b=
222 2
So=s
| —_I—_E
<<
aYaXa Wl
T

ENEE B
ENGE 5

;

ER
ER

i
Ut
i

|
B
MP

3 &

E WATER
F WATERL

L
II¥§
imy

;

VERSITY OF WATERLOO CO

VER
VER

i

Transforming from Flat Algebra to
Nested Algebra

V. Deshpande
P. A. Larson

Research Report
CS-89-19

May, 1989

Transforming from Flat Algebra to Nested
Algebra

V. Deshpande and P.-A. Larson*
Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
Report CS-89-19

Abstract

Consider a database which at the conceptual level consists of a
set of INF (flat) relations but which is physically stored in denormal-
ized (prejoined) form. Denormalization reduces the number of joins
required to compute a query. To reduce redundancy, each prejoined
relation can be converted into a NF? (nested) relation by a series of
nest operations.

In this paper, we consider the problem of converting from flat al-
gebra to nested algebra. We provide a series of legal transformations
that can be applied to a query Q. on flat relations, to obtain an equiv-
alent query Q, on the nested relations. Several fundamental theorems
are proved, which allow the selection conditions of the 1NF case to be
applied directly to the NF? relations. This is done through changing
the nesting structure internally, without unnesting, and pushing the
selection conditions down to the appropriate subrelations.

1 Introduction

The idea of storing a relation in prejoined form was introduced by [SS80] and
[SS81]. If the query types and relative frequencies of queries are known, then
precomputing joins may result in considerable savings at query-execution
time. Prejoined relations are a special case of stored derived relations. [LY87]
have already solved the problem of taking a project-select-join (PSJ) query
Q posed on conceptual (flat) relations, and transforming it into an equivalent

*This research was supported by Cognos, Inc., Ottawa and by the Natural Sciences and
Engineering Research Council of Canada under grant No. A-2460.
Authors’ e-mail addresses: {vdeshpande, palarson}@waterloo.{edu,cdn,csnet}

2 Deshpande and Larson

query Q. posed on derived relations. The conceptual database consists of a
number of flat relations A;, As,..., A,. The derived relations also consist
of flat relations E,, E.,..., E,. Notice that there is not a one-to-one cor-
respondence between the conceptual and derived relations. Having derived
relations provides a more flexible approach where the choice of derived rela-
tions is guided by the (actual or anticipated) query load, resulting in fewer
file accesses.

We now propose to store the derived relations as nested relations. [SS86)
proposed nested relations as storage structures for flat relations. In [S$86]
it is shown that any conjunctive PSJ query on a conceptual 4NF schema
can be efficiently optimized and transformed to a query on nested relations.
They show that using nested relations internally does not result in more
complexity to the join elimination process.

We assume that there is a one-to-one correspondence between each de-
rived relation E; and a stored nested relation R; (1 < © < n). The aim in
nesting is twofold: reduce redundancy, and capture the semantic connections
among the attributes [RK87]. Capturing the semantic connections is what
reduces the joins at query-execution time. It is now required to transform
the query further from Q. to an equivalent query Q, posed on nested rela-
tions. The algebra that @, is expressed in is the algebra for nested relations
described in [DL87]). Naturally, for a given Q., the corresponding Q, can
have many equivalent expressions. We give an algorithm which generates
one such Q,. It does not necessarily find the optimal expression, but does
eliminate inefficient expressions for Q,.

There are many ways of nesting a flat relation. A normal form for nested
relations, called nested normal form, is discussed in [RK87]. We will not
discuss the criteria for obtaining the nested relations Ry,..., R,, except to
say that it is reasonable to insist that a nested relation be in Partitioned
Normal Form (PNF'). A relation R is in PNF if the single-valued attributes of
R form a key for the relation, and recursively, each relation-valued attribute
of R is also in PNF. A formal definition is given in [RKS84]. Any relation
that is in nested normal form is also in PNF. The theorems presented in this
paper in Section 5 will hold for any nested relation, even if it is not in PNF.

In this paper, we describe a procedure for transforming a query Q. posed
on the flat derived relations into an equivalent query Q. posed on the nested
relations. Six theorems are presented which enable us to define legal steps in
the transformation process. The procedure described always selects a legal
transformation step which will minimize the number of tuples remaining at
that step of query execution.

The paper is organized as follows. In section 2 we define a number of basic
concepts and introduce some notation. Section 3 gives a brief description of
the algebra for nested relations. Section 4 formalizes the problem. A start

Transforming from Flat Algebra to Nested Algebra 3

is made in this section towards transforming the query. Section 5 contains a
number of theorems which are used as the basis for formulating legal steps
in the transformation procedure described in Section 6. Section 7 contains
some concluding remarks.

2 Basic Concepts

Before looking at the algebra for nested relations and defining the problem
of transforming the query, we define some basic concepts and introduce the
needed notation.

In a nested relation, a relation-valued attribute is also called a subrela-
tion. An attribute which is atomic-valued is called a single-valued attribute.
We give the following recursive definition.

Definition 2.1 [Nested Relation] The scheme of a nested relation is of the
form R(A;, As,...,A,), n > 1, where R is the name of the scheme and each
A; is either the name of a single-valued attribute (defined over some domain)
or the scheme of a nested (sub)relation. a

Let R be the name of a (sub)relation. Then attr{R) denotes the set of
(single-valued and relation-valued) attribute names of R, sattr(R) the set of
single-valued attribute names of R, and ratir(R) the set of relation-valued
attribute names of R. An instance r of a relation R consists of tuples over
the scheme R. For example, in the EMPLOYEE relation given below,

EMPLOYEE(ENO,NAME,CHILDREN(NAME,DOB,SEX),
TRAINING(CNO,DATE))

the attributes are ENO, NAME, CHILDREN, and TRAINING. The single-
valued attributes are ENO and NAME, and the relation-valued attributes
are CHILDREN and TRAINING. If Z C attr(R) and £ is a tuple over R, we
write ¢[Z] to denote the projection of ¢ onto the attributes in Z.

To define the structure of a relation we introduce the concept of the
Jormat of a relation, and define when two formats are equivalent.

Definition 2.2 [Format] Let X be a single-valued attribute, and R(Z,..., Z,)
a nested relation scheme where R is the name of the relation and 2, ..., Z,
are attribute names. Then

format(X)
format(R(Z,,...,Z,))

‘:’domain(X)
‘(’Z:format(Z,), ..., Z,format(Z,)‘)’

4 Deshpande and Larson

Definition 2.3 [Equivalence of Formats] Let Ry, Ry be two nested relations.
The formats of R; and R, are equivalent, written format(R,) = format(R;),
if

attr(Rl) = attT(Rz) AVA; € attr(Rl), Bj € att1(R2),
(A; = Bj = format(A;) = format(B;))

Note that according to the above definition, the ordering of attributes
within a relation is unimportant in determining the equivalence of relation
structures. Attributes are identified by their names, not their positions.

