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Abstract

Some recent developments in the design of asynchronous circuits are
surveyed. The design process is considered in two parts. First, the com-
munication behaviour of the component to be designed is formally spec-
ified and this specification is decomposed into a network of basic compo-
nents. Second, the basic components are realized using gate circuits.

In the first part of the design process we use trace theory to rea-
son about all possible sequences of events. Components are specified by
regular-expression-like programs, called commands, whose semantics is
based on directed trace structures. We formalize the concepts of speed-
independent and delay-insensitive circuits in the context of a network of
basic components.

In the second part we use switching theory for the analysis of gate cir-
cuits. Three different delay models are discussed: the feedback-delay, the
gate-delay, and the gate-and-wire-delay model. The last two models cor-
respond to speed-independent and delay-insensitive circuits, respectively.
We point out that networks of components are commonly operated in the
‘input-output mode’ ( where inputs may change as soon as outputs have
responded to a previous input change), whereas gate circuits are usually
operated in the ‘fundamental mode’ (where the entire gate circuit must
stabilize before another input change is permitted).

We note that delay-insensitive gate circuits are unlikely to exist for
most basic components. For this reason, it is important that analysis
and design methods are developed using bounded-delay models.

*Presented at the Seventh International Conference FUNDAMENTALS OF COMPUTA-
TION THEORY FCT ’89, Szeged, Hungary, August 21-25, 1989.
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1 Introduction

In recent years a number of important results have been obtained in the area
of asynchronous circuits. The purpose of this paper is to describe some of
these key developments and to refer to others which, for lack of space, cannot
be discussed properly here.

Before we present the new results, we briefly emphasize the increasing im-
portance of asynchronous circuits in the rapidly changing world of computer
technology. As computer systems become more and more distributed, it is
more difficult to achieve proper communication and synchronization among
all the parts in such systems. Each of these parts is usually an indepen-
dently clocked (i.e. synchronous) system. The synchronization of such sys-
tems involves many timing problems, some of which —like the metastability
problem[6] — are of a fundamental nature. It is believed that proper design
techniques for asynchronous circuits can alleviate these problems considerably.

For many years asynchronous circuits have been studied using Boolean
algebra as the main formalism. These studies started with Huffman[13] and
Muller and Bartky[19]; in the latter work the name speed-independent circuit
was coined. Several different models[2, 3, 11, 23] were applied in order to
describe and verify circuit behaviour as accurately as possible. It was only
recently that a unifying theory was found in which the differences and simi-
larities among these models could be explained[5].

A somewhat different approach to the design of asynchronous circuits was
advocated by Molnar et al. in the Macro Modules project[7] from which the
term delay-insensitive circuit evolved and, more recently, by Seitz[25] who
coined the term self-timed system. Ideas expressed by Molnar and Seitz have
influenced researchers at Eindhoven University of Technology[10, 20, 21, 27,
29] where a formalism, called trace theory, was developed for the design of
such circuits. A similar formalism was used recently by Dill[8] for automatic
verification of speed-independent circuits.

Martin[14, 16] uses the language of Communicating Sequential Processes
(CSP)[12] to specify the behaviours of components to be designed. Such a CSP
specification can then be compiled into a self-timed circuit. Many interesting
circuits have been designed in this way, culminating with a fast asynchronous
microprocessor[15]. Techniques similar to Martin’s were also applied at Philips
Research[1] where unexpectedly good results have been obtained.

Another demonstration of the usefulness of asynchronous circuits was given
by Ivan Sutherland in his 1988 Turing Award lecture[28], where he shows
how special types of asynchronous circuits, called micropipelines, can be used
conveniently in the design of many fast processing components.

The design of asynchronous circuits is an attractive area of research, in
particular because it lies on the boundary of theory and practice. On the
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one hand it contains simple and elegant mathematics, from formal language
theory to semantics. On the other hand it is practical: many circuits have
been used in actual designs and exhibit an unexpectedly good performance
and robustness. Furthermore, such circuits are particularly well-suited for
implementing parallel computations.

Although asynchronous circuits have been studied for many years now, the
new approaches and major breakthroughs make us believe that this field is still
very young and that more results are to be expected in the near future. Some
difficult problems, however, still remain. We discuss some of these problems
in the next sections.

