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AN APPROACH TO NONLINEAR I, APPROXIMATION

ANDREW R. CONN* AND YUYING LI

Abstract. Recently we have presented a new approach to nonlinear I, approximation that directly
exploits generalisations of the characterisation for the classical best linear Chebyshev approximation.

We are able to produce an algorithm that has the ability to recognise the correct active set more
rapidly than the more usual nonlinear programming approaches, which are based on equality quadratic
programming methods, while avoiding the inefficiencies typically associated with the several inner itera-
tions normally required by an inequality quadratic programming approach.

In addition to summarising the method, we present details of the line search technique, show that certain
degenerate problems give rise to a least squares problem with nonnegativity constraints and include certain
technical details, required for example, to avoid the Maratos effect. All the proofs of the theorems are
omitted to emphasize the main ideas of the algorithm, their proper references are indicated however.

Key Words. nonlinear Chebyshev approximation
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1. Introduction. The underlying problem we wish to consider is to minimize over R
the non-smooth function ¥(z) given by the maximum over a finite set, M = {1,2,---,m},
of functions fi(z) : R* — R.
(1) min max fi(z).
In this paper, we concentrate on a special case which is the discrete Chebyshev problem,

where 9(z) is given by

¥(e) = max |fi(2)]
Such problems may have arisen from a discrete approximation to the continuous problem

¥(z) = max|f(z, 1))

where T is a compact set.

In any case, the discrete Chebyshev problem,

2 min max |fi(z
@) min max |fi(=)],
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is the problem of interest in the present article. We are content with finding a local mini-
mum of ¥(z) and we assume that the fi(z),i € M, are twice continuously differentiable.
Most current approaches are based upon the fact that (2) can be transformed into a

nonlinear programming problem by a.dding‘ a single new variable viz.

ming ;)egn+s z
subject to z—fi{z) =20
z+ fi(z) 20
z > 0.

Although the structure of this formulation can be exploited to some extent, we are more
interested in exploiting directly the structure of an optimal solution to the discrete Cheby-
shev problem. We are motivated to pursue this latter approach by virtue of the fact that
classical Chebyshev theory is able to characterise such solutions in the case of continu-
ous linear problems, under certain regularity conditions, and we are able to exploit such a
characterisation very successfully in practise (see for example, Barrodale and Phillips {1]
and Bartels, Conn and Li [2]).

The basic difficulty is that, in the linear case, there exists a global characterisation
which is easy for computational exploitation, whereas in the nonlinear case this is not, in
general, possible.

In effect, we shall base our algorithm upon local attempts at characterisation, which,
in the limit, will give the correct characterisation at the solution.

If we consider the one dimensional continuous linear Chebyshev problem to approxi-

mate y(t) on the interval [, 8] given by

Izw«ﬁ-(t) y(®)l;

zeD te[a 8]

where D C R"™ is a compact set and the ¢;’s are the ‘basis functions’ for our approximating
set, then we determine an approximation to this continuous problem in ¢ by discretising

the interval [a, 8] into m points, say
a=t, <ty <ts...<tm=p.

The classical theory gives us the following explicit characterisation ( see for example,
[17], page 77).

THEOREM 1.1 (CHARACTERISATION THEOREM).
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Let £ be an n dimensional linear function subspace of C|a, 8] that satisfies the Haar
condition and let y(t) be a continuous function on [a,8]. Then ¢*(t) &f ¢(z*,t) is the best
minimaz approzimation from L to y(t) if and only if there exist n + 1 points {t;}7, such

that the conditions:

a§t°<t1<---<t,.<ﬂ

and

(3) ly(t:) — ¢7(8:)] = lly(2) — ¢"(t)lloe
and

4) Y(tir1) — ¢"(tir1) = —(y(t:) — 6°(:)),

are satisfied. Such a set of points {t;}7, is often called an alternant of ¢*(t).
There is also an equivalent algebraic characterisation. The following theorem can be
found in [17], page 98.

THEOREM 1.2. Let £ be an n dimensional linear function subspace of C|a, ] that
satisfies the Haar condition. Furthermore, let {t;}7_, be a set of reference points from [a, 8]

that are in ascending order:
a<lti<lh<---<t, <P

and let {A;}7%, be a set of real multipliers that are not all zeroes, and that satisfy
(5) S Xid(z,t:) =0
=0
Jor all functions ¢(z,t) = T°7_, z;¢j(t) (i.e. ¢ € L with basis functions ¢;(t)). Then every
multiplier is nonzero, and their signs alternate.

Equation (5) is called the characteristic equation.

Given the characteristic equation (5), with the associated multipliers {);}7_,, suppose
we are approximating the continuous function y(t) by ¢(z,t), with associated error f(t) =
y(t) — ¢(z, 1), then we have the following definitions.

