position is always 1, then the value for the slope for that case will be

(1-0)/A*%—0) = 2. From this we also have j = 1 — %k.

The relative storage capacity is given by:

Cle)=kz+ 3, 0<2<1, 0<k<2

A position on the disc is specified as a value between 0 and 1, where O represents the innermost

position (track) on the disc and 1, the outermost. A disc model is illustrated in Figure 1.
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Figure 1. Model of Distribution of Storage Capacity

Random Access Probability Distribution
Our probability model assumes that requests are independent of each other. This is consistent with

the models used in the analysis of the problem of optimal data placement on magnetic discs.

In addition,, to simplify our analysis we restrict the access probabilities of the point masses to two
relative values P, and P, (P, > P,). In a later section, we will describe how this model can be generalized
to provide good data allocations for arbitrary probability distributions.

The proportion of point masses with relative access probability P, is specified by r; the proportion

with value F, is 1—r. Figure 2. illustrates the two value relative probability distribution.

The absolute access probability value of a probability mass with relative value P, is

Py 1 P, 1
— for Ps i —, wh is t. b f babilit, int. -
Pir + B(l=r) & and for P, is P+ Pg(l—r) P , where p is the number of probability points (propor

tional to the area occupied by these points), which tends to infinity in the continuous model. We will let

W = P,r + P,(1—r) be the normalizing factor.
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Figure 2. Two Value Relative Access Probability Distribution

Seek Cost Function

We model seek performance with the function Se(t), which is illustrated in Figure 3.

time

Q

Distance between positions on disc

Figure 3. Seek Cost Function
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The parameter a is the slope of the line and represents the time delay incurred when moving the access
mechanism a given distance over the disc surface. The parameter b is the intercept of the line with the
vertical axis. The parameter @ is the span size and represents the portion of the disc on one side of the
anchor position of the access mechanism that can be accessed without incurred the seek cost penalty; @,
and distances ¢, are both specified in terms of fractions of disc units. The parameter @ represents the
ability of some disc drives to access more than one track on a disc from a single position of the access
mechanism. This is usually accomplished by tilting a mirror in the viewing mechanism of the drive which
deflects the laser used to read the disc. If possible, the time to tilt the mirror is on the order of 5-10 mil-
liseconds, very much smaller than the time to reposition the access mechanism (seek). A typical non-zero

value for @ is 10 to 40 tracks.

The definition of the function Sec(t) is given below.

at+b if t>Q
Se(t) =

0 otherwise

Rotational Latency Function

Rotational latency on CLV format discs varies as a function of position. This is because the speed
at which the disc platter rotates is adjusted by the disc drive to match the position of the access mechan-
ism; the platter rotates more slowly when accesses are near the outer edge than when accesses are near its
centre. This adjustment is necessary for the drive to read the disc because it ensures that the data
recordings, whose density is constant across the disc surface, pass beneath the access mechanism at a con-
stant rate. Thus, the rotation rate of the disc platter is a direct linear function of the capacity of the

position (track) being accessed.
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If h is the time required for the entire middle position to be read, then the expected rotational

latency of accesses from a position z is:

Rd(z) = % h C(x)

Summaries of the variables and functions defined in the model are given in Tables 1. and 2. below.

Variables

k - Slope of storage distribution

J - Intercept of storage distribution

a - Slope of seek cost function

b - Intercept of seek cost function

T - Number of tracks on disc

Q - Span size (proportion of disc)

Q - Span size in tracks (Q_ =Q-T)

P - Relative access probability of most frequently
accessed data

P, - Relative access probability of least frequently
accessed data

w - Probability normalizing factor

r - Proportion of probability mass that has value
Py

h - Time to read middle position of disc (milliseconds)

m - Centre position of P, group

z,y - A position on the disc

Table 1. Summary of Placement Model Variables
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Functions
Pm(z) - Probability mass assigned to position z
C(z) -  Storage capacity of position x
Se(t) - Seek cost function (milliseconds)
Rd(y) - Expected rotational delay at position y

Table 2. Summary of Placement Model Functions

The Expected Random Access Retrieval Cost

The objective of our analysis of the placement problem is to determine an arrangement of probabil-
ity masses that minimizes the expected random access retrieval cost (seek and rotational delay). The
overall expected retrieval cost is computed by summing the cost in time units of successive accesses to
each pair of positions on the disc (in both directions since the rotational latency will vary), weighted by
the product of the probabilities of accesses to each of the two positions. The cost of moving from one
position to another is the sum of the value of the seek cost function for the distance between the two
positions and the value of the rotational delay function at the destination position. We first develop a
discrete expression for the expected random access retrieval cost and then extend it to the continuous

domain.

The cost function in our model is:

Cost = 33 33 P (i) P (5) (Se(I(i—3)/T) + R(5))

i=1 j=I1

In the expression above, ¢ is a start position on the disc, and 7 is the destination position, Pm(z) is the
probability mass assigned to a position i. Sc(|(¢—j7)/T|) is the seek cost between the positions ¢ and j

and Rd(j) is the expected rotational delay at position j.

T T

Cost = 3} 33 Pm(i) () Se((i—)/T) + 33 33 Pa(i) Pra() RA(3)

i=1 j=1 i=1 j=1
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We expand the function Sc(}(i—7)/T|) which changes the limits on the summations. In the discrete case

we use ¢} to represent the number of tracks, to the left or right of the current track, which are in the

current span. Thus, the span has a total of 2Q—+ 1 tracks

+ E Pm(i EPm (4) Rd(5)

To simplify the expression, we add the following terms which sum to zero

ST i) () -0 - 35S i) () (050) )

i=1 gj=i

=i

i

> 33 Pm) Pm(3) (-5
i=Q+

T
and use the fact that the sum of the probability masses equals one () Pm(i) = 1) to simplify the rota-

i=1
tional delay term and obtain:

T—@ Q-1 T

Cost = E g% Pm(j)(—(] —1)+b) Zi,:

S Pm(s) Pm () (=) + )

+ 3 S @G-+ - 3 i_Pm(i)Pm(J')(%(i—be)
i=g+2 §=1 i=Qg+2 j=i—Q

+ 3 Pm(5)Rd()

J=1
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The expected retrieval cost function can be divided into three components, one representing the
delay due strictly to the distance between successively accessed positions, one representing the cost result-

ing from successive accesses which do not fall within the same span which we will call the clustering

delay, and one representing the rotational delay.