2 The Producer and Consumer Paradigm

To illustrate the design of asynchronous circuits, we discuss a simple example
starting with a behavioural specification and ending with a gate-level imple-
mentation. The necessary terminology and notation will be developed along
the way. The producer-consumer setting of the example is due to Dijkstra[9];
the final circuit is a special case of a micropipeline[28].

Consider a ‘producer’ that outputs data items to be stored in a buffer and
a ‘consumer’ that removes such items from the same buffer. Let a and b denote
the production and consumption of data items, respectively. The producer and
consumer act independently of each other; consequently, together they might
generate any sequence of a’s and b’s. This may lead to unacceptable situations,
however: the producer may cause an overflow of the buffer —which is assumed
to be finite— and the consumer may cause an underflow. Consequently we
need to design a controller which ensures that no items are produced if the
buffer is full and none are consumed if the buffer is empty.

To keep the example simple, assume that the buffer has 2 places. Then
the set of allowed sequences of productions and consumptions is the language
accepted by the (incomplete) finite automaton defined by the state graph of
Figure 1, where the initial state (corresponding to the empty buffer) is desig-
nated by an incoming arrow, and all the states are accepting states. Examples
of allowed sequences are: € (the empty trace), a, aa, ab, aab, aabb, etc.

a a
b b "

Figure 1: State graph for buffer controller.

In order to ensure that only allowed sequences occur, the controller of
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Figure 2 will send an ‘acknowledge’ signal to the producer and one to the
consumer. Consider first the producer side and assume that the buffer is not
full. The producer supplies input a notifying the controller that an item is
being stored. After some delay, the controller will respond with an output
p, informing the producer that another item can be stored. For convenience,
signals that are inputs (respectively outputs) to the controller will be identified
by ? (respectively !).

a? s—] [

p!

Figure 2: Buffer controller.

When the consumer and the controller are considered in isolation, the
communication protocol between the two consists of an alternation of input
a and output p, starting with a. Thus, all allowed behaviours are defined by
the state graph of Figure 3(a). Similarly, the protocol between the controller
and consumer is as shown in Figure 3(b). Initially the buffer is empty. When
it becomes non-empty, the controller informs the consumer of this fact by
sending output ¢. The consumer then removes an item while sending input b
to the controller. This then repeats.

a? b?
p! q!

(a) (b)

Figure 3: (a) Producer interface (b) Consumer interface.

In the following we give a formal specification of the buffer controller using
trace theory; the material from here to Section 7 is based on [10, 20, 27, 29].
Finite sequences of symbols are called traces and sets of such sequences, to-
gether with the indication which symbols are inputs and which are outputs,
are described by directed trace structures. Formally, a directed trace structure
is a triple < A, B, X >, where A is the input alphabet, B is the output alphabet,
and X is a set of traces constructed from symbols in AU B. A trace structure
is called regular when its trace set is a regular set. Regular directed trace
structures can be represented by expressions called commands, which are sim-
ilar in many ways to regular expressions. Commands are defined inductively.
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The atomic commands ¢, a?, a!, and !a? represent the atomic trace structures
< 9,0,{¢} >, < {a},0,{a} >, < 0,{a},{a} >, and < {a}, {a}, {a} >, respec-
tively. For commands E, EO, and E1, the expressions E0; E1 (concatenation),
EO|E1 (union), [E] (repetition), and prefE (prefix-closure) are also com-
mands. Let iF,oF, and tE denote the input alphabet, output alphabet, and
trace set of the directed trace structure represented by command E. The di-
rected trace structures represented by EO0;El, E0|E1l, [E], and prefE are
defined by

E0;E1 = <iEQUiE1l,0EQUOE1,(tE0)(tE1) >,

E0|El1 = <iEOUiE1l,0EQUO0EL,tEQUtEL >,
[E] = <1iE,oE,(tE)* >, and
prefE = <iE,oE,{to|(3t; :: toty € tE)} >,

where concatenation of sets is denoted by juxtaposition and * denotes Kleene’s
closure. (Here, we use the same notation for the command and the language
defined by the command.) With the above definitions, the communication
behaviours between producer and controller and between consumer and con-
troller can be described by pref[a?; p!] and pref[g!; b?] respectively.

