EBARTMENT
EPARTMENT

EPARTMENT

R

ER
ER
ER 3G

|
uT
UT

T

ol

3

Y

OF WATERLOO

Y8
Y
Y

Unbalanced AVL Trees
and
Space Pessimal Brother Trees

Helen Cameron
and
Derick Wood

Data Structuring Group
Research Report CS-89-20

May, 1989

Unbalanced AVL Trees and Space Pessimal Brother
Trees *

Helen Cameront Derick Wood!

Abstract

We characterize a family of AVL trees that have the maximum
numbers of unbalanced nodes, nodes whose subtrees differ in height
by one, for their heights and weights. We obtain the result from a
characterization of brother trees with the largest space costs for their
heights and weights.

1 Introduction

In this paper we examine a cost measure specific to AVL and brother trees.
In AVL trees, the heights of subtrees rooted at sibling nodes can differ by at
most one. (If the two sibling subtrees do not have the same height, then the
parent of the two roots is said to be unbalanced.) This restriction is designed
to keep the search tree from being skewed too far from height [log,(N +1)],
the height of trees of size N with optimal comparison cost. It is natural to
ask, therefore, how many unbalanced nodes an AVL tree of size N can have.

In [OPR184], the fewest number of unbalanced nodes that an AVL tree
of size N can have is shown to be equal to the number of zeros in the binary
representation of N. But to know whether any effort should be expended
to achieve this minimal number, we need to know how bad things can get.
Certainly, if the worst situation is not much worse than the best situation,
it would not be worth while achieving and maintaining the best situation.
Thus, examining pessimally balanced AVL trees is a natural extension of
the study of optimally balanced AVL trees.

Unfortunately, characterizing pessimal comparison cost AVL trees seems
to be a hard problem (see [KW89b] and [KW89a]). For each size, how-
ever, there is an AVL tree that is comparison-cost optimal and also contains

*This work was supported under a Natural Sciences and Engineering Research Council
of Canada Grant No. A-5692 and under a grant from the Information Technology Research
Centre.

tData Structuring Group, Department of Computer Science, University of Waterloo,
WATERLOO, Ontario N2L 3G1, CANADA

2 Cameron and Wood

Expand

Contract

AVL Tree Brother Tree

Figure 1: A bijection between AVL and brother trees.

the optimal number of unbalanced nodes, see [OPR*84]. Thus, the num-
ber of unbalanced nodes in an AVL tree is a measure of skewness from a
comparison-cost optimal AVL tree. The characterization of pessimally bal-
anced AVL trees may lead to new results on pessimal comparison-cost AVL
trees.

In [OWS80], a bijection is given between the class of AVL trees and the
class of brother trees. An AVL tree can be “expanded” into a brother tree
by placing a unary node between each unbalanced node and the shorter of
its two children. The inverse operation of “contraction” turns a brother tree
into an AVL tree by removing all unary nodes and making the child of a
unary node the child of the parent of the unary node. The two operations
are pictured in Figure 1. Clearly, the number of unbalanced nodes in an AVL
tree, T, is exactly equal to the number of unary nodes in the corresponding
brother tree, ezpand(T'), and the number of internal binary nodes, the size,
is the same. Thus, we can answer our question about the maximum number
of unbalanced nodes that can appear in AVL trees of size N by finding
the maximum number of unary nodes that can appear in the corresponding
brother trees, the brother trees of size N. This is, in fact, what we do; we
analyze the class of brother trees.

The space cost of a brother tree, T', is the number of its internal nodes.
So the number of unary nodes in T is its space cost less its size. We wish to
characterize the space cost pessimal (SCP) brother trees among all brother
trees of size N. Instead, for each possible height i for a brother tree of size
N, we first find the maximum space cost for a brother tree of height h and
size N. (A brother tree with maximum space cost for its height and size is
called a locally SCP brother tree.) Then, to find the height of SCP brother
trees of size N, we must compare space costs.

In Section 2, we define brother trees, the detailed profile of a brother tree,
and the space cost of a brother tree. In Section 3, we characterize a family
of locally SCP brother trees that contains a tree with each possible height
and weight combination. In Section 4, we translate the characterization of
a locally SCP brother tree to the characterization of an AVL tree with the

Unbalanced AVL Trees 3

maximum number of unbalanced nodes for its height and weight. Section 5
concludes with some open problems.

2 Brother trees
If a node has at least one child, it is internal; otherwise it is ezternal.

Definition 2.1 A brother tree is a tree that satisfies the following condi-
tions:

o Each internal node has either one or two children;
o Each unary node has a binary sibling;

e All root-to-leaf paths have the same length.

The weight of a brother tree, T, is denoted by wi(T) and is defined as
the number of external nodes. The height of a brother tree, T, is denoted
by h#(T') and is defined as the length of the longest root-to-leaf path. For
brother trees, this is the length of any root-to-leaf path because all root-to-
leaf paths have the same length. The level of a node p in brother tree, T,is
its distance from the root of T'; the root of T is at level 0, its children are
at level 1, and so on.

Profiles or detailed profiles, defined below, are used to describe brother
trees. The two types of profiles are equivalent, but we will normally use
the detailed profile because it provides explicitly the numbers of unary and
binary nodes on each level.

Definition 2.2 The profile of a brother tree, T, of height h is the integer
sequence 7(T) = vy, ..., v, where v; is the number of nodes on level i.

The detailed profile of a brother tree, T, of height h and weight w is the
sequence of integer pairs A(T) = (wo, Bo), . . ., (Wh, Br), where w; (B;) is the
number of unary (binary) nodes on level i, for 0 < i < h. By convention,
external nodes are considered binary nodes; that is, wy = 0 and B, = w.

The relationship between the two types of profiles is given by v; = 8;+w;.

Using the following proposition, we can distinguish between the se-
quences of integer pairs that are the detailed profiles of brother trees and
those that are not.

Proposition 2.1 Let A = (wo,fBo),...,{wn,Br) be a sequence of integer
pairs. Then, A is the detailed profile of a brother tree if and only if

‘:B():l;

4 Cameron and Wood

Detailed Profile
(0,1)
(0,2)
(0,4)
(2,6)
(0,14)

Detailed Profile
(0,1)
(0,2)
(0,4)
(2,6)
(0,14)

Figure 2: Two distinct brother trees with the same profile.

e f;>20andw; >0, for 0 <i< h,

i ,B,->w,-+1,for0$i<h,

o Vi1 =wi+2B;, for0<i< h.

Proof: See [OPR*84). 0

A profile or detailed profile is a description of a set of brother trees, all
with the same height, the same weight, and the same numbers of unary and
binary nodes on each level. The difference between the trees is the positions
of the unary and binary nodes on each level. For example, the two brother
trees in Figure 2 have the same profile but are clearly not the same tree.
There are, in fact, 24 brother trees with that profile. Most descriptions of
brother trees in this paper will not include the positions of nodes on the levels
of the trees. In most instances, we could replace the phrase “the brother
tree T” with the phrase “the set of brother trees with the same profile as
brother tree T”, except where the positions of nodes are important.

Unbalanced AVL Trees 5

Definition 2.3 The space cost of a brother tree, T', is denoted by SCost(T)
and is defined to be the number of internal nodes of the tree, or

h-1
SCost(T) = Y v;.

=0

A space-cost pessimal (SCP) brother tree is a brother tree with mazimum
space cost among all brother irees of the same weight. Since all brother trees
of the same weight have the same number of internal binary nodes, a SCP
brother tree has the mazimum number of unary nodes for its weight.

To characterize SCP brother trees, we will examine the brother trees
with maximum space cost for each weight and height combination.

Definition 2.4 A brother tree, T, with the mazimum space cost for its
wetight and height is locally SCP.