The structure of a nested relation R can also be represented by a tree,
Tr, called the scheme diagram. This is a convenient way of graphically
illustrating the nesting structure of the relation. T is a tree with R as the
root node and the relation-valued attributes of R as subtrees. The nodes
of the scheme diagram are labelled with the names of the corresponding
(sub)relations. As a convention, the attributes of the (sub)relation are listed
to the right of a node.

Pathnames are used for referring to subrelations which are nested in the
relation structure. We give the following definition.

Definition 2.4 [Pathname] Let R be a nested relation. An expression of
the form Y;.Y3.-:-.Y} is a valid pathname in R if ¥; € ratir(R) and Y; €
rattr(Y,-_l), 1=2,3,...,k. 0

A pathname uniquely identifies a subrelation within R. Note that the
relation name R is not included in the pathname. The complete name
of an attribute Z in a subrelation Y; of a relation R, is then of the form
1h.Y;..-..Y;.Z where Y1.Y>2.:--.Y; is the pathname identifying Y;. By us-
ing complete names we can always uniquely identify an attribute within
a relation. For example, in the EMPLOYEE relation given above, CHIL-
DREN.NAME refers to the attribute NAME of the subrelation CHILDREN,
while NAME refers to the attribute NAME of relation EMPLOYEE.

Next we define the scope of a pathname. The scope consists of the set of
attributes (names) which can be referred to when the pathname is specified.
Intuitively, the scope consists of all the attributes which are ‘seen’ as one
goes along the path starting at the root of the scheme diagram of R and
going down to the subrelation identified by the pathname.

Definition 2.5 [Scope of a Pathname] Let § = {R1,Rs,...,Ry} be a
database scheme and P = Y71.Y;.---.Y: a valid pathname in relation R;.

Transforming from Flat Algebra to Nested Algebra 5

Then the scope of P is defined as

scope(P) = S Uattr(R;)U attr(Y1) U attr(Y1.Y2) U ... U attr(Y1.Ys. - - - .Y3)
- {Rj,Yl)Yl-Yza . -,.Y:[.Yz. . '.Yk}

The immediate scope of P refers to the set of attributes that are seen at the
lowest level of the path, that is, iscope(P) = attr(Yy.---.Y}). o

For example, consider a database containing a single relation that has the
scheme R(A,B,C(D,E), H(I,J(K,L))), and consider the path P=H.J. Then

scope(H.J) = {R} U attr(R) U attr(H) U attr(H.J) — {R,H,H.J}
= {R} U {A,B,C,H} U {HIH.J} u {HJKHIL} — {R,HHJI}
= {AB,CHLH.JKHJL}

iscope(H.J) = attr(H.J)
= {HJXH.IL}

At the instance level, each occurrence of J consists of a set of tuples (possibly
empty) and everything above it along the path will have fixed values which
can be referred to as needed. Note that it is not possible to (directly) refer
to the attributes D and E, which are inside C, since they are not within the
scope of P.

3 An Algebra for Nested Relations

In this section, we present briefly a portion of the algebra used for nested
relations. A detailed presentation of the algebra is found in [DL87]. It is a
recursive algebra which handles null values. It has a powerful operator called
the subrelation constructor, used for doing operations on subrelations at any
level. We give below only the definitions of selection, Cartesian product,
nest, unnest, and the subrelation constructor.

3.1 Selection

The selection predicate is allowed to contain relational algebra expressions
over the relation-valued attributes of the relation, and set comparisons are
allowed. The syntax of the selection operator is o[F](R) where R is a re-
lation expression and F is a selection predicate over attributes in scope(R).
Note that although the selection predicate may be testing the tuples in a
subrelation of R, entire tuples of R are selected. Selection is a format pre-
serving operator, that is, the format of the result relation is the same as the
format of the operand relation, R.

6 Deshpande and Larson

The selection predicate F is a logical combination of atomic selection
conditions. We allow the standard boolean operators: AND (A), OR (V)
and NOT ().

Definition 3.1 [Atomic selection condition] An atomic selection condition
has one of two forms: Z; op C or Z; op Z; where op € {<,<,>,>,=,#,C
€, D, 2}, C is either a single-valued or relation-valued constant, and Z;, Z,
are one of the following:

o the name of a single-valued or relation-valued attribute within the
scope of the operand relation of the selection operation.

¢ a relational algebra expression operating on relation-valued attributes
within the scope of the operand relation of the select statement.

All scalar comparisons must be made between comparable domains. In set

comparisons, the two operands must have equivalent formats.]

The formal definition of the effect of the select operator at the instance
level can now be given. Consider the selection statement

o[F(Z))(R)
where Z C scope(R) and F is a selection predicate over the attributes Z.

o[F)(r)
format(o[F(Z)](R))

{s] It er:s=1tAF([Z]) = true}
format(R)

When constructing selection conditions involving algebra expressions, the
scoping rules of the operators must be strictly observed. Consider the rela-
tion R(A,B,C(D,E,F(G)),H(I,J)) and the selection

olo[A > DJ(C) # O)(R)
Is the comparison A>D allowed? The answer is provided by the scoping rules
of the selection operator: the selection predicate must be over attributes in
the scope of the operand relation. The comparison is valid because C is in
scope(R), and A and D are in scope(C). However, the scalar comparisons in

o[o[(D < G) A (B =T)](C) # O)(R)

are not allowed because G and I are not in scope(C).

Transforming from Flat Algebra to Nested Algebra

3.2 Cartesian Product

Cartesian product is trivially extended to tuples of nested relations. The
syntax of the Cartesian product operator is

R; X R,

For the Cartesian product to be defined, we must have attr(R;) N attr(Rz)
= 0. Let attr(R;) = (A1,...,Am), and attr(Ry) = (By,...,Bn). The effect
on the instance level is defined as follows:

r1Xry = {s|3It1 €r,3N; €7y sfattr(Ry)] =1
As[attr(Ry)] = t2}
format(Ri X Ry) = (Ajformat(A4,),..., Anformat(A4,,),
B,format(By), ..., Bpformat(B,))

3.3 Nest

The nest operator creates a new subrelation and thus changes the structure
of a relation. It was first introduced by Jaeschke and Schek in [JS82]. The
syntax is

v[Z' = (2)](R)

where R is a relational algebra expression, Z C attr(R) is the list of at-
tributes over which to nest, and Z’ is the new name given to the the sub-
relation composed of the nested attributes. Nesting is not allowed when
the attributes R — Z consist of only null values. Let V = {V3,...,V,,},
Z = {Z,...,2,}, m,n > 1; let attr(R) = {V,Z}. It is required that
sattr(V) # 0, sattr(Z) # 0, and ¢[V] does not consist of only nulls.