3 Parallel Composition and Synchronization

The complete communication behaviour of the controller of Figure 2 is spec-
ified by a proper synchronization of the two communication protocols; the
overall protocol must ensure that the number of items contained in the buffer
is always at most two and at least zero. In order to describe this proper co-
operation between the two sides of the controller, we introduce a new operation
on directed trace structures called weaving.

Formally, the weave EO||E1l of two directed trace structures represented
by the commands EO and E1 is defined by

E0||E1 = <iEO0UiFEl,0E0UO0E1,
{te (aEOUaEl)*|t|aE0 € tEOAt|aFEl € tE1l} >.

Here, aFE = iE UoF and t|B denotes the projection of trace t on alphabet B,
i.e. the trace from which all symbols not in B have been deleted. Informally,
a weave of two specifications represents all behaviours that are in accordance
with each of the two specifications.

As an example, consider the two commands EO0 = pref[a?;c!] and E1 =
pref[b?; c!]. According to the above definitions of weaving we have

i(E0||E1) = {a, b}, o(EO||E1) = {c}, and
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t(EO0||F1) = {¢, a,b, ab, ba, abe, bac, ..}.

This directed trace structure can be represented also by pref[a?||b?; c!].

Notice that, in a weave, common symbols must match. One could also say
that weaving expresses ‘parallel co-operation with synchronization on common
symbols.” There are two special cases of weaving £0 and F1: ifaEONaFE1l = @,
weaving amounts to interleaving or shuffle; if a£E0 = aF1, weaving amounts
to intersection.

Returning to the buffer, we give a specification for the communication
behaviour of the controller using weaving and projection. For this purpose we
introduce a so-called internal symbol !z? in the two communication protocols
to achieve proper synchronization. This internal symbol is ‘projected away’
after weaving. The complete communication behaviour of the controller is
given by

E = (pref[a?;!z?; p!] || pref[lz?; ¢!;b?)) | {a,p, b, q}.

Because of the synchronization on the common (internal) symbol !z?, there
are always at most two and at least zero items in the buffer. To see this, notice
that, because of the first command in the weave, 0 < #,t — #.t < 1 for each
trace t in tE, where #,t denotes the number of a’s in ¢. Similarly, because
of the second command in the weave, 0 < #,t — #,t < 1. Consequently, we
have 0 < #,t — #»t < 2. Moreover, each trace t with this property is also
contained in tE.
A command equivalent to F is the following:

E1 = pref(a?;[(p}; a?)|l(q; 87))).

Both commands define the same trace structure. From this last command it
is readily verified that the communication behaviour specified by F can be
represented also by the state graph of Figure 4.

Figure 4: State graph for E.

The command E1 does not generalize to the case where the buffer has
n > 2 places. The state graph of Figure 4 does generalize, but its size is
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exponential in n. The command E generalizes easily. For example, for n = 4
the command becomes

( prefla?;!21?;p!] || pref[lz1?;!227)
|| pref['z2?;!237?] || pref[!z3?;¢!;0?])) | {a,p,b, ¢}.

One can show that 0 < #,¢t — #t < 4 for each trace ¢ in the above command
[27].

The length of the generalized version of the command F is linear in n. This
illustrates that commands may be preferred to state graphs in case parallel
operation and synchronization are involved.

4 Specification and Implementation

Thus far, we have specified the communication behaviour of the buffer con-
troller by means of the rather abstract notion of a directed trace structure,
which can be represented by a command. Such a specification can be inter-
preted not only in a formal mechanistic way, but also in physical terms like
voltage transitions on wires. We explain these interpretations by means of the
specification for the so-called (Muller) C-element (named after Muller[19]).
Formally, a C-element is specified by the command pref[a?||b?; c!]. It rep-
resents a basic component with three terminals: inputs a and b, and output
¢. Its schematic is shown in Figure 5. Initially, the environment for this

a?
C-element pref[a?|[57?; c!] :D_—‘ c!
b?

WIRE pref [a?; ] a? B!
IWIRE pref [b!; a?]

g

a?

Figure 5: C-element, WIRE, and IWIRE.

component produces communication actions (at terminals) a and b; then the
component will respond with a communication action (at terminal) c¢. Only
after ¢ has been received may the environment produce the next communica-
tion actions a and b, after which the component will respond with ¢ again, etc.
We call this mode of operation —where outputs may be generated only after
certain inputs have occurred and where next inputs may be generated only
after certain outputs have occurred— the input-output mode of operation.
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In a physical interpretation of the C-element, the symbols a, b, and ¢ stand
for voltage transitions at the corresponding terminals. A voltage transition can
be high-going or low-going; both transitions are denoted by the same symbol.
Input transitions are caused by the environment and output transitions are
caused by the circuit.