DEFINITION 1. The function ¢(z,t) is called a reference function with respect to
the reference {t;}7., and the function y(t) if and only if:

sgn(fs) = sgn(\)  for all

or

sgn(fs) = —sgn(X:) for all
3



where {A;}7, is given by the characteristic equation (5).

If in addition all the f;’s have the same magnitude, called the reference deviation,
¢(z,t) is a levelled reference function.

Thus, in the linear case we have the following equivalent characterisation.

THEOREM 1.3. Under the same assumptions of Theorem 1.2, the function of best
approzimation is the levelled reference function with the mazimal reference deviation.

If we return to algorithms for the linear problem there are two main approaches —
dual algorithms, for example Barrodale and Phillips [1] and primal methods, for example
Bartels, Conn and Li [2].

The former chooses n + 1 points, {t;}7, (a reference) and an z° such that (4) is
satisfied. If (3) also holds we are optimal. Otherwise, it is possible to choose a t; such that
the error (value of |f;(z°)|) is greater than the errors on the reference. We then replace a
t; of the reference by the t; and iterate.

In contrast, a primal algorithm chooses n + 1 points and an z¢ such that one has n+1
activities. If alternation is satisfied, one is optimal. Otherwise, it is possible to find a new
z¥ such that n of the residuals that determine the n + 1 activities at z° remain active but
the n + 1* residual is less than the maximum residual |[y(t) — ¢(z*,¢)||ec. One can then
proceed in a direction that maintains the n activities until a new ¢; is determined such
that ||y(t) — é(z,t)ll = l¥(t;) — ¢(=,¢;)|, thus once again satisfying (3), but with a lower
maximum absolute residual.

Thus one might remark that dual methods emphasize the alternating sign property
whereas primal method emphasize n + 1 maximal residuals. When both hold optimality
is reached.

Some attempts to generalise the concept of alternant to the nonlinear case have been
made (see for example Motzkin [15], Rice [20] and Tornheim [21]), but the results are rather
restrictive and difficult to exploit computationally since they depend upon properties that
are either not possible to predict a priori or, if they do hold globally, are too strong and
are rarely satisfied except for very special cases (for example, linear problems under the
Haar condition is one useful instance).

This explains why most techniques for nonlinear discrete Chebshev approximation are
based upon the nonlinear programming formulation. We wish to do otherwise.

Now, the characteristic equation (5) can be rewritten as

(6) 3 Aas = 0,

i=0



where a; = [¢1(%), -+, #n(t:)])7. This in turn can be rewritten as

(M 2 AVe(z,t5) =0,
=0
which is independent of z in the linear case.
The point is that this form, although then dependent upon z, can be generalised to

the nonlinear case.

2. General Theory. First we require some additional definitions.
DEFINITION 2 ([14]). At any point zq, the linear gradient space J(t) of ¢(z,t)

refers to

8¢(zo, t) .. 8¢(.‘Bo, t)}

J(t) =
(t) = span{ 8z, ' ' Oz,

The dimension of this linear function space defined on t € [a, 8] is denoted by d(zo).
For a linear space £ with the classical Haar condition, d(z) = n, for all z € R™.
In the discrete case, instead of considering the whole gradient function space J(t), we

consider the set of vectors corresponding to the columns of the Jacobian matrix
J(ti,te, oy tm) = [Vhreo, V]

Firstly, we remark that Vf;(z) is equivalent to V¢(=,¢;) and note that our linear

characteristic equation (5) can be written as

(8) 2 XV fi(z)=0.
=0
Note: the Haar condition corresponds to any n x n submatrix of J being non-singular.
Thus we are led to consider ‘minimal’ such sets, via the following important concept.
DEFINITION 3. The vector setC = {V f;,,---,V f;}, where the gradients are evaluated
at a given fized point z, is called a cadre if and only if:
1. rank{([Vfi,--- ., V) =1;
2. for any {Vf;,---,Vf;} CC, rank{[Vf;,---,Vf]) =1
Note: the definition is local in that it depends upon =z.
LeMMA 2.1 ( [8], LEMMA 20 ). A vector set C = {Vf;,,---,Vf,} is a cadre if and
only if rank(C) =1 and there ezists {)\; # 0}._, such that

]
S VE, =0.
j=0
5



DEFINITION 4. If we take for our a;;, Vf;; and normalise the multipliers {);},_, as
follows
(9) §=o Aj =1, if the sum is nonzero, (cadres of type 1)

do =0, otherwise, (cadres of type 2)
then such a normalised set is unique and we term {);};_,, the cadre multipliers associ-
ated with the cadre, C.

These multipliers, although asymptotically related to the Lagrange multipliers asso-
ciated with the underlying minmax problem, are essentially different from Lagrange mul-
tipliers since they are defined for any cadre and are not necessarily based upon maximal
functions.

We also now generalise the idea of a reference.