Wz’ = (2))(r)

{s| 3t € r:s[V]=t[V]

As[Z') = {u[Z] | u € r : u[V] = s[V]}}
(Vaformat(Vh), . .., Vpformat(V,,),
Z'(Z format(Z,),. .., Z,format(Z,)))

format(v[Z' = (Z)](R))

3.4 TUnnest

Unnest is the inverse of nest. It was also introduced by Jaeschke and Schek
in [JS82]. The syntax is

HY](R)
where Y € attr(R) is a relation-valued attribute. For this operator to be

defined, we must have attr(Y') N (attr(R)-{Y}) = 0. The subrelation speci-
fied by Y is unnested. Note that if the subrelation Y consists of the empty

8 Deshpande and Larson

set, it is unnested and filled with dne nulls. Let attr(Y) = {V3,...,Y,}, and
attr(R) = {Z1,...,Zm, Y }.

plYj(r) = {s|(3ter:tlY]#0 A sfattr(R) - Y] = t[attr(R) - Y]

Aslattr(Y)] € t[Y]) v

(3ter:tlY]=0 A s[attr(R) - Y] = t[attr(R) - Y]
As[Y1] = dne A ... A s[Y,] = dne)}

(Z:format(Z;), ..., Znformat(2Z,,), Yiformat(Y1),
..., Yoformat(Y,))

format(u[Y'](R))

3.5 The Subrelation Constructor

This new operator provides us with the capability of modifying the interior
of a nested relation. As an introduction, consider the following query against
a University database. The database has the following nested relations:
OFFERINGS(CNO,TERM,ENROLLMENT(SNO,GRADE))
STUDENT(SNO,NAME,FACULTY).

Example 3.1 For each course offered, list the student number, student
name and grade of all students who received a grade of 85 or above. a

To answer this query we must modify the subrelation ENROLLMENT by
selecting tuples where GRADE > 85 and then joining with the STUDENT
relation to obtain the student name. Using our new subrelation constructor
this query can be expressed as follows:

R := §(CNO,TERM,SCHOLARS); SCHOLARS := ¢[GRADE > 85]
(ENROLLMENT) X #[SNO,NAME](STUDENT)3}(OFFERINGS)

This expression is interpreted in the following way. For each tuple (at
the root level) of OFFERINGS, construct a new tuple which consists of
CNO, TERM and a new subrelation SCHOLARS. (The subrelation EN-
ROLLMENT disappears.) SCHOLARS is constructed from the tuple’s EN-
ROLLMENT relation and the (external) relation STUDENT, as specified
by the given algebra expression.

We define the syntax and effect of the subrelation constructor for the
case when only one new subrelation is constructed. The syntax is

§P(As,...,Ar); A;, := E}(R)

where P is a pathname in relation R, A,,..., A are attribute names in
iscope(P), and E is a relational algebra expression specifying how A;, is to

Transforming from Flat Algebra to Nested Algebra 9

be computed. All attributes A;...A; retain their old values except A;,.
Note that A;, can be an entirely new attribute. The expression E can only
operate on relations in scope(P). In looking at the effect of the subrelation
constructor, there are two cases to consider:

1. P is empty. We consider the constructor
€2, W), W := E(Vo, S)3(R)

where Z = (Z,...,2,) C attr(R) are the attributes to be preserved;
W is the new subrelation to be computed; Vg C rattr(R) are relation-
valued attributes of R; and S is some relation (or set of relations) in
the database. The effect of this operation is then

(2, W), W := E(Vo, S)}(r) =

{ul|3t € r: u[Z] = t{Z] A u[W] = E(t[Vh), 5)}
format(¢(Z,W); W := E(Vo, S)§(R)) =

(Z:format(Z,), ..., Zuformat(Z,), Wiormat(E(Vy, S)))

Note that t[Vp] represents a set of relation instances, and s a relation
instance.

2. P is not empty, P = ¥7.Y3..-:.Y,. The constructing expression may
now operate on any relation-valued attributes in scope(P). We con-
sider the constructor

1Yz Yi(Z,W); W := E(Vo, W, ..., Vi, S)}R)

where Z C iscope(P) are the attributes to be preserved; W is the
new subrelation to be computed; Vo C rattr(R); V; C rattr(Y;.---.Y;)
(1 £ 7 < k); and S is some relation in the database. The effect of this
operator is then

§1.Ys. - Yi(Z,W); W := E(Va, ..., Vi, R)}(r1) =
{u|3t € r : u[attr(R) - Y7] = t{attr(R) - Y]
rs[Y] = §12.Ys. .- Yi(2,W); W= E(Vo], Va, .. ., Vi, SP(E[11])}
format(¢Yy.Ys. .- Yi(Z,W); W := E(Vo,..., Vi, S)}(R)) =
format(R;) except that the term ¥; format(Y;) is replaced by
Yaformat(§Y3.Ys. - - - .Y(Z,W); W i= E(Vo,..., Vi, R)}(Y1))

The algebra expressions used within a subrelation constructor may, of
course, in turn contain subrelation constructors. However, this is needed only
rarely. The subrelation constructor is a simple, but very powerful operator.

10 Deshpande and Larson

4 Problem Definition

Consider now a project-select-join (PSJ) query Q. written in the form given
below. That is,

Q. = w[A]o[Cl(e; X €2 X --- X e)

where A is the projection list and C is the selection condition. Any query
composed of PSJ-expressions can be put into this standard form [Y87].
We assume that C is given in conjunctive normal form, with conjuncts
C1,...,C,. Each conjunct C; (1 < © < n) consists of a disjunction of one
or more atomic selection conditions. For example, consider the flat relation
R(A, B,C, D). A valid selection condition is the following: o[(4 > 4)A(B <
C+6)A((A=D)v(C <25)V (B > 14))](r). Notice that the last conjunct
is a disjunction of three atomic conditions.

We now examine the problem of transforming the query expression Q.
to an equivalent expression Q,. In this paper, we limit Q, to be a select-join
expression

a[CiA---AC,](e1 X -+ - X eg). (1)

Each e; (1 < 7 < k) is stored as a nested relation r;. We are given that
the transformation from e; to r; involves only a sequence of nest operations.
Let »* denote the sequence of nest operations that are performed. Then
r; = v(e;). The sequence of unnests which transforms any nested relation
R into a flat relation will be denoted by u*. This definition is taken from
[TF86], and is defined as follows:

Definition 4.1 [u*] Let R be any nested relation, and let Y = rattr(R).
While Y is not empty, repeat the following: Choose a subrelation Z € Y
and perform r' = u[Z](r). Now let »’ be the new =, and define the new Y as
Y = rattr(R). O

It is clear that the sequence of unnest operations used to flatten out a
nested relation is not necessarily unique. Using the fact that r; = v*(e;), we
get

i (rs) = p(v'(es)) = es. (2)

We now state without proof an important theorem from [TF86], which
is used later to begin the query transformation.