With this physical interpretation in mind we can construct the state graph
of Figure 6 for the behaviour of the C-element; the states in this graph are
represented by the voltage levels at terminals a, b, and ¢ respectively. Initially
all voltages levels are 0. For convenience, n-tuples like a,b,c and 0,0,0 are
written as abc and 000, etc. The unstable states are represented by dashed
circles.

Figure 6: State graph for C-element.

In Figure 5 specifications of two other basic components, viz., the WIRE
and the IWIRE, are given as well. The WIRE component has two terminals.
It first receives input @ and then responds with output b. According to the
input-output mode of operation, the environment may produce the next input
a only after it has received the output b, after which the WIRE will respond
with output b again, etc. The IWIRE can be seen as an initialized WIRE: it
starts by producing an output; after this, its behaviour is the same as that of
the WIRE. The IWIRE is denoted by an open arrowhead in the schematic.

5 Decomposition

Given a specification of the communication behaviour of a component, like
command E for the controller, we would like to ‘decompose’ this component
into a network of some ‘basic’ components. In other words, we would like to
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find a network of basic components that produces the outputs as specified in
E, if the environment produces the inputs as specified in E.

We first illustrate the concept of decomposition by means of the network
of Figure 7. This network consists of a connection of two WIRE components,

—<3— b?

q!
Figure 7: A network of basic components.

one IWIRE, and one C-element. Their respective specifications are E; =
pref(z?;p!], E; = pref(z?;¢!], Es = pref[y!;4?], and E; = pref(a?||y?;z!].
We show that the controller specified by

E = (pref[a?;!z?; p!] || pref[!z?; ¢!;8?]) | {a,p,q,b}

can be decomposed into E;, Ej3, E3, and E4. This property is expressed by
E — (E», E,, Es3, E,), where the network of the components E;, E;, E3 and
E4 is denoted by (El, Ez, Ea, Eq)

In order to take the environment of the network into account as well,
we take the reflection of E in which we interchange the role of component
and environment. More formally, the reflection of a directed trace structure
represented by command E, is denoted by E and defines the directed trace
structure E =<oE,iE, tE>, where the inputs and outputs are interchanged.
In our example, E specifies when its outputs a and b are produced; these form
the inputs of the network (E4, E,, E3, E4). Instead of considering the network
(E1, E2, E3, E4) and its environment as specified in E, we consider the network
(Eo, Ey, Ea, E3, E4) from now on, where Ey = E.

Formally, in order to prove that the network of Figure 7 behaves as spec-
ified in E, we need to demonstrate that four conditions hold for the network
(Eo, E1, E2, E3, E4). The first condition requires that there be no dangling
inputs or outputs, i.e. that every input be connected to an output and vice
versa. In formula:

(Ui:0<i<5:0E)=(Ui:0<i<5:1E;). (1)

If (1) holds, we say that the network (Eq, E1, Ea, E3, E4) is closed.
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The second condition is that no outputs of distinct components are con-
nected to each other. In formula

OoE;NoE; =0 for 0<i,j<5AT#]. (2)

When (2) holds, we say that the network is free of output interference. If (1)
and (2) hold, then every symbol is an output of only one component in the
network.

Conditions (1) and (2) are conditions on the structure of the network. They
are formulated in terms of the alphabets of the directed trace structures. The
next two conditions are behavioural conditions; they are phrased in terms of
the trace sets and the alphabets,

The third condition prescribes that the input-output mode of operation
may not be violated for any component in the network. We can simulate the
network by generating traces of symbols, representing joint behaviours of the
components in the network. Formally, we construct the trace set X of all joint
behaviours as follows. Initially, X = {e¢}. Choose a trace t, symbol z, and
index 7,0<i<5, such that t€ X A z€0FE; Atz| aE; € tE; holds (i.e. after joint
behaviour t, component F; can produce output 2). If for all j,0<j <5 we
have tz | aE; € tE;, (component j can accept z, i.e. its input-output mode
of operation is not violated), then we add ¢tz to X. Otherwise, we stop the
simulation and say that the network has computation interference. Our third
condition is

The network is free of computation interference. (3)

Testing for computation interference can be done by an algorithm involving
a finite state graph([8, 10]. One can verify that (3) is satisfied for the network
(Eo, E1, E2, E3, E). The trace set X that can be generated for this network
can be represented by

X = t(prefla?;'z?;1p?] || pref[ly?;!z?;!q?;107]).