DEFINITION 5. For continuous Chebyshev problems

min max |¢(=,t) — y(t)|

the set of points {t;;}4 is called a point cadre, at 2o, if and only if {V f;;(z0)}; is a cadre,
where f,(z) = ¢(z,t;;) — y(ty;)-

In the special case of the continuous linear Chebyshev problem, Descloux {10] called
the above point cadre a cadre. In the linear case V f;; is independent of z, but since in the
nonlinear case this is not so we use the term point cadre to emphasize the local structure
of this generalisation.

It is clear that we can write (2) as the following minimax problem

min max fi(=)

where fiym(z) = —fi(z). For ease of extension to the general minimax problem, we use
the above formulation in this paper.
We are now able to extend the notion of a reference function.
DEFINITION 6. The set of functions {f;;},_, are said to locally form a reference set
of a minmaz problem (1) if C = {Vf;;}\_, is a cadre such that
1. the cadre multipliers {)\;}} satisfy X; >0, j=0,--.,1;
2. Y(z)fi;(z) > 0,5 =0,---,1, where Y(z) = maxocjc fi;(z).
The reference set is further called a levelled reference set if the value of each function is
the same, viz., f;.(z) = fi,(z), for any ij,ix € C.
Note that, in general, the cadre multipliers may not alternate.

The following is well-known.



THEOREM 2.2 ( FIRST ORDER NECESSARY CONDITIONS )- Ifz* is a local minimizer
of (1), then there exist multipliers {\;} such that

(10) Y. AVfi(z") =0,
1€A(x*,0)

(11) > =1,
i€ A(z*,0)

(12) At’ 2> 0’ t€ A(Z‘, 0)’

where A(z*,€) = {i | ¥(z) — fi(z) < ¢,i € M}.

In terms of the reference set these first-order optimality conditions can be restated as
follows.

THEOREM 2.3. There ezists a set of | + 1 functions {fi;(z)Y.—o which is a levelled
reference set at z* on the cadre C = {V Ji;(2°)}izo with the mazimum deviation.

We point out that the cadre corresponding to a reference set is of type 1.

3. Main Ideas of the Computational Procedure. From the previous section,
finding a local minimum of the Chebyshev problem is equivalent to locating a levelled
reference set including all the active functions.

Thus a natural approach to solving the Chebyshev problem is to

1. find a cadre;
2. construct a reference set based on the cadre;
3. level the reference set.

The algorithm we have developed is a descent algorithm with a line search. In addition
to maintaining descent, the algorithm proceeds by recognising the structure of cadres. If
a cadre is found, descent directions are defined to construct reference sets which are then
levelled.

The following two lemmas help us identifying cadres of type 1 and type 2. Their proofs
can be found in (7] ( Lemma 3.2 and Lemma 3.3 ).

LEMMA 3.1 (NECESSARY AND SUFFICIENT CONDITIONS FOR LOCATING A CADRE
OF TYPE 2). Suppose A = [Vfy — Vi -« Vfii — Vi ] is of full rank and that
ZTVf, # 0, where the columns of Z form a basis for the null space of AT. Then, there
ezists a cadre C C {V f;,}_, with cadre multipliers summing to zero if and only if [V, —
Vfiusre s Vi, — V] ts rank deficient.

LEMMA 3.2 (NECESSARY AND SUFFICIENT CONDITIONS FOR LOCATING A CADRE

OF TYPE 1). Suppose [Vfi, — Vf;,--- Vfi — Vf,] are linearly independent. Then,
7



there exists a cadre C C {Vf;, }f'i=0 with cadre multipliers summing to one if and only if
ZTVf,, =0, where A=[Vfi, —Vfi, -, Vi, — Vf,] and Z2TA=0.

The cadre structure is monitored through the concept of a working set, a collection
of indices which are candidates for forming a cadre.

A working set W = {io,---,41} at a given point, z¢, includes preferentially all the
e-active functions (i.e. those functions within ¢ of the maximal functions) but is usually a

larger set such that
(13) A= {Vfio—vft'n'"vvfi'o _vf"t]

is full-rank.

There are different ways of forming working sets. In our algorithm, a working set W
is made up of the indices of the current e-activities plus a subset (possibly not proper) of
the working set from the previous iteration.

The motivation for defining the working set in this manner is that it is from the set

of the maximum functions that we expect to determine a levelled reference set.

LEMMA 3.3 ( [8], LEMMA 38 ). Suppose a cadre of type 1 has been located at the
point z within the working set W = {u,i0,-+-,4}. Suppose further, we define v as the

unique least squares solution to
Av = —<i>, where

= [V.fl'o - a’oalvfila Y V.fio - dﬂalvfl'l])
® = [f"o - aoalfl'n' * '1ft'o - Uod'[fil],

h

(14)

fi, achieves the current mazimum deviation, and o; = sgn(fi;). Then v is a descent

direction for ¥(z).