Theorem 4.1 Let R; and R; be nested relations. Then

p(ri xri) = p*(r) x g (r;).

Transforming from Flat Algebra to Nested Algebra

Substituting equation 2 into equation 1, we get
a[Ci A ACJ(B"(r1) X + -+ x w*(ri))-
Applying Theorem 4.1 repeatedly, this becomes
g[Ci A - AC,Ju*(ry X - -+ X 7). (3)
It is easy to see that this is equivalent to
o[Ci]o[Ca]...o[Clu*(r1 X - -+ X). (4)
We have just proved the following theorem.

Theorem 4.2 Let E,,...,E; be flat relations, and let R,,..., R, be the
nested relations obtained by the operations r; = u‘(e;), (1 £ i < k) where
each v is a sequence of nest operations. Let C = C; A---AC, be a selection

condition given in conjunctive normal form posed on the relation Ey X - - - X
Er. Then

o[Cl(er1 x---xer) = ¢[C1]o][C)...0[Clu"(r1 X -+ X ™).
a
Let us pause here and consider a few examples. Table 1 shows three flat
derived relations for an employee database which stores the children of each
employee, and the training courses each employee has taken. The employee
number is the key in all three, but has different names in order to make the

transformations easier to follow. Table 2 shows how the derived relations
are stored in a nested form according to the following nest operations:

T = €
r, = V[CHILDREN = (CNAME,DOB,SEX)](ez)
rg = u[TRAINING = (CNO,DATE)](es)

Example 4.1 A query is posed on the derived relations asking for the male
children of employee number 105.

o[(E#=105) A (SEX = M)](ez).
Applying Theorem 4.2, an equivalent query is
o[(E#=105) A (SEX = M))x[CHILDREN](r;).

11

12 Deshpande and Larson

€1 €2 €3

ENO | NAME E# | CNAME | DOB SEX EMP | CNO | DATE
105 | John 105 | Jane 80/05/10 | F 105 | 314 | 79/10/10
123 | Anne 105 | Eric 82/10/05 | M 105 | 606 | 81/05/05
153 | Bruce 123 | Maria 79/10/10 [F 105 714 82/06/20
205 | Ian 205 | Bob 70/10/16 | M 123 | 315 | 81/06/13
205 | Steve 75]01/15 | M 123 | 423 | 82/07/11
153 | 314 | 79/10/10

Table 1: The derived relations for the employee database.

T1 T2 T3

ENO | NAME E# CHILDREN EMP TRAINING

105 John CNAME | DOB SEX CNO | DATE
123 | Anne 105 | Jane 80/05/10 | F 105 | 314 | 791/0/10
153 | Bruce Eric 82/10/05 | M 606 | 81/05/05
205 Ian 123 | Maria 75/11/12 | F 714 82/06/20
205 | Bob 70/10/16 | M 123 | 315 | 81/06/13
Steve | 75/01/15 | M 423 | 82/07/11
183 | 314 | 79/10/10

Table 2: The derived relations stored as nested relations.

Example 4.2 A query is posed on the derived relations asking if any em-
ployee had a child born on the same date that a course took place.

o[(E#=EMP) A (DOB=DATE)](ez X e3).
Applying Theorem 4.2, an equivalent query is
o[(E#=EMP) A (DOB=DATE)]u[CHILDREN]u[TRAINING](r2 X r3).

o

We now turn to the problem of further transforming the query. The idea
is to push the selection conditions past the unnests. This means that the
selection is now operating on a nested relation rather than on a flat one. It
must do this in a valid manner, observing all the scoping rules. For example,
the query expression

o[(E#=EMP) A (CHILDREN.DOB=TRAINING.DATE)](rs X r3)

makes no sense, since the scoping rules of the selection operator are violated.
An equivalent query posed on a flattened structure does make sense, and is

Transforming from Flat Algebra to Nested Algebra

given below.
o[(E#=EMP) A (DOB=DATE)u*(rs X r3).

This brings us to a very important point. It is not necessary to flatten
out the whole structure before applying the selection condition. Whenever
an atomic selection condition involves two or more attributes, all that is
required is that the attributes lie along the same path from the root of the
structure. One way that this can be accomplished is by unnesting in a valid
order until the attributes come on the same path. It would be logical to
unnest as few subrelations as possible, since unnesting always creates more
tuples.

Example 4.3 Using the relations of Tables 1 and 2, the following four
queries are equivalent.

o[E#=EMP A DOB=DATE](e; X e3) (5)
o[E#=EMP A DOB=DATE|]u[TRAINING];4[CHILDREN] (6)
(1‘2 X 1'3)

u[TRAINING'|§(E#,EMP,NAME,DOB,SEX,TRAINING); (7)
TRAINING' := o[E#=EMP A DOB=DATE](TRAINING)}
#[CHILDREN](72 X r3)

u[CHILDREN'|§(E#,EMP,CNO,DATE,CHILDREN'); (8)
CHILDREN' := o[E#=EMP A DOB= DATE](CHILDREN)}
#[TRAINING](r2 X r3)

Note that in the third expression of the above example, the subrelation
CHILDREN is unnested. This brings all attributes in the selection predicate
into the scope of the operand y[CHILDREN](r; x r3). For the same reason,
the subrelation TRAINING is unnested in the fourth expression. What we
have done in the last two expressions is succeeded in pushing the select past
an unnest, and selected out sub-tuples lower down in the structure.

The second way of getting all the attributes in an atomic condition to lie
on the same path is by performing Cartesian products between subrelations
in the structure. For example, the following query is equivalent to the four
queries of Example 4.3.

p[CT}§(E#,EMP,CT); CT = o[(E#=EMP) A (DOB=DATE)]
(CHILDREN x TRAINING)}(r; X r3).

13

14 Deshpande and Larson

R Tk R
] |
¢ n
I [
| |
Y. z; Y. Zky 25
@ ®)

Figure 1: Scheme Tree Diagram for Theorems 5.1 and 5.2.

In this example, by performing a Cartesian product between subrelations
CHILDREN and TRAINING, the attributes DOB and DATE have come on
the same path (and in this case, are in the same subrelation) from the root.
We can then apply the selection condition directly to the nested relation
before doing any unnesting.

In general, it is possible to push the selection condition past all the
unnests by altering the structure of the nested relation R. Furthermore,
this altering of the structure consists of performing only Cartesian products
between subrelations in R.