Using the simplification 2 Pm(: E Pm(5)b = b, and adding further zero sum terms, we have:
i=l j=1

Cost = E 2 Pm(: Pm(])—;,—(j i)+ E E Pm(i (J')%(i—j)

i=1 j=i i=1 j=1

+ b+ iPm(z‘)Pmu)b

=1

i Pr()(&(i=)+) = 33 Pr(i) Pm(3) ((i=) +1)

g=i i=T—Q j=i

i Min

-

f]_ (#) Pm(5) (5 =7 )+b)—0i E Pm(l)Pm(J)(—(z— )+ )
J=i—Q

t=1 j=1

|
‘%IMS

+ 3 Pm(j)Rd(j)

J=1

Expected Cost for Small Span Sizes

We can obtain a closed form solution for the case where the span size is small in comparison to the

number of tracks of the disc (%——#0, T —0). Our expression for the expected random access retrieval

cost simplifies to the following:

Cost = E E P’"(Z)Pm(f)_(.? —i) + E E Pm( )Pm(J)—(Z— )

f=1 j=i i=1 j=1

+ b
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- zT)Pmu)Pmu)b

=1

+ 3 Pm(5)Rd(j)

J=1

For T— 0, we obtain:

th_r& %EPm 1) Pm(3J) %j ] =j;f () Pm(y) a(y—z)dy dz
lim E E Pm(s) Pm(])'—(J z)-—fme(a:)P'm( )a(z—y)dy dz

E—00 iy j=1

When we move to continuous domain the clustering term vanishes because:

T
lim 3 Pr() Pr(i)b < lim 3 (PunC(1)L1 )20
t—00 i=l T

t—oc0 i=1

b T
1 —_—
< tl—{r;o G izjlpma.xo(l)
= lm 2= TP,,C)=lm > P, C(1)=0
t—00 Iq max t—oo T max

Also,

lim EPm YRd(5) = me(x)Rd(a:)dm

t—00

Thus, for %—»0, T — 0, the cost function becomes:

11 1 =z

Cost = [ [ Pm(z)Pm(y)a(y—=)dydz + [ [ Pm(z)Pm(y)a (z—y)dy dz
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+ b + [ Pm(z)Rd(z)de

5. Proof of Consecutivity and Unimodality

Theorem 1: {Consecutivity} In an optimal arrangement, there cannot exist two different positions

on the disc, # and y, such that both a P, and P, mass element is assigned to position ¢ and both a
P, and P, mass element is assigned to position y.

Proof: Assume there there are two such positions. Consider the change in the expected retrieval
cost if we exchange the P, mass at position = with the P, mass at position y. If the expected
retrieval cost increases then the opposite operation of exchanging the P, mass element at position y
with the P, mass element at position z will decrease the expected retrieval cost and would violate
our assumption that the arrangement was optimal.

Corollary: The above theorem for discrete discs implies that in an optimal arrangement at most

one track will have sectors with probabilities P, and P,. All other tracks will have sectors with
either just P, or just F.

Due to the assumption of infinitely small elements and disc space continuity, as well as due to the
consecutivity theorem, we need only to consider placements where all the elements in a column
defined by two points z; and x; are occupied by elements of the same probability value.

It is also clear that when the elements of a column defined by «; and z; (which correspond to the
area of the trapezoid defined by z; and z;) are moved to another location on the disc they will
occupy all the area of the trapezoid between two points ;' and z;. This is true since given an area
A smaller than the area of the disc, and a point z; we can always find another point z; such that
the area between x; and z; is A. The above observations allow us to describe the problem without

worrying about columns that are not occupied completely by elements of a given kind.
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We will show that the optimal placement of such columns is unimodal. This means that given two

columns with probability elements of value P,, there cannot exist a column between them with probability

elements of value P,.

Theorem 2: {Unimodality} The optimal arrangement of two probability masses is unimodal.

Proof: The intuition behind the unimodality of the optimal arrangement is simple. If the fre-
quently accessed elements are placed together, the distance that the access mechanism will travel
for most accesses will be reduced. The best position for the group of frequently accessed sectors,
within the limit of being placed too far from the bulk of the probability mass on the disc, will
depend upon the relative merits of placing the group in a position with a low rotational delay or in
a position which allows more elements to be placed closer together.

We prove unimodality by showing that if an arrangement is not unimodal, then we can always
make a small change in it which reduces the expected retrieval cost. The basic intuition behind the
proof given below is to show that if we alter the arrangement by moving the position of some of the
masses in one direction, and that move increases the expected retrieval cost, then moving some
other masses in the opposite direction must reduce the cost.

Assume that we have an optimal arrangement which is not unimodal, then there must exist two
points X; and X such that P, probability masses are assigned to the immediate left (call the group
¢;) and P, probability masses are assigned to the immediate right (call the group u;) of Xj; and for
X4, P, probability masses (¢,) are assigned to the immediate right and P, probability masses (u,) to
the immediate left. This situation is illustrated in Figure 4.

We select the points X, Xj, so that the regions X, to X; and X to X, have the same area A, .
We do the same on the right so that the regions X; to X, and X, to X have the area A,; ;.

Since the arrangement is assumed to be optimal, any change in it cannot result in a decrease in the
value of the expected retrieval cost. Thus, if we exchange the positions of ¢, and u; on the left, or
the positions of ¢, and u; on the right, the expected retrieval cost must either not change, or it

must increase in value.
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Figure 4. Non-Unimodal Arrangement

Below, we develop and express the change resulting from an exchange in terms of the rotational

delay and the distance components.

Rotational Delay

The difference between rotational delay components of the cost function before and after the

exchange is given below. The terms representing the rotational delay outside of the region Xj to X,

do not change and so cancel in the subtraction.

Xl Xl
After — Before = [ Pm(z)gp, Rd(z)dz — [ Pm(2)p,tope Rd(z)de
XO XO
X2 X2

+ f Pm'(x)After Rd(:v)d:z: - f Pm‘(x)Before Rd(a:)d:z:
X X

1 1

X
=%h )‘{ (Pm (:l: )Ajter - Bn(m)Bejore) O(:L‘) dz

0

X2

+ % hil(. (P"n (x)After - P"n(a")Before O(:L‘) dx
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X,
% h (F. %Yh(P,—PB) ?
=#'—"_f C(z) d:v+ __g___{__2)_f O(:c)2d:1:
W 1
X,
Y% h (P, 2
- #——(j Clefdz — [ O(z)dz)
Xl
And for the exchange on the right,
X
% h(P - P
After — Before = ———(-—1—2)_[ C(z)dz — f C(z)*dz)

If you consider then only the rotational delay, the expected retrieval cost would be reduced if you

were to transfer the region X, to Xj to the left, however, this may not reduce the overall average

distance between masses because of the values of M, and M,.