3 The Characterization

In this section, we characterize a family of locally SCP brother trees, the F+
trees. In the first subsection, the terms used in the description of F't trees
are defined, and we show that a description using these terms is equivalent
to a detailed profile. Also, the family of Ft trees is defined. In the second
subsection, we prove that one of the requirements for membership in the
family of F+ trees is satisfied by all locally SCP brother trees. In the third
subsection, we show that there is a locally SCP Ft tree with each possible
height and weight combination. In the last subsections, we characterize a
locally SCP F* tree, given a height and a weight.

3.1 Definitions

We will describe a locally SCP brother tree of height A and weight w using
the following terms.

Definition 3.1 A brother tree, T, where A(T) = (wo, Po), - - -, (wh, Br), has
a complete binary prefix of height p (a Bin(p) prefiz), for some 1 < p < h,
fw;=0and B; =2, for0< i< p.

The brother tree, T, has a maximum complete binary prefix of height p
(mazBin(T) = p), for some 1 < p < h, if T has a Bin(p) prefiz but not a
Bin(p + 1) prefiz.

Every non-empty brother tree has a Bin(1) prefix, because the root of
a non-empty brother tree is binary. Thus, each brother tree, T, satisfies
1 < mazBin(T) < hY(T).

6 Cameron and Wood

Definition 3.2 A surplus node is a binary node with two binary children.

All binary nodes on level h#(T') ~ 1 of any brother tree T are surplus
nodes because the external nodes on level h#(T') are defined to be binary
nodes.

A unary node on level i+1 of a brother tree must have a binary parent on
level ¢ and can not have a unary sibling. Thus, the number of binary nodes
on level ¢ that are not surplus nodes is w;41, and level 7 contains exactly s
surplus nodes if and only if 8; = w;4+1 + 8.

Given the height h of a brother tree, T', the height p of the maximum
complete binary prefix of T', and the number of surplus nodes on each of the
levels p — 1 to A — 2, we show that the detailed profile of T is completely
specified. Thus, it is sufficient to find these values to completely describe a
locally SCP brother tree of a given height and weight.

Lemma 3.1 Let T be a brother tree with height h, mazBin(T) = p, and +;
surplus nodes on level i, for p—1 <t < h—2. Then, given h, p, and ~;, for
p— 1< i< h- 2, the detailed profile of T can be completely specified.

Proof: Since mazBin(T) = p, we have 8; = 27 and w; = 0,for 0 < j < p.
Since there are 9,3 surplus nodes on level p— 1, we have B,_1 = wp +7p—-1.
Also, B, = wp_1 + Bp—1 +Yp-1, since each node on level p — 1 has one binary
child on level p, except for surplus nodes on level p — 1, which have two
binary children on level p. Since v,_1, Bp—1, and w,_; are known, we can
compute B, and w,. Similarly, 8; and w; can be computed from B;_; and
w;—1 and 9;9, for p+1 <7 < h— 1. Finally, 85 = wp—1 + 2 Br-1 and
wp = 0, since all external nodes are considered binary nodes. m]

We have defined surplus nodes and the maximum complete binary prefix
of a brother tree, and we have shown, in Lemma 3.1, how brother trees can
be characterized using these terms. We will now describe a class of brother
trees, called Ft trees. Each tree in the class has restrictions placed on the
numbers and positions of surplus nodes beneath the maximum complete
binary prefix. The name F* tree means “Fibonacci plus” tree and was
chosen because these trees are Fibonacci-like beneath the binary prefix, with
some extra un-Fibonacci-like nodes. (See Section 3.4 for the definition of
Fibonacci trees.) Our goal is to prove that there exists a locally SCP brother
tree, T, that is also an F* tree, for each possible weight and height. We
also wish to calculate mazBin(T) and the number and positions of surplus
nodes in T beneath the binary prefix of height mazBin(T'), given the height
and weight of T'.

Definition 3.3 A brother tree, T, is an F* tree if

Unbalanced AVL Trees 7

o f A= Rk

Figure 3: A space-cost increasing transformation.

1. For mazBin(T) < i < h(T), if level i contains a surplus node, then
level i + 1 does not;

2. For mazBin(T) < i < ht(T') — 1, level i contains at most one surplus
node.

3.2 Adjacent Levels of Surplus Nodes

In this subsection, we will show that Restriction 1 in the definition of F+
trees applies to all locally SCP brother trees, not just to those locally SCP
brother trees that are also F't trees.

First, we need the space-cost increasing transformation described in the
following lemma. (The transformation is displayed in Figure 3.)

Lemma 3.2 Let A = (wo,Bo), ..., {wh, Br) be the detailed profile of a locally
SCP brother tree, T. Then, for each k, where 3 < k < h, at least one of the
following must hold:

Wg—.2 = 0, (1)
Br—2 = wp-1, (2)
Br-1 = wi. (3)

Proof: Let A = (wo,Bo),...,{(wn,Br) be the detailed profile of a locally
SCP brother tree, T. Assume that for some k, where 3 < k < A, none of
conditions (1), (2), or (3) holds. Consider the sequence

AI = <w01ﬁ0)7'-"
(Wi—2 = 1, Br—2 + 1), (Wk—1 + 2, Be—1 — 1), (wk, B,
v vy {wh, Br).

A’ is the detailed profile of some brother tree, T'; see [OPR*84]. Now, T'
has the same height and weight as T, and SCos(T') > SCost(T). This
contradicts the local space cost pessimality of T'. o

8 Cameron and Wood

Corollary 3.3 Let A = (wo,f0),. -, {wh,Br) be the detailed profile of a
locally SCP brother tree, T. If there exists an integer j, where 0 < j < h,
such that B; > wjt1 and Bj_1 > wj, thenwy =0, for 0< j' <j—-1.

Proof: See Corollary 3.3 in [OPR*84]. m]

Corollary 3.4 Let T be a locally SCP brother tree and mazBin(T) = p. If
level i contains a surplus node, then level i + 1 does not, forp<i< h—1.

Proof: Let mazBin(T) = p, and let level i contain a surplus node u, for
some p < i < h — 1. Since each binary node on level ¢ can have at most one
unary child on level i + 1 (otherwise T is not a brother tree) and surplus
node u only has binary children, we must have 8; > w;;1. Assume that level
i+1 also contains a surplus node; then, by the same argument, 8;11 > wi42.
By Corollary 3.3, since B; > wiyy and fi41 > wiy2, we must have w; = 0,
for 0 < j < i. Therefore, T has a Bin(i + 1) prefix. This is a contradiction,
since p < i. Therefore, level i + 1 does not contain a surplus node. a

Because all external nodes are defined to be binary, each binary node on
level h — 1 is a surplus node. There must be at least one binary node on
level A — 1, if h > 1. Thus, by Corollary 3.4,if h > 2 and b > p + 1, there
cannot be surplus nodes on level A — 2.

By Corollary 3.4, every locally SCP brother tree satisfies Restriction 1 in
the definition of F* trees. In the next subsection, we show that there exists
a locally SCP brother tree, for each height and weight, that also satisfies the
second restriction.

3.3 A Family of Locally SCP Brother Trees

In this subsection, we transform any locally SCP brother tree, T, of height h
and weight w, into another locally SCP brother tree, T, of the same height
and weight such that T’ is an F'* tree. We must “spread out” the surplus
nodes on levels mazBin(T) to ht(T') — 2 so that none of these levels contains
more than one surplus node. To do this, we need the space-cost preserving
transformation described in the following lemma. It transforms a locally
SCP brother tree, T, into another locally SCP brother tree, T, of the same
height and weight. We will see that this transformation moves surplus nodes,
possibly increasing the height of the maximum complete binary prefix.

Lemma 3.5 Let A = (wo,B0),. - -, (Wh, Br) be the detailed profile of a bro-
ther tree, T, with mazBin(T) = p. If we—1 < Pr—2 — 2, for some k, where
p+ 2 < k < h, then define the detailed profile, A’ = (Wh,Bh), - - -5 (Why B,
by

Unbalanced AVL Trees 9

swi=wandBi=0;, for0<i<k-3andk+1<i<h,
e Wpp=wia—1and By =Bz +1,

o Wiy =we—1+3 and B,_; = Pr-1—2, and

s w,=wr—2and B}, =Pr+1.