5 Transformation Theorems

In this section, we present theorems which allow us to push an atomic se-
lection condition past all the unnests, possibly performing a change in the
structure while doing so. This forms the basis of the query transformation
procedure described in Section 6. The structure change considered consists
of performing only Cartesian products, or only unnests. The whole idea is
to bring the attributes involved in the selection condition along the same
path from the root of the structure. In the first two theorems, no structure
change is needed, since the attributes are already along the same path.
The first theorem considers a selection condition involving a comparison
between a top level attribute and an attribute lower down in the structure.

Theorem 5.1 (See figure 1a). Let R be a nested relation such that it con-
tains the pathname P = Y1.Y;.---.Y,_,.Y,. Without loss of generality, as-
sume that all subrelation names in the scheme tree of R are unique. Let
zi € sattr(R), z; € sattr(Y,). Let X, = attr(Yz) — Yip1,k=1,2,...,n -1,

Transforming from Flat Algebra to Nested Algebra 15

and Xo = attr(R) - Y;. Then

olzi op z;]p[Yalp[Yn-1]. . .uY1](r)
= uY]uYoa)]...5N1]€Ya. o Yooi(Xn-1,Y,); Yy i= ofzie 0p 2i](Ya)d(r)

Proof: Proof by induction:
We first show it for one level of nesting (n = 1). We need to show that

ofzk op zluNi](r) = w¥18(Xo, Y1) Yy = ofzi 0 2}(Y1)}(r) (9)
The left side of (9) gives

er = ph)(r)
= {s|3t € r: s[Xo] = t[Xo] A s[attr(Y1)] € t[Y1]}
olzr op zjl(e1) = {ulu € e1 A (u[zi] op u[2;]) = true}
= {u|3t € r: u[Xo] = t[Xo)
Aulattr(%)] € {o]v € H¥i] A (v]2] op tlen])}}

The right side of (9) gives

r1 = §(Xo, Y1) Y] := ofzi op z](Y1)3(r)

= {s]3t € r : s[Xo] = t[Xo] A 5[] = ofzi 0p z;](t[Y1])}

by definition of the subrelation constructor

= {s]3t € r: s[Xo] = t[Xo] A s[¥]] = {v|v € t[Y1] A (v[2;] op t[zx])}}
{u|3s € 1 : u[Xq] = s[Xo] A u[attr(YY)] € s[Y;1}
= {u|3t € r: u[Xo] = t[Xo]

Aulatir(Y1)] € {v|v € t[Y1] A (v]2;] op #[z])}}

(note that attr(Y]) = attr(Y7))

plY{)(r)

Now assume it is true for 7 levels of nesting (n = 7). Let z; € sattr(Y3),
z; € sattr(Y;). Assume
ofzi op z;]u[Yilp[Yioa] . . . p[Y1](r)
= p¥lplYia]. . pAl§(V1. - - Yia(Xin, Y)Y = o2 op 25](Y:)3(r)
Now show for n = 7 4 1 levels of nesting, where z; € sattr(Y;4,).
ofzk op z;]u[Yi]ulYs] . . . p[¥1)(r)
olzr 0p z;]p(Yit1]. .. pY2)(u[Y1](r))

= Vi ulYd]. .. pYa]§(Y2. - - Yi(Xi, Y1) Vit 1= ofze op 2](Yisa)3 (m(Ya](r))
by the inductive hypothesis

= WYl BV YiXa Vi)i Vi = olen op 5)(Yir)3()

16 Deshpande and Larson

a

In this theorem, we consider a selection condition comparing two at-
tributes which are in the same subrelation.

Theorem 5.2 (See figure 1b). Let R be a nested relation such that it con-
tains the pathname P = Y1.Y,.---.Y,,.Y,. Without loss of generality, as-
sume that all subrelation names in the scheme tree of R are unique. Let
2k, 2z; € sattr(Y,). Let X, = attr(Yz) — Yig1,k = 1,2,...,n - 1, and
Xo = attr(R) — Y;. Then

olzi op zjlp[YalulYn-1].. . pY1](r)
= plYplplYooa].. . pVi)¢a. - - Yao1(Xn-1,Y,): Ya = o2k 0p 2)(Ya)3(r)

Proof: Proof by induction:
We first show it for one level of nesting. (n = 1). We need to show that

olz op zlu1](r) = #[Y{]#(Xo,7); Y] := ofzk op z])(Ya)3(r) (10)
The left side of (10) gives
e1 = ph](r)
{s|3t € r : 8[Xo] = t[Xo) A s[attr(Y7)] € t{V1]}
{ulu € e1 A (u[zi] op u[z;])}
= {u|3t € r: u[X,] = t[Xo]
Aufattr(Y1)] € {v|v € t[Y1] A (v[z] op v[2;])}}

olzk op zj)(e1)

The right side of (10) gives

r1 = §(Xo,¥i); Yy := ofzk op z;](Y1)}(r)
= {s|3t € r: s[Xo] = t[Xo] A s[Y]] = o[z op z;](t[11])}
by definition of the subrelation constructor
{s3t € r : 5[Xo] = t[Xo] A s[Y]] = {v|v € ¢{¥1] A (v[2i] op v[2])}}
{u]3s € r1 : u[Xo] = s[Xo] A ulattr(YY)) € s[Y{]}
= {u|3t € r : u[Xo] = t[Xo]
Aufattr(YY)] € {v]v € tY]] A (v[z] op v[2])}}

#Y{l(r1)

Now assume it is true for i levels of nesting. (n = 7). Therefore, assume

o[z op z;]u[Yi]u[Yio1]. . . p[Y1](r)
= plYplYia]...uM1§(N1. - - - Yica(Xio1, ¥); Y = o2k op 2;](Y3)¥(r)

Transforming from Flat Algebra to Nested Algebra 17

R Xo, W1, 11
wh b4
l: 1
W Tk Yo
I:
Y zj

Figure 2: Scheme Tree Diagram for Theorems 5.3 and 5.4

Now show for n = 7 + 1 levels of nesting.

o[z, op z}p[Yiy1]. .. p[Ya]u[V1](r)

= o[z op z;]u[Yis] . .. p[¥2](u[Y1)(r))

= uYi]ulYi]. .. pY2]4Yz. - - Ya(X0, Y0)i Vi 1= ola op 2](Ya)3(uV1)(r))
by the inductive hypothesis

= pYiaulYi]. . p)eYs. - - Yo X, Y10)i Vi = olz op 2](Ya)¥(r)

O

This next theorem looks at a selection condition comparing between two
attributes that lie along different paths from the root. One is the attribute
of a top-level relation. The other attribute is at an arbitrary depth along a
different path.