The only difference between X and tE is the symbol y which we introduced
in the decomposition as the output of the IWIRE and input of the C-element.

The fourth condition is that every trace of the component specified (here
E) may also occur in the simulation we described above (excluding symbols
not in aF) and that only such traces may occur. In formula:

X | aE = tE. (4)

If (4) is satisfied we say that the network behaves as specified. Condition (4)
is satisfied by the network of Figure 7 as well.
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a?

1227

\ 1z1? 1237 1
P - <3 ' - q:

Figure 8: Decomposition for 4-place buffer controller.

The decomposition of Figure 7 generalizes to a decomposition for the con-
troller of the n-place buffer. The network for this decomposition is given in
Figure 8 for n = 4. Notice that the synchronization on common symbols is
realized by the C-elements.

The formalization of decomposition as given above is taken from [10]. The
verification of the proof obligations mentioned above can be automated. Dill
has designed a verifier that checks whether conditions (1) through (3) hold [8].
Such a verification method, however, is proportional to the number of states in
the global state graph, which can grow as the product of the numbers of states
of the components. For this reason, it is essential that theorems be developed
that allow for a more efficient design or verification of a decomposition.

6 DI Decomposition

In the previous section we gave a formal definition of decomposition in terms
of trace structures. The physical interpretation of decomposition is intended
to correspond to the realization of a circuit by a network of sub-circuits. These
sub-circuits may have arbitrary, non-negative response times. The communi-
cations between the sub-circuits, however, are assumed to be instantaneous.
Thus, a circuit obtained by means of decomposition can be called a speed-
independent circuit, i.e. its correctness is independent of any delay in the
response times of the components.

In practice, the sub-circuits are connected to each other by means of wires,
which may have unspecified delays. Such delays may affect the correctness of
the circuit. If the correctness of the circuit is independent of any delays in
the response times of components and connection wires, then we call such a
circuit a delay-insensitive circuit.

While a speed-independent circuit is formally described by means of a
decomposition, a delay-insensitive circuit is formally described by means of
a DI decomposition. A DI decomposition is a decomposition in which all
connection wires between the components are taken into account. Formally,
these connection wires are represented by WIRE components and connect
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components with each other through an intermediate boundary as exemplified
in Figure 9.

———— = =TT TN .
intermediate
’ bzundary

~

T

(a) (b)

Figure 9: (a) Decomposition. (b) DI Decomposition.

We give a brief description of a delay-insensitive circuit. For more details
the reader is referred to [10]. First, we define the enclosure enc(E,), i.e. the
component enclosed by the intermediate boundary, by renaming the symbols
in the command FE; to their ‘localized’ versions. The collection of WIRE
components connecting the enclosure enc(E;) with its intermediate boundary
is denoted by Wires(E,). E,, E3, and E4 are treated similarly. We say that
the components E;, E,, E3, and E4 form a DI decomposition of component E,

denoted by E 2 (Ey, E,, Es, E4) if and only if
E — (i:0< i< 5: enc(E;), Wires(E;) ). (5)

In general, DI decompositions are more difficult to derive and verify than
decompositions because of all the (connection) WIRE components. The two
decompositions are equivalent, however, if all the constituent components are
so-called DI components. A component E is called a DI component, if

E — (enc(E), Wires(E)).

This property formalizes that the communication behaviour between compo-
nent and environment is insensitive to wire delays. Verification of the DI
property reduces to verifying that the network (E, Wires(E), enc(E)) is free
of computation interference. The basic components C-element, WIRE, and
IWIRE, for example, are DI components.

Since all basic components of the decomposition of Figure 7 are DI compo-
nents, this decomposition is a DI decomposition, i.e. (5) holds. Accordingly,
the circuit of Figure 7 represents not only a speed-independent circuit but also
a delay-insensitive circuit. The same reasoning holds for Figure 8.
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The idea of formalizing delay-insensitivity using a characterization of a DI
component originates from Molnar[18]. Udding was the first to give a rigorous
formulation of the DI property in terms of directed trace structures|[29].