A’ is also the detailed profile of a brother tree, T', with the same weight,
height, and space cost as T. In particular, if T is locally SCP, then T' is
locally SCP.

Proof: Note that neither the height nor the weight nor the space cost is
changed by the transformation given in the statement of the lemma. Thus,
if T is locally SCP and A’ is the profile of a brother tree, T/, then T' has
the same weight and height as T' and is also locally SCP.

By Proposition 2.1, to prove that A’ is the profile of a brother tree, it is
necessary to prove that

1L gy =1,
2. B >0and wf >0,for 0 <i<h,
3. Bil>wi,,,for0<i<h,and

4. v, =w!+2 -, for0<i<h.

A is the profile of a brother tree so these conditions hold for A. A’
differs from A only on levels k — 2, k£ — 1, and &, so most of these conditions
already hold for A’ also.

We have §; > 0 and w; > 0, for 0 < ¢ < h. Thus, trivially, 8,_, > 0,
Wj,_y > 0, and B}, > 0. Since B_2 > wi—1 + 2, there are at least two surplus
nodes on level k — 2. Since there are surplus nodes on level £ — 2 > p and
A is the profile of a locally SCP brother tree, by Corollary 3.4, there are no
surplus nodes on level k — 1; therefore, w, = Br_1. Also, Br_; > 4, since
there are at least two surplus nodes on level k — 2. Thus, w}, = w, — 2 =
Be-1—2>4-2>0and Bl ;, =Pr_1-2>4-2>0.

If £k — 2 > p, then, by Corollary 3.4, since there are surplus nodes on
level k — 2, there are no surplus nodes on level k — 3. Thus, Br_3 = wWr_3.
Since k—~3 > p > 1, we have B3 > 1. Thus, w},_, = wp—2 -2 = Pr_3—12>
1-1=0,if k-2 > p. Otherwise £k — 2 = p and wr_s > 1, because
mazBin(T) = p. Thus, wj,_, = wr—2 — 1 > 0. Hence, condition 2 holds for
all levels.

Since Br_2 > wp—1 +2, we have f;,_, = Br_2+1 > wp—1 + 3 = w},_,,
and condition 3 holds for A’.

10 Cameron and Wood

Finally, condition 4, for i = k — 3,

w;c—3 +2- ,3,',_3 = Wi-3+ 2 Pr-3
= Wi-2+ Br-2
= (wr—2—1)+ (Br-2+1)
= Wgea t+ Bi-2

= Vjp_,.

Fori=Fk -2,

Wi2+ 2Pz = (We—2—1)+2-(Br—2+1)
(W2 + 2 Br—2) +1
(wk—1 + Br-1) +1

(wk-1+ 3) + (Br—1 —2)
Wh—1 + Bia

— !
= Vi_1-

Fori=Fk~-1,

W 1+2 By = (We-1+3)+2-(Br-1—-2)
(Wr-1+2Pr-1)—1

= (we+PBe)—1

= (we—2)+(Be+1)
= wi+ B

= .

Fori =k,

W +2:-B, = (we—2)+2-(Bet+1)
wi + 2 B

Wkt + Br1

Wit1 + Brtr

—_ !
= Vet

Thus, condition 4 holds for A’, and A’ is the detailed profile of a locally
SCP brother tree of the same weight and height as T'. a

The space-cost preserving transformation in the above Lemma can be
viewed as a transformation on surplus nodes; see Figure 4. The original
tree, T, has at least two surplus nodes on level £ — 2, where p < k-2 <

Unbalanced AVL Trees 11

surplus

j surplus

Figure 4: A space-cost preserving transformation.

h — 2. The resulting tree, T, has one new surplus node on level & — 3, one
new surplus node on level k, and two fewer surplus nodes on level k& — 2.
Note that if £ — 2 = p and T has 27~! — 1 surplus nodes on level p — 1,
then mazBin(T') = p + 1. (T does not have a Bin(p + 2) prefix because
Wp1 = Wp1 + 3; that is, level p+ 1 in T' is not completely binary.)

The space-cost preserving transformation in Lemma 3.5 allows us to draw
the following two conclusions about the numbers and positions of surplus
nodes beneath the maximum complete binary prefix in any locally SCP
brother tree (not just locally SCP F* trees).

Corollary 3.6 Let A = (wo,Bo),- -, {Wh,Br) be the detailed profile of a
locally SCP brother tree, T, with mazBin(T) = p and at least two surplus
nodes on level k — 2, where p+2 < k < h. Let T’ be the locally SCP brother
tree obtained from T by applying the space-cost preserving transformation of
Lemma 3.5. Then, neither T nor T' have a surplus node on level k — 1.

Proof: Since T has at least two surplus nodes on level & — 2, where p <
k — 2 < h, by Corollary 3.4, T cannot have surplus nodes on level & — 1.
Thus, wi = Pr-1. In A(T"), Bi_; = Br-1 — 2 = Wi — 2 = w},. Therefore, T’
does not have any surplus nodes on level k — 1 either. a

12 Cameron and Wood

Corollary 3.7 Let A = (wo,f0),--.,{wn,Br) be the detailed profile of a
locally SCP brother tree, T, with at least two surplus nodes on level k — 2,
where mazBin(T)+ 2 < k < h. Then, T has ezactly two surplus nodes on
level k — 2.

Proof: Let T’ be the locally SCP brother tree constructed from T using
the space-cost preserving transformation in Lemma 3.5. Assume T has more
than two surplus nodes on level k—2 > mazBin(T'). Then, T' has one surplus
node on level k—3 > mazBin(T) and at least one surplus node on level k—2.
But Corollary 3.4 forbids this; therefore, T has at most two surplus nodes
on level k — 2. o

We now want to show how the space-cost preserving transformation of
Lemma 3.5 can be used to create a locally SCP tree, T, with at most one
surplus node on each of the levels mazBin(T') to ht(T') — 2. To do this, we
first show how the transformation can be used to push surplus nodes down
the tree so that the levels beneath the binary prefix that contain more than
one surplus node get closer and closer to the external nodes.

Definition 3.4 Let T be a locally SCP brother tree. Define g(T') to be the
smallest value © such that mazBin(T) < i < ht(T) — 1 and level i contains
at least two surplus nodes. If no such i exists, then let g(T') = hi(T).

The function g(T') indicates where we must first apply the space-cost
preserving transformation to turn a locally SCP brother tree T into a locally
SCP F* tree.

Lemma 3.8 LetT be a locally SCP brother tree such that g(T) = j < ht(T).
Then, there exists a locally SCP brother tree, T', with the same height and
weight as T, such that g(T') > ¢(T).

Proof: Let ht(T) = h, and let mazBin(T) = p. Then, p < j < h—1,
by the definition of g(T'). Now, level h — 2 does not contain surplus nodes
unless p > h — 2,50 j # h — 2. Therefore, p< j < h-2.

e p<j.

Then, by Corollary 3.7, T has exactly two surplus nodes on level j.
By Corollary 3.4, T does not have any surplus nodes on levels j — 1
and j + 1.

Applying the space-cost preserving transformation of Lemma 3.5
with £k — 2 = j, we obtain a locally SCP brother tree, T, with the
same height, weight, and space cost as tree T. T’ has exactly one
surplus node on level j — 1, no surplus nodes on levels j and j+ 1, and

one new surplus node on level j + 2. Moreover, T/ has a mazBin(p)
prefix. Thus, g(T") > j+ 2 > g(T).

Unbalanced AVL Trees 13

e p = j, tree T has 7 > 2 surplus nodes on level p, and T has 2P~! — |
surplus nodes on level p — 1, where I > 3].