If (2) is a linear problem, it can be proven that, at z 4+ v, {fi,, -+, fi,} form a levelled
reference set where
i ifA; >0 ,
(15) kj=1{ ij4m ifX; <0 andi; <m,
ij_m if A,‘ <0 and ij >m,

and the {);}}_, are the cadre multipliers. Thus, v is a desirable direction and the working
set is modified to give W = {ko,---, ki}.



Also, note that the concept of a cadre and cadre multipliers have enabled us, first to
consider determining a reference set from an enlarged set and second, to perform multi-
ple dropping — both these concepts are in turn motivated by the generalisation of the
characterisation of a solution in the linear case.

We also note that if we have a cadre of type 1 the indices in the working set that cor-
respond to negative cadre multipliers are dropped from the working set. More particularly,
if the working set consists uniquely of active functions, indices corresponding to negative
cadre multipliers are automatically dropped (see Lemma 5.2 of [7}).

Furthermore, if we have a cadre of type 2, we are not in the asymptotic region, as
follows directly from the first order conditions for optimality, Theorem 2.2.

On the other hand, if we do not locate a cadre in the working set, we are able to
decrease all the active functions and (provided v is not an ascent direction — the usual

case) level all the working functions by taking the direction

(16) d = { h + v, if v is a descent direction,

h, otherwise.
Here
h = —ZB 'ZTVf,(=),
v = —A(ATA)'%(z),
(17) A = [Vfto = Vi Vi _vft'z],

®(z) (fio = far==os fio — Fu)Ts
ZTZ = I, ATZ =0,

1o is an index for one of the activities, B is positive definite and the working set, W, is
given by W = {io,---,i1}.

At a first glance, it seems that the directions h and v depend on the index o and thus
are not uniquely determined by the current ‘structure’, i.e., working set. The following

theorem shows that this is not the case.

THEOREM 3.4 ( SEE [13], PAGE 61 ). Suppose the working set W is fired and B is
positive definite. Then, the h and v given above by (16) are independent of the choice of

10.

If the working set consists only of active functions and we have located a cadre of type
2, all activities change equally with v (up to first order). For a proof, the reader is referred

again to Lemma 5.2 of {7]. In addition, for cadres of type 2, all entries in the working set
9



(up to first order) change equally with k (Lemma 5.1 of [7]). Since little is to be gained by
levelling (we do not have the correct type of cadre) we discard v and just take k for our
search direction.

Before being able to state the algorithm in some detail two major issues remain to
be discussed, namely the line search and the definition of and manner in which we handle
degeneracy.

Let us begin with the line search.

4. The Line Search. We use a safeguarded line search that is similar to that of [16].

Thus suppose we have a descent direction d and we wish to find an approximation to

(18) miny(z* + ad),
where ¥(z) = max;en fi( ).
Define
(19) VY (z,d) = max v§Td

i€ A(z,e )NV £;Td<o

The acceptance criteria used in our algorithm is the following:
Given any constants 0 < § < 8 < 1 and 0 < 7 < 1, we demand that z*t! = z* + a*d*
satisfies:
& Condition: ¢(z*+!) < ¢(z*) + 6a*Vy (z*, d*)
and at least one of the following two:
B Condition: there exists i € A(z*, ), Vf,-(:c")Td" < 0 such that

Vf,'(zk+1)Tdk > ﬂVf,'(-’Ek)Tdh;
~ Condition: there exists i € A(z*,¢), Vf;(:c")rd" > 0 or i € A(z*, ) such that
£2*) = £(=) < 1M - (), we AH,0).

We require the following additional assumption:
ASSUMPTION 4.1. Each gradient V f;(z) satisfies the Lipschitz conditions,

[Vf(2) - Vfi(z)] < L||z—z|; forallie M.

The § condition ensures that the reduction along each descent direction, d*, has to be
at least §a*Vy (z*, d*).

10



The B and 4 conditions essentially enforce that the steplength cannot be smaller than
the minimum of —( V4, (z*, d*) and 75, where { and 5 are positive constants that depend,
in general, on the functions being minimized.

The above conditions are generalisation of the stepsize acceptance criteria for smooth
minimisation. Similarly we are able to prove that there always exists an interval of the

steplengths satisfying the acceptance criteria.

LEMMA 4.1 ( SEE [13], PAGE 162 ). Assume that d* is any descent direction for
the mazimum function ¥(z) at z*. Then there ezists an interval [ay, a,] where oy <
a, such that for all a € [, 0,], the § Condition and either the B Condition or the
~4 Condition is satisfied.

Note that Lemma 4.1 is independent of the definition of the descent direction.

The next lemma shows that if the acceptance criteria are satisfied, the stepsize cannot
be too small.