Shannon showed that any switching function can be realized by a gate
circuit with only a finite number of gate types[26]. Similarly, we can ask our-
selves ‘Can any DI component be decomposed into a network of components
chosen from a finite basis of DI components?’ In [10] it is shown that, indeed,
any regular DI component can be so decomposed. Consequently, such a de-
composition is also a DI decomposition. The C-element, WIRE, and IWIRE
component are members of such a basis. Other components are, for example,
the XOR (or MERGE) component specified by pref{(a?|b?); c!], the TOGGLE
component specified by pref[a?;d!; a?;c!], and an arbiter-like component.

If a component is specified by a command satisfying a certain syntax,
then its decomposition can be described as a syntax-directed translation into
a network of basic (DI) components[10]. Another attractive property of this
translation is that the number of basic components in the final network is
proportional to the length of the command. We also mention, however, that
the decompositions obtained thus may not be optimal.

7 Realizations of Components by Gate Circuits

Having decomposed a component to be designed into a network of basic com-
ponents such as C-elements and WIREs, one is faced with the problem of
realizing the basic components. Here, we assume that this is to be done us-
ing logic gates; space limitations prevent us from discussing other types of
realizations, such as those based on the commonly used MOS technology[30].

We introduce a number of ideas related to the design of asynchronous gate
circuits by using the example of the C-element. The input-output behaviour
of the C-element of Figure 5 has been described by the state graph of Figure 6.
We assume that the inputs a and b can only change one at a tirne. The follow-
ing illustrates a frequently used approach to gate circuit design. Construct a
combinational gate circuit with inputs a, b, and ¢, and output C. The output
C gives the ‘excitation’ of ¢, i.e. the next value that the (sequential) circuit
output ¢ should assume, if the present values of the inputs and the output
are given by a,b, and ¢. From Figure 6 we observe that the output ¢ should
become 1 if a =1 and b = 1. Once the output ¢ becomes 1, it should remain
1 as long as @ = 1 or b = 1. Thus, we have C = ab + (a + b)c = ab+ ac + be,
where ab denotes the AND function and a + b denotes the OR. function of a
and b. A gate circuit corresponding to this expression is shown in Figure 10,
where the rectangle between C and ¢ represents a delay. The presence of such
a delay is implicitly assumed when we talk about the present value c of the
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o Q

Figure 10: Gate circuit for C-element.

output and the excitation C to which the output is tending to change. Since C
is assumed to be a Boolean function of a, b, and ¢, the value of C is computed
from those of a, b, and ¢ without delay. \

Our design of the buffer controller began with a high-level specification
of the controller component that led to the decomposition of the component
in terms of some basic components. Furthermore, this decomposition has the
important property that the network behaviour is independent of the delays
in basic components and wires. Thus, the decomposition is delay-insensitive
under the assumption that the environment co-operates, i.e. that the input-
output mode of operation is used. A natural question now arises: Can each
basic component be realized by a delay-insensitive gate circuit? In particular,
is the circuit in Figure 10 for the C-element delay-insensitive? We consider
such questions in the next two sections.

8 Fundamental Mode versus Input-Output Mode

Classical switching theory[17] assumes that gate circuits operate in fundamen-
tal mode. This means that the environment of the gate circuit co-operates in
such a way that it produces a next input only after the entire circuit has
stabilized. This is a much more restricted environment than the one in the
input-output mode of operation, where an input is allowed to change as soon
as the output changes, but possibly before all the gates in the circuit have had
the chance to stabilize.

For simplicity, we first consider the question whether the circuit of Figure
10 is speed-independent. In other words, we assume that each gate has a
delay and that wires have no delays. This model is also called the gate-delay
model. The gate-delay model for the circuit of Figure 10 is shown in Figure
11. This model is more realistic than the one of Figure 10, where there is
only one delay before the output c. Suppose that the circuit of Figure 11 is
started in state ab = 00,cdef = 0000. When a changes to 1, the excitation
remains CDEF = 0000, i.e. the circuit is stable and no further changes take
place. Next, suppose b changes to 1, i.e. we reach ab = 11, cdef = 0000. Now
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€ C Pt C
F f
L

Figure 11: Gate-delay model.