Applying the space-cost preserving transformation of Lemma 3.5
|3] times with k£ — 2 = p, we obtain a locally SCP brother tree, T",
with the same height and weight as T. T' has |}] new surplus nodes
on level p — 1, at most one surplus node on level p, no surplus nodes
on level p+ 1, and |3 | new surplus nodes on level p + 2. Since T’
has 27=1 — [+ |{] < 27~ surplus nodes on level p — 1, level p is not
completely binary; thus, mazBin(T') = p. Therefore, g(T') > p+ 2 >

9(T).

e p = j, tree T has i > 2 surplus nodes on level p, and T has 2P~! —]
surplus nodes on level p — 1, where [< |} |,

Applying the space-cost preserving transformation of Lemma 3.5 [
times with k—2 = p, we obtain a locally SCP brother tree, T/, with the
same height and weight as T'. Furthermore, mazBin(T') = p+1,and T’
has i — 2] remaining surplus nodes on level p, no surplus nodes on level
p+1, and I new surplus nodes on level p+2. Thus, g(T) > p+2 > g(T).

In all cases, there exists a locally SCP brother. tree, 77, with the same
height and weight as T, such that g(T') > g(T). a

Finally, we are in a position to prove that if there exists a brother tree
of height h and weight w, then there exists a locally SCP F* tree of height
h and weight w.

Theorem 3.9 For each height h and weight w, there exists a locally SCP
brother tree, T, of height h and weight w, such that level i contains at most
one surplus node, for mazBin(T) < i < h— 1. That is, T is a locally SCP
Ft tree.

Proof: Clearly, any locally SCP brother tree, T, of height k, weight w, and
mazBin(T) = h—1 or mazBin(T) = h satisfies the statement of the theorem.
Similarly, any locally SCP brother tree, T', with mazBin(T) = h — 2 cannot
have any surplus nodes on level A — 2. This follows because every binary
node on level A — 1 is a surplus node and, by Corollary 3.4, if level h — 2
contains a surplus node, then level A — 1 does not.

Let T3 be a locally SCP brother tree of height A and weight w, and let
mazBin(T,) = p;, for some 1 < p; < h—3.

If g(T1) = h, then there is no ¢, where p; < i < h — 1, such that level ¢
contains more than one surplus node. Thus, T} satisfies the theorem.

If g(T1) = j, for some p; < j < h— 1, then, by Lemma 3.8, there exists
a locally SCP brother tree, T, of height h and weight w such that g(73%) >

14 Cameron and Wood

O DP\D Fib(h —2) Fib(h—1)

Fib(0) Fib(1) Fib(h), for h > 2.

Figure 5: The definition of Fib(h).

g9(T1). If g(T2) = h, then T, satisfies the theorem. Otherwise, we reapply
Lemma 3.8 to T5. This yields a sequence T3, T, T3, and so on, of locally
SCP brother trees of weight w and height k, such that ¢(T;) < g(Ti41). This
sequence is finite, so we must eventually find T, such that g(7,) = h; that
is, T}, satisfies the conditions of the theorem. m)

Thus, there is a family of locally SCP brother trees, at least one for each
height h and weight w, such that each tree, T, in the family has at most one
surplus node on each of the levels mazBin(T') to ht(T) — 2.

3.4 The Height of the Largest Binary Prefix

We will now show that, given a height and weight, there is only one possible
value for mazBin(T'), when T is a locally SCP F* tree. To do this, we need
the notion of Fibonacci trees, as defined in Figure 5. The Fibonacci numbers
are defined by fo =0, fi =1, and fi4s = fiy1 + fi, for i > 0.

Lemma 3.10 The detailed profile of a Fibonacci tree of height h is

(f01 fl)) (fla f2>’ ceey (fh—l’ fh)a (0, fh+2)-

Thus, a Fibonacci tree of height h has weight frny2 and has fry1 — 1 unary
nodes.

Proof: By induction on h, the height of the Fibonacci tree. See Lemma
3.1 in [KW8T]. o

The importance of Fib(h) in this section is that Fib(h) contains no sur-
plus nodes on levels 0 to h—2, as the following corollary shows. If the subtree
rooted at a node in some brother tree, T, on level mazBin(T) — 1 does not
contain any surplus nodes on any apart from level h#(T') — 1, then it must

Unbalanced AVL Trees 15

/2

Figure 6: The root of T is not a surplus node.

be a Fibonacci brother tree. We use Fibonacci trees to help us construct
F* trees with surplus nodes only in specified positions.

Corollary 3.11 A brother tree, T, of height h contains no surplus nodes
on level i, 0 < i < h— 2, if and only if T is a Fibonacci tree of height h.

Proof: If: Let T be a Fibonacci tree. Then, by Lemma 3.10, 8; = w;y1,
for 0 < 2 < h — 1. Thus, T contains no surplus nodes on levels 0 to A — 2.
Only if: Let T be a brother tree of height h that contains no surplus
nodes on levels 0 to h—2. Clearly, Fib(0) and Fib(1), the only trees of heights
0 and 1, respectively, fall in this category and are Fibonacci trees. If A > 1,
then, since the root of T' is not a surplus node, we must have wp = 0 = f,
Po=1=fi,ws =1= f1,and By =1 = f,, see Figure 6. Thus, T, and Tr
are trees of heights A — 2 and h — 1 that have no surplus nodes on levels 0 to
h—4 and h — 3, respectively. By the induction hypothesis, T}, is a Fibonacci
tree of height h — 2 and T is a Fibonacci tree of height h — 1. Thus, T is a
Fibonacci tree of height h. a

Let 7, p, where h > 0 and 1 < p < h, be the set of all brother trees, T,
of height h with mazBin(T) = p such that:

1. For p < i < h, if level 7 contains a surplus node, then level 141 doesn’t;
and

2. For p < i < h — 1, level i contains at most one surplus node.

In other words, the set 7 , contains all F'* trees of height A with a maximum
complete binary prefix of height p. Observe that each T' € 73, can have as
few as zero and as many as 2P~! — 1 surplus nodes on level p — 1.

We will show that the weight of a tree in 73, is strictly less than the
weight of each tree in 73 p4+1. Thus, given a height h and weight w, there is
only one possible value of mazBin(T) for a locally SCP brother tree, T, of
height A and weight w, when T is also an F* tree. To prove this inequality
between weights of trees in 7, , and weights of trees 7j 41, we show that a

16 Cameron and Wood

maximum weight tree in 7}, , has weight exactly one less than the weight of
a minimum weight tree in 73 541.
First, we characterize the minimum weight trees in 7 p.

Lemma 3.12 Given a brother tree, T, of minimum weight in Tp,,, every
node on level p — 1 in T is the root of a Fib(h — p 4+ 1) subtree.

Proof: We examine the following two cases:

e p<h.

Let T be a brother tree of height h and maxBin(T) = p that
has minimum weight among all brother trees, T', of height h and
mazBin(T') = p. If some node on level p — 1 of T is not the root of
a Fib(h — p + 1) subtree, then we can replace it with a Fib(h —p + 1)
subtree. Since Fib(h — p + 1) is the brother tree that has minimum
weight among all brother trees of height A — p + 1, this does not in-
crease the weight of T'. If the resulting tree has the same weight, then
the replaced subtree must be profile equivalent to Fib(h—p+1). Oth-
erwise, the resulting tree has smaller weight, and this contradicts the
minimality of the weight of T'. Thus, each node on level p— 1 of T
is the root of a Fib(h — p + 1) subtree. Since Fibonacci brother trees
contain no surplus nodes, T has no surplus nodes on levels p — 1 to

h —2. Thus, T € Tpp and T is a brother tree of minimum weight in
7;7'»1"

e p=h.
There is only one tree T of height h with mazBin(T) = h. This is
the only tree in 7j, 5. The tree is completely binary. Thus, each node

on level p—1 = h~1 of this tree is a binary node and, therefore, each
node on level p — 1 is the root of a Fib(1) = Fib(h — p + 1) subtree.

In each case, each node on level p — 1 is the root of a Fib(h — p+ 1) subtree.
0

Figure 7 displays a tree of minimum weight in 7j, p.