Theorem 5.3 (See figure 2). Let R be a nested relation such that it contains
a path P, = W3, and a path Py = Y1.Y3. - --.Y,1.Y,,. Without loss of general-
ity, assume that all subrelation names in the scheme tree of R are unique. Let
zy € sattr(Wh), z; € sattr(Y,). Let Xp = attr(Yy)=Yeq1,k=1,2,...,n-1,
and Xy = attr(R) — {W1,Y1}. Then

ofzr op z;|p[Wilu[Yalp[Yn-1]. .. p[¥1])(r)
= pYplpYoa]. . yV2luWiYi§W V1Y, - Vo1 (Xao1, V) Yy o= oz 0p 25](Yn)}
¢(Xo, WhY1); WY1 := Wy x Y13(r)
Proof: Proof by induction on n:

We first show it for one level of nesting (n = 1). Let 2, € sattr(W;),
z; € sattr(Y;). We need to show that

ofzi op zlu[Wi]uYi](r) = u[WiTi[§(Xo, WiYY'); WiTY' := oz op 2)(W1 Y1)}

18 Deshpande and Larson

$(Xo, W1Y1); W1Y; 1= Wy X Yad(r)
This is equivalent to showing that

olz, op z;luWhluYi](r) = w[WhY1')§(Xe, W1Yr'); (11)
WiYy' = ofzi op z;)(W1 x Y1)¥(r)

The left side of (12) gives

= pWiluYi)(r)
= {u|3t € r : u[Xo] = t[Xo] A u[attr(W;)] € t{W,]
Aulattr(Y1)] € t[Y1]}
e olzg op 2z;](r1)

{ul3u € r1 A (ufzi] op u[z])}
{u|3t € r : u[Xo] = t[Xo] A u[attr(W))] € t{W;]
Aufattr(Y1)] € t[Y1] A (u[zi] op u[z])}

The right side of (12) gives

€(Xo, V1Y) WY1 := oz op 2;](W1 x Y1)3(r)

{s|3t € 7 : 5[Xo] = t[Xo] A s[W1Y1'] = o[zk op z;](¢{Wh] x t[{11])}

by definition of the subrelation constructor

{s|3t € r : s[Xo] = t[Xo] A s[W1Y71'] = {v| v[attr(W7)] € t[W;]
Nolattr(¥3)] € Y] A (vfzi] op v[z])}}

HW1 Y7 |(r.)

{ul3s € r2 : u[Xo] = s[Xo] A ulattr(W1Y7')] € s[W1 Y7}

{u|3t € r : u[X,] = t[Xo]

Aufattr(W1Yy')] € {v|v][attr(W1)] € t{W1] A v]attr(Y7)] € t[Yi]

A(vlza] op olz])}}

{ul3t € r : u[Xo] = t[Xo] A ulattr(W)] € t{W1] A ufattr(Y3)] € t[Y1]

Aulza) op ulz;)}

€2

Now assume it is true for i levels of nesting (n = 7). Let z;, € sattr(W,),
z; € sattr(Y;). Therefore, assume

ofzr op z;]u[Wh)u[Yi|ulYioa]. .. w1)(r)

= plYulYia]. .. p[Ye]u[WhY)
tWiYh. - Yio1 (X1, YY) Y = oz op 2)(Y5)3
¢(Xo, W1Y1); WhYy := Wy x Yq3(r)

Transforming from Flat Algebra to Nested Algebra 19

Now show for n = ¢ + 1 levels of nesting. Let z, € sattr(W;), z; €
sattr(Y;41).

olzi op z;lu[Wh]p[YipJulYi]. . . u[Y1](r)

= ofzr op z;]u[Yia |u[Wh]ulYi] .. .u[1i])(r)
by Theorem 2 in [TF86]

= ofzi op z]u[Yipa)(ulY]]. .. p[Ye]u[Wh V3]
Y1y, - Yioa(Xioa, YY), Y/ = Yid
€(Xo, W1Y1); W1Y: = W, x Y13(r))
by the inductive hypothesis

= ofzi op z;]u(Yi11](u),
where

v = plY]].. pYa]uWin)§(Wih1Ys. - - - Yy (Xiaa, YY) Y := V3D

t(Xo, WiT1); WY1 := Wy x Ya)(r)
note that z; € sattr(U), z; € sattr(Y;41), Yiy1 € rattr(U)
Therefore, from Theorem 5.1
ofzi op z;]u[Yiy1)(u)

= WYy)(Uo, Yiya)i Yy 1= olew op 5](Yira)3(w),
where Up = attr(U) — Y4,

= V800, Y1) Vit 1= ofza op 2](Yia 3ulYi] . . . pY2]u[Wh Vi)
¢(Xo, WiY1); W1Y7 := Wy x Y13(r)

= uY]ulYi]. .. ulYa]uWnn)
tWin.Ys. - Yi(X;, Y11)i Yign = ofzi op 2)(Yita)}
¢(Xo, WhY1); WY1 := W) X Y13(r)

a

This theorem looks at a selection condition comparing between two at-
tributes that lie along different paths at variable depths in the structure.

Theorem 5.4 (See ﬁgure 2). Let R be a nested relation such that it con-
tains a path P, = W;..--.W,,, and a path P, = Y;.---.Y,. Without loss of
generality, assume m < n, and that all subrelation names in the scheme tree
of R are unique. Let z;, € sattr(Wy,), z; € sattr(Y,). Let Vi = attr(W)) —
Wig,1=1,2,...,m—1. Let X} = attr(Ys) — Y41,k =1,2,...,n—1, and
Xo = attr(R) — {W1,Y1}. Then

o[k 0op Z|u[(Wa] . .. s(Wr]ulYa]pu[Ya-1]. .. uY3](r)

20 Deshpande and Larson

= pY]pYoo]. . 4lYmsr |o(Win Y] . . u[Wh Y]
{Wllfl .. -WmYm-Ym+1- . 'an—l(Xn—lv 1:)’ Y1: = 0’[2!], op zj](Yn)}
{(Vm-ly Xm—l’ WmYm); WmYm = Wm X Ym}

.{(Xo,W1Y1);W1Y1 1= Wh x Y13(r)

Proof: Proof by induction on m:

We hold n fixed. Note that m < n. If n = 1, we have already shown the
result for m = 0 (Theorem 5.1) and for m = 1 (Theorem 5.3). Therefore,
assume n > 1.