LEMMA 4.2 ( SEE [13], PAGE 160 ). Assume either the 8 Condition or the v Condition
is satisfied with 0 < B < 1 or 0 < v < 1. Furthermore, assume that the set of descent
direction {d*} is bounded and

(20) VT —VfId* = —(f. - f;) for anyi € A(z*,€) and V£Td* > 0.
Then there erist positive constants ( and n such that
ok > min{_c¢:(zk7dk)7 77}

1s satisfied.

Since the exact minimum of ¥(z) along d* could occur only at either an intersection
of two or more functions or at a minimum of one of the functions, the following result can
easily be established.

LEMMA 4.3 ( SEE [13], PAGE 167 ). Assume that d* is any descent direction for the
mazimum function ¥(z) at z*. Suppose z**! is the first minimum along the direction d*.
Then, at z*1!, the § Condition and either the B Condition or the v Condition are
satisfied.

We are now able to describe the line search procedure.

Line Search Procedure
11



Step 1 [ Initialization ] If newflg = true, @ « 1, jo — 0, Go to Step 2.

Compute the leftmost break point if one exists:

fu—Tio . Ju—1i . T
77507 it W (7 72 A A Qi
_ fu - fjo .

(Viu=Vf,)d
Otherwise, set the initial steplength to one.

Q

a1, Jo — 0.

Step 2 [ Evaluation |
Compute the function values and the gradients at z*+* = z* + ad*. If the
acceptance criteria are satisfied at z**?, stop.
Step 3 [ Interpolation ]
(i) Do a cubic interpolation for the function fyza+1)(z* + ad*),
using both the function values and gradients at the points z*

and z*+!

. Find its minimum a,x+1.

(ii) Do a cubic interpolation for f,.+)(z), using both the function
values and gradients at the points z* and z**!. Find its mini-
mum a,;:;

(iii) Do two quadratic interpolations for Ju(zr+1y(z) and fiu(z), us-
ing the function values at the two points =* and z*t! and the
gradients at z*. Find the intersection as.

k+1

fas <o, at! —a

1k 3
If ap < ausr, &+l — ay;
Otherwise apyy «— agre.
If a4y is not in the interval (0, a*), one step of the bisection method is

performed. Otherwise a «— a1, go to Step 2.

5. Degeneracy. For the discrete Chebyshev problem, degeneracy handling is an im-
portant component of any robust algorithm.

DEFINITION 7. For a general minimaz problem (1), the current point z° is degen-
erate if and only if there is a cadre C = {Vf,,Vf; .-+ VS, } such that {u,iy,---,4} C
A(z°,0).

From the construction of the working set, if the problem is degenerate, we have

W c A(z*,0).
12



Denote
Wk = {/‘l'aila . '1il}7

We have already seen that h given by (17) is a descent direction unless the working set
includes a cadre of type 1 (Lemma 3.2). Moreover, even in the degenerate case, if ZTV f, #
0, there is no difficulty determining descent.

However, if ZTV f, = 0 and there is more than one cadre C = {Vf,,Vfi,,---,Vf}
satisfying {g,41,---,4} C A(z*,0) it may not be possible to define a search direction
such that it decreases the functions in all the cadres, although we know how to define a
descending direction on one.

If we consider the cadres which correspond to subsets of active functions, then there

can be three types of degenerate points:

Type i) there only exist cadres with cadre multipliers summing to zero;
Type il) there exists a unique cadre and its cadre multipliers sum to one;
Type iii) there exists more than one cadre and at least one with cadre multipliers

summing to one.

For the degenerate points of Type i), there cannot be any reference set consisting of
only the active functions. This is because, for any reference set, each of the corresponding
cadre multiplier is positive and the sum of them is one. Thus, the current point cannot
be optimal. From Lemma 3.3 the vertical direction defined by (14) attempts to construct
a levelled reference set from a cadre. Following [8], Lemma 38, for a cadre with cadre
multipliers summing to zero, the vertical direction decreases all the functions in the cadre
by the same amount. Hence one possible way of constructing a levelled reference set, for
degenerate points of Type i), is to decrease all the active functions by the same amount.
Note that in this case, the functions in the cadres are all active.

For the degenerate points of Type ii), it is possible that a reference set exists within
the active set. If there is such a reference set, then the current point is already a stationary
point. Otherwise, a vertical direction can be defined to try to construct a levelled reference
set ( See (8], Lemma 37 and equation (14), above ). In fact, at a degenerate point of Type
ii), we can still define a descent direction which attempts to construct such a levelled
reference set.

For the degenerate points of Type iii), we do not know a direct way of defining a
descent direction and we obtain a descent direction by solving a constrained least squares

problem.
13



The following two lemmas are useful in identifying the type of degeneracy.