Corollary 3.13 A minimum weight tree, T, in Tp, has weight wi(T) =
2271 - fr_p+s.

Proof: By Lemma 3.12, each node on level p — 1 of a minimum weight tree
in T3 p is the root of a Fib(h — p+ 1) subtree. Since there are 2P~1 nodes on
level p—1, the weight of such a tree is 2?1 - wt(Fib(h—p+1)) = 2771 fr_p43.
0

Unbalanced AVL Trees 17

+—— completely binary prefix of height p

h ,‘ ﬂ ~level p -1

2P=1 Fib(h — p + 1) subtrees

Figure 7: A tree of minimum weight in 73 ;.

Maximum weight trees in 7, are more difficult to characterize because
they contain surplus nodes beneath the maximum complete binary prefix.

First, we consider the positions of surplus nodes on the levels that can
contain at most one surplus node per level; that is, levels p to h — 2. For
the moment, we restrict the discussion to subsets of trees in 7, that have
the same number of surplus nodes on level p — 1.

Definition 3.5 Let 7, ,,, be the subset of trees in T, that have s surplus
nodes on level p — 1.

Lemma 3.14 Letp < h—2. A brother tree, T, in T}, p , of mazimum weight
has ezactly one surplus node on each of the levels p,p+2,...,p+ 2q, where
h+4 < p+2q < h—2, and no surplus nodes on the levels p+1,p+3,...,p+
2¢ + 1.

Proof: Let T be a maximum weight brother tree in 7, ,,. Assume T has
one surplus node on each of the levels p,p+ 2,...,p+ 27, where i < ¢, but
T has no surplus node on level p + 2(i + 1). Since T is in 73 p, and T has a
surplus node on level p 4+ 27, T has no surplus node on level p + 2i + 1.

Case 1: T has no surplus node on level p + 2(7 + 1) + 1.

Then, add a surplus node to level p + 2(: + 1) by choosing any
binary node on level p + 2(z + 1) and performing the transformation
shown in Figure 8. The resulting tree, T”, is in Tp ,, and wt(T') =
wiT) + wi(Fib(h — (p + 2(i + 1)) = 3)) = wi(T) + fa(psait1))-1-
This contradicts the maximality of the weight of T in 7, since
h—(p+2(i+1))-1>0.

Case 2: T has a surplus node on level p+2(i+1)+1 and p+2(i+1) = h—3.

18 Cameron and Wood

O level p+2(i 4+ 1) () surplus

Added Fib(h — (p+ 2(i + 1)) — 3)

Figure 8: Create a new surplus node on level p + 2(i 4+ 1).

Added Fib(0)

Figure 9: Shift a surplus node from level h — 3 to level h — 4.

This cannot occur because p +2(¢ + 1)+ 1 =h — 2 and level A — 2
cannot contain surplus nodes because every binary node on level h—1
is a surplus node. By the definition of 75, if level A — 2 contains a
surplus node, then level A — 1 cannot.

Case 3: T has a surplus node on level p+2(:+1)+1 and p+2(i+1) = h—4.

We cannot simply add a surplus node to level h — 4. Instead, we
choose any binary node on level h — 4 and perform the transformation
show in Figure 9. The resulting tree, T, has no surplus node on level
h — 3, a new surplus node on level h — 4, and no other new surplus
nodes on levels p to h — 2. T" is also in T4 p,. In addition, the weight
of T' is w(T') = wi(T) + 1, which contradicts the maximality of the
weight of T'.

Case 4: T has a surplus node on level p+2(i+1)+1 and p+2(:+1) < h—4.

In this case, we cannot simply add a surplus node to level p+2(z + 1).
Instead, we perform the transformation shown in Figure 10. The re-

Unbalanced AVL Trees 19

level p+2(i+ 1

Added Fib(h— (p + 2(i + 1)) - 5)

Figure 10: Shift a surplus node up to level p + 2(+ 1).

20 Cameron and Wood

sulting tree, 7', has a surplus node on level 2+ 2(¢ + 1), no surplus
node on level p + 2(¢ + 1) + 1, and is in 75, ,,,. Also,

I

wT') = wi(T)+ wi(Fib(h - (p+ 2(i + 1)) — 5))

WYT) + fr-(pr2(i+1))-3-

Since b — (p+2(i + 1)) — 3 > 0, this contradicts the maximality of the
weight of T'.

In each case, we see that T must have a surplus node on level p + 2(i+1),if
T has maximum weight in 7}, ,,. By induction, T must have a surplus node
on each of the levels p,p+ 2,...,p+ 2¢, where h — 4 < p + 2 < h~—2.

The same argument applies if T does not have a surplus node on level
p: if there is no surplus node on level p + 1, then add a surplus node to
level p; otherwise, perform the transformation in Figure 10 (or Figure 9, if
p = h —4). In either case, we obtain a tree with weight greater than T'; a
contradiction. Thus, T must have a surplus node on level p.

Since T is in 74p,, whenever a level contains a surplus node, the level
below it does not. Since T' contains one surplus node on each of the levels
»p+2,...,p+ 2q, where h — 4 < p+2¢q < h — 2, it follows that T does
not contain surplus nodes on levels p+ 1,p+3,...,p+ 2¢ + 1. Thus, T has
exactly one surplus node on each of the levels p,p + 2,...,p + 2¢, and no
surplus nodes on levels p+ 1,p+ 3,...,p+ 2¢ + 1. m|

Now we can characterize maximum weight trees in Thp, forp< h—2.

Lemma 3.15 Letp < h— 2. A brother tree, T, in Thp of mazimum weight
must have 2P~1 — 1 surplus nodes on level p — 1 and one surplus node on
each of the levels p,p+2,...,p+ 2q, where h—4 < p+2¢ < h—2, and no
surplus nodes on levelp+ 1,p+3,...,p+2¢+ 1.

Proof: Let T be a brother tree of maximum weight in 73 ,. The tree T can-
not have 2P~ surplus nodes on level p — 1, since level p would be completely
binary and this would contradict the assumption that mazBin(T) = p. Thus,
T can have at most 2P~1 — 1 surplus nodes on level p — 1. We prove that T
has exactly this number of surplus nodes on level p — 1 by contradiction.

Assume T does not have 2P~1 —1 surplus nodes on level p—1. Then, there
must be at least two binary nodes on level p — 1 that are not surplus nodes.
Choose one of these and perform the transformation of Lemma 3.14 shown
in Figure 8. Note that the chosen node on level p — 1 becomes a surplus
node and no other surplus nodes are created, so the resulting tree, 77, is in
Thp- Note also that wi(T') = wi(T) + wi(Fib(h — p — 2)) = w(T) + fa_,p.
Thus, T' does not have maximum weight in 7 ,; a contradiction.

Unbalanced AVL Trees . 21

Thus, T € Thp,s, Where s = 2771 — 1. Since Tpp, C Thp and T has
maximum weight in 7 p, this implies T must have maximum weight in
Thp,s- By Lemma 3.14, T has one surplus node on each of the levels p,p+
2,...,p+2q,where h—4<p+2g<h-2. m]

The following lemma allows us to calculate the weight of the maximum
weight trees in 7j 5.

Lemma 3.16 Let T be a brother tree of height h with mazBin(T) =p < h.
If T has s surplus nodes on level p — 1, ezactly one surplus node on each of
the levels h—ky —1,...,h—k, — 1, for somer > 0, wherep < h—-k; —1<

< h—Fk,—1< h—2, and no other level among the levels p,...,h — 2
contains a surplus node, then the weight of T is

P st s facpt) S
=1
Proof: Consider the brother tree, T', in Figure 11. It has height h,
mazBin(T') = p, s surplus nodes on level p — 1, exactly one surplus node
on each of the levels h — k; — 1,...,h — k, — 1, and no other level among
the levels p, ..., h — 2 contains a surplus node. By Lemma 3.1, the detailed
profiles of T' and T’ can be completely specified by the given information,
and A(T) = A(T'). Thus, wi(T) = wi(T").