Distance

We expand the expression for the distance component of the cost function to separate out the terms

which will not change during the exchange, from those which will.

For the exchange on the left we have:

1 1
{ Pm(z) { Pm(y) (a|z—y|)dy d=z

Xo 1 X5 1
= [ Pm(z) [ Pm(y) (a]z—y|)dy dz +)£ Pm(z) [ Pm(y) (a|z—y|)dy dz
0 0 o 0

+ [ Pm(z) [ Pm(y) (a|z—y|)dy dz

Xz

X0 Xo X 1

= [ Pm(z) (f Pm(y) (a|z—y ) dy + }f{Pm(y) (alz—y|)dy + me(y) (alz—y|)dy)de
0 0 0 2
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X Xo Xy 1

+)f( Pm(z) (f Pm(y) (a |z—y ) dy + }j;P'rn(y) (ale—y|)dy + )J;Pm(y) (a |z—y |)dy)dz
1 Xo Xy 1

+)£ Pm(z) (f Pm(y) (a |lz—y hdy + }f(Pm(y) (alz—yl)dy + )j('Pm(y) (a|z—y ) dy)de

We now subtract the distance component of the cost before the exchange from the distance com-

ponent after the exchange.

XO X2 X2
After - Before = f H'l(x) (fP'n(y)Ajter (a Im—y I) dy - fP"n(y)Before (a lx_y |) dy)d:t
0 Xo X,
X, Xy X
+ [Pm(2)aper ([ Pm(y) (ale—y ) dy + [Pm(y)aper (alz—y|)dy
Xo 0 Xo

+ ){ Pm(y) (a|e—y|)dy)dz

2

X Xo X,
- iprn(w)Bcfore ({Pﬂl(y) (a Im_y I) dy + iprn(y)Bejore (a Ix—y I) dy

+ [Pm(y) (a|z—y|)dy)de

X2
1 Xy Xa
+ f P’n(x) (fPrn(y)After (a Ia:—-y I) dy - flj'm'(y)Before (a |:r:—y I) dy)dz
X Xo X,
X0 Xy Xy
= .{; Pm(a:) (i P'rn(y)After (a Ix—-y I) dy - )j(‘ P'n(y)Before (a Ix'—'y I) dy) dz
Xo X, X,

+ .{; P'n(m)()j; Prn(y)A_ﬂer (a Ix'—y I) dy - )j(' Pm(y)Before (a |m—y I) dy) dz

1 1
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X Xo 1

+)f( Pm(2) apier (f0 Pm(y)(a|z—y|)dy +)f( Pm(y)(a|z—y ) dy)dz
X Xo 1

+}£ Pm (@) gter ({ Pm(y)(ale—y|)dy +){ Pm(y)(a|z—y|)dy)dz
X2 X2

+ f Pm(x)Aﬂer f PmAfter(y)(a Ix—-y I) dy dx
X, X,
X, Xo 1

—){ Pm(2)pesore ([ Pm(y)(alz—yl)dy + [ D(y)(a|z—y|)dy)dz
0 0 X,
X Xo 1

_){: P""(z)Before (,{; P"n(y)(a Iz—y I)dy +£ Hn(y)(a Iz‘—y I)dy)dl‘
X X

- f P"n(x)Before f P’"(ZI)B«:IOM (a Ia:—y I) dy dz
XO XO
1 Xy Xz

+ f P’l’n(:l‘) (f Pm(y)After (a Im_y I) dy - f Bn(y)Before (a Ix_y I) dy)dx
Xz X0 X3
1 X Xy

+ f P’n(x) (f P"n(y)Ajter (a |(L‘—y I) dy - f Prn(y)Before (a Ix_y I) dy)dx
X. X, X

2 1 0

Simplifying
X, X, X,
= 2a f Pm(x) (f Prn(y)Aﬁer Ix—yldy _f Pm(y)Before Ix—yldy)da:
0 X, X,
Xo Xy Xz

+ 2a f Pm(:c) (f Bn(y)Mter |z—yldy_fpm(y)Before I:E—yldy)d(l‘
0 X, X

1 1

1 X1 X'1
+ 2a f Pm(zx) (f Pm(y)aster lz—y |dy — f Pm(y)pesore |z—y |dy)dx
X, X, X,

2 0
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1 Xa Xa
+ 2a f P771(m) (f P"n(y)After |:c——y Idy - f PTn(y)Before Ia:—y Idy)dm
X, X. X

0 1 1

Xl Xl
+ f P’rn(x)Aﬂer f P'n(y)A/ter (a Ix—y l) dy dz
XO XO
Xl Xl
- f Pm’(x)Before f Hn(y)Before (a |:L'—y I) dy dx
XO XO

X Xy
+ f Pm’(m)AJter f Pm'(y)After (a |x-—y I) dy dz
X, X,

0 1

Xl X2
- f PTn(x)Before f Pm(y)Before (a |:c-y I)dy dx
XO Xl
X2 Xl
+ f P’”(m)After f Prn(y)After (a Ix—y |)dy dx
X, Xo
X2 Xl
- f P'm'(z)Before f Pm(y)Be/ore (a Ix_y I)dy dz
Xl XO
X X,
+ f Pm’(m)After f Hn(y)After (a Ix_y I) dy dz
Xl Xl
X X,
- f Pm(m )Before f Pm(y)Before (a lx—y I)dy dx
Xl Xl

The first four terms above calculate the change in the expected retrieval cost due to the relative

change in the positions of the ¢, and u; masses with respect to the masses which remain stationary
during the exchange. The remaining terms compute the change resulting from the ¢; and u; masses
being in new positions with respect to each other. Below, we simplify the first four terms of the

above expression and then, later, the remaining terms.
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The first four terms become:

(R=R) o’
20— ] Pm(e) (] OW) (y=2)dy — [ C(z) (=) d2) de
0 Xo X,
X, X.
I)2 _ Pl 1 1 2
20 B [ Pine) (] 0w) (e—v)dy = § C) (e—2)ds)da
X2 XO Xl

Xl X2
Let A,y = f Cly)dy = f C(y)dy be the area of the two regions being exchanged on the left. If
XO Xl

we multiply the equations by Az /A, and modify the two inner integrations, we obtain:

(B—P) ° 7

1
20 —2—2 A, . [ Pm(e
W lft_(’). ( )({ A[eft

C(Xi—y) (X1—z)-y) dy

—fe - C(X1+2) (X1—z)+2) dz) d=

0 Al eft

P, - P, 1 e
20 820, [ @) (] 3=0my) (X))

€

— [ 0(xi+2) (a-X))-2) dz) da
0 Aleft

Where, v = X; — X, and € = X, — X,. In general, for any two adjacent trapezoids of the same

area A, 7 and € can be easily computed from expressions for the area of a trapezoid (Appendix 1).