When m = 1, the result follows from Theorem 5.3. Assume it is true
for m = i levels of nesting (i < n). Let z, € sattr(W;), z; € sattr(Y,,).
Therefore, assume

ofzi op z;|u[Wi]. .. uWhu[Ya)uYaa] . . .pYi](r)
= uYRlulYoa]. . plYiuluWiYi]. .. u[WhY;]
¢tV WY Y. Yooa(Xno1, Y)Yy = oz op 2;](Ya)d
§(Vio1, Xio1, Wi¥3), WiYs := W; x Vi

$(Xo, W1Y1); W11 := W1 x Y1 §(r)

Now show for m = i + 1 levels of nesting. Let z;, € sattr(Wiy1), 25 €
sattr(Y,).

olzr op z|u[Win|u[Wi] . .. fWh]u[Yo]u[Ya] . . . uYa)(r)
= oz op z]uWinlu[Vy]pYaoi]. .. plYin Ju[WiYi] . . . u[W1 Y1)
WLYa. . WiYiYigy. - Yooy (Xnoy, YI), Y = Yod
Vi1, Xio1, WiXa); WiY; := W; x Y3

t(Xo, W1Y1); W1Y1 := W, x Y13(r)
by the inductive hypothesis
= olzi op z|p[Win]ulYa] . . . p[Yig1](u)
where
u = pWY...uWith]
§(Vier, Xio1, WiXa); WiYs = W; x Y}

t(Xo, W1Y1); WY1 := W1 x Y33(r)

Transforming from Flat Algebra to Nested Algebra 21

note that z; € sattr(W;i41), z; € sattr(Y,), and Wiy, Yiyy € rattr(u).
It follows from Theorem 5.3 that
ofzi op z;|p[Win]u[Ya]. . . slYir1](u)

= u[YlulYa-a] ... plYip2]u(Wi1Yiga]
Wis1Yir1 Yiga. - - Yoo1(Xn1, Vo) Yy := oz op 2i)(Ya)}
€(Uo, Wis1Yi1); WiaYig1 1= Wi X Yia3(u)
where Uy = attr(u) - Wit1Yin

= p[YaluYo-1l. . plYir2]u[Wis1Yisa]
Wi Y1 Yz, oo - Yao1(Xno1, Y)Y = oz op z;](Ya)$
€U0, Wit1Yit1); WisaYiga := Wiga X Yiad
uWwiyy...u[Win]

$(Vic1, Xicr, WY3); WiYi = W; x Y3

¢(Xo, WiY1); W1 Yq := Wy X Yq1§(r)
= p[YalplYoal. . plYir2lu[Win1 YiaJu[WiYi] . .. p{W7 V1]
NY:. - WY Yise. oo Yoo1(Xn-1,Y,); Yo := o[zi op 2z;](Ya)?
(X, WiaYia)i WiaYiqa := Wi X Yiad

¢(Xo, WiY1); W1Y1 := W X Y13(r)
a

The following theorem looks at the interaction of the select and unnest
operators. Specifically, when the selection operation involves two attributes
which may not be compared because they are not in the same scope, the
structure is unnested along the shortest path until the attributes are on the
same path. This is an alternative to performing Cartesian products to bring
the attributes on the same path.

Theorem 5.5 Let R be a nested relation such that it contains a path Py =
Wi.---. Wy, and a path P, = Y, ---.Y,. Without loss of generality, as-
sume m < n, and that all subrelation names in the scheme tree of R are
unique. Let z;, € sattr(W,,), z; € sattr(Y,). Let Vi = attr(W)) — Wiyga,l =
1,2,...,m—1. Let X} = attr(Ys) — Y41,k = 1,2,...,n— 1, and Xo =
attr(R) — {W1,Y1}. Then

olzx 0 z;]p[Wa]. . .p(Wh]u[Ys] . . . uY1](r)
= Y JulYaor] - pYil€Y. - Yoo (X1, Y1) Vi o= ofzi 6 2](Ya)}
(U[Wi] . . .u[WA](r))

22 Deshpande and Larson

Proof:

olzi 0 z;]u[W] . .. p(Wa)ulYs] . .. u[Y3](r)
= o2k 0 Z]u[Ya]. .. u[V)(4[Wa)] . .. W1])(r))
by Theorem 2 in [TF86)

= “[Y;]”'[Yn—l] . I"’[Y].]{Yl o '-Yn-—l(x —19 1:); Yv: = a'[zk 6 z.‘i](Yn)}

(W] .. u[Wh](r))
by Theorem 5.3

a

-Next, we need a theorem which allows us to push a selection which is
a disjunction of atomic conditions past unnests. Let the selection conjunct
C; consist of a disjunction of atomic conditions ¢; Ve3 V - -+ V ¢;. Notice in
the previous theorems that pushing a single atomic condition past unnests
consists of two phases: a structure change on R so that both attributes come
on the same path from the root; a selection on the subrelation containing
the most deeply nested of the attributes. When we are dealing with a dis-
junction, we need to bring all the attributes in the disjunction on the same
path from the root. The selection can then be applied on the subrelation
containing the most deeply nested of the attributes. We introduce a new
operator, CP, to simplify the notation.

Let ¢ be an atomic selection condition. We define CP(c,r) to be the
nested relation r’ that results from structure changes that are performed on
r in order for the attributes in ¢ to lie on the same path. These structure
changes consist exclusively of Cartesian products between subrelations at
the same scheme tree level in R.

Definition 5.1 [CP(c,r)] Let R be a nested relation. Let ¢ be an atomic
selection condition posed as ofc]u*(r). Let z;,z; be attributes in u*(r).

1. If ¢ is of the form z; op K, then
CP(c,r)=r.
2. If c is of the form z; op z; + K, then there are two cases to consider.
(a) If z;,2; are on the same path from the root in R, then
CP(c,7)=r.
(b) If 2;,z; are on different paths from the root, then for k > 0 let

z; € sattr(Y1.Y2.-- .Y2.21.2,.---.2,),
z; € sattr(Y1.Ys.. - Yo Wi.W,. W,).

Transforming from Flat Algebra to Nested Algebra 23

Without loss of generality, let n > m > 0. Let X; = attr(Z;) —
D141, Vi = attr(W)) — Wiyq, 1 = 1,2,...,m - 1. Let X, =
attT(Yk) - {Wl,Z1} if & > 0, and Xy = attr(R) - {W]_,Z]_} if
k= 0. Then

CP(C: 7') = {(Xm—lv Vin-1, Zme); Zp W := Zq X Wm}

{(XO; ZlWl); Z\Wh =2, x Wl}(r)

a

From Theorems 5.1 - 5.4 and the definition of CP(c,r), it is clear that
oleju*(r) = p"¢Py.---.Pi_y(attr(Py_1) — Py, Pl); P} := o[c](Pa)}(CP(c, 7))

where P;..-..P; is the pathname of the subrelation containing the most
deeply nested of the attributes in the atomic selection condition c.
We now extend the function CP to work on a selection conjunct C;.