We can calculate the weight of T/ by adding the weights of the 2p-1
subtrees rooted at level p — 1. Each the s surplus nodes on level p — 1
contributes 2 - wi(Fib(h — p)) to the weight of T'. Each of the other nodes,
except for one, contributes wi(Fib(h — p + 1)) to the weight. The weight
of the final subtree rooted at level p — 1 can be calculated by summing the
weights of the subtrees hanging from the binary “spine” of the final subtree.
These subtrees are Fibonacci trees, starting at height 0 at the bottom and
increasing to height A — p — 1 at the top, with “glitches” caused by the
surplus nodes on the spine. The surplus node on level h — k; — 1 causes a
Fib(k;) subtree to occur where a Fib(k; —1) subtree is expected. But Fib(k;)
is constructed from Fib(k; — 1) and Fib(k; — 2), so the surplus node on level
h — k; — 1 adds an extra Fib(k; — 2) into the calculation. Thus, the weight
of the entire tree T" is

wi(T') = s-2-wt(Fib(h-p))+ (2P —s-1)- wt(sz(h p+1))
h—p-1

+H2+) wi(Fib(i)) + Z wi(Fib(k; — 2))).

=0
The weight of Fib(m) is fm42, so the welght of T is

h—p+1
WT') =52 frhppa+ (2P 1 =5—1) fapss+(2+ D> fi+t ka,)

=2 =1

22 Cameron and Wood

Bin(p) prefix level p— 1

2 -8 sz(h p)
(2P71-s-1) sz(h p+1)

The form of brother tree T, except for the rightmost subtree rooted at

level p — 1.
levelp—1

level h—k; — 1

level h — 2

Fib(h—p—-1) I Fib(k;)
Fib(h—p—2) Fib(k; — 2)
The rightmost subtree rooted at level p — 1. It contains the surplus nodes
onlevel h—k;—1,...,h -k, — 1.

Figure 11: A brother tree T’ with h#(T') = h, mazBin(T') = p, s surplus
nodes on level p — 1, and one surplus node on each of the levels h — ky —
1,...,h— k., — 1.

Unbalanced AVL Trees 23

Since fo =0, fy = 1,and 2-fr—pt2 = fr—pr2+Frpi1+fi-p = faopta+Frp,
we have

h—p+1
wYT') = s+ (fa—pts+ fa—p) + (2771 —3—1) frpra+(1+ Y fz+2fk)
=0 i=1

Finally, since E?;g’ g = Jn—-p+3 — 1, we have

w(T') =221 fr_pis+ 8- facp + O frs
i=1

as required. a

Corollary 3.17 For p < h, the weight of a mazimum weight tree in Thp is

22 - fh—p4+2 — 1. For p = h, the set Tp,, contains ezactly one tree of weight
2h,

Proof: We examine the following four possibilities separately: p < h — 2,
p=h-2,p=h~1,and p= h.

Case p< h—2.

Lemma 3.16 allows us to calculate the weight of the maximum weight
tree, T, in 7}, described in Lemma 3.15, namely,

q
wiT) = 227V frpua + (227 = 1) fap + D Fa(pr2i)-1
=0

= 2p-—1 fh—p+3 4 (2p—1 - 1) . fh—p
+ Z)"“fz, ifp+2g=h—3
J_1 f2,1+1 fp+2¢g=~h~4.

Since "0, foi = fon1—~1and X%, foip1 = f2(n+1) —1, the weight becomes
wi(T) = 2Pt fh-pss + (2p—1 =1) fap + (fa-p — 1)
2*71 . (fapt+s + fap) — 1.
Finally, since fa_pi3 + fa-p = fr-pt2 + fa—p+1 + fa-p = 2* fa—pt2, We have
wi(T) = 2P fr_py2 — 1.

Casep=~h- 2.

By the argument used in the proof of Lemma 3.15, a maximum weight
tree must have 2?~! — 1 surplus nodes on level p — 1 = h — 3. Such a tree
cannot have any surplus nodes on level p = h — 2 because adjacent levels
beneath the maximum binary prefix cannot both contain surplus nodes and

24 Cameron and Wood

because every binary node on level h — 1 is a surplus node. Thus, the
maximum weight of a tree in 75 p_ is (23— 1)-2- wi(Fib(2)) + wt(Fib(3)) =
2h-2. £ —1=20"1. Jrh—py2 — 1.

Casep=h-1.

As before, a tree of maximum weight in Th,h—1 has 2°~1 —1 surplus nodes
onlevel p—1 = h~2. By Lemma 3.1, the value of mazBin(T) and the number
of surplus nodes on level h — 2 completely describe the detailed profile of a
maximum weight tree. It has weight (2"~2 —1)-2- wi{ Fib(1)) + wi{ Fib(2)) =
2771 fs—1=2P- fopyy — 1.

Case p = h.

A tree in 7 5 has a maximum complete binary prefix of height . Thus, a
tree in 73 j is completely binary. But there is only one completely binary tree
of height k, so 7y, contains exactly one tree. The weight of the completely
binary tree of height h is 2%,]

Having calculated the maximum and minimum weights of trees in Thps
we can now calculate the height of the maximum complete binary prefix of
a locally SCP F* tree, given its height and weight.

Theorem 3.18 Let T be a locally SCP F* tree of height h and weight w.
If w < 2%, then mazBin(T) = p, where

27 fhprs SWE 2P frppa — L.
If w = 2k, then mazBin(T) = h.

Proof: We are given that T has height h. Let mazBin(T) = p. Since T is
an F* tree, for p < i < h, if level 7 contains a surplus node, then level i + 1
doesn’t, and, for p < i < h — 1, level i contains at most one surplus node.
Thus, T € Tpp.

By Corollary 3.17, the maximum weight among all trees in 73, for
p< h,is 2P . f_,45 — 1. This is one less than 2P - Jr—p+2, the minimum
weight among all trees in 7} 541 (by Corollary 3.13). Also, the maximum
weight among all trees in 7 -1 is 2h-1.f,_1=2h_ 1, which is one less
than the weight of the only tree in 75 5. Thus, w(Thy) < wi(Thp41), for
any Thp € Tpp and any Thp41 € Thpt1, Where p < h.

By the above argument, we see that wi(Thp) > wi(Th;), for any Ty, €
Thp and any Th; € T4, for any 1 < i < p. Also, wi(Th,p) < wi(Th, ;), for
any Thp € Thp and any Th; € Ty j, for any p < j < h. Thus, the set T,
contains all F* trees, T, of height h with weight in the range 27~! f_,.3 <
wlT) < 2P« fh_pt2 — 1, for p < h.

Therefore, to find the height p of the maximum complete binary prefix
of a locally SCP F* tree, T, of height h and weight w < 2*, we need only

Unbalanced AVL Trees 25

find the integer p such that 2P-1. frpta w2 fr_pio— 1. Hw= 2k,
then the tree is completely binary; that is, mazBin(T) = h. a

3.5 Surplus Nodes Beneath the Largest Binary Prefix

In the last section, we computed the height of the maximum complete binary
prefix of a locally SCP F* tree, given a weight and a height. Now, we
examine the numbers and positions of surplus nodes on the last level of the
binary prefix (level p — 1) and below it. First, we consider the level p — 1.

Theorem 3.19 Let T be a locally SCP F* tree of height h and weight w,
and let mazBin(T) = p < h. Then, level p — 1 contains ezactly s surplus
nodes, where s > 0, and

(w—=2P"1" frpy3) — frp P 2¢-1 fhopts)
fh—p - fh—p

Proof: Let s be the integer such that

(w -2t fh—p+3) = fh—p <s< (w - 2r-1. fh—p+3).
fr-p - fh—p

By Theorem 3.18, since T is a locally SCP F* tree of height A and T has a
maximum complete binary prefix of height p, where p < A, it follows that

2Pt Jhp+3 SwS 2P frpya — 1L

Thus, w — 2P~ 1. f_,13 > 0, and, therefore, s > 0.