For a given position #, which is the boundary of two adjacent trapezoids of area A, we have:

_ C)VORFo A, =)+ VOGP + 3iA
k

k

Simplifying further:

X,

(P ~ P) Y 1 1 o1
2a ————Aup [ Pm(z) (f 7 CXi—y) (-y)dy — [ ——C(Xi+2) 2 dz)d
0 0 left 0 left
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PP 1 g
24 —( 2 1) App [ Pm(z) (f 1 C(X;—y) ydy — f 1 O(X1+2) (—z)dz)dz
w X, 0 Ale/t Aleft

The inner integrals simply compute the distance between the positions of the centres of mass of g
and u;. Call this distance Az (X},A;p).

This gives us:

(P — P)

2a —W_'Aleft (—Az(X1,Ap) M,

(P, — P)

2a w Aleft Am(Xl,Aleft) (Mc + ¢ + u, + Mr)
Or,
(P2 - Pl)
—2a —w Arese (M, — M,) Az(X1,Asp)

(P — P)

2a _W_Avleft(Mc + u, + qr) Ax(Xer!e.ﬂ)

The first term corresponds to the change in the cost resulting from moving the ¢, mass away from
(and the u; mass towards) the mass (M) to the left of the point Xj, and towards the mass (M,) to
the the right of X;. Similarly, the second term corresponds to the change resulting from moving the
g mass towards (and the w; mass away from) the remaining mass (M, + ¢, + u,) to the right of
the point X,

The remaining terms in the change in the expected retrieval cost due to the change in the distance

component are easier to simplify:

X, X,
+a (f P"l(x)After f Hn(y)After Ix_y Idy dz
X, X,
X2 X2

- f Hn(x)Before f Pm(y)Be!ore Ix—y Idy d.’l:)
X X

1 1
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Xy Xo
+a (f P’n(x)After f P7n(y)After Ia:—y ldy dz
Xl Xl
Xl Xl

- f P'm‘(m)Bejore f Pm(y)Before |Ct—y Idy dm)
Xo Xo

The terms above represent the change resulting from the changes in the distances between points
internal to the ¢, mass and internal to the u, mass. The ¢, mass moves to an area which is not as
wide so its mass moves closer together (reducing the cost); the u; mass moves to a wider area so its
mass becomes spread farther apart (increasing the cost).

The size of the area also changes linearly with the distance moved. Therefore, the distance of each
element from its centre of mass changes linearly with the distance.

When the exchange is made on the left, between g, and u;, the sum of the terms represents a
reduction in the cost since the net result of the exchange is to move the larger ¢, mass closer
together the same amount that the smaller u; mass moves apart. The opposite however, is true
when the exchange is made on the right between ¢, and u,. The net result in that case, because
the larger g, mass moves apart the same amount that the smaller u; mass moves together, is an
increase in the cost.

Since we are assuming that any change will increase the expected retrieval cost we can ignore these

terms for the left exchange. We must however account for the terms which result from the

exchange on the right.

The net change in the expected retrieval cost due to the exchange on the left is:

(P — P)

W Apeyr (M) — M) Ax(X(,Az)

AC‘OStleft(d:'atcmce) = —2a

(P — P)
+ 2a __‘TV_Aleft(Mc + u, + Qr) Ax(Xerlejt)
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Similarly, the total change in the distance component resulting from the exchange on the right is:

(P, — P)

W Aﬂ'ght (Mr - M) Az(XbAriyht)

AOOStriaht(distance) = —2a

(P, — )
+ 2a _"/'V_Ariyht (1\4c + u; + QI) Am(XbAﬂ'ght)

X4 X,
+a (f Prn(x)After f Bn(y)After Im_y Idy dz
X, X,

8 8

XS XS
- f P’”(‘”)Beforc f PTn(Z/)Beforc Ia:—y |dy d:l?)
X, X4
XS X5
+a (f P"n(m)Aftar f Prn(y)After Ix—'y Idy dx
X4 X4
X4 X4

- f Prn(x)Beforc f Prn(y)Before |$—y Idy d:t)
X, X,

8 3

Again, the first two terms represent the change due to the relative movements of the g, and u,
masses towards and away from the masses outside of the region X to X;. The terms represent the
cost change due to the change in the shape of the areas occupied by the two groups. As noted
above, the net sum of the last two terms for the exchange on the right is positive.

For the exchange on the right, we observed that the last two terms have a positive sum. We can
however make this sum as small as we like by reducing the area Arigne (and hence ¢, and u,)
mvolved in the exchange. If we make it smaller in absolute value than the second term (which is
negative), we can also ignore these three terms for the exchange on the right.

The intuition behind this result is that while the exchange of positions on the right makes the g,
mass spread apart, which in a sense means it is moving away from itself, the exchange also moves it
closer towards the other exchange pair ¢, and u; (and any mass M, between the exchange pairs). If

the mass of the other pair is large enough compared to the mass of the pair being exchanged (and

we can always make the pair on the right as small as we like), we will be moving towards more than
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we are moving away, and this reduces the expected cost.

Consider the sum of the following two terms from the expression for change due to the right

exchange:
Xs Xs Xs X
a f P"n(x)After f PTn’(Z/)After Ix—y Idy dz —a f P"n(x)Before f P'rn(y)Beforc Ix—y Idy dz
Xy Xy Xy Xy

The result will be negative since the smaller u, mass will be in the X, to X region after the
exchange, and the larger g, mass, before. As such, we can eliminate them from consideration, as we

can the term

X4 X4
—a f P"n(m)Before f Prn’(y)Before Iw—y Idy dz
X3 Xg
which is negative.
X4 Xy

This leaves the only positive term a - f Pm(2) gqter f Pm(y)apter |z—y |dy dz. If we make it larger
Xy X

by substituting (X — X;) for |z—y |, we can simplify the term to a - g, - g, (Xs — Xa3).

By making the area A,;;, small enough, we can make this positive term smaller in absolute value

P—P
than the term 2a “TI)A,,-,M (M, + w + q) Az(X, Ay ig), Which is negative.