D = 1, and the other excitations remain 0. After some time, d becomes 1
and changes C to 1. Eventually, ¢, e, and f also become 1 and the circuit
stabilizes in ab = 11, cdef = 1111. Altogether, we have verified that, starting
with ab = 10 and cdef = 0000, the change to ab = 11 results reliably in the
state cdef = 1111, when fundamental mode is assumed.

Now consider the same transitions from the stable state ab = 00,cdef =
0000 when ab becomes 10 and then 11 in the input-output mode. The following
sequence of events is possible, where underlined entries represent unstable
gates:

ab cdef

00 0000 stable initial state

10 0000 input a changes, state is still stable
11 0000 input b changes

11 0100 output d changes

11 1100 output ¢ changes

In the input-output mode, the environment may change input b again now.
Thus, the following is possible:

10 1100 input b changes
10 1000 output d changes (before output e)
10 0000 output ¢ changes (before output e)

The final state reached in this transition is the stable state ab = 10,cdef =
0000. Consider the signals a,b, and ¢ only; we have just shown above that
the following trace is possible: ¢ = abcbe. This is not in accordance with the
C-element specification, which requires that all the traces must be in the trace
set of pref[a?||b?; c!].

Altogether, we have shown that a circuit behaving properly in fundamental
mode may not behave properly in input-output mode. On the other hand,
one can view fundamental mode operation as an input-output mode operation
with ‘slowly’ changing inputs. If all gate outputs have become stable, then
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the circuit outputs, being outputs of some gates, have also reached their new
values. Hence, operating a circuit in fundamental mode does not violate any
input-output mode principles.

9 Fundamental Mode Analysis

We have seen in the last section that fundamental mode operation may differ
from input-output mode operation. However, we do not reject the fundamen-
tal mode approach for two reasons. First, if it is impossible to realize a circuit
specification to operate correctly in fundamental mode, then it is certainly
impossible to do this in input-output mode. Therefore, fundamental mode
realizability is a necessary condition for input-output mode realizability. Sec-
ond, very little work has been done on input-output mode analysis, whereas
much is known about the fundamental mode approach. In this section we
briefly summarize the known results concerning fundamental mode analysis,
including some very recent findings.

The first question that arises when one is choosing a model for a gate
circuit is what assumptions are to be made about the presence of delays in the
circuit. Three different models have been used in the past. The first one is
the feedback-delay model, where one chooses a set of wires in the circuit with
the property that cutting all these wires removes all the loops in the circuit
—thus making the resulting circuit a combinational one. One then associates
a delay with each wire in this set. An example of such a model is the circuit
of Figure 10, where only one delay is assumed. This model was introduced by
Huffman(13].

The second model is the gate-delay model in which a delay is associated
with each gate. This corresponds to the concept of speed-independence de-
scribed in Section 5 for a decomposition of a component into a network of basic
components. This model was used by Muller and Bartky[19]. An example of
this approach is the circuit of Figure 11.

The third model, the gate-end-wire-delay model, corresponds to the con-
cept of delay-insensitivity described in Section 6 for DI decomposition. Such
a model was used implicitly or explicitly by many authors; see, for example,
[3]. To illustrate this model, consider Figure 11; here one would have to add a
delay in the wire from input a to the top AND gate and also one from input
a to the middle AND gate, etc. Altogether, ten additional wire delays have to
be introduced.

Having selected a delay model for a given circuit, we can associate a state
variable with each delay and find the excitation function for that variable,
i.e. the Boolean function that specifies the value to which that variable is
tending to change. For example, for the single state variable ¢ in Figure 10,
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the excitation is C = ab + ac + bec. For Figure 11, we have four excitation
functions: D =ab, E=ac, F=bc,and C=d+ e+ f.

In order to cover all three delay models, we will refer to a set of state
variables and their excitation functions as a network. An internal state of a
network is a tuple of binary values assigned to the state variable tuple, say y,
and an input state is a tuple of binary values assigned to the input variable
tuple, say z. For example, for the network of Figure 11 we have ¢ = (a,b)
and y = (¢,d, e, f). A total stateis a pair (input state, internal state). A state
variable is stable in a given total state if its value in that state is equal to
its excitation in that state. A total state is stable if all of its state variables
are stable. In fundamental mode analysis we start with a stable total state
(20,y0) of a network and then change the input to z1 and keep it at that
value until the circuit ‘has had a chance to stabilize.” Only then is the input
allowed to change again. Of course, not all such transitions result in a single
stable state. If more than one stable state can be reached or if an oscillation
occurs, the behaviour is considered improper.