If T contains m > s surplus nodes on level p — 1, then the weight of T is
at least 2P~1. f,_ . 34+ m- fr_p which is at least 27 1. f;,_, 3+ (s+1) frwp.
But,

(w -2 1. fh—p+3) - fh—p <s< ('w -2 1. fh—p+3)_
f h—p - f h—p '

that is,
2p—1 : fh—-p+3 +s- fh—p Sw< 2P_1 ' fh—p+3 + (3 + 1) : fh—p-

So, T contains at most s surplus nodes on level p — 1.

Suppose T contains m' < s surplus nodes on level p — 1; then T is in
n,p,m' .

If p < h — 2, then, by Lemma 3.14, a maximum weight tree in 7, , n
has exactly one surplus node on each of the levels p,p+2,...,p+ 2¢, where
h—-4<p+2¢9<h-2 ByLemma 3.16, a tree, T', with mazBin(T') = p,
height h, m' surplus nodes on level mazBin(T"), and one surplus node on

26 Cameron and Wood

each of the levels p,p+ 2,...,p + 2¢q, where h —4 < p + 2¢ < h — 2, has
weight equal to ;

9
w(T') = 2°7 . fr gz +m - fa,+ Z Th—(p+2i)—1

=0
f, ifp+2g=h-—3
= 2p—1 . fh— + ml . o+ 23:1 f2,7 f ¥ 4 q
pt3 s Yt foin ifp+2q=h-4
= 2P fupiz+m - fap+ (fap—1)
< 2PN fy_prat 8- faep

If p = h — 2, then the detailed profile of T is completely specified by
mazBin(T) = h — 2 and T has m' surplus nodes on level A — 3. (T cannot
have surplus nodes on level h — 2.) The weight of T is

wi(T) (2772 — m') - wi(Fib(3)) + m' - 2 - wi(Fib(2))
2*7 - fhpis+m' fap

< 2°1. To—pta + s frp.

If p= h — 1 and there are m' surplus nodes on level p — 1 = h — 2, then
the detailed profile is completely specified and the corresponding weight is

(P72 — m') - w Fib(2)) + m' - 2 - wi(Fib(1))
27 fhpis + M fap
< 2 1. Jh-pt3 + 8 frp.

wi(T')

But we assumed that wi(T') > 2P-1. Jh-p+3 + 8+ fa—p. If T has fewer
than s surplus nodes on level p — 1, we obtain a contradiction in each case.
Therefore, T must have at least s surplus nodes on level p — 1. m|

To specify which levels among the levels mazBin(T) to ht(T) — 2 contain
a surplus node, we make use of the Fibonacci numbering system.

Theorem 3.20 ([Lek52]) Every positive integer n has a unique represen-
tation n = fi, + fo, + ...+ fr,, where by > ki1 + 2, for1 < i < », and
k. > 2.

The condition k; > k;1+2 corresponds to the requirement that adjacent
levels beneath the binary prefix of a locally SCP brother tree cannot both
contain surplus nodes. Each term fi, in the sum corresponds to a level
h — k; — 1 that contains a surplus node.

Unbalanced AVL Trees 27

Theorem 3.21 Let T be a locally SCP F* tree of height h and weight w,
with mazBin(T) = p < h — 2 and having s surplus nodes on level p — 1.
Let Y3, fr;, for some » > 0, be the unique Fibonacci representation of
w—2°"1.f, 15— 5 fu_p. Then, T has ezactly one surplus node on each
of the levels h—ky —1,h— ks —1,...,h— k, — 1, and no other level among
the levels p,p+ 1,...,h — 2 contains a surplus node.

Proof: Since Y [_; f;, for some r > 0, is the unique Fibonacci representa-
tionof w—2P"1.f,_ . 3—s-fh_p, it follows that k; > kip1+2,for1 <i<r,
and k, > 2.

Suppose the brother tree T has exactly one surplus node on each of the
levels h — by —1,h—by—1,...,h—b,—1, for some g > 0, where p < h—b; -1,
and h —b; —1 < h — 2, and T contains no further surplus nodes on levels
p,p+1,...,h— 3. Since adjacent levels cannot both contain surplus nodes,
it follows that h — b; — 1 < (h — b;31 — 1) — 2. Since mazBin(T) = p, and T
has s surplus nodes on level p — 1, by Lemma 3.16, T’ has weight

q
w=2""1. fh-—p+3 +s8- fh—p + z T,

=1
Therefore,
q
Zfb.' =w-—- 2p—1 * fh-p+3 — 8- fh—p-
i=1
Since h—b;—~1 < (h—b;41—1)—2and h—by—1 < h—2, we have b; > b;;1+2
and b, > 2. Thus, 7, fi, is the unique Fibonacci representation of w —

2P fr_pi3— 8- fa—p. But 37, fi, is the unique Fibonacci representation
of w—2P"1.fr_ 43— -fa_p,so,r=qand k; = b;,for 1 <i<r. a

3.6 Tying It All Together

Now we have all the pieces necessary to completely describe a locally SCP
F* tree, given a height and weight.

Theorem 3.22 Let frya < w < 2k, Then, there ezists a locally SCP F+
tree, T, of height h and weight w that is completely described by the following
characteristics.

1. Its binary prefiz has height p, where p is the largest integer such that
2°71. fy_py3 < w; that is, mazBin(T) = p.

2. If mazBin(T) < h, then surplus nodes are distributed on the levels
p—1,p,...,h— 2 as follows:

28 Cameron and Wood

(a) T has s surplus nodes on level p — 1, where

w—2P"1. f s — fap cs<c ¥ 2771 frpys
fh—p - fh-—p

(b) T has one surplus node on each of the levels h — k; — 1, where
Y i=1 fr; is the unique Fibonacci representation of

w— 2p--1 : fh—p+3 - $- fh—-p-

Furthermore, all locally SCP F* trees of height h and weight w have this
description.

Proof: Since fry2 < w < 2", we know that there exists a brother tree of
height h and weight w. By Theorem 3.9, there exists a locally SCP F* tree,
T, of height h and weight w.

By Theorem 3.18, if w = 2h = 2h=1. f,_, .3 then mazBin(T) = h,
which completely describes the tree (it is completely binary). Thus, there
is exactly one locally SCP F* tree, if w = 2. Otherwise, 2P~ . Jr—pt3 <
w < 2P fp_py2 — 1, where mazBin(T) = p. Thus, mazBin(T') must be the
largest integer p such that 2°P~1. f,_ .3 < w.

By Theorem 3.19, if mazBin(T) < h, then level p — 1 must contain
exactly s surplus nodes where

(w —2r1. fh—p+3) - fh—p <s< (w —2r-1. fh—p+3)
fh-p - .fh—p

’

and, by Theorem 3.21, there must be exactly one surplus node on each of
the levels h — k; — 1, where > 7_; fi, is the unique Fibonacci representation
of w—2P"1. fr i3 —3- frop.

We have determined the only choices for mazBin(T), and the number
of surplus nodes on each of the levels mazBin(T') — 1,...,h — 2. Thus, any
locally SCP F'* tree of height h and weight w have the same detailed profile,
which can be found using Lemma 3.1. a

Now that we have characterized a locally SCP brother tree of height A
and weight w, we can calculate the number of unary nodes of a locally SCP
brother tree. The space cost is simply the sum of the number of internal
binary nodes (w — 1) and the number of unary nodes. Clearly, if a brother
tree is completely binary, that is, w = 2", then the tree contains no unary
nodes. Otherwise, the calculation of the number of unary nodes is similar
to the calculation, in Lemma 3.16, of the weight of a brother tree given its
description.