Thus, we need to satisfy the following inequality:

(P — P)

2a —TAright(Mc +u + ) A2(X Aygn) + a g, 09, (X — X3) <0
P, q, (Xs - Xs) W

<o

— -1

+ .
P, 2(M, + w + @) Az(XyAvign)  PiAign

qr . (X5 - X3) <1-— &
(M, + w + q) 282(X A &
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We can always satisfy the inequality, because as we make the area Arigne smaller, the ratio

—-—-——-(X5 — Xy approaches unity, and the ratio & approaches zero
2Aw(X4,A,,-,m) ’ ’ (M, + u; + q)

This leaves us with simple expressions for the change in the expected retrieval cost due to the dis-

tance component.

On the left:

(Pl_'P2)

ACOStlejt(distance) = 2a w

Alejt (M - Mr) Am(Xl,Aleft)

And on the right

(P, — P)
ACO'Stright(distance) = 2a __W—Aﬂ'yht(Mr - M) Ax(X‘l;Aﬂ'yht)

Contradiction Development

We use the expressions we have developed above to derive a contradiction. First we express the
changes in the the expected retrieval cost resulting from the two exchanges by combining the
changes due to the two components, rotational delay and distance.

The change in the expected retrieval cost due to the exchange on the left is:

(P - Py
AOOSt!eft = 2a (M - M,) _‘,V—_Aleft Aa"(Xl:Aleft)

h(p,—P) X”
$ 2PE B o — [ owray) o
Xo X,

The change due to the exchange on the right is:

(P —B)

ACost gy = 2a (M, — M) W Avright D2 (X4, Arighs)

X, Xg
+ 2B oepae - [ clpay) 2o
X, X,
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Through straightforward, but tedious manipulations (Appendix 2), it is possible to show that

Xl X2 X4 X5

(J Cla)dz — [ C(y)Pdy) ([ Clz)?dz — [ C(y)?dy)

X, X, % X, "
Aleft Az (X 1 rAlejt) B Aﬂ'ght Az (X 47Ariyht)

Thus, we have:

(P, — P,) %h(P— P)
Wk w 20

ACost;,p = 2a (M; — M,)

(F=P)  #h(P—P)

w T W 20

AOO’Stn'ght = —2a (M - Mr)

Or, ACosty,;, = — AQCost,;;. Since both changes in the expected cost must be positive, by
assumption, we have a contradiction. Therefore, our assumption that the non-unimodal arrange-
ment was an optimal arrangement must be false. Therefore, optimal probability arrangements must

be unimodal.

6. Analysis

We showed in the previous section that our optimal arrangement of probability masses must be uni-

modal. (e.g., all of the P, mass elements will be as close to each other as is possible). The form of a solu-
tion in our model is a specification of the position of the P, probability mass on the disc. We shall specify

this position as the location on the disc of the mid-point between the left and right boundaries of the P,

group. We denote this point as m (m = XI;—AXL) The relevant points are illustrated in Figure 5.

The goal of our analysis is then to develop an expression for m which can be computed from the parame-

ters of the model.

Before tackling the main problem, we first derive some preliminary expressions. We must compute the

two points X! and Xr which denote the left and right boundaries of the P, group on the disc.
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Figure 5. Optimal Placement

To compute X! and Xr from m we need to know the “width” in disc units of the high probability
group. We know that the proportion of the area occupied by the high probability group must be equal to

r. If w is the width of the group then from the formula for the area of a trapezoid, we have:

i (km 4+ jjw

1

Therefore:

r r

w=k'm+j_0(m)

From this we derive the simple expressions for X! and Xr.

r

C(m)

r

Xl(rm)=m — % Cm)

Xr(rom)=m + %
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Given these bounds, we can specify our probability assignment function:

P )
PriB(—r) (@) X<z <Xr

Pm(z,rm) =

B
—_— th )
Pt (1=r) C(z), otherwise

From the model our expected retrieval cost is:

11

Cost = b + 2 [ [ Pm(2) Pm(y)a (y—x)dy dz

+ [ Pm(z)Rd(x)dz

The distance component is:

2 Xl(r,m)Xl(r,m)
—b4 22 [ ] c@)owe(y-a)dyds

2P2P Xi(r,m)Xr(r,m)
[ | C)Cl)a(y—z)dyda

0 Xi(r,m)
2P2X’l(r,m) 1
+ W22 f f C(z)C(y)a (y—=z)dy dx
0  Xr(rm)

P2 Xr(r,m)Xr(r,m)

+ Wﬁ)ﬂ({m) [ 0)Cw)aly—z)dyds

2P P Xr(rm) 1
= [ [ O@)Cy)aly-=)dyda
Xi(r,m)Xr(r,m)

1

2P} 1
7 X(j )f C(z)C(y)a (y—z) dy dz

+

(Distance)

(Rotational delay)
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Where W = u (P, r+P;(1—r)). The rotational delay component is:

%h[ Pm(z,rm)C(z)ds

Xi(r,m)
=%k [ Pm(z,rm)C(z)dz
0

Xr(rm)
+%h [ Pm(z,rm)C(z)dz
Xl(r,m)

+ %k [ Pm(z,rm)C(z)dz

Xr(r,m)
Xi(r,m) Xr(r,m) 1
Y%h Y% h %h
=—P, C(z)’dz + —P, C(z)dz + =P, C(z)?dx
w .!J. w l}ﬂ({,m) w Xrt[,m)

The compete expression for the expected random access retrieval cast has been evaluated using the
Maple symbolic mathematics package [Char 85]. The complete evaluation is shown in Appendix 3, below

is a small fragment (first and last terms) of the resulting expression.

(60PF5"h + - - - —60P%;"hr)
120 (km+ 5)° (Pyr + Py(1—r))?

Cost(k,5,a,b,P,,Pyr,h,m) =

To derive the optimal value for m we take the derivative, again using the Maple symbolic
mathematics package, of the cost function with respect to m. The complete result is in Appendix 4,

again below is a small fragment (first and last terms) of the resulting expression.