In general, the new state (21, y0) is unstable. If there is only one variable
unstable, then eventually that variable must change, and a unique next total
state is reached. If two variables are unstable, either can change first, or
both can change at the same time. Thus, there are three possible next states.
The situation where two or more variables are unstable is called a race. A
commonly used race model —dating back to Huffman[13], but formalized by
Brzozowski and Yoeli[3]— assumes that, in any unstable state, any subset of
the set of unstable variables may ‘win the race,’i.e. change to its corresponding
excitation state. This model has been called the GMW (general multiple
winner) race model.

It turns out that, if one uses the GMW race model, then each of the three
delay models (feedback, gate, gate-and-wire) may yield different results[5].
The most accurate (and realistic) model of the three is the gate-and-wire-delay
model. Unfortunately, the computation time for this model is exponential
in the number of state variables. Recently, however, it has been shown [4]
that the results for the gate-and-wire-delay model can be obtained also by
an efficient method called ternary simulation introduced by Eichelberger[11].
Moreover, it was shown in [5] that, when a different race model —the so-
called XMW model— is used, all three delay models yield the same results as
ternary simulation. Thus, in the XMW race model one is permitted to use the
feedback-delay model without losing any information. The XMW model uses
ternary algebra based on the three values 0, 1, and X, where the last value
corresponds to an ‘uncertain’ signal.

While the XMW analysis (in any delay model) or, equivalently, the GMW
analysis in the gate-and-wire-delay model give useful results, these results are
frequently pessimistic in the sense that they include timing problems which
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are very unlikely to occur in practice. These analysis models are indeed so
pessimistic that only very few sequential circuit behaviours can be realized in
delay-insensitive fashion[23]. For example, Seger has shown that there does
not exist a delay-insensitive gate circuit realizing a modulo-2 counter.

The situation is even worse for the input-output mode operation. We
conjecture, that such commonly used circuits as the set-reset latch and the
C-element do not have delay-insensitive gate circuit implementations. In fact,
it appears that no non-trivial sequential behaviours have such realizations.

10 Bounded-Delay Models

The results mentioned in the previous section are rather discouraging because
the basic components needed for delay-insensitive decomposition cannot be
designed in delay-insensitive fashion from gates. What then is the solution to
this dilemma? The practical answer is that we have to make some assumptions
about the sizes of delays in circuit elements and wires, i.e. we are led to some
type of bounded-delay model. Such a model has been used informally for
many years. See, for example, [22]. A simple example of such an approach is
the following. First, design a gate circuit using Huffman’s feedback variable
approach (as illustrated by the example in Figure 10). Then introduce a
sufficiently large delay in the output to make sure that all the gates and wires
in the circuit stabilize before the new output value reaches the output terminal.
Such an approach will work if each delay has an upper bound.

We illustrate the bounded-delay approach with the circuit of Figure 12 for
the C-element. The unlabeled rectangles and the thin ovals represent the gate

Figure 12: Bounded-delay model

and wire delays, respectively. The delay element labeled D is added by the
designer to ‘slow down’ the output. Suppose we know that all wire delays are
at most one time unit, and that all gate delays are at most two time units.
One can verify that the circuit will behave properly in the input-output mode,
if the output delay D is at least four time units. Notice that the presence of
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the output delay forces the input-output mode operation to become identical
to the fundamental mode operation of the circuit.

It is an open problem whether there exist general systematic design tech-
niques for circuits operating in some appropriate bounded-delay model. In
fact, the analysis of circuits under the bounded-delay assumption is far from
trivial. Some new results have been obtained by Seger who has shown that
bounded-delay analysis can be done efficiently[24].

11 Concluding Remarks

By means of a simple example we have illustrated some of the recent devel-
opments in the design of asynchronous circuits. Because of space limitations,
we have not been able to discuss important results obtained by others. In
particular, we would like to mention the recent developments made by A.J.
Martin. The interested reader will find an extensive overview in[16].
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