Unbalanced AVL Trees 29

Corollary 3.23 Let T be a brother tree of height h with mazBin(T) =
p < h. If T has s surplus nodes on level p — 1, ezactly one surplus node
on each of the levels h — ky — 1,...,h — k. — 1, for some r > 0, where
p<h—-k-1<...<h-—k.—1< h—2, and no other level among the
levels p, ..., h — 2 contains a surplus node, then the number of unary nodes
T s

2271 (faopt2z = 1) + 8+ (famp—1 — 1) = frep + O (fiu—1 — 1).

=1

Proof: Let Unary(T) be the number of unary nodes in brother tree T'. As
in the proof of Lemma 3.16, the brother tree 7' in Figure 11 has the same
detailed profile as T and, therefore, contains the same number of unary
nodes.

The binary prefix of T contains no unary nodes. Therefore, in the same
way that we calculated the weight of the brother tree T’, we can calculate
Unary(T') by summing up the number of unary nodes in the subtrees rooted
at level p — 1. Thus, we have

Unary(T') = 2-s- Unary(Fib(h — p))

+(2P"! — s — 1) - Unary(Fib(h — p + 1))
h—-p—1

+ Z (1 + Unary(Fib(3))) + E Unary(Fib(k; — 2))

= 2?*1 - (Unary(Fib(h — p + 1))
+s-(2 - Unary(Fib(h — p)) — Unary(Fib(h — p + 1))
~(Unary(Fib(h - p+ 1)) — 1)

h—p-—-1

+ Z (1 + Unary(Fib(5))) + Z Unary(Fib(k; — 2))

Since Unary(Fib(c)) = fe41 — 1, we have

UnarfT") = 2271 (facprz = 1)+ 8- (2« (Facphr = 1) = (facprz — 1))
h—p-1

~(freprz =)+ > (1+(f,—1))+2(fk, 1~ 1).

3=0 =1

But the sum 2;-';6’“ f; = fr—p+3 — 1, so we have
Unary(T') = 2P7' - (fa—psz— 1)+ 8- (2 (fa-p+1 — 1) = (fr—pt2 — 1))

~(famptz = 1)+ (Faepr1 = 1) + D (fri-1 — 1)
=1

30 Cameron and Wood

A].SO, since 2'fh—p+1 _fh—p+2 = fh—p+1 +(fh—p +fh—p—1) —(fh—p+1 +fh—p) =
fh—p—l: we get

Unary(T') = 2°. (faptz = 1) + 8- (fap-1—1)

~(Frptz = 1)+ (Frptt = 1)+ 3 frus — 1).

=1
Finally, since _fh—p+2 + fhpt1 = —fh-p+1 - fh—p + fopt1 = _fh—pv we
get
Unaryf(T') = 277 (fapsa—1)+s- (fa-p-1—1)
—fh—p + Z(fki—l - 1)1
i=1
which is the number of unary nodes in brother tree T, also. o

4 Characterizing Unbalanced AVL Trees

Recall that the number of unbalanced nodes in an AVL tree, 7" , 1s exactly
equal to the number of unary nodes in the brother tree ezpand(T'). Thus,
the maximum number of unbalanced nodes that an AVL tree of weight w
and height h can contain is the number of unary nodes in a locally SCP
brother tree of weight w and height A.

We have shown how to find the unique description of all locally SCP
F* trees of a given weight w and height k. We would like a corresponding
description for the corresponding AVL trees under the contract operation.

Each of the locally SCP F* trees has a maximum complete binary prefix
of height p, where p is the largest integer such that 27-1. Jr-p4+3 < w. Since
the binary prefix contains no unary nodes, it is unaffected by the contract
operation. Thus, the corresponding AVL trees are also completely binary
on levels 0,...,p— 1.

Describing the effect of the contract operation on the levels beneath
the binary prefix is more complex. Certain levels of the F+ brother trees
contain single surplus nodes. Which level such a surplus node ends up on in
the corresponding AVL tree depends on the number of unary nodes in the
path from the root to the surplus node in the brother tree.

However, the effect of the contract operation on the locally SCP F+
brother tree, T', pictured in Figure 11, is easy to describe. The description
uses the definition of Fibonacci AVL trees, which are defined in Figure 12.

Theorem 4.1 Let w and h be integers such that fryz < w < 2k, Then,
there exists an AVL tree, T', of weight w and height h that contains the
mazimum number of unbalanced nodes for an AVL tree of weight w and
height h, and AVL tree T' is completely described by the following:

Unbalanced AVL Trees 31

g&: Fib(h — 2)
O Fib(h - 1)

Fib(0) Fib(1) Fib(h), for b > 2.

Figure 12: The recursive definition of Fibonacci AVL trees.

1. Levels0,...,p—1 are completely binary, where p is the largest integer
such that 2°71 . f,_ .3 < w,

2. Ifp < h, then the 2P~ subtrees rooted at level p—1 can be divided into
the following groups:

(¢)

(t)
(c)

h—Fky—-1,

Each of s nodes on level p—1 is the binary parent of two Fibonacci
AVL trees of height h — p, where

w—20"1.f s~ fap <s< ¥ 2071, fi_pis
fh—p - fh—p

A further 2P~ —s—1 nodes on level p—1 are the roots of Fibonacci
AVL trees of height h — p + 1.

Let 337, fi; be the unique Fibonacci representation of
w—2°"1. Jh-prz —s- Jh—p-

The final subtree rooted at level p—1 consists of a chain of binary
nodes of length h—p+1. Each node on the chain (except the last
one) has a child that is the next node in the chain and one other
child. (The last node in the chain has two external children.) The
other child of the binary node on level j in tree T' is the root of a
Fibonacci AVL tree of height h— j — 2, except when j = h—k; —1.
When j = h — k; — 1, the other child is the root of a Fibonacci
AVL tree of height k;.

Proof: The brother tree T of Figure 11 has a binary prefix of height p,
s surplus nodes on level p — 1, and a single surplus node on each of levels
.+..,h—k,—1. The surplus nodes on levels h—k; —1,...,h—k,—1
appear only on the “spine” of the rightmost subtree rooted on level p — 1.
The spine is completely binary, so the surplus nodes are not moved by the

32 Cameron and Wood

contract operation. Thus, the corresponding AVL tree, T", looks just like
the brother tree except that the Fibonacci subtrees are Fibonacci AVL trees.
a

5 Conclusion

Although we have characterized AVL trees with the maximum numbers of
unbalanced nodes for their heights and weights, there remain some unan-
swered questions.

The most obvious problem left open is the characterization of pessimally
unbalanced AVL trees for a given weight. Experimental evidence suggests
that the pessimally unbalanced AVL trees of a given weight have the maxi-
mum height for AVL trees of that weight. So far, we have not been able to
prove this conjecture.

Also, the relationship between unbalanced AVL trees and comparison
cost pessimal AVL trees remains an open problem.

Finally, it may be possible to enumerate all locally SCP brother trees
of a given height and weight using the inverse of the transformation given
in Lemma 3.5. We first find the locally SCP F* tree with the given height
and weight, and then repeatedly apply the inverse transformation in some
sequence to enumerate all the other locally SCP brother tree of that height
and weight.

References

[KW87] Rolf Klein and Derick Wood. The node visit cost of brother
trees. Information and Computation, 75(2):107-129, 1987.

[KW89a] Rolf Klein and Derick Wood. On the path length of binary trees.
Journal of the ACM, 1989. To appear.

[KW89b] Rolf Klein and Derick Wood. A tight upper bound for the path
length of AVL trees. Theoretical Computer Science, 1989. To
appear.

[Lek52] C. G. Lekkerkerker. Voorstelling van natuurlijke getallen door
een som van getallen van fibonacci. Simon Stevin, 29:190-195,
1952.

[OPR*84] Thomas Ottmann, D. Stott Parker, Arnold L. Rosenberg, Hans-
Werner Six, and Derick Wood. Minimal-cost brother trees.
SIAM Journal on Computing, 13(1):197-217, 1984.

Unbalanced AVL Trees 33

[OW80] Thomas Ottmann and Derick Wood. 1-2 brother trees or AVL
trees revisited. The Computer Journal, 23(3):248-255, August
1980.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