0 Cost(k,j,a,b,P,,Pr,h,m) r(48aP?;" + - + 48k°m®ja P7)
o m - (km -+ 5)*(Pir+ PPy
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Using Maple, we determine the roots of the derivative and finally arrive at the desired expression

with P, = 1) for the optimal location of m (shown in its entirety).
2

j (V3O N/ —245%4485%°Ck + Co b+ C, k® + Oy k* )%

Moptimal = — +
phimal = "k 2V2 3V4Va

O, = a (45°+2k>+4 k) + hk?(—Pyr+r—1)

= 96 5%a2

A
|

Cs = 32P;r%a%+aPrh +245%arh —24 j%ah +96 j2a?—48r% 2
Cy = —24 jah—24 jaP,rh+24 jarh +48 ja*

12a°+3P?r?h2—6P,r®h?+6P;rh?—12aP,rh

S
[

—12ah+3h%+12arh +3r2h2—6rh2

7. Impact of the Model Parameters on the Optimal Data Placement

An expression for the optimal position of the group of the most frequently accessed sectors was
derived previously. In the discussion below, we examine and explain the variation in the optimal solution
as the values of the parameters of the placement problem are changed. We examine m, the centre of the
optimal position for the highest probability mass, for a range of placement problem parameters, plotting
m as a function of each parameter in turn.

We examine the relative impact of the rotational latency and seek costs first, and then the storage

and access probability distribution.
To determine a typical value for P, the relative access frequency of the most frequently accessed

disc sectors, we use the rule-of-thumb that states that 80% of all disc accesses will be to 209 of the disc

sectors. This means that our value for r is 0.20 and that the area in the P, group in the distribution

must be 80% of the total distribution area.



With r = 0.2 and P, = 1, we have:

Impact of Rotational Latency

The graph in Figure 5. plots the optimal position m as a function of the rotational latency. The

solid line in the graph plots m while the top dashed line plots the position of Xr and the bottom dashed

line plots the position of XI.

The graph shows that the rotation latency plays a significant role in determining the optimal posi-
tion. As the retrieval delays due to rotational latency become more significant in relation to other delays,
the optimal position shifts towards the lower capacity tracks which have a lower rotational latency. Typ-
ical values for the time to read a sector which determines & (the time to read the middle position) range
from 2 milliseconds for fast drives (e.g., Alcatel-Thomson), to 13.3 milliseconds for slower drives such as

CD ROM drives. The sector transfer time for CD.If 2 ROM drives is fixed by international standard

(1/75 seconds per sector).
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’r'Pl
= 0.8
r’Pl+(1—r)'P2
02Pl
= 0.8

02-P + (1-0.2)
0.2
EPI = 0.2'P1 + 0.8

0.2’P1 - 0.16'P1 = 064

0.04 P, = 0.64
0.64

P =——=16
1™ 0.04
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Figure 6. Location of centre as function of rotational latency

Impact of Seek Cost

The graph in Figure 7. plots the optimal position as a function of the seek cost parameter a (slope
of seek cost). It shows that as the value of the seek cost function becomes more dependent upon distance
(greater value for the slope a), the optimal position moves away from the inner edge of the disc. A simi-
lar behaviour would be observed, if for a constant slope a, the rotational latency would decrease (so that
the seek cost would become the most important cost). The limiting position depends upon the exact dis-
tribution of storage across the disc, and is essentially the location of the centre of gravity of the “proba-
bility mass”.

The slope of the cost function can be determined either by experimentation, or by manufacturer
specifications. Typical values for the slope range from 100 to 350 milliseconds per disc. The Alcatel-
Thomson GD 1001 disc drive has a seek cost slope of 160 milliseconds per disc and the Hitachi CDR-

1503S has a slope of 333 milliseconds per disc.
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Figure 7. Location of centre as function of seek cost slope

The Impact of the Storage Distribution

The next parameters we examine are those which determine the distribution of storage capacity on
the disc. The graph in Figure 8. plots the optimal position as a function of k, the relative slope of the

capacity distribution function, for two different values for the rotational delay parameter h.

When h is significant with respect to the slope of the seek cost function (b = 640/3), the optimal
position shifts towards the inner edge of the disc to take advantage of the reduced rotational delay at
that position. When h is insignificant with respect to the seek cost slope (h = 10), the optimal position

shifts towards the outer edge of the disc (it is moving with the moment of the probability mass).

Note that for k& = 0 (uniform distribution) the optimal position for both values of h are at the cen-

tre of the disc as we would expect since that is the optimal position for CAV format discs.
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Figure 8. Location of centre as function of capacity slope

The Impact of the Data Access Probabilities

The access probability distribution also plays a role in determining the optimal solution. As the dis-

tribution becomes more skewed (P;/F; increases, keeping r constant) the impact of the rotational delay
component for the high probability masses (P,) becomes the more significant component of the cost. As a

result, the optimal location of the high probability mass moves towards the inner tracks to take advan-

tage of the reduced rotational delay. The plot in Figure 9. shows how the optimal solution moves towards
the lower capacity tracks as the P, /P, ratio is increased.

The proportion r of the total probability distribution that has value P; also affects the optimal posi-
tion of the P, group. The graph in Figure 10. plots the position of m as a function of r. When r is small,
most of the probability mass is located outside of the P, region making the distance cost component
between P, region and the two P, regions, the more significant contributor to the total cost. As a result,

the optimal placement of the P, region is in the higher locations of the disc where the average distance

between the P, and P, masses is minimized.
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Figure 9. Location of centre as function of P1/P2 ratio

As r increases, less of the probability mass lies outside of the P, group so that the rotational delay

component for the high probability masses becomes the more significant contributor to the total cost. As

a result, the optimal location of P, moves towards the inside tracks of the disc to take advantage of the
reduced rotational delay. As r increases still more, the P; group becomes the bulk of the probability mass
which moves its centre back towards the centre of the disc.

For the chosen values of the parameters, the right edge of the P, group strikes the outer edge of the
disc before r becomes 1. For different parameter values, the left and right edges of the P, group strike

the edge(s) of the disc well before r approaches 1.

8. Larger Span Sizes

We can extend our analysis, for the case when Q > 0, and develop an approximate solution for the
optimal placement problem. The difficulty with developing an exact solution using our approach is in
obtaining a closed form expression for the expected retrieval cost. The main complication being in

obtaining closed form expressions for the clustering terms which are present when @ > 0.
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Figure 10. Location of centre as function of the size of P1 portion

The clustering terms essentially subtract from the distance component the cost of accessing the pro-
bability mass that falls within each possible position of a “span” (2Q_ + 1 tracks) on the disc (the distance
component is computed assuming 67 = 0). The problem is in computing the clustering terms for spans

which overlap a boundary between the P, and a P, group. For example, consider spans which overlap

both boundaries between the P, and P, groups; the values of their corresponding clustering terms cannot
be expressed in terms of P, O(x)% and P,C(x) % (instead of the more general Pm(z)) without min and

mag functions to determine the limits of the summations.