LeEMMA 5.1 ( SEE [13], PAGE 110 ). Suppose {Vf.,—Vf;,---,Vf, —Vf. .} are
linearly independent and W = {p,1,---,4;}. Assume Z-TVf,, = 0 where the columns of Z
form a basis for the null space of {Vf, —Vfy, -,V —Vfi .}. Assume further that

-1
(Viu= V) =2 4(Vfu= V).
i=1
Then, there ezists a cadre C C {V f,,Vf; -+, Vf_,} with cadre multipliers summing to

one and there ezists at least another cadre including V f;,.

LEMMA 5.2 ( SEE [13], PAGE 112 ). Suppose W = {u,1:,---,41} is a set of indices
and {Vf,—Vfi, -, Vfi—Vf,} are linearly independent. Then, there can ezist at most
one cadre amongst {Vf,,Vf. . ---,Vf}.

Consider the current e-active set .A(z*, ¢). For simplicity of discussion, we assume e is
sufficiently small such that A(z*,¢) = A(z*,0). This is no loss of generality since we only

have a finite number of functions f;(z). Denote
hk = —zZ*Z¥'vf,,
with
ATz —o, ZMZk_

and W* = A(z*, ).

It is clear that there exists a cadre C = {V £,V f;,,---,V £} such that {u,i,---,4}C
A(z*,0) if and only if some gradients of active functions are linearly dependent.

From the construction of the working set W* (details of which are given in (7], page
8), Wk = {u,4,,---, 4} is chosen such that the corresponding Jacobian matrix A* is of full
rank and the e-active functions are given priority when forming a working set.

Assume W* C A(z*,¢). In this case, there exists 4141 € A(z*, €) such that

l
(21) (Vfu - Vfil+x) = E A.‘i(vftu - v.fij)-
j=1
Type i) Degenerate Points: Since there is no cadre with the cadre multipliers

summing to one, from Lemma 3.2, we have hf, # 0. Furthermore, by definition of a
14



degenerate point, there exists a cadre C* embedded in the active set .A(z*, ¢) with cadre
multipliers summing to zero.

Type i) degeneracy is identified when W* C A(z*,¢) and ||k} > 0, from (21) and by
Lemma 3.1, there exists at least one cadre C C {V £, Vf;,,---, V£, } with cadre multipliers
summing to zero. Following Lemma 3.2, there is no cadre with cadre multipliers summing
to one. Hence, if {s,4;,---,i1} C A(z*,¢), z* is a degenerate point of Type i).

Thus, moving along the direction which decreases all the functions in the cadre C* by
the same amount ( whose existence is assured by [7], Lemma 5.2 ) is a constructive way of
building up a reference set.

Since k% # 0, h* # 0, assuming B* is positive definite. The horizontal direction is in
the null space of {Vf,—Vf; ,---,Vf,—Vf,}. Furthermore, for any other active function
fi; not in the working set W*,

(V= V)R =0, i;¢g Wk,
This comes from the fact that

(VHi-VS)= Y 6.(Vf.—Vf,), foranyi; g Wk
veWt
Thus h* actually decreases all the active functions equally ( up to the first order ) and
attempts to build a reference set from C*.

Hence, in this situation, we just take the horizontal direction as the search direction,
i.e., d* = h*. It is important to realise that if a sequence {z*} converges to a stationary
point, then there can only be a finite number of points which are degenerate points of Type
i), since, at any stationary point, there exists a cadre with cadre multipliers summing to
one.

Type ii) Degenerate Points: If z* is a degenerate point of Type ii), there exists
a unique cadre, based on the current e-active set, with cadre multipliers summing to one.
Moreover, kY = 0. Since there exists no other cadre, A(z*,€) C W*. ( Otherwise, using
Lemma 5.1, there exists more than one cadre ).

Assume zero multipliers are detected when the projected gradient k% = 0. From -
Lemma 3.2, there exists a cadre with cadre multipliers summing to one. If W* = A(z*,¢),
following Lemma 5.2, there does not exist any other cadre, based on the current e-active

* can only be a Type ii) degenerate point.

set. Hence, z
In this case, all the e-active functions are in the working set W*. From the proof of

Lemma 3.2, one cadre is given by C* = { Vf | A% # 0,4; € WF }, where A* is the least

15



squares solution to

1 1
(22) XV 4+ NV, =0, Y A=1
i=1 3=0

If this cadre corresponds to a levelled reference set, then we have found a solution.
Otherwise, following a proof similar to Lemma 3.3, it can be shown that the vertical di-
rection, defined by (17), decreases the maximum function (z). Furthermore, this vertical
direction attempts to construct a levelled reference set from the cadre (L

The multipliers which are the least squares solution to (22) are uniquely defined for
this type of degenerate points since A* has full rank. However, zero multipliers may occur.
A zero multiplier in this case indicates that the function does not belong to the cadre
which includes the representative function. From (17), the vertical direction will bring the
functions with zero multiplers down together if a descending vertical direction is found.
However, the functions with zero multiplers are not significant in the definition of the
search direction in the sense that whether a descending vertical direction exists or not
does not depend on the values of the functions with zero multipliers, since from equation
(7.12) of [8],