Definition 5.2 [CP(C;,r)] Let C; = ¢, V---V ¢ be a conjunct consisting of
a disjunction of atomic selection conditions. Then we define

CP(Ci,r) = CP(cyV:---Vep,r)
= CP(q,CP(...,CP(c3,CP(c1,7))...)).

a

Now CP(C;,r) returns a relation which has all the attributes in C; on
the same path. There will be some attribute(s) in C; which is the most
deeply nested on the path. Let P;.P,.---.P; be the common path of all the
attributes in C;, where P, is the subrelation in CP(C;,r) that contains the
most deeply nested of the attribute(s). (We assume that d > 1, for if all
attributes are contained at the root, then trivially o[Ci]u*(r) = p*o[C;](r)).

We are now ready to state the following theorem.

Theorem 5.6 Let R be a nested relation, and let C; = ¢; V ---V ¢ be a
conjunct consisting of a disjunction of atomic conditions. Py.---.P; is the
pathname in CP(C;,r) as defined above. Then

o[Cilu*(r) = p*¢Py.---.Pas1(attr(Py_1) — Pa, Pj); Py := o[C;)(Pa)}(CP(C;, 7).

The proof is easily seen. All attributes being tested in C; are brought
into a common path first, as required by the scoping rules of the algebra,
and the testing is done at the level of the most deeply nested attribute which
is in C,'.

24 Deshpande and Larson

6 The Transformation Procedure

We are now in a position to describe a procedure for transforming the query
Q. to an equivalent query Q, that operates on a nested relation. The query
we begin with, Q., has the form given in equation (1)

g[C1A---AC,)(e1 X -+ X eg).
We have already shown that this is equivalent to the query in equation (4)
a[Ci]o[Co] - - - o[Cyu*(r)

where r = r; X -+ - X rr. A high level view of the procedure to transform the
query is: 1. Begin with the query

a{C1]o[C2] - - -o[C,]u*(r)

2. WHILE there are still conjuncts C; to the left of u* DO

3. Choose a conjunct C;

4 r « CP(C;,r)

5 Let P;.-...P; be the pathname identifying the subrelation
containing the most deeply nested attribute(s) in .
Transform the expression to:

o[Cy]---0[Ci_1]o{Cia] - - -o[C, "
¢Pr.--- .Pd_l(attr(Pd_l) — Py, Pé); P& = U[C;](Pd)}(CP(C;, r))

6. END WHILE

The efficiency of the loop, of course, depends on the choice of the conjunct
chosen in step 3. The main thing to note is that a Cartesian product always
increases the number of tuples, and applying a selection condition always
reduces the number of tuples. Thus it is desirable to first choose all conjuncts
C;j such that r = CP(Cj,r). That is, apply all the selection conjuncts for
which no Cartesian products need to be performed. Furthermore, a selection
condition applied to attributes closer to the root eliminates more data than
a selection condition applied deeper down in the structure. So among all the
selection conjuncts C; such that » = CP(Cj,r), we choose the one whose
most deeply nested attribute(s) is as close to the root as possible.

Whenever a structure change must be made, it is desirable to choose
a conjunct C; such that the number of Cartesian products caused by the
operation CP(Cj,7) is minimal. In this way, the least amount of new tuples
are generated. Once we get the new » = CP(Cj,r), there may be several
selection conjuncts C; such that » = CP(C;,r) for the new r.

With the above points in mind, we modify step 3 of the algorithm to:

REFERENCES 25

3. Choose a conjunct C; such that » = CP(C;,r), and where the most
deeply nested attribute in C; is closer to the root than in any of the
other qualifying conjuncts. If none exists, then choose any C; where
r # CP(C;,r) such that the number of Cartesian products required
is less than for any other qualifying conjuncts.

7 Concluding Remarks

Many possible expressions can be generated for Q,, some more efficient than
others. We have presented an algorithm which tries to minimize the number
of new tuples generated at each iteration, and tries to select out qualifying
tuples as early as possible. No attempt is made at generating the optimal
expression. There is always the tradeoff between doing extensive prepro-
cessing to get the optimal expression, and just finding a “good” expression
faster. For now, we have chosen this second route.

This work is currently being extended to include projections. The rules
for pushing projections past unnests will be added in a forthcoming paper.
We expect this to be a straightforward procedure. ‘

The algebra used in the paper will be the internal representation for
queries in the LauRel project [L88]. LauRel is a prototype database manage-
ment system being developed at the University of Waterloo. It will support
an extended relational model, an SQL-based language called SQL/W, and
also serve as a testbed for research on parallelism in database systems. We
expect the theoretical results of this paper to be of direct use in LauRel.

References

[DL87] V. Deshpande and P.-A. Larson, An Algebra for Nested Relations,
Technical Report, CS-87-65, University of Waterloo, 1987.

[JS82] G. Jaeschke and H.-J. Schek, Remarks on the algebra of non-first-
normal-form relations, Proc. ACM SIGACT/SIGMOD Symposium
on Principles of Database Systems, 1982, p. 124-138.

[L88] P.-A.Larson, The Data Model and Query Language of LauRel, Data
Engineering Bulletin, Vol. 11 No. 3, 1988, p. 23-30.

[LY87] P.-A. Larson and H.Z. Yang, Computing Queries from Derived Re-
lations: Theoretical Foundation, Technical Report, CS-87-35, Uni-
versity of Waterloo, 1987.

[RK87] M.A. Roth and H.F.Korth, The Design of —-1NF Relational
Databases into Nested Normal Form, Proc. of ACM/SIGMOD An-
nual Conference, San Francisco, 1987, p. 143-159.

26 REFERENCES

[RKS84] M. A. Roth and H. F. Korth and A. Silberschatz, Extended Algebra
and Calculus for ~1NF Relational Databases, Technical Report, TR-
84-36, University of Texas at Austin, 1984.

[SS80] M. Schkolnik and P. Sorenson, Denormalization: A Performance
Oriented Database Design Technique, Proc. AICA Conference,
Bologna, Italy, 1980.

[S86] M.H. Scholl, Theoretical Foundation of Algebraic Optimization
Utilizing Unnormalized Relations, Proceedings of the International
Conference on Database Theory, Rome, Italy, September, 1986,
Springer-Verlag, p. 380-396.

[SS81] M. Schkolnik and P. Sorenson, The Effects of Denormalization on
Database Performance, Research Report RI3082 (38128), IBM Re-
search Lab, San Jose, CA, 1981.

[SS86] H.-J. Schek and M.H. Scholl, The Relational Model with Relation-
Valued Attributes, Information Systems, Volume 11, No. 2, 1986, p.
137-147.

[TF86] Stan J. Thomas and Patrick C. Fischer, Nested Relational Struc-
tures, Advances in Computing Research, Vol. 3, 1986, JAI Press
Inc., p. 269-307.

[Y87] H. Z. Yang, Query Transformation, Ph.D. Thesis, University of Wa-
terloo, 1987.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