From our model, the discrete clustering terms are:

fi}Q Pr(i) Pra(3) ((=3) +8) = 3333 Pm(i) Pra(3) (=) +b)

J= i=T—Q j=i

= % S Pn()Pr() (M- +0) - S 33 Pm(i) Pm(3) (=) + 8)
=g+

+2 j=i—Q i=] j=1
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In our approximate cost expression, we use the exact values for the distance and rotational delay

components and approximations for the clustering terms above. In developing our approximation for the

clustering terms, we first assume that Q is small enough for the given values of a and T so that

a ., —
- b
T 2R+
This assumption can be used to simplify the clustering cost.
i—lz+Q
—b > Pn(:)Pm(5) — b E EPm(z ) Pm(j)
=i i=T—Q J=i
T i ) %l i ) .
2 >, Pm(i)Pm(5)—b Y} Pm(¢) Pm(y)
i=Q+2 j=i-Q i=l j=1
For small @, is small we can ignore the terms representing spans which overlap the two ends of the
disc:

—1i4 T [
5 (75 Py ) + 33 Pn)Pn(s)

i=1 j=i i =Q+2 jm=i—Q

~ab (RSP pmmpmuyr_z Pm(i) Pm(3))

i=1 g=i+l =1

Adding in the distance and rotational delay components we have:

Cost =~ 2 2 Pm (i )Pm(])—(] —i) + 2 2 Pm (i) Pmu)—(z—f)

=1 j=¢ i=1 j=1

+ b+ f]Pm(i)Pm(z’)b

—25( 35 ST Pm(i) Pm(y) + 3 Pm(s) Pa(i))

i=1l gJ=t+1 i=1
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T
+ Z_] Pm(5)Rd(j)

Or,

Cost = 33 33 Pm(i) Pm(j) 5(j~1) + 32 3, Prn(i) Pra(5) (i)

i=1 g=i i=1 j=1

+b

—26 3 3Y Pm(i)Pm(y)

i=1 g=i+1

+ b3 Pm(s) Pm(i)

=1

+ ETJ Pm(5) Rd(7)

=1

Moving to the continuous model, we have:

T-g—1 i+0 1-Qz+Q
lim — 25 f Y, Pm(i)Pm(j)=—-2b [ [ Pm(z)Pm(y)dydz
oo i=1 j=i+l 0 =z

And the approximate expected random access retrieval cost for the continuous model is:

Cost Pm(z)Pm(y)a(y—z)dy dz

Q
O".»—a
§ S

+ Pm(z)Pm(y)a (z—y)dy dz

O%»—a
o4

1-Qz+4Q
+b—2b [ [ Pm(z)Pm(y)dydz
0 z

+ [ Pm(z) Rd(z)ds
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Because @ is small we ignore the overlap of spans with the boundaries between P, and P,, and
assume that the P, group never occupies a part of the left or rightmost portion of size @ on the disc.

The clustering term then becomes:

1-Qz+Q 2 Xi(rm)—Q z+Q
—2b [ [ Pm(:v)Pm(y)dydx=—2b(—W2—2 [ | ck=)Cly)dydx
0 z 0 z

P12 Xr(r,m)—Q z2+Q

+V_V2— Xz('r[,m) { C(z)C(y)dy dx

P22 1-Q z+@Q

+7‘;2—X'({m) { C(z)C(y)dy dx )

We use the other terms from our previous analysis for @ = 0 to complete the expression. Unfor-
tunately, the Maple symbolic mathematics system was unable to find a closed form for m from this cost
expression. However, solutions can be found by numerical approximation.

The effect on the optimal position of the clustering is illustrated in the graph in Figure 11. which
plots the optimal position as a function of the P,/P, ratio (for this plot a = 0). The data points were
approximated numerically.

We see in Figure 11. that as the window size increases and the significance of the clustering term
Increases, the optimal position moves away from the inner edge of the disc and towards the higher capa-

city tracks which increase the clustering possible (and reduce the expected cost). The size of Q in terms

of discrete tracks varies between 0 and 1600 tracks which is well beyond that found on conventional disc

drives.

9. Extensions to more general distributions

The approach taken in this paper can be extended to find solutions for more general access proba-
bility distributions. Given a general distribution we first approximate it with our two value probability

model, as in Figure 12.
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Figure 12. Two value approximation of general distribution

We determine an optimal solution using this approximation and place the disc sectors or probability

masses. For those sectors corresponding to the P, access probability, the optimal two value probability

problem that we provided previously will determine their final position. We then apply this procedure

recursively to the part of the distribution represented by the P, values and the now smaller portion of the

disc corresponding to the position of those P, values. We approximate the remainder of the distribution
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with two values and determine the optimal solution. This procedure is performed as often as necessary.

We note that errors in the approximation with respect to sectors represented by the P, value are

not critical. If less than optimal positioning of some of these sectors results, their low access probabilities

will minimize the impact on the total solution.

10. Impact of Data Placement on Expected Retrieval Cost

The optimal solutions presented in the previous section show that for CLV format discs the optimal

solution can be very different from the optimal solution for CAV format discs (e.g., magnetic discs).

Consider the differences between the expected random access retrieval cost for an optimal position-
ing of the data and other data positionings on a CLV format disc with an outer track capacity of 48 sec-
tors and an inner track capacity of 8 sectors (k = 1.4, 5 = 0.3), a rotational delay (k) of 640/3 mil-
liseconds, a seek cost constant of 50 milliseconds and a seek cost slope of 200 milliseconds (P/Py = 18,
r = 0.2), and very small span size (Q = 0). For this case, the optimal location of the frequently accessed
group is at position 0.13, where the expected random access retrieval cost is 177 milliseconds. If the fre-
quently accessed data is placed at the centre position of the disc (m = 0.5), the expected retrieval cost
would be 192 milliseconds or about 8% greater. If it is placed at position at 0.9 the expected retrieval

cost would be 237 milliseconds or 34% greater.

For a set of parameters which describe a model in which clustering is more important we obtain a
different optimal solution, but a similar large difference between optimal and non-optimal solutions. For
the same distribution of storage capacity, a rotational delay of 27 milliseconds, a seek cost constant of 580
milliseconds and slope of 333 milliseconds and a slightly higher probability ratio (P/P;=20, r =0.2),
and a larger span size (@ = 0.01), the optimal location is at position 0.8 and the approximate expected
cost is 587 milliseconds. At position 0.5 the expected cost is 601 milliseconds or 2% greater, and at posi-

tion 0.1, the expected cost is 653 milliseconds or 119 greater.
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11. Summary

We have presented a model for studying the problem of optimal placement of data with known
access probabilities on the recording surface of CLV optical discs. The model takes into account the
non-uniform distribution of storage capacity on the disc and the dependency of the rotational delay on
the track location, as well as a parameterized seek cost function. We have shown that the optimal place-
ment satisfies a unimodality property for the placement of high probabilities, and we have derived an
analytic solution to the optimal data placement problem. We have shown that the optimal data place-

ment may be drastically different than the optimal data placement on magnetic discs.