1
Viiv =2 6i(fu— 000;f;;).
s
Hence, if a zero multiplier occurs, this implies there exist more functions than necessary
to form a cadre in the current working set. If W* = A(z*,¢), then the current point is
degenerate. Otherwise, there exists at least one non-e-active function. In this case, it
is reasonable to remove a non-e-active function, which is the furtherest away from being

active, from the working set, i.e., W* « W* — I'*, where

o { {io | fu = fin = maxjems(fu = f5)} if A(2*,e) C W*

0 otherwise.

It is interesting to note that for a degenerate point of Type ii), the definition of the
search direction is the same as for a nondegenerate point.

Type iii) Degenerate Points: At a degenerate point of Type iii), amongst the
gradients of the e-active functions, there exists more than one cadre and at least one with
cadre multipliers sunming to one.

Type iii) degeneracy is recognised when W* C A(z*, ¢) and ||h}|| = 0. By Lemma 3.2,
there exists a cadre C C {Vf,,Vfi,--+,Vf;} with cadre multipliers summing to one.

Moreover, from (21) and following Lemma 3.1, there exists at least another cadre including
16



V fi,,- Hence, z* is a degenerate point of Type iii). There is no obvious way of constructing
reference sets for this type of degenerate point.

Assume A(z* €) = {io,11,---,%}, and p = ip. Following a similar approach to [3],
we solve the least squares problem given by

1
Jin, | ;)%qu ll2

(23) subject to
6;=1

I=

6; 20, j=0,--,l

Suppose §* is a solution to (23). Denote

1
(24) d = -3 6V
=0
If the optimum value ||d*|| = 0, the current point z* is a solution. Otherwise, d* is the

steepest descent direction at the current point in the sense of [9] ( page 64 ), i.e.,

Vet d*) = min Vi(a*,d).

We modify the working set W* as follows:
W"4—{i,~|9;>0}.

It is clear that W* C A(z*,¢).

The least squares problem with linear constraints (23) can be solved by methods
described in [12] ( page 158 ). However, we shall exploit its special structure.

The problem (23) is a least squares problem with both equality and nonnegativity
constraints.

We are able to show that we can solve (23) via a nonnegativity constrained least
squares problem that handles the single equality implicitly.

Denote

el =100,---,0,1], ef=[1,.-,1].

n I+1

A= [Vfio) '°°,Vf,',], AT = [AT, e]~
17



LEMMA 5.3 ( [13], PAGE 120 ). Suppose )" is a solution to the following NNLS (25).

min “AA — e,,+1”2

AeRit1
(25) subject to
X>0, i=0,-..,1
Then
1
0‘ —_ *
eTA*

is a solution to (23).

In the implementation of the algorithm, we directly use the NNLS algorithm from [12].

6. Maratos Effect. For nondifferentiable optimization problems, difficulties arise
when the iterates have to follow a steep sided groove which is a nonlinear curve across
which the function has discontinuous first derivatives ( change of sign ). If we use a lin-
earization of the discontinuity only, limited progress can be made along this linearization if
the merit function is to be reduced. Associated with this difficulty, the Maratos effect that
some unit steps fail to reduce the merit function may occur even when the iterates {z*}
are arbitrarily close to the solution z*. As a result, it is no longer possible to guarantee
superlinear convergence.

In fact, there are examples that indicate that the Maratos effect could occur for the
predescribed algorithm where the maximum function ¥(z) has been chosen as the merit
function [ However, we have not yet seen the Maratos effect numerically ).

Since in the final iterations of algorithms for nondifferentiable minimization such as
a minimax problem, an equivalent nonlinear programming problem is often solved, the
Maratos effect is also inevitable unless special strategies are used.

Current available approaches to the Maratos effect include [6], [11] and [4]. The first
two are correction methods while [4] use a relaxation technique to allow possible increase
of the merit function.

We use the former approach. Thus when close to a stationary point, i.e., a reference
set has been found, the horizontal direction is performed first and a vertical direction is
conducted afterwards to force the functions to have the same value. This simply amounts
to computing the vertical direction by

(26) v=—A(ATA)&(z + h)

18



where &(z) is defined as in (17).
We present the entire algorithm now. A user can request to invoke the process designed

to avoid the Maratos effect by setting a flag Mflag = 1.

ALGORITHM

Initialization: Suppose an initial point z° is given. Set k « 1, W° «— 0.