The data access probabilities were described by a parametrized, two valued, probability distribu-
tion. This problem formulation allowed us to derive optimal locations for the high probability data items.
Since in many real life environments, precise knowledge about the access probabilities of data items may
not be known, this problem formulation will be adequate for these environments. As a special case,
indices are frequently considered to be high access frequency items (in comparison to data values). In this

context our results suggest an optimal position for the indexes given the device characteristics.

In environments where more detailed knowledge of the access frequencies of the data items may be
available, our method can be extended using a recursive approximation of the access probabilities. We

have outlined such an algorithm.

The results of this paper complement the results presented in [Christodoulakis and Ford 88]. In
that paper, the problem of the optimal order of file placement on CLV optical discs was studied. Files
were considered to be independent of each other, and only one file was accessed at a given point in time.
The cost function described the expected cost of a set of random and sequential requests from each file.
Data items in each file were assumed to have the same access probability and files were allocated a con-
secutive set of addresses on the disc surface. In contrast, the results of this paper are applicable to
environments where many users may exist, and/or data items of a single file may have different access
probabilities. Data items are considered to be small (e.g., fit within a single sector) in contrast to files
that typically occupy many tracks on the disc. Only random access of data items is considered, and the

probabilities of access of data items are independent.
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Appendix 1

Gamma and Epsilon

We compute the positions of X, Xp, X3 and X such that the areas of the four regions being

exchanged are equal. Given a point £ we wish to compute the two points, one to the left and one
to the right, that give equal areas to the trapezoids on each side of the point z.

Clz+e)

xr—" T T+e€

Let z—v be the point on the left, and z+¢, the point on the right, and let A be the area, then we
compute < in the following manner:

Clz) + Clz—v)
2 7=

(C(z) + Clz) — ky)y = 24
20(z)y — k12 —-2A =0

_ —20(2)+/~-V1C(=)? — 4(—k)(=24)
-2k

C(z)—-"VC(z)? — 2kA
k

A

"7:

and e:

C(z) + C(z+¢) .
2

=A



— 48 —

(Clz) + Clz) + ke)e = 24
20’(:1:)6 +ke?—24=0

_ —20(= —\/40(.15)2— 4(k)(—2A)

C(x)+ \/C’(ac)2 + 2kA
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Appendix 2

Ratio
For a given position =, we generalize
Xl X2 X4 XS
(f C(2)dz — [ C(y)*dy) ([ Clz)*dz — [ O(y)dy)
XO Xl d X8 X4
an
Aleft Az (Xl 7Aleft) Ariyht Az (X41Aﬂ'yht)

to the following, using the definitions for 4 and € given in appendix 2.

[ Clz—y)?dy — [ C(a+2)2d>
o] 0

e d €
A({ %C’(z—y)ydy + {%C(m+z)zdz)

If we expand each of the integrals we obtain:

[ Clo—yPdy = (ko 5)° = ((ka-+ jf~2kA)7?)

-Z O(z+2)*dz = %(((km+ IP42kAY2 — (kz+5)%)

[ Cle—y)y dy

B Ellg((kx”) ~ V{kz+ 50 — 2kA)((kz+5) + 2(V(ka+5)° — 2kA))
= # (kz+ 3 + 2(kz+5)*V(kz+j)—2kA — 2(kz+ 5)*V(ka+7)—2kA
— A(kz+ j)((ke+)-2kA) + (ko +j)((kz + 7)—-2kA)
+ ((kz+ 7)—2kA)V(kz + 7)—2kA)

#(—2(1@;“‘)3 + 6kA(kz+3) + 2((kz-+5)—2kA)Y?)

f Clz+2)zdz = al:?—((ku 7) = Vkz+ ) + 2kA((kz+7) + 2(M(kz+5)2 + 2kA))

= -—6—,1;-5-((kw+j)3 + 2(kz+ ]')2 V(kz+j)+2kA — 2(kx+ 7)*V (kz+j)+2kA
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— 4(kz+ 5)((kz + 5)+2kA) + (kz+ 5)((ka+ 5)+2kA)
+ ((kx+ 7)+2kA)V(kz+ 7)+2kA)
= Ei?(—z(km+j)3 — 6kA(kz+7) + 2((kz + j)+2kA)?)

The numerator of our ratio becomes:

J Cla—y)2dy — [ Clz+2)dz
= #(2(kx+]~)s - ((k"’+j)2_.2kA)3/9 _ ((km+j)2+2kA)3/‘2)

And our denominator

71 f1
Af XO(m—y)y dy + [ —XO(x+z)zdz)
6—1102—(-—4(km+ ) + 2((kz+ 5)—2kA)Y2 + 2((kz + 5)+2kA)2)

516—2—(—2(kx+j)3 + ((kz+7)—2kAY2 4 ((kz+ j)+2kA)Y?)

Simplifying the ratio we have:

5 €
J C(z—y)?dy — J C(z+2)2dz

= —k
5 €

1 1
A({ XC’(x—y)ydy + { XC’(:L'+z)zdz)
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Cost Expression

Cost(k,5,a,6,P),Ppr h,m) =
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Appendix 4

Derivative of Cost Expression
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+8Py0Pyr°m *k5+384P,0P, kKom 7 j+240P k 'm 3 Ph Py +180P kPm 2 {1 Pyt 6P 2k *r 2hm 43P 2k Shm 2
+240P7k*m 5% h +180P7km 2 v h +72P2k%m 7°rh +12P2k 'm O h —12P2k 'm ®h —6 Pk *r 2hm 5P,

=3P, k°r 2hm 2Pyt 72P k%m joh P+ 180P k%m 52k Pyt T2P, 3k Om h Py 72P 2 jkOm 5k —6 P2kt Shm §
+180P7k%m 1 %rh —48k"mZaP] +12P, k'm %h Py +1206 PP k5m ® °—48P,aP kom 8 j—288P,a P, k%m 5 2
+2400P,0P, k*m® °—120P,aP k*m * 1°—960P,aP, k®m > 1 +-2640P,0P, k®m * —12k*m 2 jr 2aP.2 —1728k%m > 50 P2

—624k5%m 2aP} +48k°m®jaP)



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