Step 1 [ QR Decomposition ]
Construct the working set (from A(z*, €) U W*-1 ), Jacobian A* and its
QR decomposition. Assume the columns of Z* form a basis for the null
space of AT
If A(z*,¢) C W* and ||Z"TVf,,|| <tk go to Step 2;
If A(z*,€) C W* and || 2*TVf,|| > 7*, go to Step 3;
If A(z*,¢) € W* and ||2*TVf,|| > r*, go to Step 4;
If A(z*,€) € W* and ||Z"TVf“|] < 7F, go to Step 5;

Step 2 [ Cadre “Found” with T;cc A = 1] If W* is a reference set, obtain B* =
Z"TG"Z", where G* is a positive definite approximation to the Hessian
of Siec Mifi(z) at z*. Compute the horizontal direction k* from (17);
If Mflag = 0, compute the vertical direction v* from (17); Otherwise,
compute the vertical direction from (26). Set the search direction d* =
h* 4+ vk,
If W* is not a reference set, compute the vertical direction according to
(14). Set d* = v*. Go to Step 6.

Step 3 [ Cadre not Found |
Obtain B* = Z"TG"Z", where G* is a positive definite approximation
to the Hessian of 3 ;¢ Aifi(z) at z*. Compute the horizontal direction
h* and the vertical direction v* from (17). If VfTv < 0, d* = h* 4 vk,
Otherwise d* = h*. Modify W* if necessary. Go to Step 6.

Step 4 [ Cadre “Found” with 3 ;¢ X = 0]
Compute d* = —Z”Z"TVf:. Go to Step 6.

Step 5 [ More than One Cadre and at Least One with Y;cc A = 1]
Compute the search direction d* using (24). Set 7*+! 5.5-

Step 6 [ Line Search ]
Perform a safeguarded line search. Set k — k + 1. If ||d*||, < 7, and W*

includes a levelled reference set, stop. Otherwise, go to Step 1. 0O
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7. Conclusion. It is well known that a best linear Chebyshev approximation cor-
responds to a characteristic structure. It is not so well recognised that a solution of a
nonlinear Chebyshev problem also possesses a rich structure and characterisation.

Under the classical Haar condition, the best linear Chebyshev approximation, on the
real line, is a levelled reference function with the maximum deviation. There exist exactly
n + 1 distinct and ordered points which achieve the maximum deviation and the signs of
the residuals on these points alternate.

Our experience with linear Chebyshev problems indicates that it is important for
an efficient algorithm to make use of these special properties of a solution. The famous
Remez algorithms [19] & [18] and the descent algorithm given in [2] are examples of such
algorithms. '

For many Chebyshev problems, such as multidimensional problems, nonlinear prob-
lems and discrete problems, however, the classical Haar condition does not hold. Thus,
whether there exists some significant properties that can be computationally exploited is
of some interest.

Nonlinear Chebyshev approximation theory indicates that, theoretically, for certain
classes of nonlinear problems at least, useful characterisations still exist. Nonetheless,
these theoretical characterisations are not easily computationally constructable or even
recognizable.

The first author’s experience with the descent algorithm given in [5], suggested that
when there exist intermediate points where two or more activities belong to the same peak
of the error curve, the efficiency of the method is impeded. We realise, however, that
for usual Chebyshev solutions, this cannot happen. This suggests that, if we impose the
structure of a solution, the algorithm may be improved.

The idea of a cadre has been introduced in [10] to describe a linear Chebyshev solution
when the classical Haar condition is absent. Starting from this concept, we have been able
generalise it to nonlinear Chebyshev problems. Based on the cadre , for nonlinear Cheby-
shev problems, we have generalised the reference set and levelled reference set concepts
which characterise the property of alternating signs for a linear Chebyshev problem with
the classical Haar condition.

We have then proceeded to exploit these results computationally.

The global convergence properties of the algorithm have been analysed through estab-
lishing the line search acceptance criteria. We point out that, under certain conditions,
the algorithm is globally convergent with a two steps superlinear convergence ( see [13],
page 191 ).
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The characterisation established for a local minimum of the discrete nonlinear Cheby-
shev problems is a generalisation of the specific properties of the best approximations for
continuous linear Chebyshev problems.

Our algorithm has thus been developed to locate a local minimum of a discrete non-
linear Chebyshev problem by attempting to establish its structure and satisfy the charac-
terisation of the local minimum. The algorithm is a method of successive descent on the
maximum function with a line search on this function.

The algorithm builds up the structure through construction of the working set which
attempts to approximate a reference set. The concept of the working set plays an important
rolein the algorithm. The functions in the working set are in general not e-active functions,
except near a solution. Along with the search directions, the working set attempts to
exploit the geometry of the error curve of the solution. The important levelling process is
embodied in the vertical directions.

The algorithm has been implemented in a numerically stable way. Initial numerical
testing has indicated the efficacy of the method. Details are given in [7].

With suitable modifications, our approach can be applied to general minimax prob-

lems. Additional constraints can also be handled using a rather straightforward extension.
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